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Abstract. We consider risk-averse formulations of stochastic linear programs having a struc-

ture that is common in real-life applications. Specifically, the optimization problem corresponds

to controlling over a certain horizon a system whose dynamics is given by a transition equation

depending affinely on an interstage dependent stochastic process. We put in place a rolling hori-

zon, time consistent, policy that for each time step defines a risk-averse problem with constraints

that are deterministic for the current time step and uncertain for future times. To each uncer-

tain constraint corresponds both a chance and a Conditional Value-at-Risk constraint. We show

that the resulting risk-averse problems are numerically tractable, being at worst conic quadratic

programs. For the particular case in which uncertainty appears only on the right-hand side of

the constraints, such risk-averse problems are linear programs. We show how to write dynamic

programming equations for these problems and define robust recourse functions. For multistage

stochastic linear programs, an algorithm commonly used to obtain approximations of recourse

functions is Stochastic Dual Dynamic Programming (SDDP). In our case this algorithm does not

apply. However, using the convexity of our robust recourse functions, we present an algorithm

to approximate them that shares some features with SDDP. To assess the methodology and

compare it with SDDP, we consider a water-resource planning problem and obtain encouraging

numerical results.

AMS subject classifications: 90C15, 91B30.

1. Introduction

Hedging risk is a challenging question in Stochastic Programming. Since uncertainty may appear

in the objective function and/or in the constraints, risk-averse proposals can be gathered in three

groups, depending on how uncertainty (and, hence, risk) is dealt with. The first two groups deal

with uncertainty in both the objective function and in the constraints. More precisely, methods

in the first group minimize some risk measure of the objective function, which depends on the

decisions and on the underlying random variables. In this group, the so-called dynamic risk

mappings [30], [25], including the different “perspectives” for polyhedral risk measures in [15],

appear as powerful and useful tools. The second group, Robust Optimization, can use available

data to define uncertainty sets and apply the worst case oriented robust optimization methodology

[4]. Finally, general stochastic programs can always be reformulated as optimization problems with

deterministic objective function and uncertain constraints. This makes possible the introduction

of a last group of risk-averse models, especially designed to control risk on constraints. Among
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dynamic programming and rolling horizon.
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several proposals in this group, we mention the classical chance constraints [8], [27] and the more

recent integrated chance constraints [19], [20], and stochastic ordering constraints [13].

Our work belongs to the last group above, with some distinctive features. Specifically, most

of the works in this group replace each uncertain constraint by a risk-averse counterpart, written

as a single constraint. Instead, we use a couple of constraints in the risk-averse formulation: to

each uncertain constraint corresponds both a chance and a Conditional Value-at-Risk (CVaR)

constraint. Our goal is twofold; while a chance constraint gives a qualitative control for constraint

violation, regardless of the amount of violation, a CVaR constraint gives a quantitative measure,

by keeping control of such amount.

In addition, rather than defining a single risk-averse problem, we adopt a rolling horizon point of

view; there are as many risk-averse problems as time steps in the optimization period. At a given

time step, the corresponding risk-averse problem considers constraints to be deterministic for the

current time step and uncertain for future times. As a result, our approach builds feasible policies

such that all the constraints over the optimization period are satisfied almost surely. This is a very

important property in applications having some “hard” constraints that need to be satisfied with

probability one.

Another crucial matter when dealing with probabilistic constraints refers to numerical tractabil-

ity. In this respect, it is useful to take full advantage of the initial structure. For this reason, we

consider special stochastic linear programs arising when controlling, over a multiperiod horizon,

a dynamical system with a transition equation depending affinely on an interstage dependent

stochastic process1:

(1)























min
x[1:T ],u[1:T ]

T
∑

t=1

c⊤t ut

xt = At−1xt−1 +Btut + Ctξ̃t + dt for t = 1, . . . , T, (tran)

Etxt + Ft(ξ̃t)ut ≥ Gtξ̃t + ht for t = 1, . . . , T, (ineq)

where

– T is the number of time steps, possibly large;

– ξ̃t is a particular realization at time step t of an M -dimensional random process. Each

process component ξt(m) follows a generalized autoregressive model with time varying

order; see Section 3.1 below. The realization ξ̃t becomes known at the beginning of time

step t;

– xt ∈ R
Nx is the state of the system at the end of time step t, with dynamics given by the

transition equation (1)(tran) and known x0;

– ut ∈ R
Nu is the control variable, applied to the system at time step t; and

– c⊤t ut is the cost at time step t.

1Observe that (1) is a problem instance, written for a given realization of the underlying process; for the moment,we
do not explain how uncertainty is dealt with.
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Matrices At, Bt, Ct, Et, Gt are Nx ×Nx, Nx ×Nu, Nx ×M , qt ×Nx, qt ×M , respectively. The

“technology” matrix in the inequality constraints (1)(ineq), i.e.,

(2) Ft(ξ̃t) = F̊t +









(Ft,1ξ̃t)
⊤

...

(Ft,qt ξ̃t)
⊤









,

is an affine function of the process realization. The respective sizes of matrices F̊t and Ft,i are

qt ×Nu and Nu ×M . Finally, vectors dt and ht have dimensions Nx and qt, respectively.

For many real-life planning problems, the evolution along the planning horizon is modelled

by means of reservoirs (of a product, of water, of energy, of take-or-pay contracts, of oil). In

this sense, the framework in (1) is rather comprehensive, and covers a variety of applications in

inventory problems [2], [5], [21], electric energy, oil, and finance [29, Ch. 10], [16], [17], [33]; see

also Section 2 below. For such applications, many of the constraints (ineq) involve only the state

xt or only the control ut, which corresponds to the fact that, when certain rows in Et are not null,

the corresponding rows in Ft(ξ̃t) are null, and reciprocally.

When applying our rolling horizon approach to problems of form (1), the special underlying

structure -of both the stochastic process and problem constraints- yields fully tractable risk-averse

problems for each time step. Equivalent deterministic formulations of chance-constrained problems

have already been proposed for a limited number of statistical frameworks and classes of optimiza-

tion problems. Our result generalizes to a somewhat broader setting similar results in [8] and

[10]. More precisely, we show in Theorem 4.4 that the risk-averse problems are deterministic conic

quadratic programs, that become linear programs if the technology matrix in (2) is not random,

that is, if Ft,1 = . . . = Ft,qt = 0.

Our methodology is specially attractive for problems with large time horizon T . In such cases,

there are often so many scenarios that only sampling methods can be employed, [24], [11], [26]. In

this setting, many risk-averse formulations yield huge multistage stochastic linear programs which

are difficult to solve, when not intractable. Instead, with our approach we build a risk-averse

feasible policy just by solving T deterministic linear or conic programs. Moreover, we show that

such programs are decomposable by stages (an issue of special algorithmic interest in a large-scale

context) and can be solved efficiently by Dual Dynamic Programming. Finally, we propose two

algorithms to obtain approximations of the risk-averse recourse functions corresponding to our

model.

Our paper is organized as follows. In Section 2 we start with an application example, the long-

term planning of water reservoirs in hydro-thermal power systems. This application is used along

the paper to explain and motivate the proposed approach. Section 3 gives the statistical model

for the stochastic process as well as the main elements of our risk-averse rolling horizon approach.

Section 4 shows that the risk-averse problems are numerically tractable. In particular, when these

problems are linear programs, in Section 5 we give a stagewise decomposition and show how to

approximate the robust risk-averse recourse functions mentioned above. Finally, in Section 6, the

approach is assessed on the water-resource planning problem, by comparing its performance with

the sampling method of Stochastic Dual Dynamic Programming from [24].
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We adopt the following notation and conventions. For t2 ≥ t1, the short form v(t1,t2] (resp.

v[t1,t2]) stands for the concatenation (vt1+1, . . . , vt2) (resp. (vt1 , . . . , vt2)), with v(t,t] vacuous and

knowing that the concatenated objects vj can be vectors or matrices, depending on the context.

For sums and products,
∑i1

i=i0
xi = 0 and

∏i1
i=i0

xi = 1 whenever i0 > i1, knowing that for

matrices Xi, if i0 > i1 then
∏i1

i=i0
Xi = I, the identity matrix. For a random variable X , its

distribution function and its density are respectively denoted by FX(·) and fX(·), knowing that

for X ∼ N (0, 1), we just write F (·) := FX(·). Finally, if X is continuous and larger values of

the random variable are preferred, its Conditional Value-at-Risk of level εp ∈ [0, 1] is denoted

and defined by CV aRεp(X) := −E[X |X ≤ F−1
X (εp)], while the Value-at-Risk of level εp of X is

V aRεp(X) := −F−1
X (εp); see [28].

2. Motivation

Our initial motivation is the long-term optimal management of water reservoirs in hydro-thermal

power systems, [23]. For this problem, present operating decisions have future consequences that

are difficult to quantify because the water is a commodity of unknown value and uncertain avail-

ability. Moreover, it is important to set the problem in a risk-averse framework so that indicators

such as energy prices better reflect the impact of extreme events.

In this setting, it is desirable for the computational model to provide two types of output:

(RecFun): approximate recourse functions for each time step t = 1, . . . , T ; and

(EcInd): economic indicators, such as mean marginal energy prices, expected load shed-

ding, average supplied energy.

The recourse functions from (RecFun), obtained in some cases at the end of an optimization phase,

can be seen as a pricing mechanism, giving value to water, and defining a policy. Namely, at a

so-called simulation phase, with such prices it is possible to mimic the optimal operation of the

hydro-thermal system. Recourse functions can also be used to couple planning models of different

horizons and obtain a sound overall management of the system. Similar situations arise in the

long-term control of other stochastic systems, as in [29, Ch. 10].

As for the indicators in (EcInd), they measure the performance of the long-term management

policy. They are computed by simulating the system operation over a high number of randomly

generated scenarios, covering a large spectrum of foreseeable futures (including extreme droughts,

floods, etc).

In Sections 3.2 and 5.2 we analyze how our robust rolling horizon approach compares to usual

non-rolling horizon methodologies to fulfill requirements (RecFun) and (EcInd).

We now give the mathematical formulation for a simplified model of the water management

application that will help in clarifying our rolling horizon risk-averse methodology.

2.1. A simplified long-term energy planning problem. The optimal management of a hydro-

thermal power system in the long-term minimizes the operational cost along the period, subject

to various technical constraints. Since the immediate hydro-cost is positive but negligible, opera-

tional costs are essentially related to the fuel burnt by thermal plants and penalties resulting from

load shedding. In a predominantly hydro-electric system like Brazil’s, the availability of (limited)

amounts of hydro-power, in the form of water stored in reservoirs, makes the problem extremely
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complex. There are many reservoirs in cascade, some of them with a capacity of regularization that

covers several years, which are spread over geographical regions with different seasonal rainfall.

For simplicity, we consider only one reservoir with large enough capacity and suppose there is

neither spillage nor upper bound on the turbines outflow. The system also has one run-of-river

plant, but no thermal plants. In addition, the problem is formulated in energy variables, without

entering into the issue of how to relate water to energy by explicit production functions.

In this simplified formulation, at each time step t we have a state variable xt, the volume of the

reservoir at the end of the time step; a control variable ut = (gt, dft)
⊤ ≥ 0, with gt the turbines

outflow, dft the energy deficit; and ξ̃t, the natural inflow of water arriving into the reservoir. Only

a fraction γt ∈ [0, 1) of this water can be stored; the remaining portion, (1− γt)ξ̃t, is immediately

transformed into power by the run-of-river plant. We further assume that turbines of the run-of-

river plant have enough capacity to generate power out of all of (1− γt)ξ̃t, without any losses.

In order to appropriately reflect seasonal variations, the stochastic process of water streamflows

is usually represented by a periodic autoregressive model with a one year period, [22], [12]. If there

are more reservoirs, the process is multivariate and there is a (nondiagonal) covariance matrix to

express the dependence of inflows on neighboring geographical regions.

The objective function considers generation and shortage costs, and constraints are given below.

Water balance equation. If there is no evaporation,

(3) xt = xt−1 − gt + γtξ̃t

corresponds to the transition equation (tran), with

At−1 = 1, Bt = [−1 0], Ct = γt, and dt = 0.

In the presence of more reservoirs, At−1 is an identity matrix I, Bt a concatenation of −I with a

zero matrix, Ct = γtI is a diagonal matrix, and dt a null vector.

Demand satisfaction. Usually this constraint has the form gt + dft = max(demt − (1 − γt)ξ̃t, 0),

where the energy deficit dft is modelled as a (fictitious) thermal plant with large capacity and

generation cost equal to the shortage cost; and demt is the demand at time step t, that we suppose

deterministic for convenience.

