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René Henrion
Weierstrass Institute Berlin

10117 Berlin, Germany
henrion@wias-berlin.de

Abstract

We consider multistage stochastic linear optimization problems combining joint
dynamic probabilistic constraints with hard constraints. We develop a method for
projecting decision rules onto hard constraints of wait-and-see type. We establish
the relation between the original (infinite dimensional) problem and approximating
problems working with projections from different subclasses of decision policies. Con-
sidering the subclass of linear decision rules and a generalized linear model for the
underlying stochastic process with noises that are Gaussian or truncated Gaussian,
we show that the value and gradient of the objective and constraint functions of the
approximating problems can be computed analytically.

Keywords dynamic probabilistic constraints, multistage stochastic linear programs, lin-
ear decision rules.

1 Introduction

A probabilistic constraint is an inequality

P (g(x, ξ) ≤ 0) ≥ p, (1)

where g is a mapping defining a random inequality system, x is a decision vector, and
ξ is a random vector living on a probability space (Ω,A,P). In many applications, the
decision x has to be taken before the realization of the random parameter ξ is observed
(’here-and-now decisions’). The meaning of (1) is the following: a decision x is feasible
if and only if the random inequality system g(x, ξ) ≤ 0 is satisfied at least with prob-
ability p ∈ (0, 1]. Choosing p close to one reflects the wish for robust decisions which
moreover can be interpreted in a probabilistic way. Probabilistic constraints have impor-
tant applications in engineering optimization problems involving uncertain data, e.g., in
water management, telecommunications, electricity network expansion, mineral blending,
chemical engineering, etc. For a comprehensive overview on the theory, numerics and
applications of probabilistic constraints, we refer to, e.g., [4, 13].

Often, decisions may depend on time, i.e., the vector x represents a discrete decision
process. In such case, the ’here-and-now’ setting of (1) means that decisions for the whole
time period are taken prior to observing the random parameter, which is now a discrete

1



stochastic process. Then, inequality (1) represents a static probabilistic constraint because
the decision process does not take into account the gain of information over time while
observing the random process. To overcome this deficiency, one may pass from a decision
vector x = (x1, . . . , xT ) to a closed loop decision policy

x = (x1, x2(ξ1), x3(ξ1, ξ2), . . . , xT (ξ1, . . . ξT−1))

each component of which represents a function of previously observed values of the ran-
dom process for a given time. With this definition, (1) becomes a dynamic probabilistic
constraint now acting on a variable x from an infinite dimensional space. In order to
return to a numerically tractable problem in finite dimensions, the decision policies are
often parameterized, the most common approach being the introduction of linear decision
rules, i.e., xi(ξ) = Aξ + b for appropriate A, b which now become the finite-dimensional
substitutes for the originally infinite dimensional variables. This strategy has been in-
troduced to probabilistically constrained hydro reservoir problems as early as 1969 [15].
It was used there (and in subsequent publications) in the context of so-called individual
probabilistic constraints where each component of the given random inequality system is
individually turned into a probabilistic constraint:

P (gi(x, ξ) ≤ 0) ≥ p (i = 1, . . . ,m).

The big advantage of such individual constraints is that - in case the component gi(x, ξ)
is separable with respect to ξ - they are easily converted into explicit constraints via
quantiles. In particular, if g happens to be a linear mapping and the objective is linear
too, then all one has to do to solve such a probabilistic optimization problem is to apply
linear programming. It is well known, however, that the chosen probability level p in an
individual model may by far not correspond to the level in a joint model, given by (1),
where the probability is taken over the entire inequality system. In [19] a hydro reservoir
problem is presented where at an optimal release policy the level constraints are satisfied
in each time interval with probability 90% individually, whereas the probability of keeping
the level constraints through the whole time period is as low as 32%. This observation
strongly suggests to deal with the joint model (1) albeit much more difficult to treat
algorithmically.

The application of joint probabilistic constraints (with continuously distributed ran-
dom vector) in hydro reservoir management has been pioneered in [14] where the authors
considered a rolling-horizon type variant for probabilistic constraints. Joint probabilistic
constraints in the closed loop sense discussed above, have been investigated in [1] again in
the context of a reservoir problem. Here a highly flexible piecewise constant approxima-
tion of decision policies x(ξ) was considered and it turned out that the optimal policies of
the given problem were definitely not linear. However, a sufficiently fine piecewise approx-
imation requires a big computational effort and limits the applicability of the model to a
few time stages like three or four. Therefore, picking up again the idea of parameterized
(in particular, linear) decision rules but now in the context of joint constraints appears
to be reasonable. Other authors embed optimization problems with dynamic probabilistic
constraints into a dynamic programming scheme of optimal control, however, typically
imposing simplifications with regard to the joint system of constraints like the assumption
of independent components, or of a discrete distribution (scenarios) or of an individualized
(via Boole-Bonferroni inequality) surrogate model (e.g., [2, 11]).
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The aim of the current paper is to discuss several modeling issues in the context of
dynamic probabilistic constraints putting the emphasis on

• joint probabilistic constraints as in (1);

• continuous multivariate distributions of the random vector (in particular, Gaussian)
with typically correlated components;

• parameterized decision rules (in particular, linear and projected linear ones);

• mixed probabilistic and hard (almost sure) constraints.

We do not intend to investigate the so-called time consistent models for dynamic proba-
bilistic constraints as it was done, for instance, in [2]. This issue has been considered so far
in the framework of Dynamic Programming, where the assumption of the random vector
having independent components is paramount, e.g., [?]. Moreover, typically, a discrete dis-
tribution is assumed for numerical analysis. As pointed out above, we are interested here
in continuously distributed distributions with potentially correlated variables. Though it
seems possible to establish time consistent models for dynamic chance constraints under
mutivariate Gaussian distribution, this issue would complicate the analysis we have in
mind here and is yet to be explored in future research.

Moreover, the focus of this paper is not to develop a new algorithm neither the study
of a concrete application, although a simple hydro reservoir problem will guide us as an
illustration. Our idea is rather to provide a modeling framework taking into account the
items listed above and yielding a link to algorithmic approaches for static probabilistic
constraints. The latter have been successfully dealt with numerically in the context of lin-
ear probabilistic constraints under multivariate Gaussian (and Gaussian like) distribution
(see, e.g., [13, 14, 19, 20]).

The paper is organized as follows: Section 2 presents a general linear multistage prob-
lem with probabilistic and hard constraints. It describes a method for projecting decision
rules onto hard constraints of wait-and-see type. It finally establishes the relation be-
tween the original (infinite dimensional) problem and approximating problems working
with projections from different subclasses of decision policies. These subclasses are kept
very general in this section while they are specialized to linear decision rules in Section
3. In that same section the probabilistic time series model we intend to use for the dis-
crete stochastic process is made precise. It is clarified, how the objective, the probabilistic
constraint and the hard constraints look like under this probabilistic model and the as-
sumed linear decision rules. Finally, Section 4 explicitly develops the shape of general
optimization problems introduced in Section 2 when assuming multivariate Gaussian and
truncated Gaussian models for the discrete process. Advantages and difficulties for the
different problems are discussed.
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2 A linear multistage problem with probabilistic constraints

2.1 The general model

For given T ∈ N with T ≥ 2, we consider a T -stage stochastic linear minimization problem
with the following random constraints:

t∑
τ=1

At,τyτ +
t∑

τ=1
Bt,τξτ ≤ bt, t = 1, . . . , T. (2)

Here, for t = 1, . . . , T , yt are nt-dimensional decision vectors, ξt are Mt-dimensional ran-
dom vectors, At,τ and Bt,τ are given matrices of orders (lt, nτ ) and (lt,Mτ ), respectively,
and bt ∈ Rlt are given vectors. In what follows, the index ’t’ will be interpreted as time
and yt and ξt represent discrete decision and stochastic processes, respectively, having
finite horizon. In this time-dependent setting we shall assume that all components of the
random process have the same dimension M1 = · · · = MT =: M . The joint random vector
ξ = (ξ1 . . . , ξT ) ∈ RMT is supposed to live in a probability space (Ω,A,P). Similarly to
traditional multistage stochastic programming, we shall assume that the decision yt is
taken in the beginning of time interval [t, t+ 1) but the random vector ξt is observed only
at the end of that same interval. Therefore, the realization of ξt is unknown at the time
one has to decide on yt. On the other hand, in order to take into account the gain of in-
formation due to past observations of randomness, the decision yt is allowed to depend on
ξ1:t−1 := (ξ1, . . . , ξt−1) such that yt is Borel measurable. In the following, we will refer to
the yt (ξ1:t−1) , t = 1, . . . , T , (including the deterministic first stage decision y1 (ξ1:0) := y1)
as decision policies rather than decision vectors in order to emphasize their functional
character. Summarizing, we are dealing with the following problem:

minimize E
∑T

t=1〈ht, yt (ξ1:t−1)〉 subject to
t∑

τ=1
At,τyτ (ξ1:τ−1) +

t∑
τ=1

Bt,τξτ ≤ bt, t = 1, . . . , T, (3)

where E is the expectation operator.

