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Abstract. We consider interstage dependent stochastic linear programs where both the ran-
dom right-hand side and the model of the underlying stochastic process have a special structure.
Namely, for equality constraints (resp. inequality constraints) the right-hand side is an affine
function (resp. a given function bt) of the process value for the current time step t. As for m-th
component of the process at time step t, it depends on previous values of the process through a
function htm.

For this type of problem, to obtain an approximate policy under some assumptions for functions
bt and htm, we detail a stochastic dual dynamic programming algorithm. Our analysis includes

some enhancements of this algorithm such as the definition of a state vector of minimal size, the
computation of feasibility cuts without the assumption of relatively complete recourse, as well
as efficient formulas for sharing optimality and feasibility cuts between nodes of the same stage.
The algorithm is given for both a non-risk-averse and a risk-averse model. We finally provide
preliminary results comparing the performances of the recourse functions corresponding to these
two models for a real-life application.

AMS subject classifications: 90C15, 91B30.

1. Introduction

The use of decomposition methods for solving linear multi-stage stochastic programs dates back to
the nested decomposition (ND) algorithm [2]. This method assumes that the number of realizations
of the process over the optimization period is finite (these realizations can be organized in a finite
scenario tree). At each iteration and in each node of the scenario tree, the algorithm updates lower
bounding approximations for the corresponding recourse functions. However, for many applications,
the number of scenarios is so large that this method entails prohibitive computational efforts. Monte
Carlo sampling-based algorithms constitute an interesting alternative in such situations. One of these
algorithms adapted for multistage stochastic linear programs whose number of immediate descendant
nodes is small but with many stages [13] consists in sampling in the forward pass of the ND. This
sampling-based variant of the ND is the so-called Stochastic Dual Dynamic Programming (SDDP)
algorithm.

To our knowledge, this algorithm has been described so far with the assumption of relatively
complete recourse for stochastic linear programs where the right-hand side is an affine function of
the process values. Moreover, in general, it is assumed that the process is stagewise independent or
that it affinely depends on previous values. In this paper, we detail the SDDP algorithm for a larger
class of problems where relatively complete recourse does not hold. More precisely, we consider a

Key words and phrases. Stochastic programming and Risk-averse optimization and Decomposition algorithms and
Interstage dependency and Monte Carlo sampling.
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feasible T -stage stochastic optimization problem of form

(1)















inf E[
∑T

t=1 ft(xt)]
Atxt ≥ bt(ξt)−Btxt−1, a.s., t = 1, . . . , T, INEQ

Ctxt = Dtξt − Etxt−1, a.s., t = 1, . . . , T, EQ

xt ≥ 0, a.s., xt ∈ Lp(Ω,Ft,P;R
kt), t = 1, . . . , T,

where x0 is given, (ξt) is an interstage dependent stochastic process with natural filtration Ft =
σ(ξ1, . . . , ξt), ft is a polyhedral cost function:

(2) ft(xt) =

{

max
1≤j≤Jt

αtj + x⊤

t βtj if xt ∈ Xt = {x : c⊤tkx ≤ dtk, k = 1, . . . ,Kt},

+∞ otherwise,

and bt(x) = (bt1(x), . . . , btℓt(x))
⊤ for given functions bti : R

M → R.
Regarding the stochastic process, we assume that each component ξt(m) is a general function of

past values, i.e., for every m = 1, . . . ,M , and t ∈ Z, we have

(3) ξt(m) = htm(ξt−1(m), . . . , ξt−pt(m)(m), ηt(m))

for some lag pt(m) ∈ N and some function htm : Rpt(m)+1 → R, where (ηt) is an interstage inde-
pendent process (for any stage t, correlations between the components of ηt are however allowed).1

The need to consider this more general framework is motivated by some applications; see Examples
2.1 and 2.2 below for instance. In that context, to preserve the convexity of the recourse functions,
either (i) the functions htm are affine or (ii) satisfy some assumptions given in Section 2 and there
are no equality constraints. In case (i), the right-hand side of equality constraints must be an affine
function of the process value to preserve the convexity of the recourse functions.

In our interstage dependent context (3), the recourse functions depend on some past realizations
of the process. We define for each time step t a vector ξ[t] containing the minimal number of past
realizations needed to implement the SDDP algorithm. Next, under some assumptions on functions
bt and htm that guarantee the convexity of the recourse functions for (1), we provide formulas for
the cuts that are built in the backward pass of the SDDP algorithm to approximate these recourse
functions. Such cuts can be shared between nodes of the same stage. For an interstage dependent
process with affine functions htm, this was first observed in [10]. However, when each component
(ξt(m)) is a generalized autoregressive process (of form (8) below), the formulas we obtain for the
cuts in Corollary 2.5 can be in some cases (depending on the application) more economic (in terms of
memory allocation) compared to those in [10]. Moreover, since we do not assume relatively complete
recourse, we also provide formulas for feasibility cuts that are needed to build sequences of feasible
states in the forward pass of the algorithm. We show that in our statistical framework, these cuts
can also be shared between nodes of the same stage. To the best of our knowledge, the description
of the SDDP algorithm in the general framework (1) for processes satisfying (3) has not been done
so far. When relatively complete recourse does not hold and when the underlying stochastic process
is interstage dependent, we are also not aware of a previous work explaining how to build and share
feasibility cuts (in the forward pass of the SDDP algorithm) between nodes of the same stage.

Next, we consider a risk-averse formulation of (1) using a multiperiod risk measure proposed in [5],
[6] that allows us to apply SDDP to approximate the corresponding risk-averse recourse functions.
For the class of problems considered in this paper, we provide formulas for the cuts built in this
risk-averse version of SDDP.

Finally, we provide a first set of numerical results that compares the use of the aforementioned
risk-averse and non-risk-averse recourse functions for the mid-term Brazilian hydro-thermal planning
problem.

1If all lags pt(m) are null, we recover the case when process (ξt) is interstage independent.
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The outline of the paper is as follows. In Section 2, we study the non-risk-averse version of SDDP
while Section 3 considers the risk-averse case. Numerical results are reported in Section 4.

The paper is quite technical. The reader can in a first reading skip the theorems, propositions,
and their corollaries and focus on the examples to get the main ideas. However, the theorems and
propositions provide formulas for the cuts that will be useful to the practionner interested in imple-
menting the SDDP algorithm for the type of problems we consider. The proofs are collected in the
appendix.

We start setting some notation:

• e is a column vector of all ones whose dimension may vary upon the context;
• If A is an m1×n matrix and B an m2×n matrix, (A;B) denotes the (m1+m2)×n matrix
(

A
B

)

;

• In is the n× n identity matrix and 0m×n is an m× n matrix of zeros;
• For real numbers x1, . . . , xn, we denote by Diag(x1, . . . , xn) the n×n diagonal matrix whose
entry at position (i, i) is xi;
• For a continuous random variable X representing a cost, the Conditional Value-at-Risk of
level ε ∈ [0, 1] of X [16] is given by CVaRε(X) := E[X |X ≥ F−1

X (1− ε)], where FX(·) is the
cumulative distribution function (CDF) of X ;
• For t2 ≥ t1, the short form vt1:t2 stands for the concatenation (vt1 , vt1+1, . . . , vt2);
• Qt+1 denotes a (generic) recourse function used at time step t = 1, . . . , T , i.e., QT+1 ≡ 0 and
if t < T then Qt+1(xt, ξ[t]) represents a cost over the period t + 1, . . . , T . Various recourse
functions at t will be defined using the same notation Qt+1. Which Qt+1 is relevant will be
clear from the context.

As is usually done in the stochastic programming (SP) literature and to alleviate notation, we use
the same notation for a random variable and for a particular realization of this random variable, the
context allowing us to know which concept is being referred to.

2. SDDP for a class of non-risk-averse interstage dependent stochastic programs

In its risk-neutral version, SDDP aims at providing approximations of the recourse functions for
problem (1). These recourse functions Qt(xt−1, ξ[t−1]), t = 1, . . . , T , satisfy the dynamic program-
ming (DP) relations

(4) [LPt] Qt(xt−1, ξ[t−1]) = Eξt|ξ[t−1]









inf
xt

ft(xt) +Qt+1(xt, ξ[t])

Atxt ≥ bt(ξt)−Btxt−1

Ctxt = Dtξt − Etxt−1

xt ≥ 0









for t = 1, . . . , T , with QT+1 ≡ 0. In the above relations, ξ[t] denotes the available and useful history
of the process at time step t; see Section 2.2 for details.

A solution (x1(·), . . . , xT (·)) of (1) is called a policy. Such policy is nonanticipative, i.e., xt(·) is a
function of available realizations at time step t. Using the approximate recourse functions obtained
with SDDP, we obtain an approximate policy for (1).

We will assume that at the beginning of the optimization period, the realizations of ξj , j ≤ 1, are
available.

We make the following assumptions:

(A1) The function bti is convex for every t = 1, . . . , T , and i = 1, . . . , ℓt.
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(A2) The support Ωt of the distribution of ηt in (3) is discrete and finite:

(5) Ωt = {ηtj , j = 1, . . . , qt <∞} with ηtj ∈ R
M and P(ηt = ηtj) = p(t, j) > 0.

(A3) For t = 2, . . . , T , for every (t − 1)-stage scenario (ξ1, ξ2, . . . , ξt−1), and for every state xt−1

feasible on this scenario for stage t− 1, the set

{xt : Atxt ≥ bt(ξtj)−Btxt−1, Ctxt = Dtξtj − Etxt−1, xt ≥ 0}

is nonempty and bounded for every j = 1, . . . , qt where the vector ξtj ∈ R
M is given by

(6) ξtj(m) = htm(ξt−1(m), . . . , ξt−pt(m)(m), ηtj(m)), m = 1, . . . ,M.

Assumption (A3) holds, in particular, if problem (1) is feasible and if at each stage, all decision
variables are bounded, almost surely. Such is the case of the real-life application we consider in
Section 4.

We will consider two special classes of processes referred to as the convex process model and the
affine process model in the sequel. More precisely, in the case of the convex process model, we assume
the following:

(A4) For every t = 1, . . . , T , and i = 1, . . . , ℓt, for every x, y ∈ R
M such that x ≥ y, we have

bti(x) ≥ bti(y).
(A5) For every m = 1, . . . ,M , and t ∈ Z, relation (3) holds for some lag pt(m) ∈ N, some convex

function htm : Rpt(m)+1 → R, where (ηt) is an interstage independent process.
(A6) For every t = 1, . . . , T , and m = 1, . . . ,M , for every x, y ∈ R

pt(m)+1 such that x ≥ y,
function htm(x) from Assumption (A5) satisfies htm(x) ≥ htm(y).

If there are no equality constraints in (1), i.e., if constraints EQ are absent, our results will be
derived making Assumptions (A1), (A2), (A3), (A4), (A5), and (A6) which guarantee, in particular,
the convexity of recourse functions Qt(·) from (4). These assumptions as well as problem structure
(1) have been used to model various applications.

Example 2.1 (Production management). Consider a production management problem aiming at
minimizing the expected production cost where the system uncertainty is captured by demand Dt(m) in
period t for type of client or geographical zone m. In this context, we have ξt = (Dt(1), . . . ,Dt(M))⊤

and demand satisfaction constraints can be written as INEQ with bti(x1, . . . , xM ) = xi, i = 1, . . . , ℓt =
M satisfying Assumptions (A1) and (A4). Since demand realizations are positive, instead of an affine
function for htm one may prefer a model formulated as

(7) ξt(m) = Dt(m) = f(

pt(m)
∑

j=1

φj
t (m)Dt−j(m) + ηt(m)) = htm(ξt−1(m), . . . , ξt−pt(m)(m), ηt(m))

where f is a positive valued function: f : R→ R+; which ensures positivity of demands for any dis-
tribution of noises ηt. As an example, taking for f the functions f(x) = max(x, 0) or f(x) = exp(x),

the corresponding functions htm in (7) given by htm(x1, . . . , xpt(m)+1) = max(0,
∑pt(m)

j=1 φj
t (m)xj +

xpt(m)+1) or htm(x1, . . . , xpt(m)+1) = exp(
∑pt(m)

j=1 φj
t (m)xj + xpt(m)+1) are convex, i.e., Assumption

(A5) holds. Moreover, in these cases, if all coefficients φj
t (m) are nonnegative, Assumption (A6)

also holds. The max operator for f above can provide a model to obtain positive inflows for the
application described in Example 2.2 below.

