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Abstract. We consider a class of sampling-based decomposition methods to solve risk-averse multistage

stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer

linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of
Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure

convergence of these decomposition methods when the relatively complete recourse assumption holds. We
also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic

linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done

assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible
realizations at each stage. We then indicate two ways of extending the methods and convergence analysis

to the case when the process is interstage dependent.

AMS subject classifications: 90C15, 90C90.

1. Introduction

Multistage stochastic convex optimization models have become a standard tool to deal with a wide range
of engineering problems in which one has to make a sequence of decisions, subject to random costs and
constraints, that arise from observations of a stochastic process. Decomposition methods are popular solution
methods to solve such problems. These algorithms are based on dynamic programming equations and build
outer linearizations of the recourse functions, assuming that the realizations of the stochastic process over
the optimization period can be represented by a finite scenario tree. Exact decomposition methods such as
the Nested Decomposition (ND) algorithm [2], [3], compute cuts at each iteration for the recourse functions
at all the nodes of the scenario tree. However, in some applications, the number of scenarios may become so
large that these exact methods entail prohibitive computational effort.

Monte Carlo sampling-based algorithms constitute an interesting alternative in such situations. For
multistage stochastic linear programs (MSLP) whose number of immediate descendant nodes is small but
with many stages, Pereira and Pinto [14] propose to sample in the forward pass of the ND. This sampling-
based variant of the ND is the so-called Stochastic Dual Dynamic Programming (SDDP) algorithm, which
has been the object of several recent improvements and extensions [22], [15], [9], [10], [8], [12].

In this paper, we are interested in the convergence of SDDP and related algorithms for risk-averse mul-
tistage stochastic convex programs (MSCP). A convergence proof of an enhanced variant of SDDP, the
Cutting-Plane and Partial-Sampling (CUPPS) algorithm, was given in [5] for risk-neutral multistage sto-
chastic linear programs with uncertainty in the right-hand side only. For this type of problems, the proof was
later extended to a larger class of algorithms in [13], [17]. These proofs are directly applicable to show the
convergence of SDDP applied to the risk-averse models introduced in [9]. Finally, more recently, Girardeau
et al. proved the convergence of a class of sampling-based decomposition methods to solve some risk-neutral
multistage stochastic convex programs [7]. We extend this latter analysis in several ways:

(A) The model is risk-averse, based on dynamic programming equations expressed in terms of conditional
coherent risk functionals.

(B) Instead of using abstract sets, the dynamic constraints are expressed using equality and inequality
constraints, a formulation needed when the algorithm is implemented for a real-life application.
Regarding the problem formulation, the dynamic constraints also depend on the full history of
decisions instead of just the previous decision. As a result, the recourse functions also depend on the
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the full history of decisions and the formulas of the optimality cuts for these functions and of the
feasibility cuts built by the traditional implementation of SDDP (where recourse functions depend
on the previous decision only) need to be updated, see Algorithms 1, 2, and 3.

(C) The argument x1:t−1 = (x1, . . . , xt−1) of the recourse function Qt for stage t takes values in Rn(t−1)
(see Section 3 for details). To derive cuts for this function, we need the description of the subdif-
ferential of a lower bounding convex function which is the value function of a convex problem. For
that, proceeding as in [7], n(t − 1) additional variables zt ∈ Rn(t−1) and the n(t − 1) constraints
zt = (x>1 , . . . , x

>
t−1)> would be added. With the argument x1:t−1 of the value function appearing only

in the right-hand side of linear constraints, [7] then uses the (known) formula of the subdifferential
of a value function whose argument is the right-hand side of linear constraints. On the contrary,
we derive in Lemma 2.1 a formula for the subdifferential of the value function of a convex problem
(with the argument of the value function in both the objective and nonlinear constraints) that does
not need the introduction of additional variables and constraints. We believe that this lemma is a
key tool for the implementation of SDDP applied to convex problems and is interesting per-se since
subgradients of value functions of convex problems are computed at a large number of points at each
iteration of the algorithm. The use of this formula should speed up each iteration. We are not aware
of another paper proving this formula.

(D) A separate convergence proof is given for the case of interstage independent processes in which cuts
can be shared between nodes of the same stage, assuming relatively complete recourse. The way
to extend the algorithm and convergence proof to solve MSLPs that do not satisfy the relatively
complete recourse assumption and to solve interstage dependent MSCPs is also discussed.

(E) It is shown that the optimal value of the approximate first stage problem converges almost surely to
the optimal value of the problem and that almost surely any accumulation point of the sequence of
approximate first stage solutions is an optimal solution of the first stage problem.

However, we use the traditional sampling process for SDDP ([14]), which is less general than the one from
[7]. From the convergence analysis, we see that the main ingredients on which the convergence of SDDP
relies (both in the risk-averse and risk-neutral settings) are the following:

(i) the decisions belong almost surely to compact sets.
(ii) The recourse functions and their lower bounding approximations are convex Lipschitz continuous on

some sets. The subdifferentials of these functions are bounded on these sets.
(iii) The samples generated along the iterations are independent and at each stage, conditional to the

history of the process, the number of possible realizations of the process is finite.

Since the recourse functions are expressed in terms of value functions of convex optimization problems, it is
useful to study properties of such functions. This analysis is done in Section 2 where we provide a formula
for the subdifferential of the value function of a convex optimization problem as well as conditions ensuring
the continuity of this function and the boundedness of its subdifferential. Section 3 introduces the class of
problems and decomposition algorithms we consider and prepares the ground showing (ii) above. Section 4
shows the convergence of these decomposition algorithms for interstage independent processes when relatively
complete recourse holds. In Section 5, we explain how to extend the algorithm and convergence analysis for
the special case of multistage stochastic linear programs that do not satisfy the relatively complete recourse
assumption. Finally, while Sections 3-5 deal with interstage independent processes, Section 6 establishes the
convergence when the process is interstage dependent.

We use the following notation and terminology:

• The tilde symbol will be used to represent realizations of random variables: for random variable ξ,
ξ̃ is a realization of ξ.

• For vectors x1, . . . , xm ∈ Rn, we denote by [x1, . . . , xm] the n×m matrix whose i-th column is the
vector xi.

• For matrices A,B, we denote the matrix

(
A
B

)
by [A;B] and the matrix (A B) by [A,B]

• For sequences of n-vectors (xt)t∈N and t1 ≤ t2 ∈ N, xt1:t2 will represent, depending on the context,
(i) the Cartesian product (xt1 , xt1+1, . . . , xt2) ∈ Rn× . . .×Rn︸ ︷︷ ︸

t2−t1+1 times

or
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(ii) the vector [xt1 ;xt1+1; . . . ;xt2 ] ∈ Rn(t2−t1+1).
• The usual scalar product in Rn is denoted by 〈x, y〉 = x>y for x, y ∈ Rn. The corresponding norm

is ‖x‖ = ‖x‖2 =
√
〈x, x〉.

• IA(·) is the indicator function of the set A:

IA(x) :=

{
0, if x ∈ A,
+∞, if x /∈ A.

• Gr(f) is the graph of multifunction f .
• A∗ = {x : 〈x, a〉 ≤ 0,∀a ∈ A} is the polar cone of A.
• NA(x) is the normal cone to A at x.
• TA(x) is the tangent cone to A at x.
• ri(A) is the relative interior of set A.
• Bn is the unit ball Bn = {x ∈ Rn : ‖x‖ ≤ 1} in Rn.
• dom(f) is the domain of function f .

2. Some properties of the value function of a convex optimization problem

We start providing a representation of the subdifferential of the value function of a convex optimization
problem. This result plays a central role in the implementation and convergence analysis of SDDP applied
to convex problems and will be used in the sequel.

Let Q : X → R, be the value function given by

(2.1) Q(x) =

{
infy∈Rn f(x, y)
y ∈ S(x) := {y ∈ Y : Ax+By = b, g(x, y) ≤ 0}.

Here, A and B are matrices of appropriate dimensions, and X ⊆ Rm and Y ⊆ Rn are nonempty, compact,
and convex sets. Denoting by

(2.2) Xε := X + εBm

the ε-fattening of the set X, we make the following assumption (H):

1) f : Rm×Rn → R ∪ {+∞} is lower semicontinuous, proper, and convex.
2) For i = 1, . . . , p, the i-th component of function g(x, y) is a convex lower semicontinuous function

gi : Rm×Rn → R ∪ {+∞}.
3) There exists ε > 0 such that Xε×Y ⊂ dom(f).

Consider the Lagrangian dual problem

(2.3) sup
(λ,µ)∈Rq×Rp+

θx(λ, µ)

for the dual function

θx(λ, µ) = inf
y∈Y

f(x, y) + λ>(Ax+By − b) + µ>g(x, y).

We denote by Λ(x) the set of optimal solutions of the dual problem (2.3) and we use the notation

Sol(x) := {y ∈ S(x) : f(x, y) = Q(x)}

to indicate the solution set to (2.1).
It is well known that under Assumption (H), Q is convex and if f is uniformly convex then Q is uniformly

convex too. The description of the subdifferential of Q is given in the following lemma:

Lemma 2.1. Consider the value function Q given by (2.1) and take x0 ∈ X such that S(x0) 6= ∅. Let

C1 =
{

(x, y) ∈ Rm×Rn : Ax+By = b
}

and C2 =
{

(x, y) ∈ Rm×Rn : g(x, y) ≤ 0
}
.

Let Assumption (H) hold and assume the Slater-type constraint qualification condition:

there exists (x̄, ȳ) ∈ X×ri(Y ) such that (x̄, ȳ) ∈ C1 and (x̄, ȳ) ∈ ri(C2).
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Then s ∈ ∂Q(x0) if and only if

(2.4)

(s, 0) ∈ ∂f(x0, y0) +
{

[A>;B>]λ : λ ∈ Rq
}

+
{ ∑
i∈I(x0,y0)

µi∂gi(x0, y0) : µi ≥ 0
}

+
{
{0}×NY (y0)

}
,

where y0 is any element in the solution set Sol(x0), and with

I(x0, y0) =
{
i ∈ {1, . . . , p} : gi(x0, y0) = 0

}
.