Example 2.1 As an illustration, we consider a two-stage problem for the optimal release
y of a hydro-reservoir under stochastic inflow ξ. The released water is used to produce
and sell hydro-energy at a price p which is assumed to be known in advance. Given the
two stages, these quantities have components ξ = (ξ1, ξ2), p = (p1, p2), y = (y1, y2(ξ1)).
The reservoir level is required to stay at both stages between given lower and upper limits
`lo, `up, respectively. Finally, the release is supposed to be bounded by fixed operational
limits ylo, yup, respectively, for turbining water at both time stages. Denoting by `0 the
initial water level in the reservoir, the random cost is given by −(p1y1 + p2y2(ξ1)) while
the random constraints can be written

`lo ≤ `0 + ξ1 − y1 ≤ `up
`lo ≤ `0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up

ylo ≤ y1 ≤ yup
ylo ≤ y2(ξ1) ≤ yup.

(4)

4



It is easy to see that this is a special instance of problem (3) with data

h := −p, A1,1 := A2,2 :=


−1

1
1
−1

 , A2,1 :=


−1

1
0
0

 ,

B1,1 := B2,1 := B2,2 :=


1
−1

0
0

 , b1 := b2 :=


`up − `0
`0 − `lo
yup

−ylo

 .

As far as the constraints are concerned, satisfying them in expectation only, would result
in decisions leading to frequent violation of constraints which is not desirable for a stable
operation say of technological equipment, etc. At the other extreme, constraints could
be required to hold almost surely, thus yielding very robust decisions avoiding violation
of constraints with probability one. In that case, we obtain the well-defined optimization
problem

minimize E
∑T

t=1〈ht, yt (ξ1:t−1)〉 subject to
t∑

τ=1
At,τyτ (ξ1:τ−1) +

t∑
τ=1

Bt,τξτ ≤ bt t = 1, . . . , T, P-almost surely. (5)

If in the constraints of (5) one had thatBT,T = 0, then the last component ξT of the random
process would not enter the constraints and (5) would represent a conventional multistage
stochastic linear program. Note, however, that B2,2 6= 0 in the two-stage problem (4) and
so the random inflow ξ2 observed only after taking the last decision y2(ξ1) plays a role
in some of the (level) constraints. In such cases, insisting on almost sure satisfaction of
constraints may be impossible in particular for unbounded random distributions. In (4),
for instance, no matter what has been observed (ξ1) or decided on (y1,y2(ξ1)) until the
beginning of the second time interval, the last unknown inflow ξ2 could always be large
enough to eventually violate the upper level constraint

`0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up.

Therefore, one has to look for alternative models for such constraints leaving the possibility
of a ’controlled’ violation. These observations lead us to distinguish in (5) between hard
constraints which have to be satisfied almost surely for physical or logical reasons and
soft constraints which can be dealt with in a more flexible way. A typical example for
hard constraints are the lower and upper limits for the amounts of turbined water (ylo ≤
y1, y2(ξ1) ≤ yup) in (4): there is no turbining beyond the given operational limits just for
physical reasons.

On the other hand, the reservoir level constraints could be considered to be soft ones.
Suppose, for instance, that `lo in (4) represents the physical lower limit of the reservoir
below which no water is released and turbined. Then, a violation of the lower level
constraint can never happen and so the corresponding two inequalities can be removed
from (4). Doing so, one has to take into account, however, that not the total amount of
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the release policies y1 and y2(ξ1), respectively, can be turbined and sold at the given prices
but only the part not violating the lower level constraint, i.e., min{y1, `0 + ξ1− `lo} in the
first stage and min{y2(ξ1), `0 + ξ1 + ξ2 − llo − y1} in the second stage. This means that
the original profits p1y1 and p2y2(ξ1) at the two stages have to be reduced by the amounts
p1
(
y1 − `0 − ξ1 + `lo

)
+

and p2
(
y2(ξ1)− `0 − ξ1 − ξ2 + `lo + y1

)
+

, respectively, where the
lower index ’+’ as usual represents the component-wise maximum of the given expression
and zero. In this way, the original lower level constraints in (4) have been removed and
compensated for by appropriate penalty terms in the objective.

Next, suppose that `up in (4) represents some upper limit of the reservoir which is
considerably lower than the physical one and serves the purpose of keeping a flood reserve.
Then we may neither be able to satisfy this upper limit almost surely (see above) nor to
remove it in exchange for an appropriate penalty. In such cases it is reasonable to impose
a probabilistic constraint instead:

P (`0 + ξ1 − y1 ≤ `up, `0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up) ≥ p,

where p ∈ (0, 1) is a specified probability level. Hence, the release policies y1, y2(ξ1) are
defined to be feasible if the indicated set of random inequalities is satisfied at least with
probability p. Observe that p = 1 would yield the almost sure constraints again, hence
choosing p close to but smaller than one, offers us the possibility of finding a feasible
release policy while keeping the soft upper level constraint in a very robust sense.

Example 2.2 Taking into account all three kinds of hard and soft constraints in the (ran-
dom) hydro reservoir model (4), one ends up with the following well-defined optimization
problem:

minimize
−E(p1y1 + p2y2(ξ1))
+E(p1(y1 − `0 − ξ1 + `lo)+ + p2(y2(ξ1)− `0 − ξ1 − ξ2 + y1 + `lo)+)

(6)

subject to

P
(

`0 + ξ1 − y1 ≤ lup
`0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up

)
≥ p

ylo ≤ y1 ≤ yup
ylo ≤ y2(ξ1) ≤ yup

}
P-almost surely.

Here, the group of soft lower level constraints has disappeared and entered the objective
as a second penalization term, the group of soft upper level constraints (for which no
penalization costs are available) has turned into a probabilistic constraint and the group of
hard box constraints is formulated in the almost sure sense.

Applying this strategy to the general random constraints (5), we are led to partition the
data matrices and vectors for t = 1, . . . , T , and τ = 1, . . . , t, as

At,τ =
(
A

(1)
t,τ , A

(2)
t,τ , A

(3)
t,τ

)
, Bt,τ =

(
B

(1)
t,τ , B

(2)
t,τ , B

(3)
t,τ

)
, bt =

(
b
(1)
t , b

(2)
t , b

(3)
t

)
6



according to penalized soft constraints (upper index (1)), probabilistic soft constraints
(upper index (2)) and almost sure hard constraints (upper index (3)). Accordingly, (5)
turns into the well-defined optimization problem

minimize (7)

T∑
t=1

E

{
〈ht, yt (ξ1:t−1)〉+

〈
Pt,
(

t∑
τ=1

A
(1)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(1)
t,τ ξτ − b

(1)
t

)
+

〉}
subject to

P
(

t∑
τ=1

A
(2)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(3)
t,τ ξτ ≤ b

(3)
t , t = 1, . . . , T, P-almost surely.

Here, the Pt ≥ 0 refer to a cost vectors penalizing the violation of soft constraints with
upper index (1).

2.2 Projection onto hard constraints of wait-and-see type

We will refer in (5) to wait-and-see constraints if Bt,t = 0 for all t = 1, . . . , T , and to
here-and-now constraints otherwise. The distinction is made according to whether in the
constraint of any stage t there is unobserved randomness ξt left or not. For example, in
(4), the first two inequalities (level constraints) are here-and-now whereas the last two
(operational limits) are wait-and-see. As mentioned earlier, the almost sure constraints

in (7) don’t have a good chance to be ever satisfied if B
(3)
T,T 6= 0 and the support of the

random distribution is unbounded. We’ll get back to such here-and-now constraints for
bounded support of the random distribution in Section 4.5. First, let us deal with the
case where all hard constraints are of wait-and-see type as in (6). In this case, owing to

B
(3)
t,t = 0 for all t = 1, . . . , T , the constraint set of (7) can be written as

M1 :=
{

(yt (ξ1:t−1))t=1,...,T | (8)

P

(
t∑

τ=1

A
(2)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1) +

t−1∑
τ=1

B
(3)
t,τ ξτ ≤ b

(3)
t , t = 1, . . . , T, P-almost surely

}
.

In the context of numerical solution approaches, one will usually not work in the infinite-
dimensional setting of all Borel measurable policies but rather with a finite dimensional
approximation which may be defined by some proper subset K of policies. Later in this
paper we will deal with the class of linear decision rules (see Section 3.2). The feasible
set of (7) will then become the intersection M1 ∩K rather than just M1. This intersection
may turn out to be very small or even empty thus leading to a poor approximation of the
infinite dimensional problem (7). If, for instance one of the hard constraints is given as
y2(ξ1) ∈ [1, 2] (P-almost surely) and if, moreover, the class of policies is

K := {(y1, y2(ξ1)|∃a ∈ R : y2(ξ1) = aξ1},
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then, clearly, M1 ∩K = ∅. One possibility to avoid this kind of problem is to operate with
projections of policies onto the feasible domain of hard constraints.