Since our risk-averse formulation makes use of probabilistic constraints (that can be set only for

inequality constraints), we re-write the demand satisfaction constraint as an inequality:

(4) gt + dft ≥ demt − (1 − γt)ξ̃t .

Although, in general, modifying the feasible set may alter the optimization problem, such is not

the case here when replacing the initial demand satisfaction constraint by inequality (4), thanks

to the structure of the problem.

With respect to (ineq), we see that the demand constraint corresponds to taking

Et = 0, Ft = [1 1], Gt = −(1− γt), and ht = demt,

with natural extensions to the multi-reservoir case.

Critical volume. Operators managing the system in real time are mostly concerned about keeping

reservoirs at reasonable storage levels. In particular, they sometimes wish to keep the reservoirs
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above critical values, or reference trajectories, estimated empirically by the operators or imposed

by some regulatory rules. The corresponding constraints have the form

(5) xt ≥ xcrit
t .

In the notation of (ineq), constraint (5) sets

Et = 1, Ft and Gt null, and ht = xcrit
t ,

where the extension to more reservoirs is straightforward.

The values xcrit
t ≥ 0 are given and such that,

(A1) along time steps, the critical levels are nonincreasing: x0 ≥ xcrit
1 ≥ xcrit

2 ≥ . . . ≥ xcrit
T .

This assumption, together with the inflow condition stating that P(ξt ≥ 0) = 1 for every t, implies

that recourse in problem (1) is relatively complete, [6, Ch. 3, p. 92]. If Assumption (A1) did not

hold or if we do not have ξt ≥ 0 a.s., then the methodology described in the sequel would still be

applicable and relatively complete recourse would hold adding slack variables yt ≥ 0 (penalized in

the objective) to constraints (5): xt + yt ≥ xcrit
t .

In this application the “technology” matrices Ft are deterministic and Ft,i = 0, i = 1, . . . , qt

(qt = 2 for the simplified model considered in this section). If production functions are considered,

and if such functions depend on uncertain factors, then matrices Ft are stochastic. Such is the

case in the oil industry, for example [33], when dealing with refinery production planning with

uncertain yields.

3. General setting

Consider the natural filtration F1 ⊂ . . . ⊂ FT induced by the process ξt, defining Ft as the

sigma algebra σ(ξj , j ≤ t). We are interested in finding a sequence of state and control mappings

xt(·) and ut(·) for t = 1, . . . , T , i.e., an implementable policy satisfying the following properties:

Nonanticipativity: state and control mappings xt(·) and ut(·) are Ft-measurable and,

hence, are functions of the available history ξ̃[t] of the process.

Feasibility: a non-anticipative policy satisfying (ineq) and (tran) for t = 1, . . . , T , with

probability one.

The assumption of relatively complete recourse ensures the existence of feasible policies for problem

(1).

3.1. Statistical model. Our multivariate discrete time stochastic process depends, in an affine

manner, on previous values. In this context, form = 1, . . . ,M, each component ξt(m) is represented

by a generalized autoregressive model, with varying orders pt(m) ≥ 0. Accordingly, for every

integer t, there exist coefficients Φj
t (m) for j = 1, . . . , pt(m), with non-null Φ

pt(m)
t (m), such that

(6) ξt(m) =

pt(m)
∑

j=1

Φj
t (m)ξt−j(m) + ηt(m).
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In this expression, ηt, t = 1, . . . , T , are independent Gaussian vectors with E[ηt] = µt and with an

M ×M covariance matrix Γt := Cov(ηt). In particular, we will denote the standard deviation of

ηt(m) by ση
t (m) > 0.

In our development, we will need to express a given value of the process as a function of its past

history. For this reason, it is convenient to introduce for t = 1, . . . , T − 1, j = 1, . . . , T − t, and

m = 1, . . . ,M , the integers

(7) pmax
t,j (m) = max

1≤k≤j
{pt+k(m)− k},

as well as the useful past history of the process up to time step t

(8) ξ̃[t] =
{

ξ̃t−j(m), m = 1, . . . ,M, j = 0, . . . ,max(pmax
t,T−t(m), t− 1)

}

.

The index pmax
t,j (m) specifies how much past information is needed at time step t to compute

ξt+j(m), for a process ξt modelled by (6). More precisely, as shown in [18], for t = 1, . . . , T − 1,

j = 1, . . . , T − t, and m = 1, . . . ,M , the relation

(9) ξt+j(m) =

pmax
t,j (m)
∑

ℓ=0

αℓ
t,j(m)ξt−ℓ(m) +

j
∑

ℓ=1

βℓ
t+j(m) ηt+j−ℓ+1(m),

holds for certain coefficients αℓ
t,j(m) and βℓ

t+j(m). Such coefficients can be derived from the model

data in (6); we refer to [18] for the corresponding (recursive or explicit) formulæ, that are useful

for coding the numerical implementation of the method.

3.2. Rolling horizon versus non-rolling horizon policies. We focus on models with recourse

that, at time step t, make use of a recourse (or cost-to-go) function Qt+1. Usually, recourse

functions depend only on the state variables, xt. However, in our setting (6), the stochastic process

is affinely dependent on previous values, and the state variable has to be augmented with the process

history of realizations. As a result, the simulation phase, that is, the actual computation of the

indicators from item (EcInd) in Section 2, involves solving (exactly or approximately) problems

of the form

(10)















min
xt,ut

c⊤t ut +Qt+1(xt, ξ̃[t])

xt = At−1xt−1(ξ̃[t−1]) + Btut + Ctξ̃t + dt

Etxt + Ft(ξ̃t)ut ≥ Gtξ̃t + ht.

A usual non-rolling horizon approach approximates problem (10) by replacing Qt+1(xt, ξ̃[t]) with

an approximate recourse function Qt+1(xt, ξ̃[t]), depending on the augmented state (xt, ξ̃[t]). This

approximation is built at the first stage, knowing ξ̃[1] and x0 only.

By contrast, in a rolling horizon setting, either (a) we can determine an optimal solution to (10)

or (b) we use an approximation Qt+1(·, ·) of Qt+1 built at stage t, knowing the history ξ̃[t] and

xt−1(ξ̃[t−1]).

Typically, we are in situation (a) when Qt+1(xt, x̃[t]) is given as the optimal value of a mini-

mization problem and the corresponding minimization problem (10) is tractable. In this context,

we can find an optimal solution to (10) even without an approximate representation of Qt+1. Such

is the case of our rolling horizon policy (see details in Sections 3.3 and 4).
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In situation (b), the algorithm used to obtain approximations of the recourse functions depends

on their definitions. In a risk-neutral setting and for problems of the class we consider, SDDP can

be used to obtain such approximations.

Table 1 which follows highlights the main differences of both approaches. This table shows that

Table 1. Usual non-rolling horizon (NRH) and rolling horizon (RH) approaches.
In case (a), RH is a simulation phase whereas in case (b) it couples an optimization
phase with a simulation phase.

NRH: Optimization phase:

for each t = 1, . . . , T , knowing the information ξ̃[1] ,
compute an approximation Qt+1(·, ·) of Qt+1(·, ·) .
Simulation phase:
for each i = 1, . . . , N ,

for each t = 1, . . . , T , knowing the realization ξ̃i[t] = (ξ̃[1], ξ̃
i
2, . . . , ξ̃

i
t),

use the approximation Qt+1(·, ξ̃i[t]) to solve (10) and compute indicators.

RH: Optimization/Simulation phase:

for each i = 1, . . . , N ,

for each t = 1, . . . , T , knowing the realization ξ̃i[t] = (ξ̃[1], ξ̃
i
2, . . . , ξ̃

i
t),

either (a) solve directly (10) to optimality and compute indicators or
(b) compute an approximation Qt+1(·, ·) of Qt+1(·, ·) and
use this approximation to solve (10) and compute indicators.

in case (a), the RH policy does not a priori provide us with approximations of the recourse functions.

However, we will show in Section 5.2 that in the case of our RH policy, though we are in case (a),

we can build cuts for the recourse functions as the Simulation process goes by. As a result, we

also end up this process with approximate recourse functions Qt+1(·, ·) available at the first stage.

In this situation, we see that the simulation phase of our RH policy also contains an optimization

phase (in the sense of NRH) building approximate recourse functions. As in the simulation phase

of NRH, these approximate recourse functions can be used to define an alternative non-rolling

horizon policy that will be denoted RA-NRH in the sequel. A motivation for using RA-NRH would

be to simulate more quickly the policy that RH does. This could be possible if the approximate

recourse functions are obtained using a set of Ñ << N scenarios.2 However, recall that contrary

to RH, RA-NRH does not find an optimal but an approximate solution to (10).

We see that with the usual non-rolling horizon approach, requirement (RecFun) is achieved

in a preliminary Optimization phase while with our RH policy, approximations of the recourse

functions are obtained as the simulation process goes by.

2Assume we have q = qt (constant in t) constraints (ineq), and uncertainty in the right-hand side and chance
constraints only. Then

• the simulation of RH policy involves solving for t = 1, . . . , T , N linear programs with Nx + q(T − t + 1)
constraints;

• the simulation of RA-NRH policy involves solving first for t = 1, . . . , T , Ñ linear programs with Nx + q(T −

t+ 1) constraints and then NT linear programs with Nx + q + Ñ constraints.
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3.3. Building risk-averse rolling horizon policies. If the recourse functions in (10) are risk-

neutral or risk-averse, so will be the corresponding policies. Since in our motivating application

the Independent System Operator is interested in finding policies that not only keep the reservoir

levels above some critical value with high probability, but also avoid too big shortfalls, we use two

constraints to hedge risk. More precisely, each uncertain scalar constraint is replaced by a chance

constraint that prevents, with certain probability, constraint violation, and by a CVaR constraint,

that prevents too big violations, if they occur.

For each t = 1, . . . , T , our risk-averse recourse function Qt+1 in (10) is defined considering a tth

risk-averse optimization problem, written over the horizon [t, T ], considering that the past history

ξ̃[t] is known. Accordingly, constraints at time step t are considered deterministic, while future

constraints, for time steps τ = t+ 1, . . . , T , are dealt with as uncertain.

In this setting, given a scenario (ξ̃1, . . . , ξ̃T ), and following [14, p. 16], given any random vector

Y (ξt+1, . . . , ξτ ) decomposed in the form

Y (ξt+1, . . . , ξτ ) = gY (ξ[t]) + fY (ηt+1, . . . , ητ ),

with ξ[t] and (ηt+1, . . . , ητ ) independent, we use the notation

Y (ξt+1, . . . , ξτ )|ξ̃[t] := gY (ξ̃[t]) + fY (ηt+1, . . . , ητ ) ,

to refer to the corresponding conditional random variable.

For notational simplicity, and without loss of generality, from now on we suppose the inequality

constraints in (1) are scalar, so matrices therein are row vectors (like each individual constraint in

the water resource planning application from Section 2). In particular, in (2) we have that qt = 1

and Ft(ξt) = F̊t + ξ⊤

t F
⊤

t,1.

The corresponding tth risk-averse optimization problem, akin to problem (10), has the form

(11)























































min
xt,u[t,T ]

T
∑

τ=t

c⊤τ uτ

xt = At−1xt−1(ξ̃[t−1]) +Btut + Ctξ̃t + dt,

Etxt + (F̊t + ξ̃⊤

t F
⊤

t,1)ut ≥ Gtξ̃t + ht,

and, for τ = t+ 1, . . . , T :

P

(

Eτxτ (xt, u(t:τ ], ξ(t:τ ]) + (F̊τ + ξ⊤

τ F
⊤

τ,1)uτ −Gτ ξτ ≥ hτ

∣

∣

∣ξ̃[t]

)

≥ 1− εp,

−CV aRεp

(

Eτxτ (xt, u(t:τ ], ξ(t:τ ]) + (F̊τ + ξ⊤

τ F
⊤

τ,1)uτ −Gτ ξτ

∣

∣

∣ξ̃[t]

)

≥ hτ − εc(|hτ |+ 1),

where εp, εc ∈ (0, 1) are given confidence levels and where xτ (xt, u(t:τ ], ξ(t:τ ]) is the expression of

xτ as a function of variables xt, u(t:τ ] and of random vectors ξ(t:τ ]. This expression is obtained

applying recursively transition equation (tran) between time steps t + 1 and τ (see the next

section).

Observe that variables for problem (11) are of the here-and-now type, i.e., they are fixed vectors.