In particular, if f and g are differentiable, then

∂Q(x0) =
{
∇xf(x0, y0) +A>λ+

∑
i∈I(x0,y0)

µi∇xgi(x0, y0) : (λ, µ) ∈ Λ(x0)
}
.

Proof. Observe that

Q(x) =

{
inf f(x, y) + IGr(S)(x, y)

y ∈ Rn

where IGr(S) is the indicator function of the set

Gr(S) :=
{

(x, y) ∈ Rm×Rn : Ax+By = b, g(x, y) ≤ 0, y ∈ Y
}

= C1

⋂
C2

⋂
Rm×Y.

Using Theorem 24(a) in Rockafellar [19], we have

(2.5)
s ∈ ∂Q(x0) ⇔ (s, 0) ∈ ∂(f + IGr(S))(x0, y0)

⇔ (s, 0) ∈ ∂f(x0, y0) +NGr(S)(x0, y0). (a)

For equivalence (2.5)-(a), we have used the fact that f and IGr(S) are proper, finite at (x0, y0), and

(2.6) ri(dom(f)) ∩ ri(dom(IGr(S))) 6= ∅.

The set ri(dom(f)) ∩ ri(dom(IGr(S))) is nonempty because it contains the point (x̄, ȳ):

(x̄, ȳ) ∈ C1 ∩ ri(C2) ∩ Rm×ri(Y ) = ri(C1) ∩ ri(C2) ∩ Rm×ri(Y )
= ri(C1 ∩ C2 ∩ Rm×Y ) = ri(dom(IGr(S))),

(x̄, ȳ) ∈ X×ri(Y ) ⊆ ri(Xε)×ri(Y ) = ri(Xε×Y )
(H)

⊆ ri(dom(f)).

Using the fact C1 is an affine space and C2 and Y are closed and convex sets such that (x̄, ȳ) ∈ ri(C2) ∩
ri(Rm×Y ) ∩ C1 6= ∅, we have

NGr(S)(x0, y0) = NC1
(x0, y0) +NC2

(x0, y0) +NRm×Y (x0, y0).

But NRm×Y (x0, y0) = {0}×NY (y0) and standard calculus on normal and tangent cones shows that

TC1
(x0, y0) = {(x, y) : Ax+By = 0} = Ker([A,B]),

NC1
(x0, y0) = T ∗C1

(x0, y0) = (Ker([A,B])⊥

= Im[A>;B>] =
{

[A>;B>]λ : λ ∈ Rq
}
,

NC2(x0, y0) =
{ ∑
i∈I(x0,y0)

µi∂gi(x0, y0) : µi ≥ 0
}
.

This completes the announced characterization (2.4) of ∂Q(x0). If f and g are differentiable then the
condition (2.4) can be written

(2.7)

s = ∇xf(x0, y0) +A>λ+
∑

i∈I(x0,y0)

µi∇xgi(x0, y0), (a)

−

∇yf(x0, y0) +B>λ+
∑

i∈I(x0,y0)

µi∇ygi(x0, y0)

 ∈ NY (y0), (b)

for some λ ∈ Rq and µ ∈ R|I(x0,y0)|
+ .
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Finally, note that a primal-dual solution (y0, λ, µ) satisfies (2.7)-(b) and if (y0, λ, µ) with µ ≥ 0 satisfies
(2.7)-(b), knowing that y0 is primal feasible, then under our assumptions (λ, µ) is a dual solution, i.e.,
(λ, µ) ∈ Λ(x0). �

The following proposition provides conditions ensuring the Lipschitz continuity of Q and the boundedness
of its subdifferential at any point in X:

Proposition 2.2. Consider the value function Q given by (2.1). Let Assumption (H) hold and assume
that for every x ∈ Xε, the set S(x) is nonempty, where ε is given in (H)-3). Then Q is finite on Xε,
Lipschitz continuous on X, and the set ∪x∈X∂Q(x) is bounded. More precisely, if M0 = supx∈Xε Q(x) and
m0 = minx∈X Q(x), then for every x ∈ X and every s ∈ ∂Q(x) we have

(2.8) ‖s‖ ≤ 1

ε
(M0 −m0).

Proof. Finiteness of Q on Xε follows from the fact that, under the assumptions of the lemma, for every
x ∈ Xε, the feasible set S(x) of (2.1) is nonempty and compact and the objective function f(x, ·) is finite
valued on Y and lower semicontinuous. It follows that X is contained in the relative interior of the domain
of Q. Since Q is convex and since a convex function is Lipschitz continuous on the relative interior of its
domain, Q is Lipschitz continuous on X.

Next, for every x ∈ X, for every y ∈ Xε and s ∈ ∂Q(x), we have

Q(y) ≥ Q(x) + 〈s, y − x〉.

Observing that M0 and m0 are finite (Q is finite and lower semicontinuous on the compact set Xε), for every
x ∈ X and y ∈ Xε we get

M0 ≥ m0 + 〈s, y − x〉.
If s = 0 then (2.8) holds and if s 6= 0, taking y = x+ ε s

‖s‖ ∈ X
ε in the above relation, we obtain (2.8), i.e.,

s is bounded. �

3. Decomposition methods for risk-averse multistage stochastic convex programs

Consider a risk-averse multistage stochastic optimization problem of the form

(3.9)

inf
x1∈X1(x0,ξ1)

f1(x1, Ψ1) + ρ2|F1

(
inf

x2∈X2(x0:1,ξ2)
f2(x1:2,Ψ2) + . . .

+ρT−1|FT−2

(
inf

xT−1∈XT−1(x0:T−2, ξT−1)
fT−1(x1:T−1,ΨT−1)

+ρT |FT−1

(
inf

xT∈XT (x0:T−1, ξT )
fT (x1:T ,ΨT )

))
. . .

)
for some functions ft taking values in R ∪ {+∞}, where

Xt(x0:t−1, ξt) =
{
xt ∈ Xt : gt(x0:t,Ψt) ≤ 0,

t∑
τ=0

At,τxτ = bt

}
for some vector-valued functions gt, some random vectors Ψt and bt, some random matrices At,τ , and
where ξt is a discrete random vector with finite support corresponding to the concatenation of the random
variables (Ψt, bt, (At,τ )τ=0,...,t) in an arbitrary order. In this problem x0 is given, ξ1 is deterministic, (ξt) is
a stochastic process, and setting Ft = σ(ξ1, . . . , ξt) and denoting by Zt the set of Ft-measurable functions,
ρt+1|Ft : Zt+1 → Zt is a coherent and law invariant conditional risk measure.

In this section and the next two Sections 4 and 5, we assume that the stochastic process (ξt) satisfies the
following assumption:

(H1) (ξt) is interstage independent and for t = 2, . . . , T , ξt is a random vector taking values in RK with
discrete distribution and finite support {ξt,1, . . . , ξt,M} while ξ1 is deterministic (ξt,j is the vector
corresponding to the concatenation of the elements in (Ψt,j , bt,j , (At,τ,j)τ=0,...,t)).
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Under Assumption (H1), ρt+1|Ft coincides with its unconditional counterpart ρt+1 : Zt+1 → R. To alleviate
notation and without loss of generality, we assume that the number M of possible realizations of ξt, the size
K of ξt, and n of xt do not depend on t.

For problem (3.9), we can write the following dynamic programming equations: we set QT+1 ≡ 0 and for
t = 2, . . . , T , define

(3.10) Qt(x1:t−1) = ρt

(
Qt(x1:t−1, ξt)

)
with

(3.11)

Qt(x1:t−1, ξt) =


inf
xt

Ft(x1:t,Ψt) := ft(x1:t,Ψt) +Qt+1(x1:t)

xt ∈ Xt, gt(x0:t,Ψt) ≤ 0,

t∑
τ=0

At,τxτ = bt,

=

{
inf
xt

Ft(x1:t,Ψt)

xt ∈ Xt(x0:t−1, ξt).

With this notation, Ft(x1:t,Ψt) is the future optimal cost starting at time t from the history of decisions
x1:t−1 if Ψt and xt are respectively the value of the process (Ψt) and the decision taken at stage t. Problem
(3.9) can then be written

(3.12)

{
inf
x1

F1(x1,Ψ1) := f1(x1,Ψ1) +Q2(x1)

x1 ∈ X1(x0, ξ1) = {x1 ∈ X1 : g1(x0, x1,Ψ1) ≤ 0, A1,1x1 = b1 −A1,0x0},

with optimal value denoted by Q1(x0) = Q1(x0, ξ1).
Setting Φt,j = P(ξt = ξt,j) > 0 for j = 1, . . . ,M , we reformulate the problem as in [16] using the dual

representation of a coherent risk measure [1]:

(3.13) Qt(x1:t−1) = ρt(Qt(x1:t−1, ξt)) = sup
p∈Pt

M∑
j=1

pjΦt,jQt(x1:t−1, ξt,j)

for some convex subset Pt of

Dt = {p ∈ RM : p ≥ 0,

M∑
j=1

pjΦt,j = 1}.

Optimization problem (3.13) is convex and linear if Pt is a polyhedron. Such is the case when ρt = CV aR1−εt
is the Conditional Value-at-Risk of level 1− εt (introduced in [18]) where (see [16] for instance)

Pt = {p ∈ Dt : pj ≤
1

εt
, j = 1, . . . ,M}.