Given a closed convex subset X of a finite dimensional space, we denote the uniquely
defined projection onto this set by πX . For t = 1, . . . , T , we introduce the multifunctions

Xt (z1:t−1, ξ1:t−1) :=

{
y|A(3)

t,t y(ξ1:t−1) ≤ b(3)t −
t−1∑
τ=1

B
(3)
t,τ ξτ −

t−1∑
τ=1

A
(3)
t,τ zτ (ξ1:τ−1)

}
. (9)

Here, we adopt the previous notation z1:t−1 := (z1, . . . , zt−1) from ξ. By Π we denote the
operator which maps a policy y := (yt (ξ1:t−1))t=1,...,T to a new policy z := Π(y) defined
iteratively by

zt (ξ1:t−1) := πXt(z1:t−1,ξ1:t−1) (yt (ξ1:t−1)) ∀ξ, ∀t = 1, . . . , T, (10)

starting from z1 := πX1 (y1). For example, for t = 1, 2, 3, . . . one gets successively that

z1 : = πX1 (y1) ,

z2 (ξ1) : = πX2(z1,ξ1) (y2 (ξ1)) , ∀ξ1,
z3 (ξ1, ξ2) : = πX3(z1,z2(ξ1),ξ1,ξ2) (y3 (ξ1, ξ2)) , ∀ξ1 ∀ξ2,

so that Π(y) is correctly defined and by (9) satisfies the hard (almost sure) constraints of
(7). (10) amounts to a scenario-wise projection onto the polyhedra (9) which can be carried
out numerically by solving a convex quadratic program subject to linear constraints. In
the special case of rectangular sets [ylo, yup], which can be modeled as a hard constraint
in (8) by putting for t = 1, . . . , T and τ = 1, . . . , t− 1:

A
(3)
t,t := (I,−I)T , b

(3)
t :=

(
yupt
−ylot

)
, A

(3)
t,τ := 0, B

(3)
t,τ := 0, (11)

an explicit formula can be exploited: projection of a policy then just means cutting it off
at the given lower and upper limits. For instance, in the context of the hard constraints
in (6), one has that

Π(y) = Π(y1, y2 (·)) =
(

max{ylo,min{y1, yup}},max{ylo,min{y2 (·) , yup}}
)
. (12)

As mentioned above, projection via Π is a way to enforce the hard constraints. This
offers several alternatives to the above-mentioned direct intersection of feasible policies
from M1 with a given (typically finite-dimensional) subclass K. One option would consist
in working from the very beginning with projected policies so that the feasible set would
become M1 ∩ Π(K) rather than M1 ∩ K. Indeed, we shall see in Lemma 2.3 that the
intersection with the original infinite-dimensional feasible set may be substantially larger
by doing so (in particular it would be no more empty in the example discussed before). A
second option would consist in relaxing the hard constraints to probabilistic constraints
similar to the ones given from the beginning and projecting them afterwards onto the
set defined by hard constraints. We formalize this idea by introducing the alternative
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(infinite-dimensional) constraint set

M2 :=
{

(yt (ξ1:t−1))t=1,...,T | (13)

P


t∑

τ=1
A

(2)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1) +

t−1∑
τ=1

B
(3)
t,τ ξτ ≤ b

(3)
t

 t = 1, . . . , T

 ≥ p }
.

We shall see in Lemma 2.3 that the projection of M2 onto the hard constraints yields the
set M1, so there is no difference in the solution of (7) in the original infinite-dimensional
setting. When considering intersections with a subclassK, however, a significant advantage
over working with M1 may be observed.

2.3 Approximating the original problem by means of subclasses of de-
cision rules

The following result clarifies the relations between the feasible sets M1, M2 introduced
above and their intersection with (projections of) subclasses of decision rules:

Lemma 2.3 If K is an arbitrary subset of Borel measurable policies (yt (ξ1:t−1))t=1,...,T ,
then the following chain of inclusions holds true:

M1 ∩ K ⊆ Π(M2 ∩ K) ⊆M1 ∩Π(K) ⊆M1.

In particular, by setting K equal to the space of all Borel measurable policies, we derive
that Π(M2) = M1.

Proof. Let z ∈M1∩K. Then, the probabilistic constraint for the first and the almost sure
constraints for the other inequality system in (8), respectively, guarantee that the joint
probabilistic constraint in (13) is satisfied, hence z ∈M2 ∩K. With z fulfilling the almost
sure constraints in (8), we have that z = Π(z), whence z ∈ Π(M2 ∩ K). This proves the
first inclusion in the above chain. Next, as for the second inequality, let z ∈ Π(M2 ∩ K),
hence z = Π(y) for some y ∈M2∩K. In particular, z ∈ Π(K) and it remains to show that
z ∈M1. As an image of the mapping Π, z satisfies the almost sure constraints of (8). By
y ∈M2 and (13), there exists a measurable set S ⊆ Ω such that P (S) ≥ p and

t∑
τ=1

A
(2)
t,τ yτ (ξ1:τ−1 (ω)) +

t∑
τ=1

B
(2)
t,τ ξτ (ω) ≤ b

(2)
t

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1 (ω)) +

t−1∑
τ=1

B
(3)
t,τ ξτ (ω) ≤ b

(3)
t

are satisfied for all t = 1, . . . , T and all ω ∈ S. By (10), the second inequality system
implies (successively for t from 1 to T ) that

yt (ξ1:t−1 (ω)) ∈ Xt (z1:t−1, ξ1:t−1 (ω)) ∀t = 1, . . . , T, ∀ω ∈ S.
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Hence, again by (10), (zt (ξ1:t−1) (ω))t=1,...,T = (yt (ξ1:t−1) (ω))t=1,...,T for all ω ∈ S. There-
fore, the first inequality system above can be written as

t∑
τ=1

A
(2)
t,τ zτ (ξ1:τ−1 (ω)) +

t∑
τ=1

B
(2)
t,τ ξτ (ω) ≤ b(2)t ∀t = 1, . . . , T, ∀ω ∈ S.

Since P (S) ≥ p it follows that z satisfies the probabilistic constraint in (8). Summarizing
we have shown that also z ∈M1, whence the desired inclusion follows. The last inclusion
is trivial.

The previous Lemma suggests to consider the following 4 optimization problems each of
them being some relaxation of our original optimization problem (7):

min{h(y)|y ∈M1 ∩ K}, (14)

min{h(z)|z ∈ Π(arg min{h(y)|y ∈M2 ∩ K})}, (15)

min{h(y)|y ∈ Π(M2 ∩ K)}, (16)

min{h(y)|y ∈M1 ∩Π(K)}. (17)

Here h refers to the objective function of (7) and K is a given subclass of decision policies.
The meaning of (14), (16) and (17) is clear and relates to the feasible sets considered in
Lemma 2.3. In (15) we determine first the solution(s) of the inner optimization problem
min{h(y)|y ∈ M2 ∩ K} and then project them via Π. If this inner optimization problem
has multiple solutions, then we choose those of their projections under Π yielding the
smallest value of the objective. We observe that (16) has the same optimal value as the
problem

min{h(Π(y))|y ∈M2 ∩ K}, (18)

where the projection is shifted from the constraints to the objective, and that y is a solution
of (18) if and only if Π(y) is a solution of (16). Hence, (16) and (18) are equivalent and
it may be a matter of convenience which of the two forms is preferred. The potential
advantage of (15) say over (16) and (17) is that projections don’t have to be dealt with
in the constraints or in the objective directly but can be carried out after solving the
problem.

Lemma 2.4 Denote by ϕ1, ϕ2, ϕ3, ϕ4, respectively, the optimal values of problems (14)-
(17) and by ϕ the optimal value of the originally given problem (7). Then, any solution
of problems (14)-(17) is feasible for problem (7) and it holds that

ϕ1, ϕ2 ≥ ϕ3 ≥ ϕ4 ≥ ϕ.

Proof. From Lemma 2.3 we see that any feasible point and, hence, any solution of
(14), (16) and (17) is feasible for (7). From the inclusions of Lemma 2.3 it follows that
ϕ1 ≥ ϕ3 ≥ ϕ4 ≥ ϕ. Now, let z∗ be a solution of (15). Then, there exists some y∗ ∈M2∩K
such that z∗ = Π (y∗) and y∗ solves the problem min{h(y)|y ∈ M2 ∩ K}. In particular,
z∗ ∈ Π (M2 ∩ K) is feasible for (16). This implies first z∗ ∈M1 by Lemma 2.3 and, hence,
the asserted feasibility of z∗ for (7). Second, it implies the desired remaining relation
ϕ2 = h(z∗) ≥ ϕ3.