Having a solution (x∗t
t , u∗t

[t,T ]) to (11), we only use its first components, (x∗t
t , u∗t

t ), to define the

policy. More precisely, after solving for t = 1, . . . , T all the risk-averse problems (11), the controls

uRob := (u∗1
1 , . . . , u∗t

t , . . . , u∗T
T )



10 VINCENT GUIGUES AND CLAUDIA SAGASTIZÁBAL

give our rolling horizon implementable policy, which is also time consistent [31]. Note that the

optimal values of controls ut+1, . . . , uT in (11) are not used. Since in (11) the solution depends on

ξ̃[t], but not on future realizations ξ̃(t,T ], our policy is non-anticipative. Feasibility results from the

fact that a solution for tth risk-averse optimization problem (11) satisfies constraints (tran) and

(ineq) at time step t, by construction.

If uncertain inequality constraints are vectorial, each constraint component has individual chance

and CVaR constraints and, hence, different confidence levels εp
i, εc

i, for i = 1, . . . , qt, possibly vary-

ing with the time period t = 1, . . . , T − 1.

On confidence levels for our RH policy. Confidence levels are parameters of our rolling

horizon methodology and, as such, they need some calibration, to ensure that the risk-averse

problems are feasible. These parameters have to be taken large enough to ensure feasibility, but

small enough to guarantee constraint satisfaction with a reasonably large probability (εp) and/or

to reasonably limit the amount of constraint violation (εc). There is not a unique setting of these

parameters, since this is a problem-dependent issue. It is not possible to know in advance if, for a

given choice of parameters, problems (11) will be feasible on a given scenario ξ̃[1:T ], for all time steps

t. As a result, instead of an a priori, static choice for these parameters, a dynamic tuning must be

put in place. More precisely, on a given scenario and for a given time step, we can solve different

problems (11), for a range of different confidence levels, increasing such levels as infeasibility arises.

Once various values of εp and εc yielding feasible (11) are found, the combination with smaller εp

should be preferred.

When uncertainty only appears in the right hand side as in our motivating application, this

is not a real handicap, because each risk-averse problem (11) is a linear program (see the next

section). The more general case, of uncertain matrices Fτ , may need a fine tuning for εp > 1
2 (as

shown in the next section, for smaller εp, the risk-averse problems are convex programs, and the

trial and error process for different confidence levels can still be employed).

On confidence levels for RA-NRH policy. A dynamic choice for parameters εp and εc as

explained in the previous paragraph, is only possible if we only wish to simulate our RH policy

on a set of scenarios, and if we are not concerned about providing approximations of the recourse

functions associated to our risk-averse policy. In the latter case, in particular to simulate RA-NRH

policy, parameters εp and εc need to be fixed a priori, i.e., they can vary with constraints and time

steps but for a fixed constraint and time step, they are constant along the N scenarios mentioned

in Table 1.

4. Reformulating the chance and CVaR constraints

A usual concern when formulating robust or chance constraints is their tractability. We now

develop some algebraic manipulations showing that our chance and CVaR constraints are conic

quadratic at worst. Moreover, we show that when each Ft(ξt) = F̊t is deterministic (as in the

water-resource planning application), problem (11) becomes a linear programming problem.

We start by applying the state transition equation (1)(tran) recursively to express a future

state xτ , for τ = t+ 1, . . . , T , as a function
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- of the current state xt,

- of future controls u(t,τ ] = (ut+1, . . . , uτ), and

- of random vectors ξ(t,τ ] = (ξt+1, . . . , ξτ ) from time step t+ 1 to time step τ .

Accordingly, the random variables in the future inequality constraints of (11) become

(12) X(ξ(t,τ ]) := Eτxτ (xt, u(t,τ ], ξ(t,τ ]) + (F̊τ + ξ⊤

τ F
⊤

τ,1)uτ −Gτξτ

for τ = t+1, . . . , T . The probability and CVaR in (11) are computed with respect to the distribution

of random vectors ξt+1, . . . , ξτ given ξ̃[t], i.e., with respect to the distribution of random vectors

ξt+1|ξ̃[t],. . .,ξτ |ξ̃[t]. Keeping in mind the relation (9), the argument in both the probability and

CVaR depends on the random vectors ξ[t] and (ηt+1, . . . , ητ ). Since the history ξ̃[t] is known,

both the conditional probability and the CVaR in (11) are finally computed with respect to the

distribution of (ηt+1, . . . , ητ ).

We start with some technical relations that will be useful in the sequel.

Lemma 4.1 (Affine dependence on decision variables and random process). Consider the scalar

random variable X = X(ξ(t,τ ]) defined in (12) using the transition equation (1)(tran). For all

τ = t+ 1, . . . , T and each time step t = 1, . . . , T − 1, X is an affine function of ξ(t,τ ]:

X =
τ
∑

j=t+1

νj,τ ξj + νt,τ ,

where the coefficients have the expression

νj,τ =



































Eτ (

τ−1
∏

k=t

Ak)xt +

τ
∑

i=t+1

Eτ (

τ−1
∏

k=i

Ak)(Biui + di) + F̊τuτ ∈ R for j = t

Eτ (
τ−1
∏

k=j

Ak)Cj ∈ R
1,M for j = t+ 1, . . . , τ − 1

EτCτ + u⊤

τ Fτ,1 −Gτ ∈ R
1,M for j = τ .

Proof. Take fixed t ∈ {1, . . . , T−1} and τ ∈ {t+1, . . . , T }. A recursive application of the transition

equation (1)(tran) yields for every ℓ ∈ {1, . . . , τ}:

xτ =

τ−1
∏

k=ℓ−1

Akxℓ−1 +

τ
∑

j=ℓ

(

τ−1
∏

k=j

Ak) [Bjuj + Cjξj + dj ] .

Now for j = 0, . . . , τ , we let Aj,τ =
∏τ−1

k=j Ak so that Aτ,τ = I, the identity matrix. With this

notation, the relation

(13) xτ = Aℓ−1,τxℓ−1 +

τ
∑

j=ℓ

Bj,τuj +

τ
∑

j=ℓ

Cj,τ ξj + dℓ,τ

holds with

Bj,τ = Aj,τBj , Cj,τ = Aj,τCj , and dℓ,τ =

τ
∑

j=ℓ

Aj,τdj .

Since ξ⊤

τ F
⊤

τ,1uτ = u⊤

τ Fτ,1ξτ , in (12) we have that

X = Eτxτ + F̊τuτ + (u⊤

τ Fτ,1 −Gτ )ξτ .
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When using this identity and relation (13) for xτ , written with ℓ = t+ 1, we obtain that

X = Eτ

(

At,τxt +

τ
∑

j=t+1

Bj,τuj + dt+1,τ

)

+ F̊τuτ

+

τ
∑

j=t+1

EτCj,τξj + (u⊤

τ Fτ,1 −Gτ )ξτ ,

where we gathered together all terms depending on ξ(t,τ ]. The desired results follow, by associating

νt,τ with the first four terms on the right-hand side above, each νj,τ , j = t+1, . . . , τ−1, equal to the

corresponding term in the fifth summation, and ντ,τ as the remaining portion of the expression. �

From Lemma 4.1 we see that the dependence of coefficients ν on variables (xt, u(t,τ ]) is the

following:

νt,τ is an affine scalar function of variables (xt, u(t,τ ]),

νj,τ is a constant M -dimensional row vector for all j = t+ 1, . . . , τ − 1, and

ντ,τ is an M -dimensional row vector, affine on uτ if and only if Fτ,1 6= 0, constant otherwise.

Since the relation in Lemma 4.1 is affine, the variable X from (12) is also affinely dependent on the

decision variables in (11): X = X(xt, u(t,τ ], ξ(t,τ ]). In order to write down the chance and CVaR

constraints in (11), we need to explicitly compute, for fixed (xt, u(t,τ ]), the mean and standard

deviation of X , conditioned to ξ̃[t], i.e., knowing the history of realizations until time step t.

Lemma 4.2 (Conditional mean and standard deviation). Consider the scalar random variable X

defined in (12) using the transition equation (1)(tran), for a discrete time process ξt modelled by

(6). Consider the coefficients defined in Lemma 4.1, and let νj,τ (m), m = 1, . . . ,M , denote the

components of vectors νj,τ , for j = t+ 1, . . . , τ .

Then for all τ = t+ 1, . . . , T , and t = 1, . . . , T − 1, the random variable X |ξ̃[t] is Gaussian with

conditional mean

E[X |ξ̃[t]] = νt,τ +

τ−t
∑

j=1

M
∑

m=1

νt+j,τ (m)E[ξt+j(m)|ξ̃[t]]

where

E[ξt+j(m)|ξ̃[t]] =
pmax
t,j (m)
∑

ℓ=0

αℓ
t,j(m)ξ̃t−ℓ(m) +

j
∑

ℓ=1

βℓ
t+j(m)µt+j−ℓ+1(m) .

As for the conditional standard deviation, it is given by

(14) σ(X |ξ̃[t]) = σ(

τ−t
∑

j=1

M
∑

m=1

νt+j,τ (m)ξt+j(m)|ξ̃[t]) =

√

√

√

√

τ−t
∑

ℓ=1

γ⊤

t,τ,ℓΓt+ℓγt,τ,ℓ ,

where Γt+ℓ = Cov(ηt+ℓ) and the M -dimensional vectors γt,τ,ℓ have components

(15) γt,τ,ℓ(m) :=

τ−t
∑

j=ℓ

νt+j,τ (m)βj−ℓ+1
t+j (m)

that are affine functions of uτ if and only if Fτ,1 6= 0, and are constant otherwise.

As a result, the conditional mean is an affine function of variables (xt, u(t,τ ]), while the conditional

standard deviation is constant if and only if Fτ,1 = 0, otherwise it is a conic quadratic function of

uτ of the form ‖Lt,τuτ + ℓt,τ‖2 for some matrix Lt,τ and vector ℓt,τ of appropriate dimensions.
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Proof. Combining relation (9) with the expression for X in Lemma 4.1, we see that

(16) X = νt,τ +

τ−t
∑

j=1

M
∑

m=1

νt+j,τ (m)





pmax
t,j (m)
∑

ℓ=0

αℓ
t,j(m)ξt−ℓ(m) +

j
∑

ℓ=1

βℓ
t+j(m)ηt+j−ℓ+1(m)



 .

The desired result for E[X |ξ̃[t]] follows, by taking the conditional expectation in both members

above. Such expression depends affinely on νt,τ , . . . , ντ,τ and, in turn, these coefficients depend

affinely on (xt, u(t,τ ]), by Lemma 4.1.

Next, note that each component of γt,τ,ℓ from (15) depends affinely on coefficients νt+j,τ (m),

and satisfies the relation

(17)
τ−t
∑

j=1

M
∑

m=1

νt+j,τ (m)

j
∑

ℓ=1

βℓ
t+j(m)ηt+j−ℓ+1(m) =

τ−t
∑

ℓ=1

η⊤

t+ℓγt,τ,ℓ;

with independent random vectors ηt+1, . . . , ητ . The identity (14) follows, by plugging (17) into

(16). Note in particular, that the expression for the standard deviation is a conic quadratic function

of νt+1,τ , . . . , ντ,τ . By Lemma 4.1, coefficients νt+1,τ (m), . . . , ντ−1,τ(m) are always constant, while

ντ,τ (m) is either constant, or affinely depending on uτ if and only if Fτ,1 6= 0, as stated.

Finally, because the expression obtained for X |ξ̃[t] when using (17) in (16) is an affine combi-

nation of Gaussian random variables, the random variable X |ξ̃[t] is Gaussian too. �

Before showing that (11) is a tractable linear or conic quadratic program, we give an explicit

equivalence between VaR and CVaR for Gaussian random variables; see [14, Ex. 6.3].

Lemma 4.3. Let X ∼ N (m,σ2) be a Gaussian random variable. Then for any εp ∈ [0, 1] we

have CV aRεp(X) = V aRϕ(εp)(X) where the (bijective) function ϕ : [0, 1] → [0, 1
2 ] is given by

ϕ(x) = 1− F
(

exp(−(F−1(1−x))2/2)√
2πx

)

for x ∈ (0, 1] and ϕ(0) = 0.

Proof. The relation is trivial if εp = 1 or εp = 0. When εp ∈ (0, 1), first note that V aRεp(X) =

−F−1
X (εp) = −m− F−1(εp)σ = −m+ F−1(1 − εp)σ. Next, the algebraic manipulations below

CV aRεp(X) = −E[X |X ≤ F−1
X (εp)] = − 1

εp

∫ m+F−1(εp)σ

−∞
xfX(x)dx

= − 1

εp
√
2πσ

∫ m+F−1(εp)σ

−∞
x exp

(

− (x−m)2

2σ2

)

dx

= −m

εp

∫ F−1
X

(εp)

−∞
fX(x)dx − σ

εp
√
2π

∫ m+F−1(εp)σ

−∞

(

x−m

σ2

)

exp

(

− (x−m)2

2σ2

)

dx

= −m+
σ

εp
√
2π

exp
(

−(F−1(εp))
2/2
)

,

give the desired result, recalling that F−1(εp) = −F−1(1 − εp). �

The statement that a chance constraint for an affine relation of a Gaussian random variable is

tractable, and reduces to a conic quadratic constraint, is already known; see [8], [9], [10]. We now

extend this result to a more general setting, and, more importantly, give a completely explicit

formulation for problem (11), by means of (9), when each component ξt(m), m = 1, . . . ,M , is a



14 VINCENT GUIGUES AND CLAUDIA SAGASTIZÁBAL

generalized autoregressive process with time varying order and possibly correlated noise compo-

nents.