In this case, the optimization problem (3.13) can be solved analytically, without resorting to an optimization
step (once the values Qt(x1:t−1, ξt,j), j = 1, . . . ,M, are known, see [16] for details) and numerical simulations
in Section 4.1.1 of [23] have shown that the corresponding subproblems are solved more quickly than if the
minimization formula from [24], [18] for the Conditional Value-at-Risk was used. We refer to [20], [21], [6],
[9] for the definition of the sets Pt corresponding to various popular risk measures.

Recalling definition (2.2) of the the ε-fattening of a set X, we also make the following Assumption (H2)
for t = 1, . . . , T :

1) Xt ⊂ Rn is nonempty, convex, and compact.
2) For every x1:t ∈ Rn × . . .× Rn the function ft(x1:t, ·) is measurable and for every j = 1, . . . ,M , the

function ft(·,Ψt,j) is proper, convex, and lower semicontinuous.
3) For every j = 1, . . . ,M , each component of the function gt(x0, ·,Ψt,j) is a convex lower semicontin-

uous function.
4) There exists ε > 0 such that:

4.1) for every j = 1, . . . ,M ,[
X1× . . .×Xt−1

]ε
×Xt ⊂ dom ft

(
·,Ψt,j

)
;
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4.2) for every j = 1, . . . ,M , for every x1:t−1 ∈
[
X1× . . .×Xt−1

]ε
, the set Xt(x0:t−1, ξt,j) is nonempty.

5) If t ≥ 2, for every j = 1, . . . ,M , there exists

x̄t,j = (x̄t,j,1, . . . , x̄t,j,t) ∈ X1× . . .×Xt−1×ri(Xt) ∩ ri({gt(x0, ·,Ψt,j) ≤ 0})

such that x̄t,j,t ∈ Xt(x0, x̄t,j,1, . . . , x̄t,j,t−1, ξt,j).

As shown in Proposition 3.1, Assumption (H2) guarantees that for t = 2, . . . , T , recourse function Qt is

convex and Lipschitz continuous on the set
[
X1× . . .×Xt−1

]ε̂
for every 0 < ε̂ < ε.

Proposition 3.1. Under Assumption (H2), for t = 2, . . . , T + 1, for every 0 < ε̂ < ε, the recourse function

Qt is convex, finite on
[
X1× . . .×Xt−1

]ε̂
, and continuous on

[
X1× . . .×Xt−1

]ε̂
.

Proof. The proof is by induction on t. The result holds for t = T + 1 since QT+1 ≡ 0. Now assume

that for some t ∈ {2, . . . , T}, the function Qt+1 is convex, finite on
[
X1× . . .×Xt

]ε̂
, and continuous on[

X1× . . .×Xt
]ε̂

for every 0 < ε̂ < ε. Take an arbitrary 0 < ε̂ < ε, x1:t−1 ∈
[
X1× . . .×Xt−1

]ε̂
and fix

j ∈ {1, . . . ,M}. Consider the optimization problem (3.11) with ξt = ξt,j . Note that the feasible set
Xt(x0:t−1, ξt,j) of this problem is nonempty (invoking (H2)-4.2)) and compact, since it is the intersection
of the compact set Xt (invoking (H2)-1)), an affine space, and a lower level set of gt(x0:t−1, ·,Ψt,j) which is
closed since this function gt(x0:t−1, ·,Ψt,j) is lower semicontinuous (using Assumption (H2)-3)). Next observe

that if x1:t−1 ∈
[
X1× . . .×Xt−1

]ε̂
and xt ∈ X ε̃t with ε̃ =

√(
ε+ε̂
2

)2 − ε̂2 > 0, then x1:t ∈
[
X1× . . .×Xt

] ε+ε̂
2

with (ε + ε̂)/2 < ε. Using this observation and the induction hypothesis, we have that Qt+1(x1:t−1, ·) is
finite (and convex) on X ε̃t which implies that Qt+1(x1:t−1, ·) is Lipschitz continuous on Xt. It follows that
the optimal value Qt(x1:t−1, ξt,j) of problem (3.11) with ξt = ξt,j is finite because its objective function xt →
ft(x1:t−1, xt,Ψt,j) + Qt+1(x1:t−1, xt) takes finite values on Xt (using (H2)-4.1), (H2)-2), and the induction
hypothesis) and is lower semicontinuous (using (H2)-2)). Using Definition (3.13) of Qt, we deduce that

Qt(x1:t−1) is finite. Since x1:t−1 was chosen arbitrarily in
[
X1× . . .×Xt−1

]ε̂
, we have shown that Qt is finite

on
[
X1× . . .×Xt−1

]ε̂
.

Next, we deduce from Assumptions (H2)-1), (H2)-2), and (H2)-3) that for every j ∈ {1, . . . ,M}, Qt(·, ξt,j)

is convex on
[
X1× . . .×Xt−1

]ε̂
. Since ρt is coherent, it is monotone and convex, and Qt(·) = ρt(Qt(·, ξt))

is convex on
[
X1× . . .×Xt−1

]ε̂
. Since

[
X1× . . .×Xt−1

]ε̂
is a compact subset of the relative interior of the

domain of convex function Qt, we have that Qt is Lipschitz continuous on
[
X1× . . .×Xt−1

]ε̂
. �

Recalling Assumption (H1), the distribution of (ξ2, . . . , ξT ) is discrete and the MT−1 possible realizations
of (ξ2, . . . , ξT ) can be organized in a finite tree with the root node n0 associated to a stage 0 (with decision x0
taken at that node) having one child node n1 associated to the first stage (with ξ1 deterministic). Algorithm
1 below is a sampling algorithm which, for iteration k ≥ 1, selects a set of nodes (nk1 , n

k
2 , . . . , n

k
T ) of the

scenario tree (with nkt a node of stage t) corresponding to a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) of (ξ1, ξ2, . . . , ξT ). Since

ξ̃k1 = ξ1, we have nk1 = n1 for all k.
In the sequel, we use the following notation: N is the set of nodes and P : N → N is the function

associating to a node its parent node (the empty set for the root node). We will denote by Nodes(t) the set
of nodes for stage t and for a node n of the tree, we denote by

• C(n) the set of its children nodes (the empty set for the leaves);
• xn a decision taken at that node;
• Φn the transition probability from the parent node of n to n;
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• ξn the realization of process (ξt) at node n1: for a node n of stage t, this realization ξn is the
concatenation of the realizations Ψn of Ψt, bn of bt, and Aτ,n of At,τ for τ = 0, 1, . . . , t;

• ξ[n] (resp. x[n]) the history of the realizations of the process (ξt) (resp. the history of the decisions)
from the first stage node n1 to node n: for a node n of stage t, the i-th component of ξ[n] (resp. x[n])
is ξPt−i(n) (resp. xPt−i(n)) for i = 1, . . . , t;

We are now in a position to describe Algorithm 1 which is a decomposition algorithm solving (3.9).
This algorithm exploits the convexity of recourse functions Qt, t = 2, . . . , T + 1, building polyhedral lower
approximations Qkt , t = 2, . . . , T + 1, of these functions of the form

Qkt (x1:t−1) = max
0≤`≤k

(
θ`t + 〈β`t , x1:t−1 − x`[n`t−1]

〉
)

= max
0≤`≤k

(
θ`t + 〈β`t,1, x1:t−2 − x`[n`t−2]

〉+ 〈β`t,2, xt−1 − x`n`t−1
〉
)
,

where β`t,1 ∈ Rn(t−2) (resp. β`t,2 ∈ Rn) gathers the first n(t− 2) (resp. last n) components of β`t .

Since QT+1 ≡ 0 is known, we have QkT+1 ≡ 0 for all k, i.e., θkT+1 and βkT+1 are null for all k ∈ N. At

iteration k, decisions (xk
nk1
, . . . , xk

nkT
) and coefficients (θkt , β

k
t ), t = 2, . . . , T + 1, are computed for a sample

of nodes (nk1 , n
k
2 , . . . , n

k
T ): xk

nkt
is the decision taken at node nkt replacing the (unknown) recourse function

Qt+1 by Qk−1t+1 , available at the beginning of iteration k.

In Lemma 3.2 below, we show that the coefficients (θkt , β
k
t ) computed in Algorithm 1 define valid cuts for

Qt, i.e., Qt ≥ Qkt for all k ∈ N. To describe Algorithm 1, it is convenient to introduce for t = 2, . . . , T , the

function Qk−1
t defined as follows: Qk−1

t (x1:t−1, ξt) is the optimal value of the optimization problem

(3.14)


inf
xt

F k−1t (x1:t,Ψt) := ft(x1:t,Ψt) +Qk−1t+1 (x1:t)

xt ∈ Xt, gt(x0:t,Ψt) ≤ 0,

t∑
τ=0

At,τxτ = bt.

We also denote by Qk−1
1 (x0, ξ1) the optimal value of the problem above for t = 1.

Algorithm 1: Multistage stochastic decomposition algorithm to solve (3.9).

Initialization. Set Q0
t ≡ −∞ for t = 2, . . . , T , and Q0

T+1 ≡ 0, i.e., set θ0T+1 = 0, β0
t+1 = 0 for t = 1, . . . , T ,

and θ0t+1 = −∞ for t = 1, . . . , T − 1.

Loop.
For k = 1, 2, . . . ,

Sample a set of T + 1 nodes (nk0 , n
k
1 , . . . , n

k
T ) such that nk0 is the root node, nk1 = n1 is the node

corresponding to the first stage, and for every t = 2, . . . , T , node nkt is a child node of node nkt−1.

This set of nodes is associated to a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) of (ξ1, ξ2, . . . , ξT ), realizations of random

variables (ξk1 , ξ
k
2 , . . . , ξ

k
T ).