10



Lemma 2.4 can be interpreted as follows: Problem (14) reflects the pure transition to a
subclass K of policies in the originally given problem (7). The resulting loss in optimal
value equals ϕ1 − ϕ ≥ 0. In contrast, using projections onto hard constraints in the one
or other way as in (16) and (17) may lead to smaller losses in the optimal values. Of
course, this advantage of working with projections requires that the computational gain
by passing to an interesting subclass K is not destroyed by the projection procedure. This
is why in Section 3.2 we shall introduce the class of linear decision rules as a suitable one
harmonizing well to a certain degree with projections onto polyhedral sets. The following
example illustrates Lemma 2.4:

Example 2.5 Consider the following problem with policies y1, y2(ξ1) as variables:

min y1 subject to

P(ξ1 ≤ y1, ξ2 ≤ y2(ξ1)) ≥ p
y1, y2(ξ1) ∈ [0, 1], P− almost surely.

We assume that the random vector ξ = (ξ1, ξ2) follows a uniform distribution over the set
Θ = ([−1, 1]× [0, 1]) ∪ ([0, 1]× [0,−1]) and that p = 1/3. As a subclass of policies, we
consider (purely) linear second stage decisions:

K := {(y1, y2(ξ1)) |∃a ≥ −1 : y2(ξ1) = aξ1}.

• Solution of the original problem (7):

We claim that the optimal value ϕ of the original problem equals 0. Indeed, it cannot
be smaller than 0 due to the constraint y1 ≥ 0. On the other hand, y1 := 0 and
y2(ξ1) := 1 for all ξ1 represents a feasible policy because it clearly satisfies the almost
sure constraints and the set of ξ satisfying ξ1 ≤ 0 and ξ2 ≤ 1 covers one third of the
support of ξ. Hence the probabilistic constraint is satisfied too. The objective value
associated with this feasible policy equals y1 = 0, so ϕ = 0 as asserted.

• Solution of problem (14):

The feasible set here is M1 ∩ K and a feasible second stage policy y2(ξ1) = aξ1 has
to be trivial (a = 0) in order to satisfy the almost sure constraint 0 ≤ y2(ξ1) ≤ 1.
Then, the only choice for y1 such that (y1, 0) satisfies the probabilistic constraint is
y1 := 1 (only then, the set of ξ satisfying ξ1 ≤ y1 and ξ2 ≤ 0 covers one third of the
support of ξ). Hence the feasible set in this problem reduces to a singleton and its
optimal value equals to the objective value of this singleton: ϕ1 = y1 = 1.

• Solution of problems (15) and (16):

As stated above, (16) is equivalent with (18). In our example, h is the projection
onto the first component, hence we seek to minimize (Π(y))1 over the constraint set

M2 ∩ K = {(y1, aξ1) | a ≥ −1,P(y1, aξ1 ∈ [0, 1], ξ1 ≤ y1, ξ2 ≤ aξ1) ≥ 1/3}
= {(y1, aξ1) | y1 ∈ [0, 1], a ≥ −1, ψ(y1, a) ≥ 1/3} (19)

where ψ(y1, a) := P((ξ1, ξ2) ∈ S(a, y1)) with

S(a, y1) := {(ξ1, ξ2) ∈ Θ | ξ1 ≤ y1, ξ2 ≤ aξ1, 0 ≤ aξ1 ≤ 1}

11
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Figure 1: Representations of S(a, y1) and S̃(a, y1): top figures for −1 ≤ a ≤ 0, bottom
left for 0 < a ≤ 1, and bottom right for a > 1.

3 Linear decision rules and Gaussian distribution

Example 2.3 has illustrated the different approximating optimization problems with re-
spect to the given one (5). Of course, it would be desirable to use approximations whose
optimal values are closest to the given one (e.g., problem (14)). On the other hand, these
may be harder to solve. We shall demonstrate in this section which shape the optimization
problems take for the special subclass of policies induced by linear decision rules and for
the case of multivariate Gaussian distributions.

10

Figure 1: Representations of S(a, y1) and S̃(a, y1): top figures for −1 ≤ a ≤ 0, bottom
left for 0 < a ≤ 1, and bottom right for a > 1.

(see Figure 1). Note that in (19) we were allowed to extract the deterministic con-
straint y1 ∈ [0, 1] from the probabilistic constraint.

As (Π(y))1 is the projection of y1 onto the first stage almost sure constraint set
X1 = [0, 1] (see (10) and (9)), we get that (Π(y))1 = y1. Consequently, according to
(18), we want to minimize y1 for all policies (y1, aξ1) belonging to (19). We consider
three cases:

(i) For −1 ≤ a ≤ 0 (see top left in Figure 1), we have ψ(y1, a) = −a/6 < 1/3.

(ii) For 0 < a ≤ 1 (see bottom left in Figure 1), we have ψ(y1, a) = 1
3(y1 + ay21/2).

The smallest value of y1 satisfying ψ(y1, a) ≥ 1/3 is obtained taking a = 1 and
y1 = −1 +

√
3 > 2/3.

(iii) For a > 1 (see bottom right in Figure 1), we get

ψ(y1, a) =

{
1
3(y1 + ay21/2) if y1 ≤ 1/a,
1
2a otherwise.

In particular, ψ(23 ,
3
2) = 1

3 . We distinguish the two subcases:

(1) a > 3/2: if y1 > 1/a then ψ(y1, a) = 1
2a < 1

3 and if 0 ≤ y1 ≤ 1
a then

ψ(y1, a) ≤ ψ( 1a , a) = 1
2a <

1
3 .

12



(2) 1 ≤ a ≤ 3/2: If 0 ≤ y1 < 2
3 then y1 ≤ 1/a and, hence,

ψ(y1, a) <
1

3

(
2

3
+

3

2

4

2 · 9

)
=

1

3

Summarizing, the best value of the objective at an admissible solution of (18) equals
2
3 and is realized uniquely by the optimal policy

(
2
3 ,

3
2ξ1
)
. The latter is therefore the

unique optimal solution of (18). According to our observation above, its projection

Π

(
2

3
,
3

2
ξ1

)
=

(
2

3
,max{0,min{3

2
ξ1, 1}}

)
(20)

onto the almost sure constraints in our example is an optimal solution of (16). The
associated function value equals h

(
2
3 ,

3
2ξ1
)

= 2/3 which therefore is the optimal value
of (16). It follows that ϕ3 = 2/3.

On the other hand, as we have already observed that h(y) = h(Π(y)) = y1 due to
0 ≤ y1 ≤ 1, it follows that the unique optimal solution

(
2
3 ,

3
2ξ1
)

of (18) yields the
unique optimal solution to the problem

min{h(y)|y ∈M2 ∩ K}
at the same time. Hence, its projection onto the almost sure constraints is the already
identified solution (20) of problem (16) implying that the optimal value of problem
(15) is the same as that of (16): ϕ2 = ϕ3 = 2/3.

• Solution of problem (17): By virtue of (12), the policies belonging to the set Π(K)
have the form (y1,max{0,min{aξ1, 1}}) for some y1 ∈ [0, 1] and a ≥ −1 (see Figure
1). Since these policies already satisfy the almost sure constraints, all one has to
add in order to get a policy feasible for (17) is the satisfaction of the probabilistic
constraint. Observe that

M1 ∩Π(K) = {(y1,max{0,min{aξ1, 1}}) | y1 ∈ [0, 1], a ≥ −1, ψ̃(y1, a) ≥ 1/3}
where ψ̃(y1, a) := P((ξ1, ξ2) ∈ S̃(a, y1)) with

S̃(a, y1) = {(ξ1, ξ2) ∈ Θ | ξ1 ≤ y1, ξ2 ≤ max(0,min(aξ1, 1))}
(see Figure 1). For −1 ≤ a ≤ 0 (see Figure 1), we have

ψ̃(y1, a) =
1

3
(y1 −

a

2
) < ψ̃(1/2,−1) =

1

3
∀y1 < 1/2.

For 0 < a ≤ 1 (see bottom left in Figure 1), we have ψ̃(y1, a) = 1
3(y1 + ay21/2).

The smallest value of y1 satisfying ψ̃(y1, a) ≥ 1/3 is obtained taking a = 1 and
y1 = −1 +

√
3 > 1/2. Finally, for a > 1 (see bottom right in Figure 1), we assume

that y1 ≤ 1/2. Then,

y1 > 1/a =⇒ ψ̃(y1, a) =
1

3
(2y1 −

1

2a
) <

y1
3
≤ 1

3

y1 ≤ 1/a =⇒ ψ̃(y1, a) =
1

3
(y1 +

ay21
2

) ≤ 1

3
(
1

2
+

1

2a
) <

1

3
.

This means that there is no feasible policy with y1 ≤ 1/2 and a > 1. Conse-
quently, the optimal value of (17) equals ϕ4 = 1/2 and is realized by the policy
(1/2,max{0,min{−ξ1, 1}}) which is the projection of the decision rule (1/2,−ξ1) ∈
K onto the hard box constraints.
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3 Probabilistic Model and Linear decision rules

Example 2.5 has illustrated the different approximating optimization problems with re-
spect to the given one (7). In order to formulate these ideas in a practically meaningful
framework, one has to specify the probabilistic model for the random vector ξ and a
suitable subclass K of decision rules in Lemma 2.3.