Theorem 4.4 (Tractability of problem (11)). Let the scalar random variable X be defined in (12)

using the transition equation (1)(tran), for a discrete time process ξt modelled by (6) and let ϕ(·)
be the bijection defined in Lemma 4.3. Then each pair of future constraints in (11)

(18)







P

(

X ≥ hτ

∣

∣

∣ξ̃[t]

)

≥ 1− εp,

−CV aRεp

(

X
∣

∣

∣ξ̃[t]

)

≥ hτ − εc(|hτ |+ 1),

is equivalent to any of the three representations below:

Robust formulation

{

E[X |ξ̃[t]]− F−1(1− εp)σ(X |ξ̃[t]) ≥ hτ ,

E[X |ξ̃[t]]− F−1(1− ϕ(εp))σ(X |ξ̃[t]) ≥ hτ − εc(|hτ |+ 1),
where the explicit expressions for the conditional mean and standard deviation are given in Lemma

4.2;

VaR formulation

{

−V aRεp(X |ξ̃[t]) ≥ hτ ,

−V aRϕ(εp)(X |ξ̃[t]) ≥ hτ − εc(|hτ |+ 1) ;
and

CVaR formulation

{

−CV aRϕ−1(εp)(X |ξ̃[t]) ≥ hτ ,

−CV aRεp(X |ξ̃[t]) ≥ hτ − εc(|hτ |+ 1) .

Therefore, if εp ∈ (0, 1
2 ), future constraints in (11) are conic quadratic and (11) is a conic

quadratic program. Since future constraints (18) are affine in variables (xt, u(t,τ ]) if and only if

Fτ,1 = 0, when Fτ,1 = 0 for every τ then (11) is a linear program for every εp ∈ (0, 1).

Proof. For a Gaussian random variable Z with expectation E[Z] and standard deviation σ(Z),

from the proof of Lemma 4.3 we obtain

P(Z ≥ Z) ≥ 1− εp ⇔ Z ≤ E[Z]− F−1(1− εp)σ(Z) ⇔ Z ≤ −V aRεp(Z).

Since the random variable Z = X |ξ̃[t] is Gaussian, the VaR and CVaR formulations follow from

Lemma 4.3 and from the equivalences above with Z = hτ . In addition, the left-hand side equivalence

yields the following expression:

E[X |ξ̃[t]]− F−1(1 − εp)σ(X |ξ̃[t]) ≥ hτ ,

E[X |ξ̃[t]]− F−1(1 − ϕ(εp))σ(X |ξ̃[t]) ≥ hτ − εc(|hτ |+ 1).

Next, observe that when εp ∈ (0, 1
2 ) we have ϕ(εp) ∈ (0, 1

2 ), and F−1(1−εp) and F−1(1−ϕ(εp)) are

both positive. Using this observation and the last assertion in Lemma 4.2, it follows that problem

(11) is a conic quadratic program when εp ∈ (0, 12 ) or a linear program if Fτ,1 = 0 for every τ . �

If in (11) some element of At, Ct, Et, or Gt is no longer deterministic, but uncertain and, like Ft,

depending affinely on ξt, then both Lemma 4.2 and Theorem 4.4 fail to hold because the product

of two Gaussian random variables is not a Gaussian random variable.

In Theorem 4.4, the fact that the random variable X is Gaussian leads to the equivalent VaR

and CVaR formulations, by Lemma 4.3. Explicit expressions for the chance and CVaR constraints

would still be available for any distribution of noises ηt, as long as the distribution of any linear

combination of noises ηt, t = 1, . . . , T , is known. For some processes, log-normal distributions

are preferred to normal ones. Such is the case of our initial motivation, for which streamflows
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must remain nonnegative for all realizations. In this case, one needs to consider approximations of

the generalized inverse of the cumulative distribution function of the (no longer normal) random

variable X |ξ̃[t]; see [32] and [1]. By suitably adapting Theorem 4.4, we would once more obtain a

deterministic (linear or conic quadratic) program, that approximates problem (11).

5. Defining robust recourse functions

Even if robust optimization usually refers to worst-case oriented methodologies, our chance and

CVaR constraints can also be considered as a robust way of dealing with uncertainty (in the sense

of [3]), because noises ηt are Gaussian. More precisely, the probabilistic constraint is nothing but

its robust version, taking as uncertainty set for ηt the ellipsoid

(19) {xt : (xt − µt)
⊤Γ−1

t (xt − µt) ≤ (F−1(1− εp))
2} .

Similarly, the robustified version of the constraint X |ξ̃[t] ≥ hτ − εc(|hτ | + 1) for τ = t+ 1, . . . , T ,

using for ηℓ (ℓ = t+ 1, . . . , τ) the uncertainty ellipsoidal set

(20) {xℓ : (xℓ − µℓ)
⊤Γ−1

ℓ (xℓ − µℓ) ≤ (F−1(1− ϕ(εp)))
2} ,

coincides with the CVaR constraint in (11). These relations justify the naming “robust” for the

recourse function Qt+1(xt, ξ̃[t]) given by

(21)



































min
u[t+1,T ]

T
∑

τ=t+1

c⊤τ uτ

s.t., for τ = t+ 1, . . . , T :

P

(

Eτxτ (xt, u(t:τ ], ξ(t:τ ]) + (F̊τ + ξ⊤

τ F
⊤

τ,1)uτ −Gτ ξτ ≥ hτ

∣

∣

∣ξ̃[t]

)

≥ 1− εp,

−CV aRεp

(

Eτxτ (xt, u(t:τ ], ξ(t:τ ]) + (F̊τ + ξ⊤

τ F
⊤

τ,1)uτ −Gτ ξτ

∣

∣

∣ξ̃[t]

)

≥ hτ − εc(|hτ |+ 1),

representing the cost-to-go function in (11). We now intend to describe two algorithms to obtain

approximations of these recourse functions (requirement (RecFun) in Section 2). To this end, we

start in the next section with a useful rewriting of problem (11).

5.1. Stagewise decomposition of (11). Our goal is to write dynamic programming equations

for (11), by decomposing its feasible set by stages. To explain this rewriting, we go back to our

motivating application. In this context, to work out the calculations, and without loss of generality,

consider in (11) a feasible set of the form

S :=



































































(xt, (gτ , dfτ )
T
τ=t) :

xt = xt−1 − gt + γtξ̃t, gt ≥ 0, dft ≥ 0

gt + dft ≥ demt − (1− γt)ξ̃t

xt ≥ xcrit
t

and, for τ = t+ 1, . . . , T :

gτ ≥ 0, dfτ ≥ 0

−CV aRεp

(

xτ (xt, g(t:τ ], ξ(t:τ ])|ξ̃[t]
)

≥ xcrit
τ (1− εc)− εc (a)

P

(

gτ + dfτ ≥ demτ − (1− γτ )ξτ |ξ̃[t]
)

≥ 1− εp (b)



































































,
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with only one type of risk-averse formulation for each future inequality constraint, and noting that

the set depends on xt−1 and on the realization history: S = S(xt−1, ξ̃[t]).

The first important observation is that, by taking the conditional expectation in the (stochastic)

flow balance transition equation for the reservoir, we obtain a (deterministic) transition equation

for the mean reservoir volumes:

x̄τ := E[xτ |ξ̃[t]] satisfies x̄τ =

[

xt−1 − gt + γtξ̃t τ = t

x̄τ−1 − gτ + γτE[ξτ |ξ̃[t]] τ = t+ 1, . . . , T .

In the above relations, we have used that decision variables gτ are of the here-and-now type for

(11), i.e., they are deterministic.

With these new variables x̄τ , the robust formulation in Theorem 4.4 for the critical volume

(affine) constraints (a) is written down as follows:

x̄τ ≥ xR crit
τ := xcrit

τ (1− εc)− εc + F−1(1− ϕ(εp))σ(xτ |ξ̃[t]) .

The explicit expression for the conditional standard deviation above is obtained from (12), written

with all the matrices therein null, except for Eτ , set to 1. The corresponding affine parameters in

Lemma 4.1 are νj,τ = γj for j = t+ 1, . . . , τ , so that

xτ = xt −
τ
∑

j=t+1

gj +
τ
∑

j=t+1

γjξj and, hence, σ(xτ |ξ̃[t]) = σ(
τ
∑

j=t+1

γjξj |ξ̃[t]) ,

which can be computed using (9).

A similar reasoning, applying Theorem 4.4 to affine constraints (b), gives the following reformu-

lation for future demand constraints:

gτ + dfτ ≥ demR
τ − (1 − γτ )E[ξτ |ξ̃[t]] where demR

τ := demτ + (1− γτ )F
−1(1 − εp)σ(ξτ |ξ̃[t]) .

In order to obtain a stagewise decomposition of the feasible set in (11), we use the subset

St
t (x̄t−1) :=











(x̄t, gt, dft) :

x̄t = x̄t−1 − gt + γtξ̃t, gt ≥ 0, dft ≥ 0

gt + dft ≥ demt − (1 − γt)ξ̃t

x̄t ≥ xcrit
t











and, for τ = t+ 1, . . . , T , the subsets St
τ (x̄τ−1), given by











(x̄τ , gτ , dfτ ) :

x̄τ = x̄τ−1 − gτ + γτE[ξτ |ξ̃[t]], gτ ≥ 0, dfτ ≥ 0

gτ + dfτ ≥ demR
τ − (1− γτ )E[ξτ |ξ̃[t]]

x̄τ ≥ xR crit
τ











.

For our motivating application, the objective function is also separable by stages, making problem

(11) solvable by dynamic programming, introducing the functions

(22) Qt
τ (x̄τ−1, ξ̃[t]) = min

{

c⊤τ uτ +Qt
τ+1(x̄τ , ξ̃[t]) : (x̄τ , uτ ) ∈ St

τ (x̄τ−1)
}

,

where we used the short notation uτ = (gτ , dfτ ) for the controls. The functions above are defined

recursively for τ = T, T − 1, . . . , t, starting from Qt
T+1(·) ≡ 0. The super index t in the notation

reflects the fact that functions Qt
τ correspond to the stagewise decomposition of the tth risk-averse

optimization problem.
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Following the developments above, risk-averse problem (11) written for a given history ξ̃i[t] has

the following stagewise decomposition:

(23)































min
x̄[t:T ],u[t:T ]

T
∑

τ=t

c⊤τ uτ

x̄τ = Aτ−1x̄τ−1 +Bτuτ + CτE[ξτ |ξ̃i[t]] + dτ (πt,i
τ )

Eτ x̄τ + F̊⊤

τ uτ ≥ GτE[ξτ |ξ̃i[t]] + ht
τ (λt,i

τ )

for τ = t, t+ 1, . . . , T,

where

(24) ht
τ := hτ +max

(

F−1(1 − εp)σ(X |ξ̃i[t]),−εc(|hτ |+ 1) + F−1(1− ϕ(εp))σ(X |ξ̃i[t])
)

.

From the above decomposition of the risk-averse problems, we can make two interesting observa-

tions:

(A) Interpretation of risk-averse problem (11). The above representation (23) shows that

problem (11) is obtained from a problem instance replacing

– future realizations ξ̃τ by their conditional means E[ξτ |ξ̃[t]] and
– right-hand sides hτ by some ”robust” counterparts ht

τ strictly greater than hτ .

In the case of the hydro-thermal problem from Section 2, looking at subsets St
τ (x̄τ−1)

above, this interpretation can be specialized as follows: each risk averse problem is obtained

replacing in a problem instance

– the inflows by their conditional means, given the history ξ̃[t];

– the nominal demands demτ by ”robust” demands demR
τ which are strictly greater

than the nominal demands;

– the critical levels xcrit
τ by ”robust” critical levels xR crit

τ which, for εc sufficiently small,

are strictly greater than the critical levels.

(B) Solution method for (11). Since we can write (deterministic) dynamic programming

equations for our risk-averse problems, each one of these problems can be solved efficiently

by Dual Dynamic Programming (DDP). This can be interesting when T is large. Moreover,

as explained in the next section, using DDP to solve (11), we can build approximations for

our recourse functions.