For t = 1, . . . , T ,
For every node n of stage t− 1

For every child node m of node n, compute an optimal solution xkm of (3.14) taking (x0:t−1, ξt) =

1Note that to alleviate notation, the same notation ξIndex is used to denote the realization of the process at node Index of
the scenario tree and the value of the process (ξt) for stage Index. The context will allow us to know which concept is being

referred to. In particular, letters n and m will only be used to refer to nodes while t will be used to refer to stages.
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(x0, x
k
[n], ξm) solving

(3.15)



inf
xt

ft(x
k
[n], xt,Ψm) +Qk−1t+1 (xk[n], xt)

gt(x0, x
k
[n], xt,Ψm) ≤ 0,

At,mxt = bm −
t−1∑
τ=0

Aτ,mx
k
Pt−τ (m),

xt ∈ Xt,

=



inf
xt,z

ft(x
k
[n], xt,Ψm) + z

gt(x0, x
k
[n], xt,Ψm) ≤ 0, [πk,m,1]

At,mxt = bm −
t−1∑
τ=0

Aτ,mx
k
Pt−τ (m), [πk,m,2]

z ≥ θ`t+1 + 〈β`t+1,1, x
k
[n] − x

`
[n`t−1]

〉
+〈β`t+1,2, xt − x`n`t 〉, 0 ≤ ` ≤ k − 1, [πk,m,3]

xt ∈ Xt,

with optimal value Qk−1
t (xk[n], ξm) for t ≥ 2, Qk−1

1 (x0, ξ1) for t = 1, and with the convention,

for t = 1, that (x0, x
k
[nk0 ]

, x1) = (x0, x1) and xk
[nk0 ]

= xk
nk0

= xkn0
= x0 for all k.

In the above problem, we have denoted by πk,m,1, πk,m,2 and πk,m,3 the optimal Lagrange
multipliers associated with respectively the first, second, and third group of constraints.

End For
If n = nkt−1 and t ≥ 2, compute for every m ∈ C(n)

πk,m = f ′t,x1:t−1

(
xk[n], x

k
m,Ψm

)
+ g′t,x1:t−1

(
x0, x

k
[n], x

k
m,Ψm

)
πk,m,1

+

 A>1,m
...

A>t−1,m

πk,m,2 + [β0
t+1,1, β

1
t+1,1, . . . , β

k
t+1,1]πk,m,3

where f ′t,x1:t−1
(xk[n], x

k
m,Ψm) is a subgradient of convex function ft(·, xkm,Ψm) at xk[n] and the i-th

column of matrix g′t,x1:t−1
(x0, x

k
[n], x

k
m,Ψm) is a subgradient at xk[n] of the i-th component

of convex function gt(x0, ·, xkm,Ψm).
Compute pk,m,m ∈ C(n), solving

ρt

(
Qk−1
t (xk[n], ξt)

)
= sup

p∈Pt

∑
m∈C(n)

pmΦmQk−1
t (xk[n], ξm)

=
∑

m∈C(n)

pk,mΦmQk−1
t (xk[n], ξm).

Compute coefficients

(3.16) θkt = ρt

(
Qk−1
t (xk[n], ξt)

)
=

∑
m∈C(n)

pk,mΦmQk−1
t (xk[n], ξm) and βkt =

∑
m∈C(n)

pk,mΦmπk,m,

making up the new approximate recourse function

Qkt (x1:t−1) = max
0≤`≤k

(
θ`t + 〈β`t , x1:t−1 − x`[n`t−1]

〉
)
.

End If
End For

End For
Compute θkT+1 = 0 and βkT+1 = 0.

End For

The convergence of Algorithm 1 is shown in the next section. Various modifications of Algorithm 1 have
been proposed in the literature. For instance, it is possible to

(i) use a number of samples that varies along the iterations;
(ii) sample from the distribution of ξt (instead of using all realizations ξt,1, . . . , ξt,M of ξt) to build the

cuts [5], [17];
(iii) generate the trial points xk

nkt
using the Abridged Nested Decomposition Method [4].



10 VINCENT GUIGUES

The convergence proof of the next section can be extended to these variants of Algorithm 1.
We will assume that the sampling procedure in Algorithm 1 satisfies the following property:

(H3) for every j = 1, . . . ,M , for every t = 2, . . . , T , and for every k ∈ N∗, P(ξkt = ξt,j) = Φt,j >

0 with
∑M
j=1 Φt,j = 1. For every t = 2, . . . , T , and k ≥ 1,

ξkt is independent on σ(ξ12 , . . . , ξ
1
T , . . . , ξ

k−1
2 , . . . , ξk−1T , ξk2 , . . . , ξ

k
t−1).

In the following three lemmas, we show item (ii) announced in the introduction: functions Qkt for k ≥
T − t+ 1 are Lipschitz continuous and have bounded subgradients.

Lemma 3.2. Consider the sequences Qkt , θkt , and βkt generated by Algorithm 1. Under Assumptions (H2),
then almost surely, for t = 2, . . . , T + 1, the following holds:

(a) Qkt is convex with Qkt ≤ Qt on
[
X1× . . .×Xt−1

]ε
for all k ≥ 1;

(b) the sequences (θkt )k≥T−t+1, (βkt )k≥T−t+1, and (πk,m)k≥T−t+1 for all m, are bounded;

(c) for k ≥ T − t+ 1, Qkt is convex Lipschitz continuous on
[
X1× . . .×Xt−1

]ε
.

Proof. We show the result by induction on k and t. For t = T + 1, and k ≥ 0, θkt and βkt are bounded since
they are null (recall that QkT+1 is null for all k ≥ 0) and QkT+1 = QT+1 ≡ 0 is convex and Lipschitz continuous

on X1× . . .×XT for k ≥ 0. Assume now that for some t ∈ {1, . . . , T} and k ≥ T − t+ 1, the functions Qjt+1

for T − t ≤ j ≤ k − 1 are convex Lipschitz continuous on
[
X1× . . .×Xt

]ε
with Qjt+1 ≤ Qt+1. We show that

(i) θkt and βkt are well defined and bounded; (ii) Qkt is convex Lipschitz continuous on
[
X1× . . .×Xt−1

]ε
; (iii)

Qt ≥ Qkt on
[
X1× . . .×Xt−1

]ε
.

Take an arbitrary x1:t−1 ∈
[
X1× . . .×Xt−1

]ε
. Since Qt+1 ≥ Qk−1t+1 on

[
X1× . . .×Xt

]ε
, using definition

(3.11) of Qt and the definition of Qk
t , we have

(3.17) Qt(x1:t−1, ·) ≥ Qk−1
t (x1:t−1, ·)

and using the monotonicity of ρt (recall that ρt is coherent)

(3.18)

Qt(x1:t−1) = ρt

(
Qt(x1:t−1, ξt)

)
≥ ρt

(
Qk−1
t (x1:t−1, ξt)

)
≥ sup

p∈Pt

M∑
j=1

pjΦt,jQ
k−1
t (x1:t−1, ξt,j).

Using Assumptions (H2)-1), 2), 3), 4.1), 4.2) and the fact that Qk−1t+1 is Lipschitz continuous on the compact

set
[
X1× . . .×Xt

]ε
(induction hypothesis), we have that Qk−1

t (x1:t−1, ξt,j) is finite for all j ∈ {1, . . . ,M}.
Recalling that

θkt =
∑

m∈C(n)

pk,mΦmQk−1
t (xk[n], ξm)

with xk[n] ∈ X1× . . .×Xt−1 ⊂
[
X1× . . .×Xt−1

]ε
, it follows that θkt is finite. Next, using Assumptions (H2)-2),

3), for every j ∈ {1, . . . ,M}, the function Qk
t (·, ξt,j) is convex. Since it is finite on

[
X1× . . .×Xt−1

]ε
, it

is Lipschitz continuous on X1× . . .×Xt−1. This function is thus subdifferentiable on
[
X1× . . .×Xt−1

]ε
and

using Lemma 2.1, whose assumptions are satisfied, πk,m is a subgradient of Qk−1
t (·, ξm) at xk

[nkt−1]
, i.e., setting

n = nkt−1, for every x1:t−1 ∈
[
X1× . . .×Xt−1

]ε
, we have

(3.19) Qk−1
t (x1:t−1, ξm) ≥ Qk−1

t (xk[n], ξm) + 〈πk,m, x1:t−1 − xk[n]〉.
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Plugging this inequality into (3.18), still denoting n = nkt−1, we obtain for x1:t−1 ∈
[
X1× . . .×Xt−1

]ε
:

Qt(x1:t−1) ≥ sup
p∈Pt

M∑
j=1

pjΦt,jQ
k−1
t (x1:t−1, ξt,j)

= sup
p∈Pt

∑
m∈C(n)

pmΦmQk−1
t (x1:t−1, ξm)

≥
∑

m∈C(n)

pk,mΦmQk−1
t (x1:t−1, ξm) since pk = (pk,m)m∈C(n) ∈ Pt

(3.19)

≥
∑

m∈C(n)

pk,mΦmQk−1
t (xk[n], ξm) +

∑
m∈C(n)

pk,mΦm〈πk,m, x1:t−1 − xk[n]〉

≥ θkt + 〈βkt , x1:t−1 − xk[n]〉

using the definitions of θkt and βkt . If βkt = 0 then βkt is bounded and if βkt 6= 0, plugging x1:t−1 =

xk[n] + ε
2
βkt
‖βkt ‖

∈
[
X1× . . .×Xt−1

]ε/2
in the above inequality, where ε is defined in (H2)-4.2), we obtain

(3.20) ‖βkt ‖ ≤
2

ε

(
Qt
(
xk[n] +

ε

2

βkt
‖βkt ‖

)
− θkt

)
.

From Proposition 3.1, Qt is finite on
[
X1× . . .×Xt−1

]ε/2
. Since θkt is finite, (3.20) shows that βkt is bounded:

(3.21) ‖βkt ‖ ≤
2

ε

(
sup

x1:t−1∈[X1×...×Xt−1]ε/2
Qt
(
x1:t−1

)
− θkt

)
.

This achieves the induction step. Gathering our observations, we have shown that Qt ≥ Qkt for all k ∈ N
and that Qkt is Lipschitz continuous for k ≥ T − t+ 1.