Assumption (A5) states that at stage t, m-th component of the process value depends on pt(m)
previous values of this component through a convex function htm. As a special case, we will consider
the affine process model where this function htm is affine:
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(A7) For every m = 1, . . . ,M , and t ∈ Z, we have

(8)
ξt(m)− µt(m)

σt(m)
=

pt(m)
∑

j=1

φj
t (m)

(

ξt−j(m)− µt−j(m)

σt−j(m)

)

+ ηt(m)

where µt(m) = E[ξt(m)], σ2
t (m) = V ar[ξt(m)], lag pt(m) ∈ N, φ

pt(m)
t (m) 6= 0, and where (ηt) is

an interstage independent process (for any stage t, correlations between the components of ηt are
however allowed).2

In this context, Assumption (A4) will not be needed and subsequent developments hold under
Assumptions (A1), (A2), (A3), and (A7). An example of a problem that can be modeled as (1)
where Assumptions (A1), (A2), and (A7) hold is the hydro-thermal planning problem described in
[8]. We recall in Example 2.2 which follows the uncertain constraints of a simplified version of this
problem.

Example 2.2 (Hydro-thermal planning). We have NS subsystems, each subsystem i containing
an hydroplant, with hydro generation ut(i) for time step t, and its water reservoir. We denote by
Vt(i) the volume of this reservoir at the end of time step t. Such volume depends on the volume
of the reservoir at the end of the previous period, on the turbined outflow, and on inflows It(i) in
subsystem i for period t. The corresponding dynamics is given by

Vt(i) = Vt−1(i)− ut(i) + γt(i)It(i),

where γt(i) ∈ (0, 1) is the portion of inflows that comes to the reservoir; the remaining portion being
directly converted into energy by run-of-river plants. However, due to limits in the run-of-river
capacities, not all these inflows may be converted into energy. The corresponding losses are modelled
by some convex loss function Lt in such a way that for each subsystem i and time step t, demand
satisfaction constraints write

ut(i) + dft(i) + (1− γt(i)) It(i)− Lt ((1− γt(i))It(i)) ≥ Dt(i)

where Dt(i) (resp. dft(i)) denotes the demand (resp. unsatisfied demand).3 Setting xt = (Vt(1), . . .,
Vt(NS), ut(1), . . . , ut(NS), dft(1), . . . , dft(NS))⊤ and ξt = (It(1), . . . , It(NS),Dt(1), . . ., Dt(NS))⊤,
we see that these constraints can be written as EQ and INEQ with

Ct = [INS , INS , 0NS×NS], Et = [−INS , 0NS×2NS],
Dt = [Diag(γt(1), . . . , γt(NS)), 0NS×NS], At = [0NS×NS, INS , INS ],

Bt = 0, and where bti is the convex function

bti(x1, . . . , x2NS) = xNS+i − (1− γt(i))xi + Lt((1− γt(i))xi), for i = 1, . . . , ℓt = NS.

Moreover, for this problem, the process of inflows is commonly modeled by a Periodic Autoregressive
(PAR) process of form (8), see [9], [7], [11] for instance. As a result, assuming also a PAR process for
the demand in each subsystem, Assumption (A7) is satisfied and ξt has M = 2NS components. The
corresponding approximations of the recourse functions (4) are obtained discretizing the distributions
of noises ηt. In this context, Assumption (A2) also holds.

Our main results will be illustrated using simple hydro-thermal problems.
For didactic reasons, we start our developments describing in the next subsection the SDDP

algorithm in a simplified framework: we consider a problem of form (1) without equality constraints,

2The generalized autoregressive model is written using normalized random variables. For numerical reasons, it is
recommended to use such formulation for the calibration of the model.

3Exchanges between subsystems can also be considered. Demand satisfaction constraints can be written as INEQ

in this case too.
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with ft linear, htm affine, bt is a max function, and we assume relatively complete recourse. The
next subsections consider the general case (problem of form (1)).

2.1. SDDP for some interstage dependent problems. In this subsection, we consider the case
where there are no equality constraints, bt(ξt) = max(ξt, 0), ft(xt) = c⊤t xt is linear, and htm is affine.
More precisely, (ξt) is a (PAR) process of the form (3):

(9) ξ2t =
1
2ξ2t−1 + η2t and ξ2t−1 = 1

3 (ξ2t−2 + ξ2t−3 + ξ2t−4) + η2t−1, ∀ t ∈ Z,

and we will assume, without loss of generality, that T is odd. We also assume in that subsection
that relatively complete recourse holds. As a result, the recourse functions satisfy

(10) [LPt] Qt(xt−1, ξ[t−1]) = Eξt|ξ[t−1]







inf
xt

c⊤t xt +Qt+1(xt, ξ[t])

Atxt ≥ max(ξt, 0)−Btxt−1

xt ≥ 0







for t = 2, . . . , T , with QT+1 ≡ 0 while the optimization problem (1) can be written

[LP1]

inf
x1

c⊤1 x1 +Q2(x1, ξ[1])

A1x1 ≥ max(ξ1, 0)−B1x0

x1 ≥ 0.

One may think at first sight that since ξt depends on 1 or 3 past values of the process, depending
if t is even or odd, it would be sufficient to store 1 (resp. 3) past realizations in the state vector
for stage t if t is even (resp. odd). In fact, this choice does not define an appropriate state vector.
Indeed, let us look at DP equations (10). Since they are written backward in time, the state vectors
are also defined backward in time. Recalling that QT+1 ≡ 0, ξ[T−1] gathers the realizations of the
process before stage T upon which ξT depends. Since, T is odd, ξT depends on 3 past realizations
ξT−1, ξT−2, and ξT−3. It follows that ξ[T−1] = (ξT−1, ξT−2, ξT−3). Looking again at DP equations
(10), now with t = T − 1, we see that ξ[T−2] should gather the terms in ξ[T−1] that correspond to
realizations of the process before stage T − 1 (these terms are ξT−2 and ξT−3) and the realizations
of the process before stage T − 1 upon which ξT−1 depends (since T − 1 is even, this realization is
ξT−2). It follows that ξ[T−2] = (ξT−2, ξT−3). Proceeding iteratively, we obtain

(11) ξ[t] =

{

(ξt, ξt−1, ξt−2) if t is even,
(ξt, ξt−1) if t is odd.

The SDDP algorithm exploits the convexity of the recourse functions to build lower bounding ap-
proximations of these functions. At iteration i, a convex polyhedral lower bounding approximate
function Qi

t is built for the convex recourse function Qt:

Qi
t(xt−1, ξ[t−1]) = max

j=0,1,...,iH
[−Ej

t−1xt−1 + Ẽj
t−1ξ[t−1] + ejt−1]

where H is the number of cuts (hyperplanes lying below the recourse function) computed for Qt at
each iteration (see below).

For convenience, we denote by
−→
E i

t−1 (resp.
−→
Ẽ i

t−1 and −→e i
t−1) the matrix whose (j+1)-th line (for

j = 0, . . . , iH) is the row vector Ej
t−1 (resp. Ẽj

t−1 and ejt−1).
4

Given (x0, ξ[1]), in each iteration i = 1, 2, . . ., a forward pass computes H feasible states (xk
t , ξ

k
[t]),

k = (i − 1)H + 1, . . . , iH , for time steps t = 1, . . . , T , as follows. Given ξ[1], the scenarios

(ηk2 , . . . , η
k
T ), k = (i−1)H+1, . . . , iH are sampled from the distribution of (η2, . . . , ηT ). These scenar-

ios induce the scenarios (ξk1 , . . . , ξ
k
T ), k = (i−1)H+1, . . . , iH via (9) as well as (ξk[1], . . . , ξ

k
[T ]) via (11)

4We use notation from [3] and [15]
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(recall that since ξ1 is known, ξk1 = ξ1 for all scenario k). The forward pass then computes xk
t solving

the following approximate problem [AP i,k
t ] of [LPt] for t = 1, . . . , T , and k = (i − 1)H + 1, . . . , iH ,

obtained replacing Qt+1 by Qi−1
t+1:

[AP i,k
t ] Qi

t(x
k
t−1, ξ

k
[t−1]) =























inf
xk
t ,θ

k
t

c⊤t x
k
t + θkt

Atx
k
t ≥ max(ξkt , 0)−Btx

k
t−1

−→
E i−1

t xk
t + θkt e ≥

−→
Ẽ i−1

t ξk[t] +
−→e i−1

t (a)

xk
t ≥ 0,

with xk
0 = x0. In the above expression, constraints (a) are optimality cuts. Note that, for t = 1,

since [AP i,k
t ] = [AP i,k

1 ] does not depend on k (because ξk1 = ξ1 and ξk[1] = ξ[1] for all k), we can write

[AP i
1 ] instead of [AP i,k

1 ].
A backward pass then builds H cuts for each recourse function Qt at (x

k
t−1, ξ

k
[t−1]), k = (i−1)H+

1, . . . , iH . As a result, the forward pass consists of obtaining decisions on H scenarios replacing
the recourse functions in [LPt] by the lower bounding approximations of these recourse functions
obtained in the end of the backward pass of the previous iteration. A lower bound on Qt(x

k
t−1, ξ

k
[t−1])

is obtained on scenario k and iteration i solving problem [AP i,k
t ]. In particular, a lower bound on

the optimal value of [LP1] is given by the optimal value of [AP i
1 ].

In [15], conditions are given which guarantee the convergence of a set of sampling-based decompo-
sition algorithms that include SDDP. Under such conditions, an optimal solution to [AP i

1] converges
with probability one to an optimal solution to [LP1] in a finite number of iterations.

We now detail the computations of optimality cuts in the backward pass. The optimality cuts are
computed for time step T +1 down to time step 2. For time step T +1, since Qi

T+1 = QT+1 = 0, we

have for QT+1 the cuts Ek
T = Ẽk

T = ekT = 0 for k = (i− 1)H + 1, . . . , iH . At time step t = 2, . . . , T ,
the cuts for Qt are computed having at hand the approximation Qi

t+1 of Qt+1 which satisfies

(12) Qt+1(xt, ξ[t]) ≥ Q
i
t+1(xt, ξ[t]).

The above relation indeed holds for t = T . Assuming that it holds for some t ∈ {2, . . . , T }, we build
Qi

t as follows, in such a way that (12) holds with t+ 1 substituted by t.
First, it is convenient to skip from conditional expectations to unconditional ones computed with

respect to the distributions of ηt, t = 2, . . . , T . This can be done expressing ξ[t] and ξt as a function
of ηt and ξ[t−1] using equations (9) and state vectors (11): we obtain

(13) ξt = Φtξ[t−1] + ηt and ξ[t] = Φ̃tξ[t−1] + Ψ̃tηt

where






































Φ2t =
(

1
2IM 0M×M

)

, Φ2t−1 =
(

1
3IM

1
3IM

1
3IM

)

,

Φ̃2t =





1
2IM 0M×M

IM 0M×M

0M×M IM



 , Φ̃2t−1 =

(

1
3IM

1
3IM

1
3IM

IM 0M×M 0M×M

)

,

Ψ̃2t =





IM
0M×M

0M×M



 , Ψ̃2t−1 =

[

IM
0M×M

]

,

for every positive integer t.
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Plugging (12) into (10) and using (13), we obtain Qt(xt−1, ξ[t−1]) ≥ Eηt

[

Qi
t(xt−1, ξ[t−1], ηt)

]

with

(14) Qi
t(xt−1, ξ[t−1], ηt) =























inf
xt,θt

c⊤t + θt

Atxt ≥ max(Φtξ[t−1] + ηt, 0)−Btxt−1
−→
E i

txt + θte ≥
−→
Ẽ i

t

(

Φ̃tξ[t−1] + Ψ̃tηt

)

+−→e i
t

xt ≥ 0.

On scenario k and time step t, the above problem is solved for (xt−1, ξ[t−1], ηt) = (xk
t−1, ξ

k
[t−1], ηtj),

j = 1, . . . , qt. Since Assumption (A3) holds, the optimal values of these linear programs are finite

and both the primal and the dual have the same optimal value. We denote by πkj
t2 and ρkjt the

(row vectors) optimal Lagrange multipliers associated to respectively the first and second group of
constraints for problem Qi

t(x
k
t−1, ξ

k
[t−1], ηtj).