To finish, we mention that it is still possible to write down for (11) Dynamic Programming relations

similar to the above even if Fτ,i 6= 0 for some τ ∈ {t+ 1, . . . , T } and i ≤ qτ .

5.2. Approximate recourse functions. We now give two algorithms to approximate the re-

course functions (21) associated to our model. For both of them, the first step consists in sampling

N scenarios (ξ̃i2, . . . , ξ̃
i
T ), i = 1, . . . , N , for (ξ2, . . . , ξT ) (recall that realization ξ̃1 is available at

t = 1). Then our rolling horizon policy is used on each scenario. The first algorithm solves directly

each risk-averse problem and builds for each recourse function one cut per scenario using a dual

solution. The second algorithm constructs various cuts per scenario for each recourse function

solving each risk-averse problem by DDP.

First algorithm: using a primal and a dual solution to each risk-averse problem.

For scenario i and time step t, risk-averse problem (11) is solved with ξ̃[t] replaced by ξ̃i[t]. Since
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this risk-averse problem can be written as (23), for stage t the recourse function Qt+1, defined in

(21), has the expression

(25) Qt+1(x̄t, ξ̃[t]) :=























min
x̄[t+1:T ],u[t+1:T ]

T
∑

τ=t+1

c⊤τ uτ

x̄τ = Aτ−1x̄τ−1 +Bτuτ + CτE[ξτ |ξ̃[t]] + dτ , τ = t+ 1, . . . , T,

Eτ x̄τ + F̊⊤

τ uτ ≥ GτE[ξτ |ξ̃[t]] + ht
τ , τ = t+ 1, . . . , T.

Using Lemmas 4.1 and 4.2 and the above representation, we easily check that these recourse

functions are convex (see the proof of Proposition 5.1). As a result, letting x̄i
t be an optimal

solution of x̄t in (23), it is possible to define a cut (an hyperplane lying below the function) for

Qt+1 at (x̄i
t, ξ̃

i
[t]). Collecting these cuts, after a simulation phase over a set of i scenarios, we have

for Qt+1 the approximation

Q
i
t+1(x̄t, ξ̃[t]) = max

1≤k≤i
x̄⊤

t a
k
t + ξ̃⊤

[t]b
k
t + ckt

for each t = 1, 2, . . . , T − 1,, whereas Qi
T+1 = QT+1 ≡ 0. The formulas for cut coefficients

(akt , b
k
t , c

k
t ) are given in the following proposition:

Proposition 5.1 (Cuts computation for robust recourse functions). Consider risk averse problem

(23) for some t ∈ {1, . . . , T − 1} and let (πt,i
t , πt,i

t+1, . . . , π
t,i
T , λt,i

t , λt,i
t+1, . . . , λ

t,i
T ) be a dual solution

of this problem (see (23)). Let Qt+1 be the corresponding recourse function defined in (25). Then

valid cuts for Qt+1 are given by

ait = A⊤

t π
t,i
t+1,

cit =

T
∑

τ=t+1

[

d⊤

τ π
t,i
τ + λt,i

τ ht
τ +

M
∑

m=1

τ−t
∑

ℓ=1

(

Nx
∑

p=1

πt,i
τ (p)Cτ (p,m) + λt,i

τ Gτ (1,m)

)

βℓ
τ (m)µτ−ℓ+1(m)

]

,

bit = [bi,1t ; bi,2t ; . . . ; bi,Mt ] where bi,mt is the (pmax
t,T−t(m) + 1)-vector given by

bi,mt (ℓ + 1) =
∑

τ∈It,ℓ(m)

[

Nx
∑

p=1

πt,i
τ (p)Cτ (p,m) + λt,i

τ Gτ (1,m)

]

αℓ
t,τ−t(m), ℓ = 0, 1, . . . , pmax

t,T−t(m),

with Iℓt (m) :=
{

τ : t+ 1 ≤ τ ≤ T, ℓ ≤ pmax
t,τ−t(m)

}

and with ht
τ given by (24).

Proof. Taking the dual of (25), Qt+1(x̄t, ξ̃[t]) can be seen as the optimal value of the linear program:

(26)































max
π[t+1:T ],λ[t+1:T ]

π⊤

t+1Atx̄t +

T
∑

τ=t+1

[

π⊤

τ (CτE[ξτ |ξ̃[t]] + dτ ) + λτ (GτE[ξτ |ξ̃[t]] + ht
τ )
]

πτ −A⊤

τ πτ+1 + E⊤

τ λτ = 0, τ = t+ 1, . . . , T − 1,

−B⊤

τ πτ + F̊τλτ = cτ , λτ ≥ 0, τ = t+ 1, . . . , T,

πT + E⊤

T λT = 0.

Next, observe that (πt,i
t+1, π

t,i
t+2, . . . , π

t,i
T , λt,i

t+1, λ
t,i
t+2, . . . , λ

t,i
T ) is feasible for problem (26). As a result,

Qt+1(x̄t, ξ̃[t]) is bounded from below by

(27) x̄⊤

t A
⊤

t π
t,i
t+1 +

T
∑

τ=t+1

[

(CτE[ξτ |ξ̃[t]] + dτ )
⊤πt,i

τ + λt,i
τ (GτE[ξτ |ξ̃[t]] + ht

τ )
]

.
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Using Lemmas 4.1 and 4.2, we see that σ(X |ξ̃[t]) appearing in the definition of ht
τ is in fact not

a function of ξ̃[t] but only of problem data between time steps t + 1 and τ . Therefore, recall-

ing definition (24) of ht
τ , the only terms in the lower bound (27) that are functions of ξ̃[t] are

E[ξτ |ξ̃[t]], τ = t + 1, . . . , T . Using (9), we have for these terms the expression E[ξτ (m)|ξ̃[t]] =
∑pmax

t,τ−t(m)

ℓ=0 αℓ
t,τ−t(m)ξ̃t−ℓ(m) +

∑τ−t
ℓ=1 βℓ

τ (m)µτ−ℓ+1(m), for m = 1, . . . ,M , and τ = t + 1, . . . , T .

Plugging this expression of E[ξτ (m)|ξ̃[t]] into the lower bound (27), we see that this latter can be

split into constant terms, a term depending on x̄t, and terms depending on ξ̃[t]. Identifying these

terms with respectively cit, x̄
⊤

t a
i
t, and ξ̃⊤

[t]b
i
t, we obtain the desired expression for ait and cit if

ξ̃⊤

[t]b
i
t =

M
∑

m=1

T
∑

τ=t+1

pmax
t,τ−t(m)
∑

ℓ=0

[

Nx
∑

p=1

πt,i
τ (p)Cτ (p,m) + λt,i

τ Gτ (1,m)

]

αℓ
t,τ−t(m)ξ̃t−ℓ(m)

=
M
∑

m=1

pmax
t,T−t(m)
∑

ℓ=0

∑

τ∈Iℓ
t (m)

[

Nx
∑

p=1

πt,i
τ (p)Cτ (p,m) + λt,i

τ Gτ (1,m)

]

αℓ
t,τ−t(m)ξ̃t−ℓ(m)

which gives the desired formula for bit (in the last equality, we have used that the sequence

(pmax
t,k (m))k is nondecreasing). �

As a result, after simulating the rolling horizon policy on a set of N scenarios, we obtain N cuts

for each recourse function.

At this stage, it is interesting to underline the differences between the algorithm presented above

for obtaining approximations of our recourse functions with the usual non-rolling horizon approach.

To be more specific, for the latter approach, we will assume that SDDP is used to estimate risk-

neutral recourse functions (both approaches are also compared numerically on a real-life problem

in Section 6).

(i) In our rolling horizon setting, since

Qt = Qt−1
t while Qt+1 = Qt

t+1 ,

there is no Dynamic Programming relation linking two consecutive recourse functions. On

the contrary, SDDP relies on the DP equations linking the successive recourse functions.

(ii) In both cases, at iteration i, a forward pass computes a set of points (xi
t, ξ̃

i
[t]), t =

1, . . . , T − 1, where cuts are built at this iteration. With SDDP, xi
t is obtained using

the available approximation of recourse function Qt+1. On the contrary, in our case, since

each risk-averse problem is solved exactly, we obtain the solution that would be obtained

using recourse function Qt+1 (though we only have an approximate representation of this

function).

(iii) In our case the cuts are built on the basis of dual solutions of the problems solved in the

forward pass whereas SDDP needs a backward pass requiring much more computational

bulk.

Second algorithm: solving each risk-averse problem by DDP. We have shown in the

previous section how a nested decomposition of (11), written for a given history ξ̃[t], results in

the recursion (22). In particular, the “2nd-stage” recourse function computed with τ = t plays an
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important role:

Qt+1(xt, ξ̃[t]) from (10) is given by (21)

and corresponds to

Qt
t+1(xt, ξ̃[t]), defined by (22) written for τ = t+ 1.

By virtue of (11), Lemma 4.2, and Theorem 4.4, the functions Qt
τ are convex polyhedral func-

tions of (x̄τ−1, ξ̃[t]) for all τ = t, . . . , T .

On each scenario i and time step t, problem (11) can be solved by applying dual dynamic

programming to (22), using a Benders’ method capable of handling infeasible states in the forward

step; see [6] and also [7]. Along iterations, a set of cuts is built for Qt
τ at some points (x̄t,k

τ−1, ξ̃
i
[t]).

In particular, when τ = t+ 1, cuts are generated for the recourse function Qt+1 = Qt
t+1.

To be more specific, we now provide the formulas for the cuts built along the simulated scenarios.

In these developments, we assume that all risk-averse problems (11) are feasible. If the DDP

algorithm applied for time step t and scenario j requires Kt,j iterations then after simulating our

RH policy on a set of i scenarios we have built
∑i

j=1 Kt,j cuts for Qt
τ . To alleviate notation,

we place ourselves on a given scenario i and time step t and assume that NC cuts have been

determined for each Qt
τ , τ = t + 1, . . . , T + 1. Let us see how the next cut is built for these

functions. The available approximations Qt,NC
τ+1 for Qt

τ+1, τ = t, . . . , T , have the form

(28) Q
t,NC
τ+1 (x̄τ , ξ̃[t]) = max

1≤k≤NC
x̄⊤

τ a
t,k
τ + ξ̃⊤

[t]b
t,k
τ + ct,kτ .

Note that for t ≥ 2, DDP was used for the previous time step t− 1 to obtain an optimal solution

x̄i
t−1 of x̄t−1 for risk-averse problem (11) written with t replaced by t − 1. With this notation,

approximations (28) are used in a forward pass to determine a set of points x̄t,NC
τ , τ = t−1, t, . . . , T ,

with

x̄t,NC
t−1 =

{

x̄i
t−1 if t 6= 1,

x0 if t = 1,
and for τ = t, . . . , T,

x̄t,NC
τ an optimal solution of x̄τ for the linear program

(29)



























min
x̄τ ,uτ ,θt

τ+1

c⊤τ uτ + θtτ+1

x̄τ = Aτ−1x̄
t,NC
τ−1 +Bτuτ + CτE[ξτ |ξ̃i[t]] + dτ ,

Eτ x̄τ + F̊⊤

τ uτ ≥ GτE[ξτ |ξ̃i[t]] + ht
τ ,

θtτ+1 ≥ x̄⊤

τ a
t,k
τ + (ξ̃i[t])

⊤bt,kτ + ct,kτ , k = 1, . . . , NC.

New cuts are built for Qt
τ , τ = t+1, . . . , T +1, in a backward manner, solving problems of form

(29) with one more cut for each Qt
τ (NC is replaced by NC +1). These problems are solved from

time step τ = T down to τ = t+ 1. This is possible since Qt
T+1 ≡ 0 is known.