Finally, using Proposition 2.2, we have that πk,m is bounded. More precisely, If πk,m 6= 0, then relation

(3.19) written for x1:t−1 = x̃k,m1:t−1 = xk[n] + ε
2
πk,m
‖πk,m‖ ∈

[
X1× . . .×Xt−1

]ε/2
gives for k ≥ T − t+ 2,

‖πk,m‖ ≤
2

ε

(
Qt(x̃

k,m
1:t−1, ξm)−QT−t+1

t (xk[n], ξm)
)
,

where we have used the fact that Qk
t ≤ Qt and Qk+1

t (·, ξm) ≥ Qk
t (·, ξm), for all k ∈ N. In the proof of

Proposition 3.1, we have shown that for every t = 2, . . . , T , and j = 1, . . . ,M , the function Qt(·, ξt,j) is

finite on the compact set [X1× . . .×Xt−1]ε/2. Also, we have just shown that for every t = 2, . . . , T, and

j = 1, . . . ,M , the function QT−t+1
t (·, ξt,j) is continuous on the compact set X1× . . .×Xt−1. It follows that

for every k ≥ T − t+ 1 and node m, we have for πk,m the upper bound

(3.22)
‖πk,m‖ ≤ max

t=2,...,T,j=1,...,M

2M(t, j)

ε
where

M(t, j) = max
x1:t−1∈[X1×...×Xt−1]ε/2

Qt(x1:t−1, ξt,j)− min
x1:t−1∈X1×...×Xt−1

QT−t+1
t (x1:t−1, ξt,j).

�

Remark 3.3. In the case when the cuts are computed in a backward pass using approximate recourse
functions Qkt+1 instead of Qk−1t+1 for iteration k, we can guarantee that θkt and βkt are bounded for all

t = 2, . . . , T + 1, and k ≥ 1 (for k = 0, we have βkt = 0 but θkt = −∞ is not bounded for t ≤ T ).

The following lemma will be useful in the sequel:

Lemma 3.4. Consider the sequences Qkt , xk[nkt ], and θkt generated by Algorithm 1. Under Assumptions (H2),

for t = 2, . . . , T , and for all k ≥ 1, we have

(3.23) Qkt (xk[nkt−1]
) = θkt .
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Proof. We use the short notation xk1:t−1 = xk
[nkt−1]

and n = nkt−1. Observe that by construction Qk
t ≥ Qk−1

t

for every t = 2, . . . , T + 1, and every k ∈ N∗. It follows that for fixed 0 ≤ ` ≤ k,

θkt = sup
p∈Pt

∑
m∈C(n)

pmΦmQk−1
t (xk[n], ξm)

≥ sup
p∈Pt

∑
m∈C(n)

pmΦmQ`−1
t (xk1:t−1, ξm)

= sup
p∈Pt

∑
m∈C(n`t−1)

pmΦmQ`−1
t (xk1:t−1, ξm) (since (ξt) is interstage independent)

≥ sup
p∈Pt

∑
m∈C(n`t−1)

pmΦm
(
Q`−1
t (x`1:t−1, ξm) + 〈π`,m, xk1:t−1 − x`1:t−1〉

)
using the convexity of function Q`−1

t (·, ξm) and the fact that π`,m is a subgradient of this function at x`1:t−1.
Recalling that

θ`t = ρt
(
Q`−1
t (x`1:t−1, ξt)

)
=

∑
m∈C(n`t−1)

p`,mΦmQ`−1
t (x`1:t−1, ξm) and β`t =

∑
m∈C(n`t−1)

p`,mΦmπ`,m,

we get

θkt ≥
∑

m∈C(n`t−1)

p`,mΦm
(
Q`−1
t (x`1:t−1, ξm) + 〈π`,m, xk1:t−1 − x`1:t−1〉

)
≥ θ`t + 〈β`t , xk1:t−1 − x`1:t−1〉

and

Qkt (xk1:t−1) = max
(
θkt , θ

`
t + 〈β`t , xk1:t−1 − x`1:t−1〉, ` = 0, . . . , k − 1

)
= θkt .

�

Lemma 3.5. For t = 2, . . . , T , and k ≥ T − t+ 1, the functions Qkt are L-Lipschitz with L given by

2

ε
max

t=2,...,T

(
sup

x1:t−1∈[X1×...×Xt−1]ε/2
Qt(x1:t−1)− min

x1:t−1∈X1×...×Xt−1

QT−t+1
t (x1:t−1)

)
.

Proof. This is an immediate consequence of (3.21) and (3.23). �

4. Convergence analysis for risk-averse multistage stochastic convex programs

Theorem 4.1 shows the convergence of the sequence Qk
1(x0, ξ1) to Q1(x0) and that any accumulation point

of the sequence (xk1)k∈N∗ is an optimal solution of the first stage problem (3.12).

Theorem 4.1 (Convergence analysis of Algorithm 1). Consider the sequences of stochastic decisions xkn and
of recourse functions Qkt generated by Algorithm 1 to solve dynamic programming equations (3.10)-(3.11).
Let Assumptions (H1), (H2), and (H3) hold. Then

(i) almost surely, for t = 2, . . . , T + 1, the following holds:

H(t) : ∀n ∈ Nodes(t− 1), lim
k→+∞

Qt(xk[n])−Q
k
t (xk[n]) = 0.

(ii) Almost surely, we have lim
k→+∞

Qk
1(x0, ξ1) = Q1(x0) and any accumulation point of the sequence

(xk1)k∈N∗ is an optimal solution of the first stage problem (3.12).

Proof. In this proof, all equalities and inequalities hold almost surely. We show H(2), . . . ,H(T + 1), by
induction backwards in time. H(T + 1) follows from the fact that QT+1 = QkT+1 = 0. Now assume that
H(t + 1) holds for some t ∈ {2, . . . , T}. We want to show that H(t) holds. Take a node n ∈ Nodes(t − 1).
Let Sn = {k ≥ 1 : nkt−1 = n} be the set of iterations such that the sampled scenario passes through node n.
Due to Assumption (H3), the set Sn is infinite. We first show that

(4.24) lim
k→+∞, k∈Sn

Qt(xk[n])−Q
k
t (xk[n]) = 0.
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Take k ∈ Sn. We have nkt−1 = n and using Lemma 3.4 and the definition of Qt, we get

0 ≤ Qt(xk[n])−Q
k
t (xk[n]) = Qt(xk[n])−Q

k
t (xk[nkt−1]

) = sup
p∈Pt

∑
m∈C(n)

pmΦmQt(x
k
[n], ξm)− θkt .

It follows that

(4.25)

Qt(xk[n])−Q
k
t (xk[n])

= sup
p∈Pt

∑
m∈C(n)

pmΦmQt(x
k
[n], ξm)− sup

p∈Pt

∑
m∈C(n)

pmΦmQk−1
t (xk[n], ξm) by definition of θkt ,

≤ sup
p∈Pt

∑
m∈C(n)

pmΦm

[
Qt(x

k
[n], ξm)−Qk−1

t (xk[n], ξm)
]

= sup
p∈Pt

∑
m∈C(n)

pmΦm

[
Qt(x

k
[n], ξm)− ft(xk[m],Ψm)−Qk−1t+1 (xk[m])

]
by definition of xkm,

= sup
p∈Pt

∑
m∈C(n)

pmΦm

[
Qt(x

k
[n], ξm)− Ft(xk[m],Ψm) +Qt+1(xk[m])−Q

k−1
t+1 (xk[m])

]
using the definition of Ft. Observing that for every m ∈ C(n) and k ∈ Sn the decision xkm ∈ Xt(x0, x

k
[n], ξm),

we obtain, using definition (3.11) of Qt, that

Ft(x
k
[n], x

k
m,Ψm) = Ft(x

k
[m],Ψm) ≥ Qt(x

k
[n], ξm).

Combining this relation with (4.25) gives for k ∈ Sn

(4.26) 0 ≤ Qt(xk[n])−Q
k
t (xk[n]) ≤ sup

p∈Pt

∑
m∈C(n)

pmΦm

[
Qt+1(xk[m])−Q

k−1
t+1 (xk[m])

]
.

Using the induction hypothesis H(t+ 1), we have for every child node m of node n that

(4.27) lim
k→+∞

Qt+1(xk[m])−Q
k
t+1(xk[m]) = 0.

Now recall that Qt+1 is convex on the compact set X1× . . .×Xt (Proposition 3.1), xk[m] ∈ X1× . . .×Xt for

every child node m of node n, and the functions Qkt+1, k ≥ T − t + 1, are L-Lipschitz (Lemma 3.5) with

Qt+1 ≥ Qkt+1 ≥ Qk−1t+1 on X1× . . .×Xt (Lemma 3.2). It follows that we can use Lemma A.1 in [7] to deduce
from (4.27) that

lim
k→+∞

Qt+1(xk[m])−Q
k−1
t+1 (xk[m]) = 0.

Combining this relation with (4.26), we obtain

(4.28) lim
k→+∞,k∈Sn

Qt(xk[n])−Q
k
t (xk[n]) = 0.

To show H(t), it remains to show that

(4.29) lim
k→+∞,k/∈Sn

Qt(xk[n])−Q
k
t (xk[n]) = 0.

To show (4.29), we proceed similarly to the end of the proof of Theorem 3.1 in [7], by contradiction and
using the Strong Law of Large Numbers. For the sake of completeness, we apply here these arguments in our
context, where the notation and the convergence statement H(t) is different from [7]. If (4.29) does not hold,
there exists ε > 0 such that there is an infinite number of iterations k ∈ N satisfying Qt(xk[n])−Q

k
t (xk[n]) ≥ ε.

Since Qkt ≥ Qk−1t , there is also an infinite number of iterations belonging to the set

Kn,ε = {k ∈ N : Qt(xk[n])−Q
k−1
t (xk[n]) ≥ ε}.