Next, for any x, x0 ∈ R
M , let s(x0) be a matrix such that

max(x, 0) ≥ max(x0, 0) + s(x0)(x− x0),

i.e., the transpose of the m-th row of s(x0) is a subgradient of the function max(x(m), 0) at x0(m).
Setting

ξktj = Φtξ
k
[t−1] + ηtj ,

for j = 1, . . . , qt, the following cuts are computed for Qt at iteration i in the backward pass:

Ek
t−1 =

∑qt
j=1 p(t, j)πkj

t2Bt,

Ẽk
t−1 =

∑qt
j=1 p(t, j)

[

ρkjt
−→
Ẽ i

tΦ̃t + πkj
t2 s(ξ

k
tj)Φt

]

,

ekt−1 =
∑qt

j=1 p(t, j)

[

ρkjt (−→e i
t +
−→
Ẽ i

tΨ̃tηtj) + πkj
t2

(

max(ξktj , 0)− s(ξktj)Φtξ
k
[t−1]

)

]

,

for t = 2, . . . , T , k = (i− 1)H + 1, . . . , iH .
Finally, after each backward pass (run after a forward pass), a stopping test, discussed in Section

2.6, is called for. We now consider problems of the form (1) and start defining the relevant history
ξ[t] of the process to be included in the state vector in our interstage dependent framework.

2.2. State vector definition. For simplicity, in the SP literature, the state vector ξ[t] involved in
(4) is in general either not specified or ξ[t] = (ξ1, . . . , ξt−1) is chosen ([17], [18] for instance). However,
for some processes and time steps, this history may not be enough, or, on the contrary, may be too
rich. It is important, especially for algorithmic purposes, to keep track of all the necessary history of
the process but also to try and find the “minimal” history of the process that needs to be included
in the state vectors for a stochastic problem of form (1) and an underlying stochastic process (ξt)
satisfying Assumption (A5).

The construction of this state vector is first illustrated on a small example depicted in Figure 1.
In this example, ξt has only one component and there are T = 8 stages. From top to bottom, the
different graphs in this figure illustrate the dependence of respectively ξ8, ξ7, ξ6, and ξ5 with respect
to previous values. More precisely, ξ8 depends on ξ5, ξ6, and ξ7; ξ7 only depends on ξ6; ξ6 depends
on ξ4 and ξ5 while ξ5 depends on ξ2, ξ3, and ξ4. Recalling that ξ[t−1] is an argument of Qt (see
DP equations (4)) and that Q9 is null; considering (4) written for t = 8, we see that ξ[7] gathers
realizations of the process upon which ξ8 depends, i.e., (ξ5, ξ6, ξ7). Considering equation (4) written
for t = 7, we see that ξ[6] appearing as an argument of Q7 not only needs to contain past values of
the process upon which ξ7 depends but also the values in ξ[7] (appearing in the objective function)
corresponding to time steps lower than or equal to 6. Considering Figure 1, among the arrows
starting at the current time step or at future time steps j > 7, we look at the one which reaches
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the smallest past time step. As a result, ξ[6] = (ξ5, ξ6). Reasoning similarly and going backward in
time, we obtain ξ[5] = (ξ4, ξ5) and ξ[4] = (ξ2, ξ3, ξ4).

1 2 3 4 5 6 7 T=8

1 2 3 4 5 6 7 T=8

1 2 3 4 5 6 7 T=8

1 2 3 4 5 6 7 T=8

ξ[7] = (ξ5, ξ6, ξ7)

ξ[6] = (ξ5, ξ6)

ξ[5] = (ξ4, ξ5)

ξ[4] = (ξ2, ξ3, ξ4)

Figure 1. State vector definition on a simple example.

Let us consider as another example the hydro-thermal application of Section 4 where the lags
for the PAR models for each subsystem are given in Table 1. We see that the lags range from
1 to 4 for the South-East and South subsystems and from 1 to 5 for the North-East and North
subsystems. It is thus sufficient to use a state vector that stores 4 past inflow realizations for
the South-East and South subsystems and 5 past inflow realizations for the North-East and North
subsystems. However, this choice is not optimal. Let us see what minimal information is needed.
One may think at first sight that since ξt(m) depends on pt(m) past values, it would be sufficient,
together with xt−1, to store pt(m) past realizations of component m in the state vector for stage
t. In fact, it is not difficult to see that this does not define in general an appropriate state vector.
To convince us, let us see what minimal information is needed in that example for the South-East
subsystem if the optimization horizon is a civil year (January-December) with monthly time step.
Since the DP equations are written backward in time, we start with the last stage and since the
lag for December is LagDecember = 4, we see that we need SizeDecember = 4 past realizations
for December. For November, the lag is LagNovember = 1 so we need at least LagNovember = 1
past realization for November. Moreover, the cost-to-go function Qt+1 used for November takes as
argument the state vector for December. Since this argument contains the realizations of inflows
for November, October, September, and August (recall that SizeDecember = 4), we need at least
SizeDecember − 1 = 3 past realizations for November (the realizations for October, September, and
August). Gathering our observations, we see that we need to store for November SizeNovember =
max(SizeDecember − 1, LagNovember) = 3 past realizations. Similarly, we need to store for October
SizeOctober = max(SizeNovember − 1, LagOctober) = max(2, 3) = 3 past realizations. Reasoning
similarly, we obtain the minimal number of past realizations to include in the state vector for all
stages and subsystems reported in Table 2. From this table, we see that the state vector for stage t
can need more than pt(m) past realizations of inflows for component m.

From these examples, we see that in the general case, vector ξ[t] should gather the realizations of
the process up to time t upon which depend ξt+1, ξt+2, . . . , ξT (see DP equations (4)). For time step
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Subsystem Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South-East 1 1 1 2 3 1 3 1 1 3 1 4
South 1 1 1 1 1 1 4 1 1 1 1 1
North-East 5 2 1 1 1 1 2 1 3 3 2 5
North 1 4 1 1 2 1 3 2 5 3 5 1
Table 1. Lags for the PAR models of inflows for the South-East, South, North-
East, and North subsystems. Column i gives the lags for the i-th month of the year:
for instance the lags for January are 1, 1, 5, and 1 for respectively the South-East,
South, North-East, and North subsystems.

Subsystem Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South-East 1 1 1 2 3 2 3 1 2 3 3 4
South 1 1 1 1 2 3 4 1 1 1 1 1
North-East 5 2 1 1 1 1 2 2 3 3 4 5
North 3 4 1 1 2 2 3 4 5 4 5 1
Table 2. Minimal number of past realizations to include in the state vector for
the South-East, South, North-East, and North subsystems when the optimization
horizon is a civil year (January-December). Column i gives this number for the i-th
month of the year: for instance the number of past realizations to include in the
state vector for January are 1, 1, 5, and 3 for respectively the South-East, South,
North-East, and North subsystems.

T − 1, these realizations are ξ[T−1] = (ξT−1(m), . . . , ξT−pT (m)(m),m = 1, . . . ,M). For time step
T−2, the values of the process upon which depend ξT−1 and ξT are (ξt−1(m), . . . , ξt−pt(m)(m)), m =
1, . . . ,M , for t = T − 1, T . As a result, we have ξ[T−2] = (ξT−2(m), . . . , ξT−1−sT−1,m(m),m =
1, . . . ,M), with T − 1 − sT−1,m = min(T − 1 − pT−1(m), T − pT (m)). Proceeding iteratively, we
see that ξ[t−1] should gather (ξt−1(m), ξt−2(m), . . ., ξt−st,m(m),m = 1, . . . ,M), with t − st,m =
mint≤w≤T (w − pw(m)), i.e., st,m = max0≤w≤T−t(pt+w(m) −w). The coefficients st,m can also be
defined iteratively by sT+1,m = −∞ and st,m = max(pt(m), st+1,m − 1), t = 1, . . . , T . Finally, the
state vector at time step t+ 1 is given by (x⊤

t , ξ
⊤

[t])
⊤ with

(15) ξ[t](
m−1
∑

j=1

st+1,j + k) = ξt+1−k(m) for m = 1, . . . ,M, and k = 1, . . . , st+1,m.

2.3. General overview of SDDP for problem (1). As mentionned in Section 2.1, the SDDP
algorithm exploits the convexity of the recourse functions to build lower bounding approximations
of these functions. This latter property holds under conditions given in the following lemma:

Lemma 2.3 (Convexity of recourse functions). Consider recourse functions defined by (4). In each
of the two situations below, these recourse functions are convex:

(i) Assumptions (A1) and (A7) hold;
(ii) for every time step, there are no equality constraints (matrices Ct, Dt, and Et are absent)

and Assumptions (A1), (A4), and (A5) hold.

Note that for the class of problems we consider and in contrast with the framework usually
considered to apply SDDP (see [13] and [15] for instance), our recourse functions are not in general
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polyhedral. However, at iteration i, a convex polyhedral lower bounding approximate function Qi
t

can still be built for the convex recourse function Qt:

Qi
t(xt−1, ξ[t−1]) = max

j=0,1,...,iH
[−Ej

t−1xt−1 + Ẽj
t−1ξ[t−1] + ejt−1]

where, as in Section 2.1, H is the number of cuts (hyperplanes lying below the recourse function)
computed for Qt at each iteration (see below).

The SDDP algorithm is made of a sequence of forward-backward passes that we detail now for
problem (1).

Using the notation introduced in Section 2.1, the forward pass computesH feasible states (xk
t , ξ

k
[t]),

k = (i− 1)H + 1, . . . , iH , for time steps t = 1, . . . , T . We recall that (ξk[1], . . . , ξ
k
[T ]) is obtained from

a sample (ηk2 , . . . , η
k
T ), k = (i − 1)H + 1, . . . , iH of the noises (η2, . . . , ηT ), using (3) and (15). The

forward pass then computes xk
t solving the following approximate problem [AP i,k

t ] of [LPt] obtained
replacing Qt+1 by Qi−1

t+1:

[AP i,k
t ] Qi

t(x
k
t−1, ξ

k
[t−1]) =











































inf
xk
t ,θ

k
t

ft(x
k
t ) + θkt

Atx
k
t ≥ bt(ξ

k
t )−Btx

k
t−1

Ctx
k
t = Dtξ

k
t − Etx

k
t−1

−→
E i−1

t xk
t + θkt e ≥

−→
Ẽ i−1

t ξk[t] +
−→e i−1

t (a)
−→
F tx

k
t ≥
−→
F̃ tξ

k
[t] +

−→
f t (b)

xk
t ≥ 0,

for t = 1, . . . , T , and k = (i−1)H+1, . . . , iH . In the above expression, constraints (a) are optimality

cuts while constraints (b) are feasibility cuts. Matrices
−→
F t,
−→
F̃ t, and vector

−→
f t can be modified

various times in a given iteration. As a result, constraints (b) correspond to the feasibility cuts for
xt that are available so far. For more details on the computation of feasibility cuts, see Sections 2.5
and 2.6.

We now detail the computations of optimality and feasibility cuts in our interstage dependent
framework.

2.4. SDDP: backward pass. The optimality cuts are computed for time step T +1 down to time
step 2.

We start our computations when Assumption (A7) holds. Proceeding as in Section 2.1, we first

express ξ[t] and ξt as a function of ηt and ξ[t−1]. For this, we introduce the M ×
∑M

k=1 st,k matrix
Φt defined by

Φt(m,
∑m−1

k=1 st,k + 1 :
∑m−1

k=1 st,k + pt(m)) = Φt(m),
Φt(m, j) = 0 otherwise,

for m = 1, . . . ,M , where Φt(m) = (Φ1
t (m),Φ2

t (m), . . . ,Φ
pt(m)
t ) with Φj

t (m) = σt(m)
σt−j(m)φ

j
t (m), j =

1, . . . , pt(m). Setting Ψt the M ×M matrix Ψt = Diag(σt(1), . . . , σt(M)) and Θt the M -vector given

by Θt(m) = µt(m)−
∑pt(m)

j=1 Φj
t (m)µt−j(m), m = 1, . . . ,M , we have

(16) ξt = Φtξ[t−1] +Ψtηt +Θt.

Next, let Φ̃t be the
∑M

k=1 st+1,k ×
∑M

k=1 st,k matrix whose non-zero elements are given by

Φ̃t(
∑m−1

k=1 st+1,k + 1,
∑m−1

k=1 st,k + 1 :
∑m−1

k=1 st,k + pt(m)) = Φt(m), m = 1, . . . ,M,

Φ̃t(
∑m−1

k=1 st+1,k + j,
∑m−1

k=1 st,k + j − 1) = 1, m = 1, . . . ,M, j = 2, . . . , st+1,m.
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Notice that in the expression above, 1 ≤ j−1 ≤ st+1,m−1 ≤ st,m. Finally, Ψ̃t and Θ̃t are respectively

the
∑M

k=1 st+1,k ×M matrix and the
∑M

k=1 st+1,k-vector whose non-zero elements are given by

Ψ̃t(
∑m−1

k=1 st+1,k + 1,m) = σt(m) m = 1, . . . ,M,

Θ̃t(
∑m−1

k=1 st+1,k + 1) = µt(m)−
∑pt(m)

j=1 Φj
t (m)µt−j(m) m = 1, . . . ,M.