Proposition 5.2 (Alternative cuts computation for robust recourse functions). Consider risk

averse problem (23) for some t ∈ {1, . . . , T − 1}. Let Qt+1 be the corresponding recourse func-

tion defined in (25) and let Qt
τ , τ = t + 1, . . . , T + 1, be the functions given in (22). Let

(πt,NC
τ , λt,NC

τ , (ρt,NC,k
τ )NC+1

k=1 ) be a dual solution of problem (29) written with NC replaced by

NC + 1. Then valid cuts for QT+1 are obtained taking null values for at,NC
T , bt,NC

T , and ct,NC
T ,
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while valid cuts for Qt
τ , τ = t+ 1, . . . , T , are given by

at,NC+1
τ−1 = A⊤

τ−1π
t,NC
τ , ct,NC+1

τ−1 = d⊤

τ π
t,NC
τ + λt,NC

τ ht
τ +

∑NC+1
k=1 ρt,NC,k

τ ct,kτ ,

bt,NC+1
τ−1 = [bt,NC+1,1

τ−1 ; bt,NC+1,2
τ−1 ; . . . ; bt,NC+1,M

τ−1 ] where bt,NC+1,m
τ−1 is the vector given by

bt,NC+1,m
τ−1 (ℓ+ 1) =

[

∑Nx

p=1 π
t,NC
τ (p)Cτ (p,m) + λt,NC

τ Gτ (1,m)
]

αℓ
t,τ−t(m)

+
∑NC+1

k=1 ρt,NC,k
τ bt,k,mτ (ℓ+ 1) for ℓ = 0, 1, . . . , pmax

t,τ−t(m), while

bt,NC+1,m
τ−1 (ℓ+ 1) =

∑NC+1
k=1 ρt,NC,k

τ bt,k,mτ (ℓ+ 1) for ℓ = pmax
t,τ−t(m) + 1, . . . , pmax

t,T−t(m),

with ht
τ given by (24). In particular, at,NC+1

t , bt,NC+1
t , and ct,NC+1

t define a valid cut for Qt+1 =

Qt
t+1.

Proof. The dual of optimization problem (29) written with NC, x̄t,NC
τ−1 , and ξ̃i[t] respectively re-

placed by NC + 1, x̄τ−1, and ξ̃[t] is given by

(30)






















max
πτ ,λτ ,ρk

τ

π⊤

τ

[

Aτ−1x̄τ−1 + CτE[ξτ |ξ̃[t]] + dτ

]

+ λτ

[

GτE[ξτ |ξ̃[t]] + ht
τ

]

+

NC+1
∑

k=1

ρkτ

[

ξ̃⊤

[t]b
t,k
τ + ct,kτ

]

−B⊤

τ πτ + F̊τλτ = cτ ,
∑NC+1

k=1 ρkτ = 1, πτ + E⊤

τ λτ −∑NC+1
k=1 ρkτa

t,k
τ = 0,

λτ ≥ 0, ρkτ ≥ 0, k = 1, . . . , NC + 1.

We then conclude as in Proposition 5.1, using (9) and observing that (πt,NC
τ , λt,NC

τ , (ρt,NC,k
τ )NC+1

k=1 )

is feasible for problem (30). �

On the first scenario, when no approximations of functions Qt
τ are available, we start the first

forward passes using known lower bounding functions (for instance constant functions).

At each iteration of the DDP algorithm (applied on each scenario at each time step), an upper

bound on the optimal value of the corresponding risk-averse problem can be computed using a

feasible solution. A lower bound can be built solving an approximate problem of form (29) for

time step τ = t. The DDP algorithm stops when the difference between these upper and lower

bounds is smaller than a given confidence level.

6. Numerical experience

We assess the rolling horizon approach on a large-scale instance of the water-planning problem

described in Section 2, similar to Brazil’s power system, except for the standard deviations of

noises ηt; see Section 6.1 below.

6.1. Power system data. We consider a hydro-thermal power system operating over a horizon

of 4 years, discretized in T = 48 time steps, from January 2005 to December 2008. Most of the

data was made available by CEPEL3 and corresponds to part of Brazil’s power system, repre-

sented by 4 different subsystems that can trade energy in the form of import-export exchanges.

Each subsystem, South-East (SE), South (S), North-East (NE), and North (N), corresponds to a

geographical region; some energy exchanges between the N, NE, and SE subsystems make use of a

fifth, fictitious, node (F). In a specific subsystem, a single reservoir aggregates all the hydro-power,

while thermal generation is considered individually: there are 24, 14, 6, and 0 thermal plants in

the SE (the largest one), S, NE, and N subsystems, respectively.

3The authors specially acknowledge the good will and availability of Débora Dias Jardim Penna.
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With respect to the simplified model given in Section 2, there are additional control variables

(spillage and import-export exchanges), as well as additional lower and upper bounds for hydro

and thermal generation, for subsystem exchanges, and for reservoir volumes. The water balance

equation (3) now considers spillage, while demand constraints (4) consider the subsystem thermal

generation as well as import-export exchanges, with a total monthly demand of 54804 MWMonth
4, taken constant over the horizon. The water balance relations (3) are started by setting the initial

reservoir levels x0(m) at full capacity. Each reservoir critical level xcrit
t (m) in (5) was set to 20%

of the maximum level of the reservoir, for all time steps, so that assumption (A1) holds (recall

that if (A1) did not hold, our methodology would still be applicable, by adding slack variables

to the critical minimal volume constraints). With this assumption, relatively complete recourse

is guaranteed if P(ξt(m) ≥ 0) = 1, and we checked numerically that maxt,m P(ξt(m) < 0) =

2.7× 10−75.

The objective function is given by the total thermal operating cost (ranging between R$ 6.27 per

MWh and R$ 1047 per MWh) plus the cost of load shedding (the shortage cost is set at R$ 4170.44

per MWh). Unnecessary spillage and exchanges are discouraged by introducing small penalties

and trading costs between subsystems.

Following the lines of [22], the inflows in each reservoir are modelled by a periodic autoregres-

sive model of the form (6). The parameters of each model were estimated based on historical data

from 1931 to 2005, with one important modification, relative to standard deviations. Namely, we

reduced the estimated value of ση
t (m) because, with the original estimations, the model gener-

ated too many negative water inflows that have no meaningful physical interpretation. A more

sophisticated implementation that keeps the original standard deviations should use log-normal

distributions for the noises ηt(m). We adopted the former approach not only for simplicity, but

also for noises to remain Gaussian, so that we can use exact expressions for the inverse of the cu-

mulative distribution functions in Theorem 4.4. As for the conditional expectations and standard

deviations in Theorem 4.4, they are computed exactly, using the recursive expressions derived in

[18] for the coefficients in (9) and model (6) parameters.

Due to the modified standard deviations, our results should be interpreted as an illustration of

our methodology, rather than reflecting the real behavior of the Brazilian power system.

To obtain the indicators referred to in item (EcInd) of Section 2, the simulation phase uses N =

10000 streamflow scenarios (we displayed 500 of them in Figure 1 for the S and SE subsystems).

The implementation was done in Matlab, using Mosek’s optimization library to solve linear

programming problems (http://www.matlab.com and http://www.mosek.com).

6.2. Impact of confidence levels chosen a priori on the RH policy. In this section, we

illustrate the influence of the confidence levels on the behavior of RH policy. For illustration, we

consider only CVaR constraints and different values for parameters εp and εc, chosen a priori and

taken constant for the different time steps and reservoirs.

The following set of confidence levels εc is considered: 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8. For

each confidence level, the corresponding RH policy is simulated. We report in Figure 3 the mean

and standard deviation (s.d) of the total cost, and the total hydro productions.

4We adopt the convention 1 MWMonth= 365.25×24

12
MWh= 730.5 MWh
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Figure 1. 500 inflow scenarios for the S and SE subsystems (left and right, respectively).

In both cases, we observe that the mean and the variability (s.d) of the total cost increase with

confidence levels. The increase in these confidence levels Indeed, when confidence levels increase,

risk-averse problem (11) foresees lower future “robust“ demands and crtical levels; respectively

referred to as demR
τ and xR crit

τ in Section 5.1. As a result, increasing confidence levels forces

to use more water on the first part of the optimization period. This prevents the impact of the

confidence levels on water reservoirs management: the more we are risk-averse (the smaller the

confidence levels reservoir)

Finally, load shedding

In the sequel, we compare three different policies:

• RH: our robust rolling horizon policy using a dyamic choice of confidence levels, as explained

in Section (3.3). Each risk-averse problem (11) was solved directly as a linear program,

without using the stagewise decomposition in Section 5.1.

• RA-NRH: the non-rolling risk-averse policy referred to in Section 3.2 that uses the approx-

imate robust recourse functions built with the first algorithm from Section 5. This al-

gorithm uses a preliminary optimization phase of 1000 scenarios for approximating the

recourse functions.

• SDDP: a non-rolling horizon risk-neutral policy, that approximates recourse functions by

Stochastic Dual Dynamic Programming as in [24], using 200 fixed scenarios for the forward

pass and 20 discrete realizations for each noise ηt in the backward pass.

6.3. Comparison between SDDP and RH using a dynamic choice of confidence levels.

Table 2 reports on cost-related results obtained with the variants, referred to as RH CVaR, RH CC,

and RH CC-CVaR. Each table contains the empirical mean and standard deviation (s.d.) of the

whole system generation and exchange cost over the 500 scenarios, as well as the corresponding

VaR p%, for p = 1, 5, and 90, where VaR p% is the (1−p/100)-quantile of the empirical distribution

of the cost.5

5If X is a continuous random variable for which lower values are preferred, its Value-at-Risk of level εp is given by

V aRεp (X) := F−1

X
(1− εp) for any εp ∈ [0, 1].
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Figure 2. RH policy with only chance constraints and a priori choice of confidence
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for different values of these confidence levels. Evolution of the equivalent reservoir
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Figure 3. RH policy with only CVaR constraints and a priori choice of confidence
levels εc. Evolution of the mean (upper left) and s.d (upper right) of the total cost
for different values of these confidence levels. Evolution of the equivalent reservoir
mean level (bottom left) and of mean hydro productions (bottom right).
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Table 2. Central and dispersion characteristics of the generation and exchange
cost (R$)

Output RH CVaR RH CVaR RH CVaR RH CC RH CC-CVaR RH CC-CVaR

(εp, εc) (0.4, 0.05) (0.45, 0.01) (0.45, 0.005) (0.19,−−) (0.45, 0.01) (0.45, 0.005)
Mean 5.192×109 6.865×108 7.532×108 8.206×108 7.947×108 7.954×108

s.d. 6.144×108 1.744×108 1.517×108 1.403×108 1.425×108 1.438×108

VaR 1% 6.625×109 1.115×109 1.137×109 1.165×109 1.154×109 1.152×109

VaR 5% 6.264×109 9.911×108 1.015×109 1.063×109 1.042×109 1.043×109

VaR 90% 4.387×109 4.639×108 5.556×108 6.355×108 6.066×108 6.050×108

On this set of scenarios and for our data, the lowest cost-related values are obtained with RH

CVaR policy, for (εp, εc) = (0.45, 0.01), while the highest ones are given by RH CVaR variant with

(εp, εc) = (0.4, 0.05).

It is important to keep in mind that problems like (1) are simply not tractable for large time

horizons (recall that T = 120 in our application). For this reason, there are very few policies that

can be implemented, even in the risk-neutral setting. An exception is the risk-neutral policy esti-

mated by sampling decomposition methods such as SDDP. However, as confirmed by our numerical

results below, SDDP approximate policies are less accurate than the ones obtained with the rolling

horizon approach. This feature is partly explained by the fact that the RH approach can fully ex-

ploit the probabilistic structure of uncertainty, while SDDP needs to resort to a discretization. More

precisely, because the inverse of the (Gaussian) N (0, 1) distribution function, F−1, is available with

arbitrary accuracy, RH needs no approximation or discretization for the distributions of ξ2, . . . , ξT

in Theorem 4.4. The situation is quite different with SDDP, since it samples forward paths from

an approximate discrete distribution for ξ2, . . . , ξT , obtained from discrete noises η2, . . . , ηT , each

one taking 20 equiprobable different values in our implementation. As a result, the corresponding

scenario tree has 20119 paths, out of which 200 are traversed by SDDP at the end of the optimiza-

tion process. It could be argued that our SDDP implementation does not resample scenarios in

the forward pass and uses the stopping test from [24], deemed too precocious in [?]; see also [?].

Notwithstanding, neither increasing the number of sampled forward paths (say by a factor 1010),

nor tightening the stopping test can substantially change the fact that only a negligible proportion

of the scenario tree is explored by the method. Also, scenarios used in the simulation phase are

drawn from the true, continuous, distributions of ξ2, . . . , ξT given by model (6) and not from the

approximate discrete distributions used in the optimization phase of SDDP.

An additional comparison of both policies is given in Table 7, showing how severe is SDDP

computational load, already in our “loose” implementation, when compared to RH.

We refer to the end of Section 6.7, for a more specific analysis of SDDP in our test-case.

6.4. Critical levels, operational costs, and load shedding. In our runs, future constraints

(5) in problem (11), on the reservoir minimal levels, were not active in general. In fact, these

constraints were satisfied with a probability much larger than 1 − εp, for all of our choices of εp.