3.1 Probabilistic model

We introduce in this section the class of stochastic processes (ξt) we consider. Each
component ξt(m) of ξt follows a linear model of the form

pt(m)∑
k=0

αt,k(m)ξt−k(m) = µt(m) +

qt(m)∑
k=0

βt,k(m)εt−k(m), m = 1, . . . ,M, (21)

where lags pt(m), qt(m) are nonnegative and depend on time. We assume that for every
t, the coefficients αt,0(m), αt,pt(m)(m), and βt,qt(m)(m) are nonzero.

Finally, the noises are supposed to obey centered Gaussian laws εt ∼ N (0,Σt), pairwise
independent for different time steps. We recall the notation N (µ,Σ) for referring to a
multivariate Gaussian distribution with mean µ and covariance matrix Σ. Hence, ε :=
(ε1, . . . , εT ) ∼ N (0,Σ), where Σ is a block-diagonal covariance matrix whose blocks are
the covariance matrices Σt of the components εt.

Remark 3.1 We assume that the parameters of model (21) are known. In its full gen-
erality, model (21) is not identifiable. Additional assumptions are needed to identify
lags pt(m), qt(m) and calibrate the model parameters. As special cases, the identifiable
SARIMA (with constant lags) and Periodic Autoregressive (PAR, with periodic time de-
pendent lags) models can be considered.

Using iteratively model equation (21), for each instant t = 1, . . . , T , we can decompose
ξt(m) as a function of noises ε1, . . . , εt and of past observations of the process (ξt) and of
the noises (observations for instants 0,−1,−2, . . .). More precisely, for every t = 1, . . . , T
and for every component m, we have for ξt(m) a decomposition of the form

ξt(m) = ct(m) +

rt(m)∑
k=1

γt,k(m)ξ1−k(m) +

st(m)∑
k=1

δt,k(m)ε1−k(m) +

t∑
k=1

θt,k(m)εk(m) (22)

for some lags rt(m) and st(m) that represent the minimal number of past observations of
respectively the stochastic processes (ξt) and (εt) that are necessary to decompose ξt(m)
over its past. This decomposition will be used in the next sections. In this decomposition,
the first two sums gather the past realizations of process (ξt) and of the noises. Lemma
5.1 stated and proved in the Appendix, provides the formulae to compute iteratively the
coefficients appearing in the decompositions of ξ1(m), ξ2(m), . . . , ξT (m),m = 1, . . . ,M ,
of the form (22) above. The computation of these coefficients is necessary when one is
interested in solving the optimization problems we consider in the next sections when (ξt)
is of the form (21). A similar decomposition for less general models was given in [7], [8].
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It is convenient to write (22) in the compact form

ξt = µ̃t + Θtε (t = 1, . . . , T ), (23)

where for each t = 1, . . . , T ,

• µ̃t is a constant vector in RM with component m given by

µ̃t(m) = ct(m) +

rt(m)∑
k=1

γt,k(m)ξ1−k(m) +

st(m)∑
k=1

δt,k(m)ε1−k(m),

• Θt is the M×MT matrix

Θt =
(
diag(θt,1(1), . . . , θt,1(M)), . . . ,diag(θt,t(1), . . . , θt,t(M)), 0M×M(T−t)

)
where the coefficients θt,j(m) are given in Lemma 5.1.

3.2 Linear decision rules

As mentioned in Section 2.2 the numerical solution of problem (7) requires to reduce
the space of all Borel measurable decision policies to some convenient finite-dimensional
subspace. A simple and widely used way to do so consists in considering so-called linear
decision rules as policies which are defined as the set

K := {(yt (ξ1:t−1))t=1,...,T | ∃Ft, ft : yt (ξ1:t−1) = Ftξ1:t−1 + ft (t = 1, . . . , T )}, (24)

with matrices Ft and vectors ft of appropriate size. Since the first stage decision y1 is
deterministic, we convene about fixing F1 := 0.

3.2.1 The random inequality system under linear decision rules

Under linear decision rules and the probabilistic model (23), our generic random inequality
system

t∑
τ=1

At,τyτ (ξ1:τ−1) +
t∑

τ=1

Bt,τξτ ≤ bt t = 1, . . . , T (25)

turns into (for t = 1, . . . , T )(
t∑

τ=1

At,τFτΘ1:τ−1 +Bt,τΘτ

)
︸ ︷︷ ︸

Ht(x)

ε ≤ bt −
t∑

τ=1

Bt,τ µ̃τ −
t∑

τ=1

At,τfτ −
t∑

τ=1

At,τFτ µ̃1:τ−1︸ ︷︷ ︸
αt(x)

.

(26)
In this system, ε is the transformed random vector, whereas now x := (Ft, ft)t=1,...T

represents a finite-dimensional decision vector approximating the original decision policies
(yt (ξ1:t−1))t=1,...,T . With the notation introduced below the corresponding expressions,
we may compactly rewrite (26) in the form

Ht(x)ε ≤ αt(x) (t = 1, . . . , T ), (27)
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where the Ht, ht are affine linear mappings of x. When relating these mappings not to
the generic system (25) but to the concrete systems of hard and soft constraints in (7)
labeled by upper indices (1), (2), (3), we shall use the corresponding upper indices for the
mappings Ht and ht as well.

We observe that, thanks to affine linearity of Ht, ht, the set of x satisfying (27) is
convex for each fixed ε.

3.2.2 The objective function under linear decision rules

From (23) and ε having a centered distribution, it follows that the expectation of ξt equals
µ̃t. Therefore, the objective of our problem (7) takes under linear decision rules the form

T∑
t=1

〈ht, Ftµ̃1:t−1 + ft〉︸ ︷︷ ︸
β1(x)

+
T∑
t=1

〈
Pt,E

(
t∑

τ=1

A
(1)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(1)
t,τ ξτ − b

(1)
t

)
+

〉

where in the definition of β1 we used once more the convention x := (Ft, ft)t=1,...T . Now,
applying (27) with upper index (1) referring to the inequality subsystem penalized in
the objective, we can rewrite the objective of (7) under linear decision rules as β(x) :=
β1(x) + β2(x), where

β2(x) :=
T∑
t=1

〈
Pt,E

(
H

(1)
t (x)ε− α(1)

t (x)
)
+

〉
Lemma 3.2 β is convex.

Proof. Since β1 is linear, it suffices to check convexity of β2. As mentioned earlier,

the mappings H
(1)
t , α

(1)
t are affine linear, whence the mapping H

(1)
t (x)ε− α(1)

t (x) is affine
linear in x. In particular, each component of this mapping is convex in x which re-
mains true upon passing to its maximum with zero. It follows that the components of

E
(
H

(1)
t (x)ε− α(1)

t (x)
)
+

(depending only on x) are convex. Now, the result follows from

Pt ≥ 0.

For implementation purposes, it is useful to have an analytic expression of the objective
function. For this purpose, we need the folloming Lemma:

Lemma 3.3 Let X be a one-dimensional Gaussian random variable distributed according
to N (m,σ2) and let a, b ∈ R̄ with a ≤ b. Then, with Φ referring to the one-dimensional
standard normal distribution function, it holds that

E[max{a,min{X, b}}] =
σ√
2π

(
exp

(
−(a−m)2

2σ2

)
− exp

(
−(b−m)2

2σ2

))
+

(a−m)Φ(
a−m
σ

) + (m− b)Φ(
b−m
σ

) + b.
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Proof. With fX(x) = 1√
2πσ

exp
(
− (x−m)2

2σ2

)
being the density of X and with Φ̃ being the

associated cumulative distribution function, we have

E[max{a,min{X, b}}] =∫ a

−∞
afX(x)dx+

∫ b

a
xfX(x)dx+

∫ ∞
b

bfX(x)dx =

aΦ̃(a) +

∫ b

a
(x−m)fX(x)dx+m

∫ b

a
fX(x)dx+ b(1− Φ̃(b)) =

aΦ̃(a) +

[ −σ√
2π

exp

(
−(x−m)2

2σ2

)]b
a

+m(Φ̃(b)− Φ̃(a)) + b(1− Φ̃(b)) =

σ√
2π

(
exp

(
−(a−m)2

2σ2

)
− exp

(
−(b−m)2

2σ2

))
+ (a−m)Φ̃(a) + (m− b)Φ̃(b) + b.

On the other hand, since σ−1(X −m) ∼ N (0, 1), we have that, for all z,

Φ̃(z) = P(X ≤ z) = P(σ−1(X −m) ≤ σ−1(z −m)) = Φ(σ−1(z −m))

and the result follows.

The only non-explicit part in our objective function β(x) is the vector of expectations in
the definition of β2(x). Its ithcomponent is given by

E[max(X(x), 0)] = E[max{0,min{X(x),+∞}]; X(x) :=
(
H

(1)
t (x)ε− α(1)

t (x)
)
i
.

According to the transformation rules of Gaussian distributions, we know that

X(x) ∼ N (m,σ2); m := −(α
(1)
t (x))i; σ :=

√(
H

(1)
t (x)Σ[H

(1)
t (x)]T

)
ii
,

where Σ is the block-diagonal covariance matrix of ε (see Section 3). With these data,
Lemma 3.3 can be employed (with a := 0, b := +∞) to make the objective β(x) fully
explicit in terms of the initial data of the problem.