With this notation, we obtain

(17) ξ[t] = Φ̃tξ[t−1] + Ψ̃tηt + Θ̃t.

To alleviate notation and without loss of generality, we assume in (2) thatXt = R
kt . Plugging (12)

(still valid) into (4) and using (16) and (17), we obtain Qt(xt−1, ξ[t−1]) ≥ Eηt

[

Qi
t(xt−1, ξ[t−1], ηt)

]

with

(18) Qi
t(xt−1, ξ[t−1], ηt) =







































inf
xt,θt1,θt2

θt1 + θt2

Atxt ≥ bt(Φtξ[t−1] +Ψtηt +Θt)−Btxt−1

Ctxt = Dt(Φtξ[t−1] +Ψtηt +Θt)− Etxt−1

−βtxt + θt1e ≥ αt

−→
E i

txt + θt2e ≥
−→
Ẽ i

t

(

Φ̃tξ[t−1] + Ψ̃tηt + Θ̃t

)

+−→e i
t

xt ≥ 0

where βt is the matrix βt = [β⊤

t1; . . . ;β
⊤

tJt
] and αt is the vector αt = (αt1, . . . , αtJt

)⊤. On scenario k

and time step t, the above problem is solved for (xt−1, ξ[t−1], ηt) = (xk
t−1, ξ

k
[t−1], ηtj), j = 1, . . . , qt.

The forward pass ensures that the feasible sets of these optimization problems are nonempty. Since
Assumption (A3) holds, the optimal values of these linear programs are finite and both the primal

and the dual have the same optimal value. We denote by πkj
t2 , π

kj
t1 , λ

kj
t , and ρkjt the (row vectors)

optimal Lagrange multipliers associated to respectively the first, second, third, and fourth group of
constraints for problem Qi

t(x
k
t−1, ξ

k
[t−1], ηtj). Finally, sbti(x) (resp. shti(x)) will denote a subgradient

of convex function bti (resp. hti) at x. The following theorem provides the cuts computed for Qt at
iteration i:

Theorem 2.4 (Optimality cuts-Affine process model). Consider recourse functions Qt from (4)
and let Assumptions (A1), (A2), (A3), and (A7) hold. Let ξktj be the M -vector given by

(19) ξktj = Φtξ
k
[t−1] +Ψtηtj +Θt.

In the backward pass of iteration i of the SDDP algorithm, H valid cuts for Qt, t = 2, . . . , T, are

given by Ek
t−1 =

∑qt
j=1 p(t, j)E

kj
t−1, Ẽ

k
t−1 =

∑qt
j=1 p(t, j)Ẽ

kj
t−1, and ekt−1 =

∑qt
j=1 p(t, j)e

kj
t−1 where

Ekj
t−1 = πkj

t1Et + πkj
t2Bt,

Ẽkj
t−1 = ρkjt

−→
Ẽ i

tΦ̃t + πkj
t1DtΦt + πkj

t2 s
b
t(ξ

k
tj)Φt,

ekjt−1 = λkj
t αt + ρkjt (−→e i

t +
−→
Ẽ i

t(Ψ̃tηtj + Θ̃t)) + πkj
t1Dt(Ψtηtj +Θt) + πkj

t2 (bt(ξ
k
tj)− sbt(ξ

k
tj)Φtξ

k
[t−1]),

for t = 2, . . . , T , k = (i− 1)H + 1, . . . , iH, and Ek
T = Ẽk

T = ekT = 0 for k = (i− 1)H + 1, . . . , iH. In

these expressions, sbt(x) is the matrix sbt(x) = (sbt1(x)
⊤

; . . . ; sbtℓt(x)
⊤

).

For implementation purposes, it is convenient to decompose Ẽk
t−1 as Ẽk

t−1 = (Ẽk
t−1,1, . . . , Ẽ

k
t−1,M )

with Ẽk
t−1,m ∈ R

1×st,m and to get rid of (large size and sparse) matrices Φt and Φ̃t in the formula

for Ẽk
t−1,m. Such decomposition is provided in the following corollary of Theorem 2.4:
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Corollary 2.5. Let Ẽk
t−1 be defined as in Theorem 2.4 and let us decompose Ẽk

t−1 as Ẽk
t−1 =

(Ẽk
t−1,1, . . . , Ẽ

k
t−1,M ) with Ẽk

t−1,m ∈ R
1×st,m . We have Ẽk

t−1,m =
∑qt

j=1 p(t, j)Ẽkj
t−1,m where the

transpose of Ẽkj
t−1,m is given by







(

∑

w

πkj
t1 (w)Dt(w,m) +

iH
∑

w=0

ρkjt (w)Ẽw
t,m(1) +

ℓt
∑

w=1

πkj
t2 (w)s

b
tw(ξ

k
tj)(m)

)

Φt(m)⊤

0(st,m−pt(m))×1







+







iH
∑

w=0

ρkjt (w)Ẽw
t,m(2 : st+1,m)⊤

0(st,m−st+1,m+1)×1






.

Also, in Theorem 2.4, ekjt−1 can be expressed as

λkj
t αt + ρkjt

−→e i
t +

M
∑

m=1

(Θt(m) + σt(m)ηtj(m))

(

∑

w

πkj
t1 (w)Dt(w,m) +

iH
∑

w=0

ρkjt (w)Ẽw
t,m(1)

)

+πkj
t2 bt(ξ

k
tj)−

M
∑

m=1

ℓt
∑

w=1

pt(m)
∑

v=1

πkj
t2 (w)s

b
tw(ξ

k
tj)(m)Φv

t (m)ξkt−v(m).

Remark 2.6. Using the convexity of Qt, we can also express ekjt−1 as

(20) Qi
t(x

k
t−1, ξ

k
[t−1], ηtj) +

(

πkj
t2Bt + πkj

t1Et

)

xk
t−1 −

(

πkj
t2 s

b
t(ξ

k
tj)Φt + ρkjt

−→
Ẽ i

tΦ̃t + πkj
t1DtΦt

)

ξk[t−1].

The previous corollary shows that for some interstage dependent processes, it is possible to share
optimality cuts between nodes of the same stage. This was first observed in [10]. We mention some
differences between the optimality cuts derived in [10] and those written in the above corollary. In
[10], the affine model is written in the vectorial form:

(21) ξt =
t−1
∑

j=1

(Rt
jξj + St

jηj),

whereas we consider separate models for each process component. On the one hand, the above
vectorial form allows for dependences between different components and noises ηj , j < t, but on
the other hand, the number of terms in the sum is not a parameter of the model as is the case for
model (8). When ξt has many components and for many stages, many large size matrices Rt

j , S
t
j

will be involved in the formulas for the cuts. Moreover, for large time steps, these formulas will
provide a large number of cut coefficients (with possibly a large number of null coefficients) whereas
we consider a minimal subset of such coefficients necessary for building the cuts. On the other
hand, we do not provide as in [10] iterative formulas to compute the cut coefficients. As a result,
depending on the application, one formulation or the other may be more interesting in terms of
memory allocation. In the simple 3-stage example which follows (a small hydro-thermal problem),
we show that our formulas for the cuts are more economic in terms of memory allocation.

Example 2.7 (Optimality cuts for a simple hydro-thermal problem). Consider a simplified hydro-
thermal problem with T = 3 stages, 2 independent hydroplants, and a thermal plant. The stochastic
process (ξt) corresponds to the process of inflows and satisfy ξ2(1) =

1
2ξ1(1)+η2(1), ξ3(1) =

1
2 (ξ2(1)+

ξ1(1)+ξ0(1))+η3(1) for the first reservoir and ξt(2) =
1
2ξt−1(2)+ηt(2), t = 2, 3, for the second. For

these models, vectors ηt are independent, and past inflows are given by ξ0 = (1; 1) and ξ1 = (0; 0).
For each t, the possible realizations of ηt are (0; 0), (0; 5), (5; 0), and (5; 5), each with probability 0.25.
Demands are known and set to respectively 14, 12, and 18 for the first three time steps. Reservoir
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volumes are nonnegative, initial reservoir levels are (7; 7), and unit thermal cost is 1 while hydro
plants produce without cost. To avoid feasibility problems (discussed in the next section) we assume
that H = 1 and that the sampled scenario of inflows in the forward pass of the first iteration is
the wet scenario (0; 5; 8) for the first reservoir and (0; 5; 7.5) for the second (obtained taking the
realization (5; 5) for both η2 and η3). We denote by Vt the vector of reservoir levels at the end of
time step t. In the backward pass, after some simple computations obtained following the previous
developments of this section, we obtain for Q3 the cut

Q3(V2, ξ2(1), ξ1(1), ξ0(1), ξ2(2)) ≥ 13− e⊤V2 −
1

2
ξ2(2)−

1

2
(ξ2(1) + ξ1(1) + ξ0(1))

and for Q2 the cut Q2(V1) ≥ 7− e⊤V1. Writing the process of inflows in the form (21), the cut for

Q3 would be expressed in terms of matrices R3
2 =

(

1
2 0
0 1

2

)

and R3
1 = R3

0 =

(

1
2 0
0 0

)

as follows:

Q3(V2, ξ2, ξ1, ξ0) ≥ 13−e⊤V2−e
⊤(R3

2ξ2+R3
1ξ1+R3

0ξ0), (note also that the latter formulation involves
more arguments for Q3).

We now provide in Theorem 2.8 the formulas for optimality cuts for the convex process model. In
this case, we consider problems of form (1) without equality constraints. As in the proof of Theorem
2.4, we introduce Qi

t(xt−1, ξ[t−1], ηtj) obtained using (3) and replacing recourse function Qt+1 by

its lower bounding approximation Qi
t+1. We denote by πkj

t2 , λ
kj
t , and ρkjt the (row vectors) optimal

Lagrange multipliers associated to respectively the first, second, and third group of constraints for
the corresponding problem Qi

t(x
k
t−1, ξ

k
[t−1], ηtj).

Theorem 2.8 (Optimality cuts-Convex process model). Consider stochastic optimization problem
(1) without equality constraints and the corresponding recourse functions Qt from (4). As in Corol-

lary 2.5, let us decompose Ẽk
t−1 as Ẽk

t−1 = (Ẽk
t−1,1, . . . , Ẽ

k
t−1,M ) with Ẽk

t−1,m ∈ R
1×st,m . Let ξtj be

defined as in Assumption (A3) and let ξktj be the M -vector defined by

(22) ξktj(m) = htm(ξkt−1(m), . . . , ξkt−pt(m)(m), ηtj(m)), m = 1, . . . ,M.