We made a set of unreported tests to evaluate the sensitivity of both WS and RH to variations in
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Table 3. Computational load of the implemented policies for the test-case

SDDP Number Each LP has 56 variables and box constraints,
optimization phase of LPs 8 equality/inequality constraints, and for t < T ,

(one iteration) a number of cuts depending on iteration k
Forward 24 000 200(k-1)+1
Backward 480 000 200k+1

Policy Computational Effort
SDDP optimization phase 192 000 Forward LPs

(8 iterations) 3.84× 106 Backward LPs
SDDP simulation phase 60 000 LPs with 1601 cuts
SDDP total CPU time 3 weeks

RH, for each t = 1, . . . , 120 500 LPs with 56(T − t+ 1) variables and box constraints
and 8(T − t+ 1) equality/inequality constraints

RH total CPU time 6 h

the critical levels xcrit
t ∈ {0.1, 0.2, 0.5, 0.8}xmax

t and we observed a natural behavior for a hydro-

dominated system: costs became prohibitive for the higher values of the critical levels, due to the

appearance of load shedding for many time steps.

Our assessment of the different policies starts with Table 8, reporting the corresponding statis-

tical indicators for operational costs, that is, generation and exchange costs, excluding shortage.

Table 4. Central and dispersion characteristics of the generation and exchange
cost (R$)

Output WS RH SDDP

Mean 5.752×108 6.865×108 6.809×108

s.d. 2.059×108 1.744×108 3.682×108

VaR 1% 1.026×109 1.115×109 2.146×109

VaR 5% 9.273×108 9.911×108 1.272×109

VaR 90% 3.115×108 4.639×108 3.299×108

From a statistical point of view, the p-value of a Student’s paired t-test applied on the samples

of the cost of policies WS and SDDP (resp. RH and SDDP) is 10−21 ≃ 0 (resp. 0.61)6. Therefore, RH

and SDDP have comparable mean costs, different from the optimal policy WS. Since, in addition, the

p-value of an F-test applied on the samples of the cost of policies RH and SDDP is 1.5×10−57 ≃ 0,

the respective standard deviations can be considered different.

Figure 10 compares the empirical distribution of the generation and exchange cost over the

500 scenarios for the three policies, where CWS, CRH, and CSDDP are respectively the generation and

exchange cost obtained with WS, RH, and SDDP. Due to the different magnitude of the costs in Table

8, to ease the comparisons the graphs show the distribution of the corresponding ratios.

The cost distribution for SDDP exhibits a fatter tail, because with this policy some scenarios

are very costly. This is a natural result, because RH is risk-averse while SDDP uses a risk-neutral

6RH mean cost is 19.3% higher than WS mean cost but only corresponds to a 0.8% increase with respect to SDDP mean
cost
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Figure 4. Empirical distribution of cost ratios obtained with the three policies.

formulation. This is also consistent with Table 8, showing larger values for the quantiles VaR 1%

and VaR 5% for the SDDP policy.

It is also important to look at the portion of demand left unsatisfied by each policy, when

compared to the total cost, considering all scenarios and time steps. SDDP incurs a very low level

of load shedding (0.001%), at the expense of a significant increase in the mean cost (shortage cost

is high: R$ 4170.44 per MWh). All the rolling horizon runs satisfied the demand, excepting RH

CVaR with (εp, εc) = (0.4, 0.05), with a load shedding level of 0.153%.

Table 9 reports the total cost for policies WS, SDDP, and the “best” and “worst” RH policies.

Except for the “worst” one, that leaves demand unsatisfied, all the rolling horizon policies had

total mean cost smaller than the one obtained with SDDP (SDDP total mean cost is about 24%

above the corresponding value for the “best” RH policy).

Table 5. Central and dispersion characteristics of the total cost (R$)

Output WS
Best RH

CVaR (εp, εc) = (0.45, 0.01)
Worst RH

CC-CVaR (εp, εc) = (0.4, 0.05)
SDDP

Mean 5.752×108 6.865×108 3.302×1010 8.543×108

s.d. 2.059×108 1.744×108 8.146×109 2.185×109

VaR 1% 1.026×109 1.115×109 5.132×1010 2.991×109

VaR 5% 9.273×108 9.911×108 4.672×1010 1.272×109

VaR 90% 3.115×108 4.639×108 2.269×1010 3.299×108

The mean generation cost per subsystem for the three policies is given in Table 10.

From these tables, and as already announced in Section ??, for our data set and in terms of cost

distribution, SDDP policy is far from an optimal (or a close to optimal) risk-neutral policy. Because

the stochastic process is interstage dependent, the process history (7) gives in (1) a state vector
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Table 6. Mean generation cost (over the scenarios) in the subsystems (R$).

Policy South-East South North-East North
WS 5.726×108 0 0 0
RH 6.823×108 2.056×105 1.527×106 0
SDDP 6.428×108 2.522×107 1.029×107 0

with 24 components. Such state dimension is practically unmanageable by Dynamic Programming

techniques for large horizons T , even in a deterministic setting. Uncertainty only worsens the

situation, making SDDP simulation phase use an approximation of the recourse function that is

likely to be poor at the considered states. Better approximations could be obtained by setting up

an SDDP rolling horizon methodology, but, in view of the figures in Table 7, it is clear that this

alternative is computationally impossible. Likewise, a risk-averse formulation, for example along

the lines of [?] or [?], needs more variables and constraints, and would increase the already heavy

computational effort. Moreover, even if distributing calculations in many different processors made

the computational load acceptable, implementing a risk-averse SDDP as in [?] would still require

to find at each stage suitable weights defining a trade-off between the mean and the CVaR of the

future cost. At first sight, choosing sound values for these weights for a specific problem is not a

simpler task than finding adequate confidence levels εp and εc for the rolling horizon methodology.

6.5. Exchanges, hydro-thermal generation, and marginal costs. The most significant import-

export exchanges go from the South-East to the South, for all policies. This is due to the fact

that while the South has the highest demand at each time step, the South-East has both the high-

est hydro- (more than 70% of the total) and thermal-capacity. Other exchanges appear from the

North to the North-East and the South-East, and from the North-East to the South-East. With

WS and RH policies, and contrary to SDDP, the North receives no energy from the other subsystems.

This subsystem, with no thermal plants and only one small reservoir, but also small demand, has

a somehow “isolated” operation with both WS and RH. This is not the case with SDDP which, as

shown in Figure 11, uses more water than the other two policies in the first half of the optimization

period and, hence, ends up the needing to transfer some energy to the North.

We report in Figure 11 the average evolution for the South-East and South subsystems. Fig-

ure 12 displays the hydro-generation evolution of the whole system.

We see that, during the first five years, SDDP uses more water at nearly all time steps and

scenarios. In particular, for SDDP, hydro-generation does not fluctuate much, likely because of the

use of approximate recourse functions that are optimistic for the first years. This explains why

SDDP’s reservoir levels and generation costs tend to be lower than the other policies over the first

half of the optimization period. However, since this initial optimism also prevents SDDP from using

as much water as RH and WS later on, eventually SDDP becomes more costly. With all the policies,

both the S and SE reach (or nearly reach) their critical levels on all scenarios at the end of the

optimization period.

The right graph in Figure 12, with the 0.05-quantile for the hydro-generation, shows a relatively

low variability from scenario to scenario. All policies make a similar management of the hydro-

power. However, over the first half of the optimization period, RH tends to be a bit more conservative
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Figure 5. Mean reservoir level for South-East and South subsystems.
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Figure 6. Mean hydro-generation (left) and 0.05-quantile (right).

with respect to the use of water and uses slightly less water than the other two policies. The

conservatism of RH over the first years may be explained by the fact that, at the beginning of the

process (t ≈ 1), (11) needs to foresee a far away future (τ ∈ [2, 120]), using robust uncertainty sets

(19) and (20) that are overly pessimistic with respect to the final stages (τ ≈ 120). By contrast,

over the last five years, as the number of uncertain parameters in (11) decreases, uncertainty sets

become tighter, RH “realizes” that more water than necessary has been stored and it uses slightly

more water than the other two policies.

Figure 13 plots the mean level and 0.05- and 0.95-quantiles for the total thermal generation.

With both RH and WS, since the demand is satisfied for every time step and scenario, the thermal

generation merely complements the hydro-generation to attain the demand level, a natural feature

for a predominantly hydroelectric system.

It appears that RH policy uses more (resp. less) thermal power over the first half (resp. second

half) of the optimization period; a phenomenon which is consistent with previous observations.

For this reason, RH is more (resp. less) costly than WS over the first half (resp. second half) of the

optimization period. Since SDDP uses less water in the second half of the optimization period, it
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needs to call on more thermal plants. It can also be seen (by comparing Figures 12 and 13) that

the thermal generation is comparatively much smaller than the hydro-generation, for all policies,

as expected in a hydro-dominated system (in our configuration, thermal power can cover at most

12.8% of the demand at each time step). When needed, thermal plants are committed in ascending

order of their operational cost, to prevent load shedding. Due to the fact that only some thermal

plants enter the system, the marginal cost (mean optimal Lagrange multipliers for the demand

satisfaction constraint) in all subsystems is low for all the policies, except for some time steps with

SDDP, as shown in Figure 8.

More precisely, at some time steps SDDP needs to call on more thermal plants than RH and WS,

because SDDP uses less water, in particular in the second half of the optimization period. For such

time steps, SDDP’s mean marginal cost can climb from around R$10-15 per MWh to R$ 38.7 per

MWh, with peaks to R$ 4170.44 per MWh for some realizations. In fact, SDDP’s variability of

marginal cost (from one scenario to another) is quite significant, as reported in Figure 14.

Stability appears as another advantage of RH over SDDP: we obtain lower marginal costs that

are less volatile. Notwithstanding, on average, both policies give relatively low values: the mean
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marginal costs in R$ per MWh obtained with RH (SDDP) policy amount to 10.39 (12.13), 10.39

(12.14), 9.37 (11.07), and 9.37 (11.08) for the SE, S, NE, and N subsystems, respectively.

6.6. Comparison between SDDP and our approximate robust recourse functions. It is

important to keep in mind that problems like (1) are simply not tractable for large time horizons

(recall that T = 120 in our application). For this reason, there are very few policies that can

be implemented, even in the risk-neutral setting. An outstanding exception is the risk-neutral

policy estimated by sampling decomposition methods such as SDDP. However, as confirmed by our

numerical results below, SDDP approximate policies are less accurate than the ones obtained with

the rolling horizon approach. This feature is partly explained by the fact that the RH approach

can fully exploit the probabilistic structure of uncertainty, while SDDP needs to resort to a dis-

cretization. More precisely, because the inverse of the (Gaussian) N (0, 1) distribution function,

F−1, is available with arbitrary accuracy, RH needs no approximation or discretization for the

distributions of ξ2, . . . , ξT in Theorem 4.4. The situation is quite different with SDDP, since it sam-

ples forward paths from an approximate discrete distribution for ξ2, . . . , ξT , obtained from discrete

noises η2, . . . , ηT , each one taking 20 equiprobable different values in our implementation. As a

result, the corresponding scenario tree has 20119 paths, out of which 200 are traversed by SDDP at

the end of the optimization process. It could be argued that our SDDP implementation does not

resample scenarios in the forward pass and uses the stopping test from [24], deemed too precocious

in [?]; see also [?]. Notwithstanding, neither increasing the number of sampled forward paths (say

by a factor 1010), nor tightening the stopping test can substantially change the fact that only a

negligible proportion of the scenario tree is explored by the method. Also, scenarios used in the

simulation phase are drawn from the true, continuous, distributions of ξ2, . . . , ξT given by model

(6) and not from the approximate discrete distributions used in the optimization phase of SDDP.

An additional comparison of both policies is given in Table 7, showing how severe is SDDP

computational load, already in our “loose” implementation, when compared to RH.

Table 7. Computational load of the implemented policies for the test-case

SDDP Number Each LP has 56 variables and box constraints,
optimization phase of LPs 8 equality/inequality constraints, and for t < T ,

(one iteration) a number of cuts depending on iteration k
Forward 24 000 200(k-1)+1
Backward 480 000 200k+1

Policy Computational Effort
SDDP optimization phase 192 000 Forward LPs

(8 iterations) 3.84× 106 Backward LPs
SDDP simulation phase 60 000 LPs with 1601 cuts
SDDP total CPU time 3 weeks

RH, for each t = 1, . . . , 120 500 LPs with 56(T − t+ 1) variables and box constraints
and 8(T − t+ 1) equality/inequality constraints

RH total CPU time 6 h

We refer to the end of Section 6.7, for a more specific analysis of SDDP in our test-case.
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6.7. Critical levels, operational costs, and load shedding. In our runs, future constraints

(5) in problem (11), on the reservoir minimal levels, were not active in general. In fact, these

constraints were satisfied with a probability much larger than 1 − εp, for all of our choices of εp.

We made a set of unreported tests to evaluate the sensitivity of both WS and RH to variations in

the critical levels xcrit
t ∈ {0.1, 0.2, 0.5, 0.8}xmax

t and we observed a natural behavior for a hydro-

dominated system: costs became prohibitive for the higher values of the critical levels, due to the

appearance of load shedding for many time steps.