3.2.3 Projection of linear decision rules onto hard constraints

The solution of problems (15), (16), (17), (18) is intimately related with the ability to
either explicitly or numerically compute projections Π(y) of policies y ∈ K according to
(10). In the case of linear decision rules introduced in (24), the projected policy z := Π(y)
is obtained for y = (Ftξ1:t−1 + ft)t=1,...,T as the successive (unique) solution of (scenario-
dependent) quadratic optimization problems:

zt(ξ1:t−1) =


argmin

u
‖Ftξ1:t−1 + ft − u‖2

A
(3)
t,t u ≤ b

(3)
t −

t−1∑
τ=1

B
(3)
t,τ ξτ −

t−1∑
τ=1

A
(3)
t,τ zτ (ξ1:τ−1),

(28)

∀ξ, ∀t = 1, . . . , T.
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Here, starting from t = 1, previously obtained solutions for zτ are plugged in on the
right-hand side of (28). Hence, for instance the first two components of z are obtained as

z1 = argmin
u

{
‖f1 − u‖2|A(3)

1,1u ≤ b
(3)
1

}
z2(ξ1) = argmin

u

{
‖F2ξ1 + f2 − u‖2|A(3)

2,2u ≤ b
(3)
2 −B

(3)
2,1ξ1 −A

(3)
2,1z1

}
∀ξ1.

In the special case of box constraints

yt(ξ1:t−1) ∈ [y
t
, yt] P-almost surely t = 1, . . . , T, (29)

an explicit formula for the projection of y = (Ftξ1:t−1 + ft)t=1,...,T can be provided:

Π(y) =
(

max{(y
t
)i,min {(Ftξ1:t−1 + ft)i, (yt)i}}

)
t=1,...,T ; i=1,...,nt

. (30)

3.2.4 Probabilistic constraints under Linear Decision Rules and Gaussian dis-
tribution

Under the assumption of linear decision rules (24), the originally dynamic probabilistic
constraint

P

(
t∑

τ=1

At,τyτ (ξ1:τ−1) +

t∑
τ=1

Bt,τξτ ≤ bt t = 1, . . . , T

)
≥ p

associated with (25) and occuring in problems (7) turns into a conventional static proba-
bilistic constraint

P (Ht(x)ε ≤ αt(x) (t = 1, . . . , T )) ≥ p, (31)

with finite-dimensional decisions x := (Ft, ft)t=1,...T . (31) represents a joint linear proba-
bilistic constraint under Gaussian distribution. This class has been intensively studied with
respect to its analytical properties and numerical solution approaches, see, e.g., [4, 13].
For an algorithmic treatment of such probabilistic constraints within the framework of
nonlinear optimization it is important to have required information about the probability
function

ϕ(x) := P (Ht(x)ε ≤ αt(x) (t = 1, . . . , T ))

defining the inequality constraint ϕ(x) ≥ p in (31). In particular, procedures computing
or, better, approximating values and gradients of ϕ are needed. As shown in [20], both
tasks can be realized simultaneously by reduction to the computation of multivariate
Gaussian distribution functions. The latter can be quite efficiently done using Genz’ code
as described in [5]. An alternative approach consists in the use of the so-called spheric-
radial decomposition of Gaussian random vectors [3, 16, 18]. Another important property
for algorithmic purposes is convexity of the feasible set described by (31). While this is
well-known to be true in case of constant matrices Ht and mappings αt having concave
components [13, Theorem 10.2.1], the same does not hold true in general for (31), in
particular not for arbitrary probability levels p. Apart from special cases, such as the
presence of one single random inequality in the system [10, 21] or specially structured
covariance matrices [12, 9], where convexity for sufficiently large p could be guaranteed,
no general result on this issue seems to be available so far.
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4 Approximating optimization problems under Linear De-
cision Rules and Gaussian and truncated Gaussian distri-
bution

4.1 First optimization problem

The first optimization problem we address is (14), i.e., the original problem (7) but with
the feasible set intersected with the class of linear decision rules (24). Making recourse to
the compact notation introduced in Section 3.2, Problem (14) writes

min{β(x) | P(H
(2)
t (x)ε ≤ α(2)

t (x) (t = 1, . . . , T )) ≥ p, (32)

H
(3)
t (x)ε ≤ α(3)

t (x) (t = 1, . . . , T ), P-almost surely}.

In the definition of α
(3)
t according to (26) we have to recall that B

(3)
t,t = 0 for all t = 1, . . . , T

according to our wait-and-see perspective on hard constraints (see Section 2.2). (32) is
a nonlinear optimization problem with a joint probabilistic and a (linear) semi-infinite
constraint (P-almost surely could be replaced by ’for P-almost all ε ∈ Ξ’, where Ξ is the
support of the random vector ε).

Proposition 4.1 The hard constraint in problem (32) can be explicitly represented in
terms of the original data (see (26)) as the system of linear (in-)equalities for t = 1, . . . , T :

t∑
τ=1

(
A

(3)
t,τ FτΘ1:τ−1 +B

(3)
t,τ Θτ

)
= 0,

t−1∑
τ=1

B
(3)
t,τ µ̃τ +

t∑
τ=1

A
(3)
t,τ fτ +

t∑
τ=1

A
(3)
t,τ Fτ µ̃1:τ−1 ≤ b

(3)
t .

Proof. As mentioned above, the hard constraint in problem (32) can be replaced by

H
(3)
t (x)ε ≤ α(3)

t (x) for P-almost all ε ∈ Ξ (t = 1, . . . , T ). (33)

Since ε follows a mutivariate Gaussian distribution, its support is the whole space. As a

consequence, some x can be feasible for (33) only if H
(3)
t (x) = 0 which in turn implies that

α
(3)
t (x) ≥ 0. Conversely, any x satisfying these two relations is feasible for (33). Thus, we

have shown that (33) is equivalent with the system H
(3)
t (x) = 0, α

(3)
t (x) ≥ 0. Now, (26)

yields the assertion of the proposition.

By virtue of Proposition 4.1, the hard constraints in (32) define a polyhedral constraint
set for the decision vector x. Recalling Lemma 3.2, (32) would be a convex optimization
problem provided that the probabilistic constraint defines a convex feasible region. As
discussed in Section 3.2.4, this can be guaranteed, however, only in certain special cases.
Moreover, the range of applicability of Proposition 4.1 is potentially small:

Corollary 4.2 Assume that all coefficients θt,k in (22) have all components different from
zero. Then, if the hard constraints in (32) represent simple box constraints, the only
feasible linear decision rules are static ones.
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Proof. For box constraints y ∈ [ylo, yup], we are dealing with the data specified in (11).
Accordingly, the equation derived in Proposition 4.1 yields that

A
(3)
t,t FtΘ1:t−1 +B

(3)
t,t Θt = 0 t = 1, . . . , T.

Recalling that, by the assumed wait-and-see structure for the hard constraints, we have

B
(3)
t,t = 0 for t = 1, . . . , T (see Section 2.2), and taking into account that A

(3)
t,t = (I,−I)T ,

we derive in particular the relations FtΘ1:t−1 = 0 for t = 1, . . . , T . Now, our assumption on
coefficients θt,k ensures that the matrices Θ1:t−1 are surjective. As a consequence, Ft = 0
for t = 1, . . . , T , which means that the linear decision rules in (24) reduce to yt (ξ1:t−1) = ft
for t = 1, . . . , T . In other words, one is back to a static decision problem.

In order to avoid the restrictive consequences following from the last corollary, one may
pass from Gaussian to truncated Gaussian distributions having a bounded support. This
will be discussed in Section 4.5.

4.2 Second optimization problem

The second optimization problem to be discussed is (15). We will focus our attention on
the inner optimization problem

min{h(y) | y ∈M2 ∩ K}. (34)

If this problem happens to have a unique solution, then its projection via Π onto the
hard constraints will be unique and thus will be a solution of the overall problem too.
Otherwise, the outer optimization problem in (15) just serves the purpose of selecting the
best solution among projected solutions of the inner problem possibly realizing different
values of the objective function h. We will not address the issue of possible non-uniqueness
of (34) here.

By (13), and using once more the compact notation of Section 3.2 along with the
definition (24) of linear decision rules, problem (34) writes

min{β(x) | P(H
(2)
t (x)ε ≤ α(2)

t (x), H
(3)
t (x)ε ≤ α(3)

t (x) (t = 1, . . . , T )) ≥ p}. (35)

This problem has the same objective as (32) but the feasible set differs by the absence
of hard constraints and the presence of an enlarged inequality system in the joint chance
constraint. Once, a solution x∗ of (35) has been determined, it is projected onto the
hard constraints (either using an explicit formula if possible or by solving a quadratic
optimization problem as described in Section 3.2.3) in order to yield a decision policy
Π(x∗) which is feasible for the original infinite-dimensional problem (7).