Let Assumptions (A1), (A2), (A3), (A4), (A5), and (A6) hold. In the backward pass of iteration

i of the SDDP algorithm, H valid cuts for QT+1 are given by Ek
T = Ẽk

T = ekT = 0 for k =

(i− 1)H + 1, . . . , iH. For t = 2, . . . , T , H valid cuts for Qt are given by Ek
t−1 =

∑qt
j=1 p(t, j)π

kj
t2Bt,

Ẽk
t−1,m =

∑qt
j=1 p(t, j)Ẽkj

t−1,m, and ekt−1 =
∑qt

j=1 p(t, j)e
kj
t−1 where the transpose of Ẽkj

t−1,m is given
by
(23)







(

iH
∑

w=0

ρkjt (w)Ẽw
t,m(1) +

ℓt
∑

ℓ=1

πkj
t2 (ℓ)s

b
tℓ(ξ

k
tj)(m)

)

shtm

(

ξkt−1:t−pt(m)(m), ηtj(m)
)

(1 : pt(m))

0(st,m−pt(m))×1







+







iH
∑

ℓ=0

ρkjt (ℓ)Ẽℓ
t,m(2 : st+1,m)⊤

0(st,m−st+1,m+1)×1







and where ekjt−1 − λkj
t αt − ρkjt

−→e i
t − πkj

t2 bt(ξ
k
tj) is given by

(24)

−
M
∑

m=1

pt(m)
∑

w=1

ℓt
∑

ℓ=1

πkj
t2 (ℓ)s

b
tℓ(ξ

k
tj)(m)shtm

(

ξkt−1:t−pt(m)(m), ηtj(m)
)

(w)ξkt−w(m)

+

M
∑

m=1

iH
∑

w=0

ρkjt (w)Ẽw
t,m(1)



ξktj(m)−

pt(m)
∑

u=1

shtm

(

ξkt−1:t−pt(m)(m), ηtj(m)
)

(u)ξkt−u(m)



 .
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Following the lines of DOASA algorithm introduced in [15], we can reduce the per-iteration
computational effort choosing for each time step t and scenario k a nonempty subset Ωk

t of Ωt.
Next, in the backward pass, at iteration i, for each scenario k = (i − 1)H + 1, . . . , iH , instead of
solving all subproblems Qi

t(x
k
t−1, ξ

k
[t−1], ηtj), j = 1 . . . , qt, only subproblems Qi

t(x
k
t−1, ξ

k
[t−1], ηtj), with

ηtj ∈ Ωk
t are solved. After solving these problems, optimal dual multipliers are stored, i.e., the

following setMi
t of multipliers is updated:

Mi
t = {(λ

kj
t , πkj

t1 , π
kj
t2 , ρ

kj
t ), k = (i− 1)H + 1, . . . , iH, j : ηtj ∈ Ωk

t },

if there are equality constraints in (1) and

Mi
t = {(λ

kj
t , πkj

t2 , ρ
kj
t ), k = (i− 1)H + 1, . . . , iH, j : ηtj ∈ Ωk

t }

otherwise. Next, for every k = (i− 1)H +1, . . . , iH , and for every j such that ηtj belongs to Ωt but
not to Ωk

t , the “missing” multipliers are replaced by

(25) (λkj
t , πkj

t1 , π
kj
t2 , ρ

kj
t ) ∈ Argmax(λt,πt1,πt2,ρt)∈Mi

t
g1(λt, πt1, πt2, ρt, ηtj)

if there are equality constraints in (1) and

(26) (λkj
t , πkj

t2 , ρ
kj
t ) ∈ Argmax(λt,πt2,ρt)∈Mi

t
g2(λt, πt2, ρt, ηtj)

otherwise. In this context, the next proposition provides the cuts computed in the backward pass:

Proposition 2.9 (Optimality cuts for the affine and convex process models with DOASA). Consider
stochastic optimization problem (1) and the corresponding recourse functions Qt from (4).

If there are no equality constraints in (1) (resp. if there are some equality constraints), assume
that Assumptions (A1), (A2), (A3), (A4), (A5), and (A6) hold or that Assumptions (A1), (A2),
(A3), and (A7) (resp. Assumptions (A1), (A2), (A3), and (A7)) hold. Next, for every k = (i −

1)H + 1, . . . , iH, and for every j = 1, . . . , qt, let (λ
kj
t , πkj

t2 , ρ
kj
t ) (resp. (λkj

t , πkj
t1 , π

kj
t2 , ρ

kj
t )) given by

(26) (resp. (25)).

With these values of (λkj
t , πkj

t2 , ρ
kj
t ) (resp. (λkj

t , πkj
t1 , π

kj
t2 , ρ

kj
t )), Theorem 2.8 (resp. Theorem 2.4

and Corollary 2.5) defines valid cuts for recourse functions Qt, t = 2, . . . , T + 1.

2.5. SDDP: forward pass and feasibility cuts. Before the first forward pass, in an initialization
phase, trivial cuts (given by available lower bounding functions for Qt) are built, taking for instance

a constant value for e0t−1 and null values for E0
t−1 and Ẽ0

t−1.

In the forward pass, at stage t and given a (t− 1)-stage scenario (ξk1 , . . . , ξ
k
t−1), before proceeding

forward to the next stage, we need to check if xk
t−1 yields a feasible [AP i,k

t ] and that cuts can be

built at (xk
t−1, ξ

k
[t−1]) in the next backward step. If this is not the case then either t = 1 and the

problem is infeasible or a feasibility cut (an additional constraint) needs to be added to stage (t− 1)
subproblems. For interstage dependent stochastic linear programs (IDSLP), the subtrees rooted at
the different nodes of a given time step are in general different and feasibility cuts cannot in general
be shared between these nodes. However, we will show that in our context the feasibility cut sharing
property holds. More precisely, when infeasibility arises in the course of the algorithm at a node
of stage t that belongs to some sampled path, rows Ft−1, F̃t−1, and ft−1 are added to respectively
−→
F t−1,

−→
F̃ t−1, and

−→
f t−1. These rows added are such that given the history ξ[t−1] until stage t− 1, if

xt−1 is a feasible output state for stage t−1 then Ft−1xt−1 ≥ F̃t−1ξ[t−1]+ft−1. The methodology to
build feasibility cuts is the same as with the Nested Decomposition algorithm (see [1] for instance).
However, to the best of our knowledge the feasibility cut sharing property for SDDP in our interstage
dependent context has not been explained so far in the literature.

To understand how feasibility cuts are built and can be shared in our context between nodes of
the same stage, we consider a simple hydro-thermal planning problem. We have one reservoir with
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volume Vt at the end of period t and hydro generation ut for this period. Thermal generation is
denoted by wt for period t and thermal capacity is very large, i.e., (deterministic) demand can be
satisfied by thermal power at each stage. We consider T = 4 stages and impose the restrictions
V1 ≥ 0, V2 ≥ 0, V3 ≥ 0, and V4 ≥ 7 on reservoir levels, knowing that V0 = 7. The vector of demands
d is d = (7; 1; 1; 1) (in the same energy unit as ut and wt) and thermal unit cost is one. Let the model
for the inflows be of form (8): ξt = 0.5ξt−1 + ηt with ξ1 = 0 and P(ηt = 0) = 0.5, P(ηt = 5) = 0.5.
The corresponding scenarios for the first 4 stages are represented in Figure 2.

0

5

5

0.5 0.5

7.52.50

0.50.5 0.5 0.5

0 5 2.5 7.5 3.75 8.756.251.25

0.50.5 0.5 0.5 0.5 0.5 0.5 0.5

ξ1 = 0

ξt = 0.5ξt−1 + ηt

P(ηt = 0) = 0.5

P(ηt = 5) = 0.5.
N2

N3

N1

N4

Figure 2. Scenario tree of inflows.

In this context, the problem is feasible since on each scenario we can use a fully thermal production
plan. At a given stage t− 1 and for a given history ξ[t−1], output state xt−1 is said to be feasible if
for any future scenario there exist feasible decisions for every time step.

Let us take H = 1 scenario per iteration and let us see how the forward pass of the first iteration of
SDDP is like if the first sampled scenario is the pessimistic (dry) scenario of inflows (ξ11 , ξ

1
2 , ξ

1
3 , ξ

1
4) =

(0, 0, 0, 0) (nodes N1, N2, N3, and N4 of the scenario tree in Figure 2). Let us start the algorithm

with null approximations of the recourse functions, i.e., E0
t−1, Ẽ

0
t−1, and e0t−1 are null (costs are

nonnegative). Problem [AP 11
1 ] (see Section 2.3) reads

(27)
min w1

t

V 1
t = V 1

t−1 − u1
t + ξ1t , u

1
t + w1

t ≥ dt,
u1
t ≥ 0, w1

t ≥ 0, V 1
t ≥ V min

t ,

with t = 1, V min
t = 0, and V 1

0 = V0 = 7. The solution is given by u1
1 = 7, w1

1 = 0, and V 1
1 = 0.

For the second stage, we solve problem [AP 11
2 ] which is of form (27) with t = 2, V min

t = 0, dt = 1,
and V 1

1 = 0. The solution is given by u1
2 = 0, w1

2 = 1, and V 1
2 = 0. For stage 3, we consider

problem [AP 11
3 ] which is of form (27) with t = 3, V min

t = 0, dt = 1, V 1
2 = 0. The solution is given by

u1
3 = 0, w1

3 = 1, and V 1
3 = 0. For the last stage, [AP 11

4 ] is of form (27) with t = 4, V min
t = 7, dt = 1,

V 1
3 = 0. This problem is infeasible. We thus see that relatively complete recourse does not hold. As

a result, a feasibility cut needs to be built at node N3. Such feasibility cut is a constraint satisfied
by all feasible reservoir levels V3 at node N3, at the end of stage 3. If state V3 is feasible for node
N3 then the optimal value of the following linear program is 0:

(28)

min
∑4

i=1 xi

w1
t + u1

t + x1 ≥ dt
V 1
t + x2 − x3 + u1

t = Vt−1 + ξt,
u1
t ≥ 0, w1

t ≥ 0, V 1
t ≥ 0, V 1

t + x4 ≥ V min
t , xi ≥ 0, i = 1, . . . , 4,
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where t = 4 and where ξt is the inflow at N4, i.e., ξt = 0. Now observe that on the dry scenario, we
have ξ4 = 1

2ξ3 = 0. As a result, problem (28) with t = 4 can be written as

(29)

min
∑4

i=1 xi

w1
t + u1

t + x1 ≥ dt
V 1
t + x2 − x3 + u1

t = Vt−1 +
1
2ξt−1,

u1
t ≥ 0, w1

t ≥ 0, V 1
t ≥ 0, V 1

t + x4 ≥ V min
t , xi ≥ 0, i = 1, . . . , 4,

where ξt−1 = 0 is the inflow at node N3 (father of N4). Next, observe that for any node n of stage 3,
there is a son node where the realization of η4 is 0, i.e., a node such that the inflow is half the inflow
for his father node n. As a result, for any node of stage 3, if V3 is feasible then the optimal value
of (29) is 0. Moreover, wee see that a dual solution to (29) written with Vt−1 = 0 and ξt−1 = 0 is
feasible for the dual of (29) written with given Vt−1 and ξt−1. Consequently, using a dual solution
to (29) written with Vt−1 = 0 and ξt−1 = 0 (problem solved at N4), we obtain that if V3 is feasible
at stage 3 then 0 ≥ V min

4 − (V3 +
1
2 ξ3), i.e., V3 ≥ 7− 1

2ξ3.

We then go back to node N3 and solve (27) with t = 3, V min
t = 0, V 1

2 = 0, and with the additional
cut V3 ≥ 7 valid for node N3. This problem is not feasible. To build a feasibility cut for V2, we
use the fact that if state V2 is feasible for node N2 then the optimal value of the following linear
program is 0:

(30)

min
∑5

i=1 xi

w1
t + u1

t + x1 ≥ dt
V 1
t + x2 − x3 + u1

t = Vt−1 + ξt,
V 1
t ≥ 0, V 1

t + x4 ≥ V min
t , V 1

t + x5 ≥ 7− 1
2ξt,

u1
t ≥ 0, w1

t ≥ 0, xi ≥ 0, i = 1, . . . , 5,

where t = 3 and where ξt = 0 is the inflow at node N3. Next, we observe that at N3 we have
ξt =

1
2ξt−1 where ξt−1 is the inflow for father node N2. As before, we also note that for any node

n of stage 2, there is a son node where the realization of η3 is 0, i.e., a node such that the inflow is
half the inflow for its father node n. As a result, for any node of stage 2, if V2 is feasible then the
optimal value of (30) with ξt replaced by 1

2ξt−1 is 0. As before, using a dual solution to (30) with

Vt−1 and ξt null, we obtain the cut 0 ≥ 7 − 1
4ξt−1 − (Vt−1 +

1
2ξt−1) with t = 3, i.e., V2 ≥ 7 − 3

4ξ2.
This cut is valid for all nodes of stage 2.