Our assessment of the different policies starts with Table 8, reporting the corresponding statis-

tical indicators for operational costs, that is, generation and exchange costs, excluding shortage.

Table 8. Central and dispersion characteristics of the generation and exchange
cost (R$)

Output WS RH SDDP

Mean 5.752×108 6.865×108 6.809×108

s.d. 2.059×108 1.744×108 3.682×108

VaR 1% 1.026×109 1.115×109 2.146×109

VaR 5% 9.273×108 9.911×108 1.272×109

VaR 90% 3.115×108 4.639×108 3.299×108

From a statistical point of view, the p-value of a Student’s paired t-test applied on the samples

of the cost of policies WS and SDDP (resp. RH and SDDP) is 10−21 ≃ 0 (resp. 0.61)7. Therefore, RH

and SDDP have comparable mean costs, different from the optimal policy WS. Since, in addition, the

p-value of an F-test applied on the samples of the cost of policies RH and SDDP is 1.5×10−57 ≃ 0,

the respective standard deviations can be considered different.

Figure 10 compares the empirical distribution of the generation and exchange cost over the

500 scenarios for the three policies, where CWS, CRH, and CSDDP are respectively the generation and

exchange cost obtained with WS, RH, and SDDP. Due to the different magnitude of the costs in Table

8, to ease the comparisons the graphs show the distribution of the corresponding ratios.

The cost distribution for SDDP exhibits a fatter tail, because with this policy some scenarios

are very costly. This is a natural result, because RH is risk-averse while SDDP uses a risk-neutral

formulation. This is also consistent with Table 8, showing larger values for the quantiles VaR 1%

and VaR 5% for the SDDP policy.

It is also important to look at the portion of demand left unsatisfied by each policy, when

compared to the total cost, considering all scenarios and time steps. SDDP incurs a very low level

of load shedding (0.001%), at the expense of a significant increase in the mean cost (shortage cost

is high: R$ 4170.44 per MWh). All the rolling horizon runs satisfied the demand, excepting RH

CVaR with (εp, εc) = (0.4, 0.05), with a load shedding level of 0.153%.

Table 9 reports the total cost for policies WS, SDDP, and the “best” and “worst” RH policies.

Except for the “worst” one, that leaves demand unsatisfied, all the rolling horizon policies had

total mean cost smaller than the one obtained with SDDP (SDDP total mean cost is about 24%

above the corresponding value for the “best” RH policy).

7RH mean cost is 19.3% higher than WS mean cost but only corresponds to a 0.8% increase with respect to SDDP mean
cost
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Figure 10. Empirical distribution of cost ratios obtained with the three policies.

Table 9. Central and dispersion characteristics of the total cost (R$)

Output WS
Best RH

CVaR (εp, εc) = (0.45, 0.01)
Worst RH

CC-CVaR (εp, εc) = (0.4, 0.05)
SDDP

Mean 5.752×108 6.865×108 3.302×1010 8.543×108

s.d. 2.059×108 1.744×108 8.146×109 2.185×109

VaR 1% 1.026×109 1.115×109 5.132×1010 2.991×109

VaR 5% 9.273×108 9.911×108 4.672×1010 1.272×109

VaR 90% 3.115×108 4.639×108 2.269×1010 3.299×108

The mean generation cost per subsystem for the three policies is given in Table 10.

Table 10. Mean generation cost (over the scenarios) in the subsystems (R$).

Policy South-East South North-East North
WS 5.726×108 0 0 0
RH 6.823×108 2.056×105 1.527×106 0
SDDP 6.428×108 2.522×107 1.029×107 0

From these tables, and as already announced in Section ??, for our data set and in terms of cost

distribution, SDDP policy is far from an optimal (or a close to optimal) risk-neutral policy. Because

the stochastic process is interstage dependent, the process history (7) gives in (1) a state vector

with 24 components. Such state dimension is practically unmanageable by Dynamic Programming

techniques for large horizons T , even in a deterministic setting. Uncertainty only worsens the

situation, making SDDP simulation phase use an approximation of the recourse function that is

likely to be poor at the considered states. Better approximations could be obtained by setting up

an SDDP rolling horizon methodology, but, in view of the figures in Table 7, it is clear that this

alternative is computationally impossible. Likewise, a risk-averse formulation, for example along
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the lines of [?] or [?], needs more variables and constraints, and would increase the already heavy

computational effort. Moreover, even if distributing calculations in many different processors made

the computational load acceptable, implementing a risk-averse SDDP as in [?] would still require

to find at each stage suitable weights defining a trade-off between the mean and the CVaR of the

future cost. At first sight, choosing sound values for these weights for a specific problem is not a

simpler task than finding adequate confidence levels εp and εc for the rolling horizon methodology.

6.8. Exchanges, hydro-thermal generation, and marginal costs. The most significant import-

export exchanges go from the South-East to the South, for all policies. This is due to the fact

that while the South has the highest demand at each time step, the South-East has both the high-

est hydro- (more than 70% of the total) and thermal-capacity. Other exchanges appear from the

North to the North-East and the South-East, and from the North-East to the South-East. With

WS and RH policies, and contrary to SDDP, the North receives no energy from the other subsystems.

This subsystem, with no thermal plants and only one small reservoir, but also small demand, has

a somehow “isolated” operation with both WS and RH. This is not the case with SDDP which, as

shown in Figure 11, uses more water than the other two policies in the first half of the optimization

period and, hence, ends up the needing to transfer some energy to the North.

We report in Figure 11 the average evolution for the South-East and South subsystems. Fig-

ure 12 displays the hydro-generation evolution of the whole system.
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Figure 11. Mean reservoir level for South-East and South subsystems.

We see that, during the first five years, SDDP uses more water at nearly all time steps and

scenarios. In particular, for SDDP, hydro-generation does not fluctuate much, likely because of the

use of approximate recourse functions that are optimistic for the first years. This explains why

SDDP’s reservoir levels and generation costs tend to be lower than the other policies over the first

half of the optimization period. However, since this initial optimism also prevents SDDP from using

as much water as RH and WS later on, eventually SDDP becomes more costly. With all the policies,

both the S and SE reach (or nearly reach) their critical levels on all scenarios at the end of the

optimization period.
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Figure 12. Mean hydro-generation (left) and 0.05-quantile (right).

The right graph in Figure 12, with the 0.05-quantile for the hydro-generation, shows a relatively

low variability from scenario to scenario. All policies make a similar management of the hydro-

power. However, over the first half of the optimization period, RH tends to be a bit more conservative

with respect to the use of water and uses slightly less water than the other two policies. The

conservatism of RH over the first years may be explained by the fact that, at the beginning of the

process (t ≈ 1), (11) needs to foresee a far away future (τ ∈ [2, 120]), using robust uncertainty sets

(19) and (20) that are overly pessimistic with respect to the final stages (τ ≈ 120). By contrast,

over the last five years, as the number of uncertain parameters in (11) decreases, uncertainty sets

become tighter, RH “realizes” that more water than necessary has been stored and it uses slightly

more water than the other two policies.

Figure 13 plots the mean level and 0.05- and 0.95-quantiles for the total thermal generation.

With both RH and WS, since the demand is satisfied for every time step and scenario, the thermal

generation merely complements the hydro-generation to attain the demand level, a natural feature

for a predominantly hydroelectric system.

It appears that RH policy uses more (resp. less) thermal power over the first half (resp. second

half) of the optimization period; a phenomenon which is consistent with previous observations.

For this reason, RH is more (resp. less) costly than WS over the first half (resp. second half) of the

optimization period. Since SDDP uses less water in the second half of the optimization period, it

needs to call on more thermal plants. It can also be seen (by comparing Figures 12 and 13) that

the thermal generation is comparatively much smaller than the hydro-generation, for all policies,

as expected in a hydro-dominated system (in our configuration, thermal power can cover at most

12.8% of the demand at each time step). When needed, thermal plants are committed in ascending

order of their operational cost, to prevent load shedding. Due to the fact that only some thermal

plants enter the system, the marginal cost (mean optimal Lagrange multipliers for the demand

satisfaction constraint) in all subsystems is low for all the policies, except for some time steps with

SDDP, as shown in Figure 8.

More precisely, at some time steps SDDP needs to call on more thermal plants than RH and WS,

because SDDP uses less water, in particular in the second half of the optimization period. For such
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Figure 13. Total thermal generation: mean, 0.05-, and 0.95-quantiles.

time steps, SDDP’s mean marginal cost can climb from around R$10-15 per MWh to R$ 38.7 per

MWh, with peaks to R$ 4170.44 per MWh for some realizations. In fact, SDDP’s variability of

marginal cost (from one scenario to another) is quite significant, as reported in Figure 14.

Stability appears as another advantage of RH over SDDP: we obtain lower marginal costs that

are less volatile. Notwithstanding, on average, both policies give relatively low values: the mean

marginal costs in R$ per MWh obtained with RH (SDDP) policy amount to 10.39 (12.13), 10.39

(12.14), 9.37 (11.07), and 9.37 (11.08) for the SE, S, NE, and N subsystems, respectively.

Final considerations

The novelty of this paper is in the specific integration of topics from risk modelling, dynamic

programming and multistage stochastic optimization to arrive at mathematically sound solution

methods working efficiently for large-scale models.

When the optimization horizon is large, (1) becomes intractable and very few policies can be

implemented, even in a risk-neutral formulation. One of the rare exceptions is SDDP, which traverses

a scenario tree by randomly choosing some paths. When T is large, such a scenario tree (generated

by discretizing the continuous distribution of the stochastic process defining the uncertainty in (1))
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Figure 14. Marginal cost standard deviations for SE subsystem, with a zoom
for the first 40 time steps.

has an astronomical number of paths. Since the method can only explore an infimal proportion of

the tree (at the sake of a substantial computational effort), sometimes SDDP approximate policies

can be poor. We observed indications of these features for some of the indicators analyzed in

our case study, in particular those referring to volatility. For our test-case, the rolling horizon

policy provided generation profiles quite close to the optimal ones. When compared to SDDP,

average results are similar, but obtained with much less computational effort: from Table 7, we

see that RH’s overall CPU time was about 80 times smaller than SDDP’s. With the rolling horizon

approach, there is also a reduction in volatility, not only because the optimal decision at time step

t depends only on the information provided by the tth risk-averse problem, but also because our

SDDP implementation was risk-neutral and is not re-solved at each time stage (a risk-averse rolling

horizon formulation would have made SDDP computational times unacceptable). An interesting

observation is that the gain in stability provided by RH did not increase the mean marginal cost.

Since we assume the model parameters in (6) to be known and since values of the inverse distri-

bution F−1 in Theorem 4.4 can be obtained with arbitrary accuracy, the rolling horizon approach

can fully exploit the probabilistic structure of uncertainty, without resorting to discretizations or

approximations. If parameters in (6) are only estimations, or just approximate generalized inverse

distributions are available, then the rolling horizon policy would be an approximation. The ques-

tion of how to control the quality of the approximate policy in this case is an interesting topic,

combining statistical inference and sensitivity analysis.

Since we can always suppose, at least from a theoretical point of view, that the objective function

of a stochastic optimization problem is uncertainty independent (problems min{f(x, ξ̃) : x ∈ X}
and min{t : t ≥ f(x, ξ̃), x ∈ X} are equivalent), our analysis also applies to stochastic optimization

problems with feasible set as in (1), but with objective function depending affinely on the uncertain

parameters. Furthermore, the methodology would still be applicable if in (1) a linear term Htxt−1

was introduced in the right hand side of (ineq), or for matrices Bt similar to the technology

matrices Ft in (2). For the water-resource application, in particular, these extensions would make
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possible to consider uncertain demand and generation costs, as in [?], [?], as long as the rolling

horizon risk-averse subproblems remain tractable.

Likewise, since both the mean and the standard deviation of the cost were close to the optimal

values in the numerical experiment, it would be interesting to find theoretical upper bounds for

the bias and variance of the total cost.

Finally, instead of CVaR constraints, one could use integrated chance constraints (ICC), as in

[20]:

E[min(X,hτ )] ≥ hτ − εc(|hτ |+ 1),

because the set of ICC controls remains closed and convex. For comparison, our CVaR constraints

can be written in the form E[X |X ≤ h̃τ ] ≥ hτ − εc(|hτ | + 1), by taking h̃τ = −V aRεp(X) (the

connection with ICC is given by the relation E[min(X, x)] = xP(X > x) + E[X |X ≤ x]P(X ≤ x)).

However, even for null technology matrices, ICC would result in convex non-linear optimization

problems (still tractable, but no longer linear programs).
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