4.3 Third optimization problem

The third optimization problem we consider is (16) or its equivalent form (18). Observe
first, that (16) can be written

min{h(z)|z = Π(y), y ∈M2 ∩ K}.
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The inclusion in the constraint set of this optimization problem is the same as in (34)
and can thus be formulated as the probabilistic constraint in (35) under our convention
x := (Ft, ft)t=1,...T . Taking into account formula (28) for the projection z = Π(y), we
arrive at the following description for problem (16):

min{h(z) | zt(ξ1:t−1) = argmin
u
{ϑt(x, u, ξ) | γt(u, ξ) ≤ 0 ∀ξ, ∀t = 1, . . . , T}, (36)

P(H
(2)
t (x)ε ≤ α(2)

t (x), H
(3)
t (x)ε ≤ α(3)

t (x) (t = 1, . . . , T )) ≥ p},
where

ϑt(x, u, ξ) := ‖Ftξ1:t−1 + ft − u‖2

γt(u, ξ) := A
(3)
t,t u+

t−1∑
τ=1

B
(3)
t,τ ξτ +

t−1∑
τ=1

A
(3)
t,τ zτ (ξ1:τ−1)− b(3)t

(recall that due to successive resolution of constraints in (28) the terms zτ (ξ1:τ−1) are
known in step t for τ = 1, . . . , t − 1). Formally, (36) represents a kind of bilevel problem
in variables (x, z), where the upper level variable x is subjected to a joint probabilistic
constraint and the lower level variable z is subjected to a continuum of lower level problems
depending on x. As such, this optimization problem appears to be very hard to solve. On
the other hand, for given x satisfying the probabilistic constraint, the solutions zt of the
parametric lower level quadratic problem are piecewise linear in ξ1:t−1 with an identifiable
polyhedral decomposition of their domain. This would allow us to apply algorithms from
multiparametric quadratic programming (see [17]) in order to determine the zt.

The problem simplifies significantly if the hard constraints are simple box constraints
(29) such that the explicit formula (30) can be applied. In this case, one may directly pass
to the equivalent problem (18) which in our compact notation reads

minimize
T∑
t=1

E

{
〈ht, δt(x, ξ)〉+

〈
Pt,
(

t∑
τ=1

A
(1)
t,τ δτ (x, ξ) +

t∑
τ=1

B
(1)
t,τ ξτ − b

(1)
t

)
+

〉}
(37)

subject to

P(H
(2)
t (x)ε ≤ α(2)

t (x), H
(3)
t (x)ε ≤ α(3)

t (x) (t = 1, . . . , T )) ≥ p,
where x := (Ft, ft)t=1,...T and the components of δt(x, ξ) are defined as

(δt(x, ξ))i :=
(

max{(y
t
)i,min {(Ftξ1:t−1 + ft)i, (yt)i}}

)
i; t=1,...,T

. (38)

The first part of the expectation in the objective of this problem requires just to compute
the expectations E(δt(x, ξ))i which can be made fully explicit thanks to Lemma 3.3 upon
putting there (see (23))

a := (y
t
)i; b := (yt)i; m := (Ftµ̃1:t−1 + ft)i; σ :=

√(
FtΘ1:t−1ΣΘT

1:t−1F
T
t

)
ii
.

Consequently, in the absence of penalty terms in the objective, the whole problem reduces
to a standard optimization problem subject to joint linear probabilistic constraints with
multivariate Gaussian distribution. It may be difficult to obtain an analytic expression
for the expectation of the penalty terms applied to projected linear decision rules. In this
case, more elementary techniques like Sample Average Approximation may be used to
approximate these expectations numerically.
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4.4 Fourth optimization problem

The last optimization problem we consider is (17). The difference with the previous op-
timization problems is that here decision variables are projections onto hard constraints
from the very beginning. Similarly to the previous optimization problem, (17) can be
written

min{h(z)|z = Π(y), z ∈M1, y ∈ K}. (39)

Since the projection z = Π(y) arleady ensures the hard constraint in the inclusion z ∈M1,
it is sufficient to impose the probabilistic constraint in (8) on z. Following the idea and
the notation of (36) in the previous optimization problem, one may reformulate (17) as

min{h(z) | zt(ξ1:t−1) = argmin
u
{ϑt(x, u, ξ) | γt(u, ξ) ≤ 0 ∀ξ, ∀t = 1, . . . , T}, (40)

P

(
t∑

τ=1

A
(2)
t,τ zτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p}.

Again, we are dealing with a bilevel problem in variables (x, z), where the lower level
variable z is subjected to a continuum of lower level problems depending on the upper
level variable x. This time, however, the probabilistic constraint does not operate on the
upper but rather on the lower level variable. Moreover, it involves only the system of soft
constraints (labeled by the upper index ’(2)’). Evidently, in solving (40) one is faced with
the same difficulties as for problem (36).

As before, there is motivation to investigate the special case of box constraints (29).
Since in this case the projection Π(y) can be made explicit via (30), we may equivalently
write (39)

min{h(Π(y)) | Π(y) ∈M1, y ∈ K}.
This problem has the same objective as problem (18) and, hence, can be made explicit
exactly the same way as described in the previous section for (37). The difference now
comes with the occurence of projected linear decision rules (38) as variables in the proba-
bilistic constraint of (40). More precisely, we are led to the following optimization problem
(where again x := (Ft, ft)t=1,...T ):

minimize
T∑
t=1

E

{
〈ht, δt(x, ξ)〉+

〈
Pt,
(

t∑
τ=1

A
(1)
t,τ δτ (x, ξ) +

t∑
τ=1

B
(1)
t,τ ξτ − b

(1)
t

)
+

〉}
(41)

subject to

P
(

t∑
τ=1

A
(2)
t,τ δτ (x, ξ) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p.

The challenge now is to deal with the projected linear decision rules inside the probabilistic
constraint and to reduce this issue to a tractable linear structure of type (31). To this
aim, with each index tuple

(i1,1, . . . , i1,n1 , . . . , iT,1, . . . iT,nT ) ∈ {1, 2, 3}
∑T
t=1 nt
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we associate the following x−dependent partition of the space of events:

S(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )(x) :=

ω ∈ Ω |


(Ftξ1:t−1(ω) + ft)j ≤ (y

t
)j if it,j = 1

(y
t
)j ≤ (Ftξ1:t−1(ω) + ft)j ≤ (yt)j if it,j = 2

(Ftξ1:t−1(ω) + ft)j ≥ (yt)j if it,j = 3

 .

Actually, this not a partition in the strict sense because the case distinction in its definition
allows some overlap for nonstrict inequality signs. Due to ξ having a density, however,
this overlap is of measure zero. Therefore, we are allowed to reformulate the probability
function in (39) as

∑
(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )∈{1,2,3}

∑T
t=1 nt

P


ξ ∈ S(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )(x),
t∑

τ=1

nτ∑
j=1

(δτ (x, ξ))j(A
(2)
t,τ )j +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t

(t = 1, . . . , T )

 ,

where (A
(2)
t,τ )j refers to column j of the matrix A

(2)
t,τ . Observing that, by definition,

(δτ (x, ξ))j =


(y
τ
)j if iτ,j = 1

(Fτξ1:τ−1 + fτ )j if iτ,j = 2
(yτ )j if iτ,j = 3

,

we realize that each event over which the probability is taken above, is decsribed by a
system of random inequalities which is linear in the random vector ξ. Consequently, the
probability of each such event above can be described by

P
(
H̃

(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x)ξ ≤ α̃(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x) (t = 1, . . . , T )
)
.

With ξ being an affine linear mapping of ε according to (23), we may finally write the
probabilistic constraint in (39) as

∑
(i1,1, . . . , i1,n1 , . . . , iT,1, . . . iT,nT )

∈ {1, 2, 3}
∑T
t=1 nt

P

(
H̃

(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x)ξ ≤
α̃
(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x) (t = 1, . . . , T )

)
≥ p,

which now involves similar terms as (31).
Clearly this approach for dealing with the probabilistic constraint in (39) quickly be-

comes prohibitive due to the number 3
∑T
t=1 nt of terms in the sum above. Even if every

decision policy is one-dimensional (nt = 1 for all t), this yields 3T summands and limits
the applicability of the approach to say T = 6, 7 stages. An alternative option would
consist in the application of spherical-radial decomposition as mentioned in Section 3.2.4
which is not restricted to linear probabilistic constraints and would not suffer from the
complexity issue.
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4.5 Optimization problem under truncated Gaussian distribution

After introducing our original optimization problem (7), we have passed immediately to
hard constraints of wait-and-see type in Section 2.2 because otherwise the hard constraints
wouldn’t have any good chance of ever being satisfied under distributions with unbounded

support, e.g., Gaussian. This change became apparent by requiring B
(3)
t,t = 0 in (7),

leading to the hard constraints of (8). When discussing our first optimization problem
(32), we noticed that even for hard constraints of wait-and-see type, the unboundedness
of the support of the random vector generates a strong restriction on the feasible decisions
(see Corollary 4.2). In this section we come back to the first optimization problem but
with a Gaussian random vector truncated to a bounded region. This approach will allow
us not only to circumvent the mentioned restriction of problem (32) but even to admit

the original hard constraints in (7) with possibly B
(3)
t,t 6= 0.