We then go back to node N2 solving (27) with t = 2, V min
t = 0, V 1

1 = 0, and with the additional
cut V2 ≥ 7 valid for node N2. This problem is not feasible. Reasoning as before, we use the fact that
if state V2 is feasible for a node of stage 2, then the optimal value of the following linear program is
0:

(31)

min
∑5

i=1 xi

w1
t + u1

t + x1 ≥ dt
V 1
t + x2 − x3 + u1

t = Vt−1 +
1
2ξt−1,

V 1
t ≥ 0, V 1

t + x4 ≥ V min
t , V 1

t + x5 ≥ 7− 3
8ξt−1,

u1
t ≥ 0, w1

t ≥ 0, xi ≥ 0, i = 1, . . . , 5,

where t = 2 and where ξt−1 = 0 is the inflow at node N1. We obtain the cut V1 ≥ 7− 7
8ξ1 = 7, i.e.,

there will be no hydro generation at the root node.
We go back to the first stage (node N1) and solve [AP 11

1 ] with t = 1, V min
t = 0, V 1

0 = V0 = 7,
and the cut V1 ≥ 7. We find the optimal solution u1

1 = 0, w1
1 = 7, and V 1

1 = 7. No more feasibility
cuts are needed at this iteration and we find the solutions u1

t = 0, w1
t = 1, and V 1

t = 7, t = 2, 3, 4.
The feasibility cuts constructed in this example are easily interpreted. Indeed, let us consider a

given stage t and a node of this stage with inflow ξt. The level of the reservoir Vt at the end of
stage t at this node plus the minimal future inflow needs to be above V min

T = V0 = 7. The minimal
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future inflow is obtained when all future realizations of the noises are 0. On this dry scenario,
inflows are 1

2ξt at stage t+ 1, 1
4ξt at stage t+ 2, . . ., and 1

2T−t ξt at stage T . We thus obtain the cut

Vt +
∑T−t

i=1
ξt
2i ≥ V min

T , i.e., Vt ≥ V min
T − (1− 1

2T−t )ξt. When T = 4 and t = 1, 2, or 3, we obtain the
cuts previously built.

We now consider the general case and provide formulas for the feasibility cuts built in the forward
pass of the algorithm.

Let us start with the affine process model. On a given node of stage t − 1 with history ξ[t−1], if
state xt−1 is feasible then all subproblems for all sons of this node must be feasible, i.e., the optimal
value of the optimization problem

(32)



























min
xt,vt1,vt2,vt3,vt4

‖(v⊤

t1, v
⊤

t2, v
⊤

t3, v
⊤

t4)
⊤‖1

Atxt + vt1 ≥ bt(Φtξ[t−1] +Ψtηtj +Θt)−Btxt−1

Ctxt + vt2 − vt3 = Dt(Φtξ[t−1] +Ψtηtj +Θt)− Etxt−1
−→
F txt + vt4 ≥

−→
F̃ t(Φ̃tξ[t−1] + Ψ̃tηtj + Θ̃t) +

−→
f t

xt, vt1, vt2, vt3, vt4 ≥ 0

must be 0 for every j = 1, . . . , qt. In the forward pass, on scenario ξk1:T , to know if xk
t−1 yields

feasible problems for all son nodes, problems (32) for j = 1, . . . , qt, are solved with ξ[t−1] and xt−1

respectively replaced by ξk[t−1] and xk
t−1. If one of these problems is not feasible then a feasibility

cut is built as explained in the following theorem.

Theorem 2.10 (Feasibility cuts-Affine process model). Consider optimization problem (32) for
some j ∈ {1, . . . , qt} and with ξ[t−1] and xt−1 respectively replaced by ξk[t−1] and xk

t−1. Assume that

the optimal value of this problem is positive and that Assumptions (A1), (A2), and (A3) hold. Let

σkj
t be a row vector of optimal dual variables for feasibility cuts and let πkj

t1 (resp. πkj
t2 ) be a row vector

of optimal dual variables for the equality constraints (resp. the remaining inequality constraints). A
feasibility cut can be built for xt−1 adding respectively

row vector πkj
t1Et + πkj

t2Bt to
−→
F t−1,

row vector πkj
t1DtΦt + πkj

t2 s
b
t(ξ

k
tj)Φt + σkj

t

−→
F̃ tΦ̃t to

−→
F̃ t−1,

scalar σkj
t (
−→
f t +

−→
F̃ t(Ψ̃tηtj + Θ̃t)) + πkj

t1Dt(Ψtηtj +Θt) + πk
t2(bt(ξ

k
tj)− sbt(ξ

k
tj)Φtξ

k
[t−1]) to

−→
f t−1,

where we recall that ξktj = Φtξ
k
[t−1] +Ψtηtj +Θt in the affine process model.

For the convex process model, on a given node of stage t− 1 with history ξ[t−1], if state xt−1 is
feasible then all subproblems for all sons of this node must be feasible, i.e., the optimal value of the
optimization problem

(33)



















min
xt,vt1,vt4

‖(v⊤

t1, v
⊤

t4)
⊤‖1

Atxt + vt1 ≥ bt(ξtj)−Btxt−1
−→
F txt + vt4 ≥

−→
F̃ tξ[t]j +

−→
f t

xt, vt1, vt4 ≥ 0

must be 0 for every j = 1, . . . , qt, where ξtj is given by (6) and where ξ[t]j is the useful history of the
process at time step t given the history ξ[t−1] up to time step t− 1 and the realization of ξt obtained
with history ξ[t−1] and realization ηtj of ηt. Feasibility cuts for the convex process model are given
in the following proposition:

Theorem 2.11 (Feasibility cuts-Convex process model). Consider optimization problem (33) for
some j ∈ {1, . . . , qt} and with ξ[t−1] and xt−1 respectively replaced by ξk[t−1] and xk

t−1 for some
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k ∈ {(i − 1)H + 1, . . . , iH}. Assume that the optimal value of this problem is positive and that

Assumptions (A1), (A2), (A3), (A4), (A5), and (A6) hold. Let σkj
t be a row vector of optimal dual

variables for feasibility cuts and let πkj
t2 be a row vector of optimal dual variables for the inequality

constraints. A feasibility cut can be built for xt−1 as follows. We add to
−→
F t−1 the row πkj

t2Bt. We

add to
−→
F̃ t−1 the row vector (F̃t−1,1, . . . , F̃t−1,M ) with F̃t−1,m ∈ R

1×st,m and where F̃t−1,m is given by
the expression (23) where E, ρ, and iH are respectively replaced by F, σ, and the current number of

feasibility cuts minus 1. Finally, we add to
−→
f t−1 the quantity σt

−→
f t + πkj

t2 bt(ξ
k
tj) plus the expression

(24) where E, ρ, and iH are respectively replaced by F, σ, and the current number of feasibility cuts
minus 1. In this expression, ξktj is given by (22).

Remark 2.12. We see that the feasibility cut sharing property is possible due to the interstage
independence of ηt: we have used the fact that all the nodes of a given stage t have the same set of
realizations of ηt+1 at their children nodes.

We mention that infeasibility in the forward pass could also be handled by penalization of slack
variables. Slack variables are added in such a way that the modified problem satisfies relatively
complete recourse. As a result, feasibility cuts are not necessary anymore for this problem. However,
unless guided by some physical interpretation intrinsic to the particular application (for instance
when the penalty corresponds to a fee paid by the company to the clients or to the government for
each unit of unsatisfied demand), the choice of the penalty parameters remains a delicate matter and
can substantially distort the recourse functions. Using feasibility cuts amounts to eliminating all
solutions with postive slack variables which makes sense when such solutions cannot be implemented.

In the absence of relatively complete recourse, the approximate policy obtained with SDDP may
not be feasible, even with the feasibility cuts built. The feasibility cuts will simply allow us to avoid
infeasible states when building the policy. However, when simulating the policy on a set of scenarios,
infeasibility can arise. To remedy that, we cannot use feasibility cuts in the simulation phase since
we only go forward. We thus need to use slack variables penalized in the objective in the simulation
phase. In that context, numerical results could be performed to compare the quality of policies
built using on the one hand feasibility cuts and on the other hand slack variables penalized in the
objective.

2.6. SDDP: stopping rule and algorithm. In the backward pass, for the first time step, the
first stage problem is solved using the recourse function Qi

2 ≤ Q2. Since Assumption (A3) holds,
the optimal value of this problem is finite and provides a lower bound zinf for the optimal mean
cost. In our numerical experiments in Section 4 and in Figure 3 representing the SDDP algorithm,
the algorithm is stopped after this lower bound zinf has stabilized. Two other stopping criterion are
discussed in [19] and [4].

Using the previous developments, DOASA algorithm for solving (1) that handles infeasibilities in
the forward step and with an interstage dependent process of form (8) for (ξt) can be formulated
as in Figure 3. In this figure, the fast-forward fast-backward tree traversing strategy [21] is used.
A discussion on alternative tree traversing strategies (Shuffle, Cautious) can be found in [12] for
instance.

3. SDDP for some risk-averse interstage dependent stochastic programs

For general stochastic programs, two recent papers [19], [5] have introduced risk-averse recourse
functions and have proposed to use SDDP to obtain approximations of these functions in the special
case of stochastic linear programs. In [19], the recourse functions are based on a risk-averse nested
formulation of the problem defined in terms of conditional risk mappings. This methodology is
applied in [14] (resp. [20]) to an hydro-thermal scheduling problem in the New Zealand (resp.
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Step 0: INITIALIZATION. Set i = 1 (iteration number), zinf new = zinf old = −∞, and all E0
t ,

Ẽ0
t , and e0t to 0 for t = 2, . . . , T + 1. Fix a confidence level ε > 0. Go to Step 1.

Step 1: FORWARD PASS.

Sample H scenarios (ξk1 , . . . , ξ
k
T ), k = (i − 1)H + 1, . . . , iH.

For k = (i− 1)H + 1, . . . , iH ,
t = 1.
While (t ≤ T )

Back=FALSE. %We check the feasibility of xk
t−1:

For j = 1, . . . , qt,
Solve optimization problem (32) with ξ[t−1] and xt−1 respectively
replaced by ξk[t−1] and xk

t−1.

If the optimal value of this problem is positive and t = 1 then stop:
the problem is infeasible.

Else if this optimal value is positive and t > 1 then build
a feasibility cut for xt−1 at stage t− 1 using Theorem 2.10.
Back=TRUE.

End If

End For

If (Back=TRUE)
t← t− 1.

Else

Solve problem [AP i,k
t ], store an optimal solution xk

t of this
problem and do t← t+ 1.

End If

End While

End For

Step 2: BACKWARD PASS.

For t = T + 1 down to 2,
For k = (i − 1)H + 1, . . . , iH ,

If (t = T + 1) then set Ek
t−1, Ẽ

k
t−1, and ekt−1 to 0.

Else

For each j ∈ {1, . . . , qt} such that ηtj ∈ Ωk
t ,

Compute Qi
t(x

k
t−1, ξ

k
[t−1], ηtj) given by (18) and store optimal dual

multipliers (λkj
t , πkj

t1 , π
kj
t2 , ρ

kj
t ) inMi

t.
End For

End If

End For

If (t ≤ T ) then
For k = (i− 1)H + 1, . . . , iH ,

For each j ∈ {1, . . . , qt} such that ηtj /∈ Ωk
t ,

Compute (λkj
t , πkj

t1 , π
kj
t2 , ρ

kj
t ) given by (25).

End For

Form a cut for Qt of the form θkt−1 + Ek
t−1xt−1 ≥ Ẽk

t−1ξ[t−1] + ekt−1

with Ek
t−1, Ẽ

k
t−1, and ekt−1 given in Proposition 2.9.

End For

End If

End For

zinf old = zinf new.
Set zinf new to the optimal value zinf of the first stage problem.
Go to Step 3.

Step 3: STOPPING RULE.

If zinf new < zinf old(1 + ε) then stop.
Else i← i+ 1 and go to Step 1.
End If

Figure 3. DOASA algorithm without relatively complete recourse for solving ID-
SLP (1) with a stochastic process (ξt) satisfying (8).
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Brazilian) electricity system. In [5], the class of multiperiod extended polyhedral risk measures
is introduced and studied. In particular, this class is shown to be appropriate for deriving risk-
averse DP equations. Conditions are also given on the multiperiod risk measure chosen to guarantee
the convergence of SDDP in this risk- averse setting. Taking as a special case of multiperiod risk
measure, a convex combination of the expectation of the total cost and of Conditional Value-at-Risks
of partial costs, we obtain the risk-averse problem

(34)

inf f1(x1) + Γ1E[

T
∑

t=2

ft(xt)] +

T
∑

t=2

ΓtCVaR
εt(

t
∑

k=2

fk(xk))

Atxt ≥ bt(ξt)−Btxt−1, a.s., t = 1, . . . , T,
Ctxt = Dtξt − Etxt−1, a.s., t = 1, . . . , T,
xt ≥ 0, a.s., , xt ∈ Lp(Ω,Ft,P;R

kt), t = 1, . . . , T,

where confidence levels εt ∈ (0, 1) and coefficients Γt are nonnegative and sum up to one5. In the
case when Γ1 = 1, problem (34) boils down to non-risk-averse problem (1) considered in Section 2.
Using the minimization formula from [16] for the CVaR, [5] provides for model (34) the DP equations

(35)
inf

x1,w2:T

f1(x1) +
T
∑

t=2

Γtwt +Q2(x1, ξ[1], z1, w2, . . . , wT )

A1x1 ≥ b1(ξ1)−B1x0, C1x1 = D1ξ1 − E1x0,
x1 ≥ 0, wt ∈ R, t = 2, . . . , T,

with z1 = 0 and where for t = 2, . . . , T , Qt(xt−1, ξ[t−1], zt−1, wt:T ) is given by

(36) Eξt|ξ[t−1]







inf
xt,zt

δtTΓ1zt +
Γt

εt
(zt − wt)

+ +Qt+1(xt, ξ[t], zt, wt+1:T )

Atxt ≥ bt(ξt)−Btxt−1, Ctxt = Dtξt − Etxt−1

xt ≥ 0, zt = zt−1 + ft(xt)







where δtT is the Kronecker delta and QT+1 ≡ 0. In [5], cuts are provided for these recourse functions
for interstage independent SLP. The adaptations to our interstage dependent context are easily done
using the developments of the previous section. In particular, note that for our risk-averse SDDP,
the stopping criterion is a simple adaptation of the stopping criterion in the risk-neutral case. The
interested reader can look at Figure 1 in [6] which gives a detailed description of a risk-averse SDDP
for a model more general than (34). That description (written for an interstage independent process)
provides in particular the computation of the stopping criterion.