Consider the stochastic processes (wkn)k∈N∗ and (ykn)k∈N∗ where wkn = 1k∈Kn,ε and ykn = 1k∈Sn , i.e., ykn
takes the value 1 if node n belongs to the sampled scenario for iteration k (when nkt−1 = n) and 0

otherwise. Assumption (H3) implies that random variables (ykn)k∈N∗ are independent and setting F̃k =

σ(w1
n, . . . , w

k
n, y

1
n, . . . , y

k−1
n ), by definition of xj[n] andQjt that ykn is independent on ((xj[n], j = 1, . . . , k), (Qjt , j =

1, . . . , k− 1)) and thus of F̃k. If zj is the jth element in the set {ykn : k ∈ Kn,ε}, using Lemma A.3 in [7], we
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obtain that random variables zj are i.i.d. and have the distribution of y1n. Using the Strong Law of Large
Numbers, we get

1

N

N∑
j=1

zj
N→+∞−−−−−→ E[z1] = E[y1n] = P(y1n > 0)

(H3)
> 0.

Relation (4.28) and Lemma A.1 in [7] imply that limk→+∞,k∈Sn Qt(xk[n]) − Q
k−1
t (xk[n]) = 0. It follows that

the set Kn,ε ∩ Sn = Kn,ε ∩ {k ∈ N∗ : ykn = 1} is finite. This implies

1

N

N∑
j=1

zj
N→+∞−−−−−→ 0,

which yields the desired contradiction and achieves the proof of (i).

(ii) By definition of Qk−1
1 (see Algorithm 1), we have

(4.30) Qk−1
1 (x0, ξ1) = f1(xk[n1]

,Ψ1) +Qk−12 (xk[n1]
) = F1(xk[n1]

,Ψ1)−Q2(xk[n1]
) +Qk−12 (xk[n1]

).

Since xk[n1]
∈ X1(x0, ξ1) we have F1(xk[n1]

,Ψ1) ≥ Q1(x0, ξ1). Together with (4.30), this implies

(4.31) 0 ≤ Q1(x0, ξ1)−Qk−1
1 (x0, ξ1) ≤ Q2(xk[n1]

)−Qk−12 (xk[n1]
).

Using H(2) from item (i) and Lemma A.1 in [7], this implies

(4.32) lim
k→+∞

Q2(xk[n1]
)−Qk−12 (xk[n1]

) = 0.

Plugging this relation into (4.31), we get lim
k→+∞

Qk−1
1 (x0, ξ1) = Q1(x0, ξ1).

Recalling that n1 is the node associated to the first stage, consider now an accumulation point x∗n1
of the

sequence (xkn1
)k∈N. There exists a set K such that the sequence (xkn1

)k∈K converges to x∗n1
. By definition of

xkn1
and since Ψn1 = Ψ1, we get

(4.33) f1(xkn1
,Ψ1) +Qk−12 (xkn1

) = Qk−1
1 (x0, ξ1).

Using (4.32) and the continuity of Q2 on X1, we have

lim
k→+∞, k∈K

Qk−12 (xkn1
) = Q2(x∗n1

).

Taking the limit in (4.33) when k → +∞ with k ∈ K and using the lower semicontinuity of f1, we obtain

f1(x∗n1
,Ψ1) +Q2(x∗n1

) = F1(x∗n1
,Ψ1) ≤ Q1(x0).

Since for every k ∈ K, xkn1
is feasible for the first stage problem, so is x∗n1

(due to the lower semicontinuity
of g1(x0, ·,Ψ1) and the compactness of X1, the set X1(x0, ξ1) is closed) and x∗n1

is an optimal solution to the
first stage problem. �

Remark 4.2. In Algorithm 1, decisions are computed at every iteration for all the nodes of the scenario
tree. However, in practice, decisions will only be computed for the nodes of the sampled scenarios and their
children nodes (such is the case of SDDP). This variant of Algorithm 1 will build the same cuts and compute
the same decisions for the nodes of the sampled scenarios as Algorithm 1. For this variant, for a node n, the
decision variables (xkn)k are defined for an infinite subset S̃n of iterations where the sampled scenario passes

through the parent node of node n, i.e., S̃n = SP(n). With this notation, for this variant of Algorithm 1,
applying Theorem 4.1-(i), we get for t = 2, . . . , T + 1,

(4.34) for all n ∈ Nodes(t− 1), lim
k→+∞,k∈S̃n

Qt(xk[n])−Q
k
t (xk[n]) = 0

almost surely, while Theorem 4.1-(ii) still holds.

Remark 4.3. If for a given stage t, Xt is a polytope and we do not have the nonlinear constraints given
by constraint functions gt (i.e., the constraints for this stage are linear), then the conclusions of Proposition
3.1 and Lemmas 3.2, 3.4, and 3.5 hold and thus Theorem 4.1 holds too under weaker assumptions. More
precisely, for such stages t, we assume (H2)-1), (H2)-2), and instead of (H2)-4), (H2)-5), the weaker as-
sumption (H2)-3’):
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(H2)-3’) There exists ε > 0 such that:

3.1’) for every j = 1, . . . ,M ,
[
X1× . . .×Xt−1

]ε
×Xt ⊂ dom ft

(
·,Ψt,j

)
;

3.2’) for every j = 1, . . . ,M , for every x1:t−1 ∈ X1× . . .×Xt−1, the set Xt(x0:t−1, ξt,j) is nonempty.

5. Convergence analysis for risk-averse multistage stochastic linear programs without
relatively complete recourse

In this section, we consider the case when gt is affine and ft is linear. We replace assumption (H2)-1) by
Xt = Rn+ and we do not make Assumptions (H2)-4)-5). More precisely, instead of (3.11), we consider the
following dynamic programming equations corresponding to multistage stochastic linear programs that do
not satisfy the relatively complete recourse assumption: we set QT+1 ≡ 0 and for t = 2, . . . , T , we define

Qt(x1:t−1) = ρt

(
Qt(x1:t−1, ξt)

)
now with

(5.35)

Qt(x1:t−1, ξt) =


inf
xt

Ft(x1:t,Ψt) := Ψ>t x1:t +Qt+1(x1:t)

t∑
τ=0

At,τxτ = bt, xt ≥ 0,

=

{
inf
xt

Ft(x1:t,Ψt)

xt ∈ Xt(x0:t−1, ξt).

At the first stage, we solve

(5.36)

{
inf
x1

F1(x1,Ψ1) := Ψ>1 x1 +Q2(x1)

x1 ∈ X1(x0, ξ1) = {x1 ≥ 0, A1,1x1 = b1 −A1,0x0},

with optimal value denoted by Q1(x0) = Q1(x0, ξ1). If we apply Algorithm 1 to solve (5.36) (in the sense of
Theorem 4.1), since Assumption (H2)-4) does not hold, it is possible that one of the problems (3.15) to be
solved in the forward passes is infeasible. In this case, xk[n] is not a feasible sequence of states from stage 1 to

stage t−1 and we build a separating hyperplane separating xkn and the set of states that are feasible at stage
t−1 (those for which there exist sequences of decisions on any future scenario, assuming that problem (5.36)
is feasible). The construction of feasibility cuts for the nested decomposition algorithm is described in [2].
Feasibility cuts for sampling based decomposition algorithms were introduced in [8]. This latter reference
also discusses how to share feasibility cuts among nodes of the same stage for some interstage independent
processes and stochastic programs. In the case of problem (5.35), before solving problems (3.15) for all
m ∈ C(n) in the forward pass, setting n = nkt−1, we solve for every m ∈ C(n) the optimization problem

(5.37)

min
xt,y1,y2

e>(y1 + y2)

At,mxt + y1 − y2 = bm −
t−1∑
τ=0

Aτ,mx
k
Pt−τ (m), [π]

(xk[n])
>β̃`t+1,1 + x>t β̃

`
t+1,2 ≤ θ̃`t+1, ` = 1, . . . ,Kt, [π̃]

xt, y1, y2 ≥ 0,

where e is a vector of ones. In the above problem, we have denoted by respectively π and π̃ optimal Lagrange
multipliers for the first and second set of constraints2. If Q̃t(x

k
[n], ξm) is the optimal value of (5.37), noting

that Q̃t(·, ξm) is convex with s = [A>1,m; . . . ;A>t−1,m]π + [β̃1
t+1,1, . . . , β̃

Kt
t+1,1]π̃ belonging to the subdifferential

of Q̃t(·, ξm) at xk[n], if x1:t−1 is feasible then

(5.38) Q̃t(x1:t−1, ξm) = 0 ≥ Q̃t(x
k
[n], ξm) + s>(x1:t−1 − xk[n]).

Inequality (5.38) defines a feasibility cut for x1:t−1 of the form

(5.39) x>1:t−1β̃
`
t ≤ θ̃`t

2We suppressed the dependency with respect to n, k to alleviate notation.
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with

(5.40) β̃`t = [(β̃`t,1)>; (β̃`t,2)>] = s and θ̃`t = −Q̃t(x
k
[n], ξm) + s>xk[n],

where β̃`t,1 (resp. β̃`t,2) is the vector containing the first n(t−2) (resp. last n) components of β̃`t . Incorporating
these cuts in the forward pass of Algorithm 1, we obtain Algorithm 2.

Algorithm 2: Multistage stochastic decomposition algorithm to solve (5.35) without the rel-
atively complete recourse assumption.

Initialization. Set k = 1 (iteration count), Out=0 (Out will be 1 if the problem is infeasible), Kt = 0
(number of feasibility cuts at stage t), Q0

t ≡ −∞ for t = 2, . . . , T , and Q0
T+1 ≡ 0, i.e., set θ0T+1 = 0, β0

t+1 = 0

for t = 1, . . . , T , and θ0t+1 to −∞ for t = 1, . . . , T − 1.