In the next section, devoted to numerical simulations, approximations of these risk-averse recourse
functions are used on a real-life application with an affine process model. For this reason and for the
sake of completeness, the cuts needed to obtain approximations of the risk-averse recourse functions
using SDDP are derived in Theorem 3.1 which follows for the affine process model. Before stating
this theorem, we need some more notation and remarks. First, lower bounding approximations Qi

t

of Qt now have the form

Qi
t(xt−1, ξ[t−1], zt−1, wt:T ) = max

j=0,1,...,iH
[−Ej

t−1xt−1+Ẽj
t−1ξ[t−1]−Z

j
t−1zt−1+

T−t+1
∑

τ=1

W jτ
t−1wt+τ−1+ejt−1]

with Zj
t−1,W

jτ
t−1 ∈ R. Next, notice that risk-averse DP equations (35)-(36) involve additional first

stage variables w2, . . . , wT as well as partial cost variables z1, . . . , zT . When applying SDDP on
these DP equations, with respect to the previous section, at iteration i of SDDP, the forward pass

5Risk measures are defined on random variables representing costs, contrary to [5] where they are defined on
random variables representing incomes. We easily switch from one setting to another since an income is the opposite
of a cost.
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additionally computes first stage decisions wi
2, . . . , w

i
T as well as partial costs zk1 , . . . , z

k
T on scenario

k = (i− 1)H + 1, . . . , iH . As a result, in the backward pass of iteration i, H cuts are computed for
Qt at (x

k
t−1, ξ

k
[t−1], z

k
t−1, w

i
t, . . . , w

i
T ), k = (i − 1)H + 1, . . . , iH . We can bound from below Qt(xt−1,

ξ[t−1], zt−1, wt:T ) by Eηt
[Qi

t(xt−1, ξ[t−1], zt−1, wt:T , ηt)] with Q
i
t(xt−1, ξ[t−1], zt−1, wt:T , ηt) given as

the optimal value of the following linear program:

(37)

inf
xt,θt1,θt2,θt3,vt

θt3 +
Γt

εt
vt + θt2

θt3 − δtTΓ1θt1 ≥ δtTΓ1zt−1

Atxt ≥ bt(Φtξ[t−1] +Ψtηt +Θt)−Btxt−1

Ctxt = Dt(Φtξ[t−1] +Ψtηt +Θt)− Etxt−1

−βtxt + θt1e ≥ αt

vt − θt1 ≥ zt−1 − wt

−→
E i

txt + θt2e + θt1
−→
Z i

t ≥
−→
Ẽ i

t

(

Φ̃tξ[t−1] + Ψ̃tηt + Θ̃t

)

− zt−1
−→
Z i

t +
∑T−t

τ=1

−→
W iτ

t wt+τ +−→e i
t

xt ≥ 0, vt ≥ 0

where
−→
W iτ

t (resp.
−→
Z i

t) is the column vector whose (j + 1)th component is W jτ
t (resp. Zj

t ) for

j = 0, . . . , iH . We denote by πkj
t0 , π

kj
t2 , π

kj
t1 , λ

kj
t , µkj

t , and ρkjt , the (row vectors) optimal Lagrange
multipliers associated to respectively the first 6 groups of constraints for the problem defining
Qi

t(x
k
t−1, ξ

k
[t−1], z

k
t−1, w

i
t:T , ηtj). With this notation, the following theorem provides the cuts com-

puted for Qt at iteration i:

Theorem 3.1. Let Qt, t = 2, . . . , T + 1, be the risk-averse recourse functions given by (36) and let
Assumptions (A1), (A2), (A3), and (A7) hold. In the backward pass of iteration i of the SDDP
algorithm, H valid cuts for these recourse functions are given as follows: for t = T + 1, we set
Ek

t−1, Ẽ
k
t−1, Z

k
t−1,W

kτ
t−1, and ekt−1 to 0 for k = (i − 1)H + 1, . . . , iH. For t = 2, . . . , T and k =

(i− 1)H + 1, . . . , iH, Ek
t−1, Ẽ

k
t−1, and ekt−1 are given by Theorem 2.4 and

Zk
t−1 =

qt
∑

j=1

p(t, j)
[

−πkj
t0 δtTΓ1 − µkj

t + ρkjt
−→
Z i

t

]

, W k1
t−1 = −

qt
∑

j=1

p(t, j)µkj
t ,(38)

W kτ
t−1 =

qt
∑

j=1

p(t, j)ρkjt
−→
W iτ−1

t , τ = 2, . . . , T − t+ 1.(39)

4. Numerical experiment

4.1. Power system data and policies. We consider a hydro-thermal power system operating over
an horizon of 10 years, discretized in T = 120 time steps, from January 2005 to December 2014.
Most of the data was made available by CEPEL and corresponds to part of Brazil’s power system,
represented by 4 different subsystems that can trade energy in the form of import-export exchanges.
Each subsystem, South-East (SE), South (S), North-East (NE), and North (N), corresponds to a
geographical region; some energy exchanges between the N, NE, and SE subsystems make use of a
fifth, fictitious, node (F). In a specific subsystem, a single reservoir aggregates all the hydro-power,
while thermal generation is considered individually: there are 24, 14, 6, and 0 thermal plants in the
SE (the largest one), S, NE, and N subsystems, respectively.

The total monthly demand is 54900 MWMonth 6, taken constant over the horizon. Each reservoir
critical level was set to 20% of the maximum level of the reservoir, for all time steps.

6We adopt the convention 1 MWMonth= 365.25×24

12
MWh= 730.5 MWh
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The objective function is given by the total thermal operating cost (ranging between R$ 6.27
per MWh and R$ 1047 per MWh) plus load shedding (set at R$ 4170.44 per MWh). Hydro plants
operating cost is negligible while unnecessary spillage and exchanges are avoided by introducing
penalties and trading costs between subsystems.

Following the lines of [11], the inflows in each reservoir are modeled by a periodic autoregressive
model of form (8) (Assumption (A7) holds). The parameters of each model were estimated based on
historical data from 1931 to 2005, with one important modification, relative to standard deviations.
Namely, we reduced the estimated value of ση

t (m) because, with the original estimations, the model
generated too many negative water inflows that have no meaningful physical interpretation. Due to
this modification, our results should be interpreted as an illustration of our methodology, rather than
reflecting the real behavior of the Brazilian power system. This distribution of inflows is discretized
to generate a scenario tree such that for all stage t < T , a given node of the scenario tree for this
stage has 20 children nodes. With the notation of (5), we thus have qt = 20 for t = 2, . . . , T .

Our analysis compares two different policies:

• SDDP: a usual multistage risk-neutral policy that approximates recourse functions by SDDP
as in Section 2;
• RA-SDDP: the risk-averse approach from Section 3 with εt = 0.1, ΓT = 1 − Γ1 = 0.3 (i.e.,
Γt = 0, t = 2, . . . , T − 1), and with risk-averse recourse functions Qt+1 approximated using
SDDP.

The policies are compared in a simulation phase that uses 500 streamflow scenarios generated from
the continuous distribution of inflows. Note that the approximate recourse functions are obtained
solving by SDDP a Sample Average Approximation (SAA) problem associated to the scenario tree
previously mentionned. As a result, with probability one, no scenario from the simulation phase is
a scenario from the scenario tree.

Due to the high computational effort required by RA-SDDP, as in [14], SDDP is run for risk-averse
model RA-SDDP taking the number of iterations necessary for SDDP to converge in the risk-neutral
setting SDDP. At each iteration, H = 200 scenarios are generated in the forward passes of SDDP and
RA-SDDP.

The implementation was done in Matlab, using Mosek’s optimization library to solve linear pro-
gramming problems (http://www.matlab.com and http://www.mosek.com).7 The state vectors
defined in Section 2.2 were used and convergence was obtained after 11 iterations8 after observing a
stabilization of the lower bound (increase of the lower bound inferior to 1%). The evolution of the
upper bound (computed as in [19]) and of the lower bound along the iterations of the risk-neutral
version of SDDP are reported in Figure 4. In this context, each approximate recourse function is
built from 2201 cuts obtained in the backward passes.

4.2. Distribution of the cost. Since for model (34), we chose εt = 0.1 and ΓT = 1− Γ1 = 0.3 for
our simulations, RA-SDDP aims at decreasing the cost of the average of the 0.1×500=50 scenarios
of highest cost. This model thus seeks to avoid peaks in the total cost (sum of the individual costs
for all stages). For this reason, to measure the impact of the introduction of aversion to risk, we
compare the distribution of the total cost for both policies.

We first provide for these policies in Table 3 the mean and the empirical standard deviation (s.d.)
of the whole system total cost over the 500 scenarios, as well as the corresponding VaR p%, for
p = 1, 5, 10, and 90, where VaR p% is the (1-p/100)-quantile of the empirical distribution of the
cost. We observe that the mean total cost is higher for RA-SDDP (increase of about 23%). It can also

7The runs were done on a Dell PowerEdge 2900 server with 2 CPUs Intel Xeon E5345 (2.33 GHz, 8M of cache
memory, 1333 MHz FSB), running under CentOS release 5, with 48 GB of RAM.

8The computational time was approximately 4 weeks.
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Figure 4. Upper and lower bounds evolution for the risk-neutral version of SDDP
(at each iteration, 200 cuts are built).

Table 3. Measures of central tendency and of dispersion of the total cost (R$)

Output SDDP RA SDDP

Mean 1.693×109 2.087×109

s.d. 1.293×109 8.755×108

VaR 1% 6.864×109 4.543×109

VaR 5% 3.953×109 3.863×109

VaR 10% 3.205×109 3.358×109

VaR 90% 6.850×108 1.158×109

be seen that the risk-averse version of SDDP we tested results in lower standard deviation as well as
lower VaR 1% and 5% of the total cost. Finally, with RA-SDDP, VaR 10% is slightly higher while
VaR 90% is significantly higher. More precisely, from Figure 5 where the distributions of the policies
are compared, we can add that on a majority of scenarios, RA-SDDP generation cost is higher than
SDDP generation cost. However, with SDDP, there are more than 10 scenarios with cost above 5×109

whereas all scenarios have cost below this value for RA-SDDP. This is partly due to the fact that the
portion of demand left unsatisfied is larger with SDDP: the percentage of unsatisfied demand is very
small for each policy but is larger for SDDP: 2.62×10−3% against 1.89×10−3% for RA-SDDP.

As a result, the risk-averse model allows us to reduce the number of very high cost scenarios at
the expense of an increase in the mean total cost.

4.3. Reservoir levels. Another important indicator to measure the impact of risk-aversion on the
policy is the volume of the reservoirs. We report in Figure 6 the mean and 0.05- and 0.95-quantiles
for the equivalent reservoir level (sum of all reservoir volumes). Over all time steps and scenarios,
RA-SDDP uses less water than SDDP, especially after the third year. As a result, with the risk-averse
policy, the mean and 0.95-quantiles of the equivalent reservoir level are much higher. This also
explains that load shedding decreases with RA-SDDP since it occurs when the system does not use
enough water and is not able to satisfy the demand with the remaining thermal plants (of limited
capacity). Finally, since for all policies the demand is satisfied for nearly all time steps and scenarios,
the thermal generation merely complements the hydro-generation to attain the demand level for each
policy.
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Figure 5. Empirical distribution of the total cost for RA-SDDP (on the left) and
SDDP (on the right) policies.
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Figure 6. Equivalent reservoir level evolution (mean and 0.05- and 0.95- quantiles).