While Out=0
Sample a set of T + 1 nodes (nk0 , n

k
1 , . . . , n

k
T ) such that nk0 is the root node, nk1 = n1 is the node

corresponding to the first stage, and for every t = 1, . . . , T , node nkt is a child node of node nkt−1.

This set of nodes is associated to a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) of (ξ1, ξ2, . . . , ξT ), realization of random

variables (ξk1 , . . . , ξ
k
T ).

Set t = 1, n = nkt−1 = n0, and xkn = x0.
While (t <= T ) and (Out=0)

Set OutAux= 0.
While there remains a nonvisited child of n and (OutAux= 0),

Take for m a nonvisited child of n.
Solve problem (5.37).
If the optimal value of (5.37) is positive then

If t = 1 then
Out=1, OutAux= 1 //the problem is infeasible

Else
Compute (5.40) to build feasibility cut (5.39).
Increase Kt−1 by one.
Set n = nkt−2 and OutAux= 1.
Decrease t by one.

End if
End If

End While
If OutAux= 0,

Setting m = nkt , compute an optimal solution xkm of

(5.41)



inf
xt

([xk[n];xt])
>Ψm + z

t−1∑
τ=0

Aτ,mx
k
Pt−τ (m) +At,mxt = bm, [πk,m,1]

z ≥ θ`t+1 + 〈β`t+1,1, x
k
[n] − x

`
[n`t−1]

〉
+〈β`t+1,2, xt − x`n`t 〉, 0 ≤ ` ≤ k − 1, [πk,m,2]

([xk[n];xt])
>β̃`t+1 ≤ θ̃`t+1, ` = 1, . . . ,Kt, [πk,m,3]

xt ≥ 0.

In the above problem, we have denoted by πk,m,1, πk,m,2, and πk,m,3, the optimal Lagrange
multipliers associated with respectively the first, second, and third group of constraints.
Increase t by one and set n = nkt−1.

End If
End While
If Out=0

For t = 2, . . . , T ,
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For each child node m of n = nkt−1 with m 6= nkt ,

compute an optimal solution xkm and the optimal value Qk−1
t (xk[n], ξm)

of optimization problem (5.41).
End For
For every child node m of n, compute

πk,m = Ψm(1 : (n− 1)t) +

 A>1,m
...

A>t−1,m

πk,m,1

+[β0
t+1,1, . . . β

k−1
t+1,1]πk,m,2 + [β̃1

t+1,1, . . . β̃
Kt
t+1,1]πk,m,3.

Compute (pk,m)m∈C(n) such that

ρt

(
Qk−1
t (xk[n], ξt)

)
= sup

p∈Pt

∑
m∈C(n)

pmΦmQk−1
t (xk[n], ξm)

=
∑

m∈C(n)

pk,mΦmQk−1
t (xk[n], ξm)

and coefficients

(5.42) θkt = ρt

(
Qk−1
t (xk[n], ξt)

)
=

∑
m∈C(n)

pk,mΦmQk−1
t (xk[n], ξm), βkt =

∑
m∈C(n)

pk,mΦmπk,m,

making up the new approximate recourse function

Qkt (x1:t−1) = max
0≤`≤k

(
θ`t + 〈β`t , x1:t−1 − x`[n`t−1]

〉
)
.

End For
Compute θkT+1 = 0 and βkT+1 = 0.

End If
Increase k by one.

End While.

Theorem 5.1 which is a convergence analysis of Algorithm 2 is a corollary of the convergence analysis of
Algorithm 1 from Theorem 4.1:

Theorem 5.1 (Convergence analysis of Algorithm 2). Let Assumptions (H1) and (H3) hold and assume
that

(H2’) for every t = 1, . . . , T , for every realization (ξ̃1, ξ̃2, . . . , ξ̃t) of (ξ1, ξ2, . . . , ξt), for every sequence of

feasible decisions x0:t−1 on that scenario, i.e., satisfying xτ ∈ Xτ (x0:τ−1, ξ̃τ ) for τ = 1, . . . , t− 1, the

set Xt(x0:t−1, ξ̃t) is bounded and nonempty.

Then either Algorithm 2 terminates reporting that the problem is infeasible or for t = 2, . . . , T , (4.34) holds
almost surely and Theorem 4.1-(ii) holds.

Proof. Due to Assumption (H2’), recourse functions Qt are convex polyhedral and Lipschitz continuous.
Moreover, Assumption (H2’) also guarantees that

(a) all linear programs (5.41) are feasible and have bounded primal and dual feasible sets. As a result,
functions (Qkt )t,k are also Lipschitz continuous convex and polyhedral.

(b) The feasible set of (5.37) is bounded and nonempty.

From (b) and Assumption (H1), we obtain that there is only a finite number of different feasibility cuts.
From the definition of these feasibility cuts, the feasible set of (5.37) contains the first stage feasible set.
As a result, if (5.37) is not feasible, there is no solution to (5.35). Otherwise, since only a finite number of
different feasibility cuts can be generated, after some iteration k0 no more feasibility cuts are generated. In
this case, after iteration k0, Algorithm 2 is the variant of Algorithm 1 described in Remark 4.2 and the proof
can be achieved combining the proof of Algorithm 1 and Remark 4.2. �



18 VINCENT GUIGUES

6. Convergence analysis with interstage dependent processes

Consider a problem of form (3.9) with an interstage dependent process (ξt), and let Assumption (H2)
hold. We assume that the stochastic process (ξt) is discrete with a finite number of realizations at each stage.
The realizations of the process over the optimization period can still be represented by a finite scenario tree
with the root node n0 associated to a fictitious stage 0 with decision x0 taken at that node. The unique child
node n1 of this root node corresponds to the first stage (with ξ1 deterministic). In addition to the notation
introduced in Section 4, we also define τn to be the stage associated to node n.

For interstage dependent processes, Algorithm 1 can be extended in two ways. For some classes of
processes, we can add in the state vectors past process values while preserving the convexity of the recourse
functions. We refer to [11], [8] for more details. The convergence of Algorithm 1 applied to the corresponding
dynamic programming equations can be proved following the developments of Sections 3 and 4.

It is also possible to deal with more general interstage dependent processes as in [7]. However, in this
case, recourse functions are not linked to stages but to the nodes of the scenario tree. In this context, we
associate to each node n of the tree a coherent risk measure ρn : R|C(n)| → R and risk measure ρt+1|Ft in
formulation (3.9) is given by the collection of the risk measures (ρn)n : τn=t. More precisely, we consider the
following dynamic programming equations: for every node n which is neither the root node nor a leaf, using
the dual representation of risk measure ρn, we define the recourse function

(6.43) Qn(x[n]) = ρn

(
Qn(x[n], (ξm)m∈C(n))

)
= sup
p∈Pn

∑
m∈C(n)

pmΦmQn(x[n], ξm)

for some convex subset Pn of

Dn = {p ∈ R|C(n)| : p ≥ 0,
∑

m∈C(n)

pmΦm = 1},

where Qn(x[n], ξm) is given by

(6.44)


inf
xm

Fτm(x[n], xm,Ψm)

xm ∈ Xτm , gτm(x0, x[n], xm,Ψm) ≤ 0,
[ A0,m, . . . , Aτm,m][x0;x[n];xm] = bm

=

 inf
xm

Fτm(x[n], xm,Ψm)

xm ∈ Xτm

(
x0, x[n], ξm

)
with

Fτm(x[n], xm,Ψm) = fτm(x[n], xm,Ψm) +Qm(x[n], xm).

If n is a leaf node then Qn ≡ 0. For the first stage, we solve problem (6.44) with n = n0 and m = n1, with
optimal value denoted by Qn0

(x0) = Qn0
(x0, ξn1

) where ξn1
= ξ1.

Algorithm 3 solves these dynamic programming equations building at iteration k polyhedral lower ap-
proximation Qkn of Qn where

Qkn(x[n]) = max
(
θ`n + 〈β`n, x[n] − x`[n]〉, 0 ≤ ` ≤ k

)
for all node n ∈ N\{n0}.

If node n is not a leaf, we introduce the function Qk−1
n such that Qk−1

n (x[n], ξm) is given by

(6.45)


inf
xm

F k−1τm (x[n], xm,Ψm) := fτm(x[n], xm,Ψm) +Qk−1m (x[n], xm)

gτm(x0, x[n], xm,Ψm) ≤ 0,
[ A0,m, . . . , Aτm,m][x0;x[n];xm] = bm
xm ∈ Xτm .

Next, we write Qk−1
n (x[n], ξm) under the form

(6.46)



inf
xm

fτm(x[n], xm,Ψm) + z

gτm(x0, x[n], xm,Ψm) ≤ 0, [πk,m,1]
[ A0,m, . . . , Aτm,m][x0;x[n];xm] = bm [πk,m,2]
z ≥ θ`m + 〈β`m,1, x[n] − x`[n]〉+ 〈β`m,2, xm − x`m〉, ` ≤ k − 1, [πk,m,3]

xm ∈ Xτm ,
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where β`m,1 (resp. β`m,2) contains the first nτn (resp. last n) components of β`m. In the above problem, we
have denoted by πk,m,1, πk,m,2, and πk,m,3 the optimal Lagrange multipliers associated with respectively the
first, second, and third group of constraints. Finally, if n is a leaf, Qk−1

n = 0.
For n = n0, the optimal value of (6.45) is denoted by Qk−1

n0
(x0, ξ1).

Algorithm 3: Multistage stochastic decomposition algorithm to solve (6.43) for interstage
dependent processes.

Initialization. Set Q0
n ≡ 0 for all leaf node n and Q0

n ≡ −∞ for all other node n.

For k = 1, 2, . . . ,
Sample a scenario (ξ̃k1 , ξ̃

k
2 , . . . , ξ̃

k
T ) for (ξ1, ξ2, . . . , ξT ), realization of (ξk1 , . . . , ξ

k
T ),

i.e., sample a set of T + 1 nodes (nk0 , n
k
1 , n

k
2 , . . . , n

k
T ) such that nk0 = n0 is the root node,

nk1 = n1 is the node corresponding to the first stage, and for every t = 2, . . . , T , node
nkt is a child of node nkt−1.
For t = 1, . . . , T ,

For every node n of stage t− 1,
For every child node m of node n,

solve (6.45) and denote by xkm be an optimal solution.
End For
If t ≥ 2 and n 6= nkt−1, compute

(6.47) θkn = Qk−1n (xk[n]) and βkn ∈ ∂Qk−1n (xk[n]).

Else if t ≥ 2 and n = nkt−1, then for every m ∈ C(n) compute a subgradient

πk,m of Qk−1
n (·, ξm) at xk[n]:

(6.48)

πk,m = f ′τm,x[n]

(
xk[n], x

k
m,Ψm

)
+ g′τm,x[n]

(
xk[n], x

k
m,Ψm

)
πk,m,1

+

 A>1,m
...

A>τm−1,m

πk,m,2 + [β0
m,1, . . . , β

k−1
m,1 ]πk,m,3,

where f ′τm,x[n]

(
xk[n], x

k
m,Ψm

)
is a subgradient of convex function

fτm(·, xkm,Ψm) at xk[n] and the i-th column of matrix g′τm,x[n]
(xk[n], x

k
m,Ψm)

is a subgradient at xk[n] of the i-th component of convex function g′τm,x[n]
(·, xkm,Ψm).

Update θkn and βkn computing

(6.49) θkn =
∑

m∈C(n)

pk,mΦmQk−1
n (xk[n], ξm) and βkn =

∑
m∈C(n)

pk,mΦmπk,m

where pk,m satisfies:

θkn = sup
p∈Pn

∑
m∈C(n)

pmΦmQk−1
n (xk[n], ξm) =

∑
m∈C(n)

pk,mΦmQk−1
n (xk[n], ξm).

End If
End For

End For
Set θkn = 0 and βkn = 0 for every leaf n.

End For

Theorem 6.1 (Convergence analysis of Algorithm 3). Consider the sequence of random variables (xkn)k∈N∗ , n ∈
N and random functions (Qkn)k∈N, n ∈ N , generated by Algorithm 3. Let Assumptions (H2) hold and assume
that (ξt) is a discrete random process with a finite set of possible realizations at each stage. Also assume
that the samples generated along the iterations are independent: introducing the binary random variables ykn
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such that ykn = 1 if node n is selected at iteration k and 0 otherwise, the random variables (yk
nkT

)k∈N∗ are

independent. Then,

(i) almost surely, for any node n ∈ N\{n0}, we have

lim
k→+∞

Qkn(xk[n])−Qn(xk[n]) = 0.

(ii) Almost surely, we have

lim
k→+∞

Qk
n0

(x0, ξ1) = Qn0(x0),

i.e., the optimal value of the approximate first stage problems converges to the optimal value of the
first stage problem. Moreover, almost surely, any accumulation point of the sequence (xkn1

)k∈N∗ is
an optimal solution of the first stage problem.

Proof. We provide the main steps of the proof which follows closely the proofs of Sections 3 and 4.
We prove (i) by backward induction on the number of stages. Following the proof of Proposition 3.1, we

show that Qn is continuous on X1× . . .×Xτn for all n ∈ N\{n0}. Following the proof of Lemma 3.2, we
show that for all n ∈ N\{n0} and k sufficiently large, say k ≥ T0, Qkn is Lipschitz continuous and for every
m the sequence (πk,m)k given by (6.48) is bounded.

We also observe that

(6.50) Qkn(xk[n]) = θkn,∀k ≥ 1, ∀n ∈ N\{n0}.

Indeed, if n is a leaf the above relation holds by definition of θkn and Qkn. Let us show (6.50) when n is
not a leaf. In this case, if k /∈ Sn = {k ≥ 1 : nkτn = n} then using (6.47), we have θkn = Qk−1n (xk[n]) and

Qkn(xk[n]) = max(θkn,Qk−1n (xk[n])) = θkn. To show (6.50) for k ∈ Sn, observe that for a given node n, a new cut

is added at iteration k for Qn only when k ∈ Sn. It follows that

Qkn(x) = max
`∈Skn

θ`n + 〈β`n, x− x`[n]〉

where Skn = {1 ≤ j ≤ k : j ∈ Sn}
⋃
{0}. For k ∈ Sn and ` ∈ Skn with 1 ≤ ` < k we have

θkn = sup
p∈Pn

∑
m∈C(n)

pmΦmQk−1
n (xk[n], ξm) using (6.49) and the fact that k ∈ Sn,

≥ sup
p∈Pn

∑
m∈C(n)

pmΦmQ`−1
n (xk[n], ξm) by monotonicity,

≥ sup
p∈Pn

∑
m∈C(n)

pmΦm

(
Q`−1
n (x`[n], ξm) + 〈π`,m, xk[n] − x

`
[n]〉
)

by definition of π`,m,

≥
∑

m∈C(n)

p`,mΦm

(
Q`−1
n (x`[n], ξm) + 〈π`,m, xk[n] − x

`
[n]〉
)

since (p`,m)m∈C(n) ∈ Pn,

≥ θ`n + 〈β`n, xk[n] − x
`
[n]〉 using (6.49) and the fact that ` ∈ Sn.

Observing that k ∈ Skn, we get Qkn(xk[n]) = max
(
θkn,max

(
θ`n + 〈β`n, xk[n] − x

`
[n]〉, ` < k, ` ∈ Skn

))
= θkn which

shows (6.50). We now prove (i) by induction (the proof is similar to the proof of (i) in Theorem 4.1).
The induction hypothesis is that for each node m of stage t+ 1,

(6.51) lim
k→+∞

Qm(xk[m])−Q
k
m(xk[m]) = 0.

The above relation is satisfied for every leaf m of the tree. Now assume that the induction hypothesis is
true for each node m of stage t+ 1 for some t ∈ {1, . . . , T}. We want to show that for each node n of stage t,

(6.52) lim
k→+∞

Qn(xk[n])−Q
k
n(xk[n]) = 0.

We first show that for each node n of stage t,

(6.53) lim
k→+∞, k∈Sn

Qn(xk[n])−Q
k
n(xk[n]) = 0.

We deduce from the induction hypothesis (6.51) and Lemma A.1 in [7] that for each node m of stage t+ 1

(6.54) lim
k→+∞

Qm(xk[m])−Q
k−1
m (xk[m]) = 0.
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We then have for k ∈ Sn

(6.55)
Qk−1
n

(
xk[n], ξm

)
= Fτm

(
xk[m],Ψm

)
−Qm

(
xk[m]

)
+Qk−1m

(
xk[m]

)
≥ Qn

(
xk[n], ξm

)
−Qm

(
xk[m]

)
+Qk−1m

(
xk[m]

)
where the last inequality comes from the relation

Qn

(
xk[n], ξm

)
=

 inf
xm

Fτm(xk[n], xm,Ψm)

xm ∈ Xτm

(
xk[n], ξm

)  ≤ Fτm(xk[m],Ψm

)
which holds since xkm ∈ Xτm

(
xk[n], ξm

)
for k ∈ Sn,m ∈ C(n). It follows that

(6.56) 0 ≤ Qn

(
xk[n], ξm

)
−Qk−1

n

(
xk[n], ξm

)
≤ Qm

(
xk[m]

)
−Qk−1m

(
xk[m]

)
.

Combining (6.54) and (6.56) we obtain that for every node m ∈ C(n)

(6.57) lim
k→+∞,k∈Sn

Qn

(
xk[n], ξm

)
−Qk−1

n

(
xk[n], ξm

)
= 0.

Next, for k ∈ Sn,

0 ≤ Qn(xk[n])−Q
k
n(xk[n]) = sup

p∈Pn

∑
m∈C(n)

pmΦmQn(x[n], ξm)− θkn

= sup
p∈Pn

∑
m∈C(n)

pmΦmQn(x[n], ξm)− sup
p∈Pn

∑
m∈C(n)

pmΦmQk−1
n (xk[n], ξm)

≤ sup
p∈Pn

∑
m∈C(n)

pmΦm(Qn(x[n], ξm)−Qk−1
n (xk[n], ξm))

Combining the above relation with (6.57) we have shown (6.53).
Next, following the end of the proof of Theorem 4.1, we show by contradiction and using the Strong Law

of Large Numbers that
lim

k→+∞, k/∈Sn
Qn(xk[n])−Q

k−1
n (xk[n]) = 0,

implying by monotonicity

(6.58) lim
k→+∞, k/∈S̃n

Qn(xk[n])−Q
k
n(xk[n]) = 0,

which achieves the proof of (i).
Finally, the proof of (ii) is analogous to the proof of (ii) in Theorem 4.1. �

We have an analogue of Remark 4.2 for Algorithm 3:

Remark 6.2. Similarly to Algorithm 1, in Algorithm 3, decisions are computed at every iteration for all the
nodes of the scenario tree. However, in practice, decisions will only be computed for the nodes of the sampled
scenarios and their children nodes. This variant of Algorithm 3 will build the same cuts and compute the
same decisions for the nodes of the sampled scenarios as Algorithm 3. For this variant, for a node n, the
decision variables (xkn)k are defined for an infinite subset S̃n of iterations where the sampled scenario passes

through the parent node of node n, i.e., S̃n = SP(n). With this notation, applying Theorem 6.1-(i), we get
for t = 2, . . . , T ,

lim
k→+∞,k∈S̃n

Qkn(xk[n])−Qn(xk[n]) = 0,

almost surely, while Theorem 6.1-(ii) still holds.

We also have an analogue of Remark 4.3 for Algorithm 3.
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