5. Conclusion

We have explained how to apply the SDDP algorithm both in risk-neutral and risk-averse settings
for some interstage dependent stochastic linear programs for which relatively complete recourse does
not hold. Considering two statistical frameworks for the underlying stochastic process, namely the
affine process model and the convex process model, we provided conditions that guarantee the
convexity of the recourse functions and gave formulas for the feasibility and optimality cuts that are
built in respectively the forward and backward passes of the SDDP algorithm. We have also shown
how to share these cuts (both feasibility and optimality) between nodes of the same stage.

We then presented numerical results that compare for a real-life application the performance of
a risk-neutral model with risk-averse model (34) when recourse functions are approximated using
SDDP. We have seen that the risk-averse model allows us to avoid high 0.99-quantiles and to decrease
the standard deviation of the total cost. However, a price has to be paid for this risk aversion which
is the increase in the policy average total cost. A visible effect of risk aversion for our application is
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also observed comparing the evolution of hydro reservoir levels. The risk-averse model keeps more
water in the reservoirs, resulting in less load shedding, which appears as another appealing feature.
Further numerical experiments could analyze the behavior of the risk-averse model for different
values of parameters (εt) and (Γt) and compare this risk-averse version of SDDP with the one in
[19].

In a forthcoming work, we intend to explain how one can extend the SDDP algorithm and related
methods when the number of stages is random.
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Appendix

Proof of Theorem 2.4. By duality, Qi
t(xt−1, ξ[t−1], ηtj) may be expressed as the optimal value of the

following linear program (due to Assumption (A3) the dual and the primal have the same finite
optimal value):

(40)

max
λt,πt1,πt2,ρt

g1(λt, πt1, πt2, ρt, ηtj)

C⊤

t π
⊤

t1 +A⊤

t π
⊤

t2 +
−→
E i

t

⊤

ρ⊤

t ≤ β⊤

t λ
⊤

t

λte = 1, ρte = 1, ρt ≥ 0, λt ≥ 0, πt2 ≥ 0

where the objective function is given by

(41)
g1(λt, πt1, πt2, ρt, ηtj) = λtαt + ρt

(

−→e i
t +
−→
Ẽ i

t(Φ̃tξ[t−1] + Ψ̃tηtj + Θ̃t)

)

+πt2

(

bt(Φtξ[t−1] +Ψtηtj +Θt)−Btxt−1

)

+ πt1

(

Dt(Φtξ[t−1] +Ψtηtj +Θt)− Etxt−1

)

.

For problem (40), optimal solutions are extremal points of the feasible set. Further, the feasible set

neither depends on xt−1 nor on ξ[t−1] and for any (xt−1, ξ[t−1]), row vectors λkj
t , πkj

t1 , π
kj
t2 , ρ

kj
t are

extremal points of the feasible set of problem Qi
t(xt−1, ξ[t−1], ηtj) expressed as (40). It follows that

Qi
t(xt−1, ξ[t−1], ηtj) is bounded from below by

(42)
g1(λ

kj
t , πkj

t1 , π
kj
t2 , ρ

kj
t , ηtj) = λkj

t αt + ρkjt

(

−→e i
t +
−→
Ẽ i

t(Φ̃tξ[t−1] + Ψ̃tηtj + Θ̃t)

)

+πkj
t2

(

bt(Φtξ[t−1] +Ψtηtj +Θt)−Btxt−1

)

+ πkj
t1

(

Dt(Φtξ[t−1] +Ψtηtj +Θt)− Etxt−1

)

for j = 1, . . . , qt. Next, from the convexity of bti, we obtain

(43) bti(Φtξ[t−1] +Ψtηtj +Θt) ≥ bti(ξ
k
tj) + sbti(ξ

k
tj)

⊤Φt(ξ[t−1] − ξk[t−1]), i = 1, . . . , ℓt,

and since πkj
t2 ≥ 0, we have

(44) πkj
t2 bt(Φtξ[t−1] +Ψtηtj +Θt) ≥ πkj

t2

[

bt(ξ
k
tj) + sbt(ξ

k
tj)Φt(ξ[t−1] − ξk[t−1])

]

.

Plugging (44) into lower bound (42) for Qi
t(xt−1, ξ[t−1], ηtj) and since Qt(xt−1, ξ[t−1]) is bounded

from below by Eηt
[Qi

t(xt−1, ξ[t−1], ηt)] =
∑qt

j=1 p(t, j)Qi
t(xt−1, ξ[t−1], ηtj), we obtain a cut of the

form θkt−1 + Ek
t−1xt−1 ≥ Ẽk

t−1ξ[t−1] + ekt−1 and the result follows. �

Proof of Theorem 2.8. We show by induction, from t = T + 1 down to t = 2, that the announced
cuts are valid and that Ẽk

t ≥ 0 for t = 1, . . . , T , and k = 0, 1, . . . , iH . For t = T , we have

Qi
T+1 = QT+1 ≡ 0. As a result, all components of Ek

T , Ẽ
k
T , and ekT are null for k = 0, 1, . . . , iH . In

particular, we have that Ẽk
t ≥ 0. This achieves the first step of the induction.

Let us now assume that for some t ∈ {2, . . . , T }, valid cuts have been built for Qℓ+1, ℓ = t, . . . , T ,

according to the formulas given in the theorem for Ek
ℓ , Ẽ

k
ℓ , and ekℓ , ℓ = t, . . . , T , k = 0, 1, . . . , iH ,

with all Ẽk
ℓ ≥ 0.

We have Qt(xt−1, ξ[t−1]) ≥
∑qt

j=1 p(t, j)Q
i
t(xt−1, ξ[t−1], ηtj) with

(45) Qi
t(xt−1, ξ[t−1], ηtj) ≥ g2(λ

kj
t , πkj

t2 , ρ
kj
t , ηtj) = λkj

t αt + ρkjt
−→e i

t − πkj
t2Btxt−1 + Uk

tj + V k
tj +W k

tj
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where

Uk
tj =

M
∑

m=1

st+1,m−1
∑

ℓ=1

[

iH
∑

w=0

ρkjt (w)Ẽw
t,m(ℓ + 1)

]

ξt−ℓ(m),(46)

V k
tj =

M
∑

m=1

iH
∑

w=0

ρkjt (w)Ẽw
t,m(1)ξtj(m),(47)

W k
tj =

ℓt
∑

ℓ=1

πkj
t2 (ℓ)btℓ(ξtj).(48)

Let us first bound from below W k
tj . Using the convexity of btℓ, we obtain

btℓ(ξtj) ≥ btℓ(ξ
k
tj) + sbtℓ(ξ

k
tj)

⊤(ξtj − ξktj)

for every ℓ = 1, . . . , ℓt. Using these inequalities and the fact that πkj
t2 ≥ 0, we have

(49) W k
tj = πkj

t2 bt(ξtj) ≥ πkj
t2 bt(ξ

k
tj) + πkj

t2 s
b
t(ξ

k
tj)(ξtj − ξktj).

Similarly, using the convexity of htm, we have

(50)

ξtj(m)− ξktj(m) = htm(ξt−1:t−pt(m)(m), ηtj(m)) − htm(ξk
t−1:t−pt(m)(m), ηtj(m))

≥

pt(m)
∑

w=1

shtm

(

ξkt−1:t−pt(m)(m), ηtj(m)
)

(w)
(

ξt−w(m)− ξkt−w(m)
)

for every m = 1, . . . ,M . Using Assumption (A4), each component of each subgradient of btℓ is
nonnegative. As a result, all elements in matrix sbt(ξ

k
tj) are nonnegative. Using this observation and

relations (49) and (50), we obtain for W k
tj the lower bound πkj

t2 bt(ξ
k
tj) plus

(51)

M
∑

m=1

pt(m)
∑

w=1

[

ℓt
∑

ℓ=1

πkj
t2 (ℓ)s

b
tℓ(ξ

k
tj)(m)shtm

(

ξkt−1:t−pt(m)(m), ηtj(m)
)

(w)

]

(ξt−w(m)− ξkt−w(m)).

Let us now bound from below V k
tj . Using relation (50) and the nonnegativeness of Ẽw

t,m(1) (induction

hypothesis) and of ρkjt (w), we obtain for V k
tj the lower bound

(52)

M
∑

m=1

iH
∑

w=0

ρkjt (w)Ẽw
t,m(1)

pt(m)
∑

u=1

shtm

(

ξkt−1:t−pt(m)(m), ηtj(m)
)

(u)
(

ξt−u(m)− ξkt−u(m)
)

+
M
∑

m=1

iH
∑

w=0

ρkjt (w)Ẽw
t,m(1)ξktj(m).

Plugging into (45) relation (46) as well as lower bounds (51) and (52) for respectivelyW k
tj−π

kj
t2 bt(ξ

k
tj)

and V k
tj , we obtain for Qt a cut of form −Ek

t−1xt−1 + Ẽk
t−1ξ[t] + ekt−1 with the desired values of

Ek
t−1, Ẽ

k
t−1, and ekt−1. If remains to check that all components of Ẽk

t−1 are nonnegative. We had
already observed that for all functions bti, all components of all subgradients are nonnegative, due
to Assumption (A4). The same remark holds for functions htm, due to Assumption (A6). By

induction hypothesis, all coefficients (Ẽj
tm(ℓ))j,ℓ,m are nonnegative. Using the nonnegativity of these

coefficients, as well as the nonnegativity of row vectors ρkjt and πkj
t2 , together with the formula for

Ẽk
t−1, we obtain that Ẽk

t−1 ≥ 0, k = 0, 1, . . . , iH . �
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Proof of Proposition 2.9. We show the cuts are valid when there are both equality and inequality
constraints. A similar proof can be done when there are not equality constraints. Let k ∈ {(i −
1)H + 1, . . . , iH} and j ∈ {1, . . . , qt}. If ηtj ∈ Ωk

t then Qi
t(xt−1, ξ[t−1], ηtj) is bounded from below

by g1(λ
kj
t , πkj

t1 , π
kj
t2 , ρ

kj
t , ηtj) where the expression of g1 is given by (40). Next, for every j such that

ηtj /∈ Ωk
t , since all (λt, πt1, πt2, ρt) ∈ M

i
t belong to the feasible set of problem Qi

t(xt−1, ξ[t−1], ηtj),

we have Qi
t(xt−1, ξ[t−1], ηtj) ≥ g1(λt, πt1, πt2, ρt, ηtj) for every (λt, πt1, πt2, ρt) ∈ M

i
t. As a result,

Qi
t(xt−1, ξ[t−1], ηtj) ≥ max(λt,πt1,πt2,ρt)∈Mi

t
g1(λt, πt1, πt2, ρt, ηtj)

= g1(λ
kj
t , πkj

t1 , π
kj
t2 , ρ

kj
t , ηtj) using (25).

We then conclude as in the proof of Theorem 2.4. �

Proof of Theorem 2.10. Let xt−1 be a feasible state at the end of time step t − 1 at a given node
of this time step with history ξ[t−1]. Since for one of the son nodes, the realization of ηt is ηtj , the
optimal value of (32) is 0. As a result, the optimal value of the dual of (32) is 0. This dual problem
can be written

(53)











max
πt1,πt2,σt

f(πt1, πt2, σt)

C⊤

t π
⊤

t1 +A⊤

t π
⊤

t2 +
−→
F

⊤

t σ
⊤

t ≤ 0
−e ≤ π⊤

t1 ≤ e, 0 ≤ π⊤

t2 ≤ e, 0 ≤ σ⊤

t ≤ e,

where the objective function f is given by

πt1

[

Dt(Φtξ[t−1] +Ψtηtj +Θt)− Etxt−1

]

+ πt2

[

bt(Φtξ[t−1] +Ψtηtj +Θt)−Btxt−1

]

+σt

[−→
F̃ t(Φ̃tξ[t−1] + Ψ̃tηtj + Θ̃t) +

−→
f t

]

.

For this dual problem, since the optimal value is 0 and since (πkj
t1 , π

kj
t2 , σ

kj
t ) is feasible, we obtain

0 ≥ f(πkj
t1 , π

kj
t2 , σ

kj
t ).

We conclude using (43) and (44). �

Proof of Proposition 2.11. We follow the proofs of Theorems 2.8 and 2.10. �

Proof of Theorem 3.1. The proof is similar to the proof of Theorem 2.4. �
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