Definition 4.3 We say that a random vector ε follows a normal distribution with param-
eters µ,Σ which is truncated to a Borel measurabls set S and then write ε ∼ T N (µ,Σ, S)
if there exists a Gaussian random vector ε̃ ∼ N (µ,Σ) such that

P(ε ∈ B) =
P(ε̃ ∈ S ∩B)

P(ε̃ ∈ S)
for all Borel sets B.

In the following we shall assume in contrast with the previous sections that the noises εt in
the probabilistic model (21) are independent and distributed according to ε ∼ T N (0,Σ, S),
where Σ is the block-diagonal matrix introduced in Section 3.

We are now going to check the impact of truncating the Gaussian distribution on the
structure of optimization problem (32).

The terms E[〈ht, yt (ξ1:t−1)〉] in the objective function can be computed analytically
since closed-form expressions are available for the expectation of truncated normal one-
dimensional random variables.

Similarly to problem (37), the expectation of the penalty terms can be approximated
using Sample Average Approximation.

As far as the probabilistic constraint in (32) is concerned, the underlying probability
function can be written

P(H
(2)
t (x)ε ≤ α(2)

t (x) (t = 1, . . . , T )) =

P({H(2)
t (x)ε̃ ≤ α(2)

t (x) (t = 1, . . . , T )} ∩ {ε̃ ∈ S})
P(ε̃ ∈ S)

=
P(H̃(x)ε̃ ≤ α̃(x))

P(ε̃ ∈ S)
,

where, with I referring to the identity matrix of appropriate size,

H̃(x) :=


H

(2)
1 (x)

...

H
(2)
T (x)
I
−I

 , α̃(x) :=


α
(2)
1 (x)

...

α
(2)
T (x)

S
−S

 .

Consequently, the probabilistic constraint in (32) turns into

P(H̃(x)ε̃ ≤ α̃(x)) ≥ p̃, where p̃ := p · P(ε̃ ∈ S). (42)
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Due to ε̃ being a Gaussian random vector, this probabilistic constraint is exactly of the
same nature as the original one in (32) which was discussed in Section 3.2.4.

Addressing finally the almost sure constraints in (32), they can be equivalently formu-
lated as

max
ε∈S

(
H

(3)
t (x)

)j
ε ≤ α(3)

t,j (x), ∀t, ∀j, (43)

where
(
H

(3)
t (x)

)j
refers to the jth line of H

(3)
t (x).

We consider two cases for S: a box and an ellipsoid. If S := [S, S] is a box, the
maximum in the left-hand-side of (43) can be computed analytically using the following
lemma:

Lemma 4.4 ([6], Lemma 2) For any x we have that

max
y∈S

x>y =
1

2

(
x>(S + S) + |x|>(S − S)

)
.

As a result, if S is a box, since
(
H

(3)
t (x)

)j
and α

(3)
t,j (x) are affine functions of x, the almost

sure constraints in (32) can be reformulated as explicit convex constraints in x.
Now taking for S the ellipsoid

S = {x ∈ RT : (x− µ)>Σ−1(x− µ) ≤ κ2},

if vector wt,j(x) is the transpose of
(
H

(3)
t (x)

)j
then constraint (43) can be reformulated

as the explicit conic quadratic (convex) constraint

µ>wt,j(x) + κ
√
wt,j(x)>Σwt,j(x) ≤ α(3)

t,j (x).

We end up again with a convex optimization problem.
Finally, observe that the term P(ε̃ ∈ S) in (42) can be computed numerically both in

the case when S is a box (using Genz’ code as described in [5] for instance) and when S
is an ellipsoid.
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5 Appendix

Lemma 5.1 Let ξt satisfy (21) and for any positive integers t, j, let It,j , Jt,j, and Ht,j be
the sets given by

It,j(m) = {k ∈ N : 1 ≤ k ≤ min(pt+1(m), t+ 1− j)},
Jt,j(m) = {k ∈ N : 1 ≤ k ≤ min(t, pt+1(m)), j ≤ rt+1−k(m)},
Ht,j(m) = {k ∈ N : 1 ≤ k ≤ min(t, pt+1(m)), j ≤ st+1−k(m)}.

We also define

Xt(m) = max (rt+1−k(m), k = 1, . . . ,min(t, pt+1(m))) ,

Yt(m) = max (st+1−k(m), k = 1, . . . ,min(t, pt+1(m))) .

The coefficients c, γ, δ, and θ in the decompositions of ξ1(m), ξ2(m), . . . , ξT (m),m =
1, . . . ,M , of the form (22) are computed iteratively as follows:

Initialization: For m = 1, . . . ,M , set c1(m) = µ1(m)
α1,0(m) , r1(m) = p1(m), γ1,k(m) =

−α1,k(m)
α1,0(m) , k = 1, . . . , p1(m), s1(m) = q1(m), δ1,k(m) =

β1,k(m)
α1,0(m) , k = 1, . . . , q1(m), and

θ1,1(m) =
β1,0(m)
α1,0(m) .

Loop: For m = 1, . . . ,M and for t = 1, . . . , T − 1,

ct+1(m) =
µt+1(m)

αt+1,0(m)
−

min(t,pt+1(m))∑
k=1

αt+1,k(m)

αt+1,0(m)
ct+1−k(m).

θt+1,j(m) =



βt+1,0(m)
αt+1,0(m) for j = t+ 1,

βt+1,t+1−j(m)
αt+1,0(m) −

∑
k∈It,j(m)

αt+1,k(m)

αt+1,0(m)
θt+1−k,j(m) for t+ 1−min(t, qt+1(m)) ≤ j ≤ t,

−
∑

k∈It,j(m)

αt+1,k(m)

αt+1,0(m)
θt+1−k,j(m) for 1 ≤ j ≤ t−min(t, qt+1(m)).
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Coefficient γt+1,j(m) is given by

−αt+1,j+t(m)
αt+1,0(m) −

∑
k∈Jt,j(m)

αt+1,k(m)

αt+1,0(m)
γt+1−k,j(m) for 1 ≤ j ≤ min(pt+1(m)− t,Xt(m)),

−αt+1,t+j(m)
αt+1,0(m) for 1 + min(pt+1(m)− t,Xt(m)) ≤ j ≤ pt+1(m)− t,

−
∑

k∈Jt,j(m)

αt+1,k(m)

αt+1,0(m)
γt+1−k,j(m) for max (1, 1 + min(pt+1(m)− t,Xt(m))) ≤ j ≤ Xt(m).

Coefficient δt+1,j(m) is given by

βt+1,j+t(m)
αt+1,0(m) −

∑
k∈Ht,j(m)

αt+1,k(m)

αt+1,0(m)
δt+1−k,j(m) for 1 ≤ j ≤ min(qt+1(m)− t, Yt(m)),

βt+1,t+j(m)
αt+1,0(m) for 1 + min(qt+1(m)− t, Yt(m)) ≤ j ≤ qt+1(m)− t,

−
∑

k∈Ht,j(m)

αt+1,k(m)

αt+1,0(m)
δt+1−k,j(m) for max (1, 1 + min(qt+1(m)− t, Yt(m))) ≤ j ≤ Yt(m).

Finally,

rt+1(m) = max (pt+1(m)− t,Xt(m)) and st+1(m) = max (qt+1(m)− t, Yt(m)) .

Proof. We fix a component m and to alleviate notation, we drop (m) in the proof. The
initialization is immediate, writing (21) for t = 1. Now assume that for some t < T , the
decompositions of ξ1, . . . , ξt of the form (22) are available. To obtain the decomposition
of ξt+1, we use (21) to obtain

ξt+1 =
µt+1

αt+1,0
−

min(t,pt+1)∑
k=1

αt+1,k

αt+1,0
ξt+1−k +

min(t,qt+1)∑
k=0

βt+1,k

αt+1,0
εt+1−k

−
pt+1∑

k=1+min(t,pt+1)

αt+1,k

αt+1,0
ξt+1−k +

qt+1∑
k=1+min(t,qt+1)

βt+1,k

αt+1,0
εt+1−k.

In the first sum, since for all index k ∈ {1, 2, . . . ,min(t, pt+1)} we have 1 ≤ t+ 1− k ≤ t,
we know for ξt+1−k a decomposition of the form (22) with known coefficients c, γ, δ, and
θ. Using these expressions of ξt+1−k, this first sum can be written

−
min(t,pt+1)∑

k=1

αt+1,k

αt+1,0

ct+1−k +

rt+1−k∑
j=1

γt+1−k,jξ1−j +

st+1−k∑
j=1

δt+1−k,jε1−j +

t+1−k∑
j=1

θt+1−k,jεj

 .

Gathering the terms that depend neither on noise ε nor on ξ, we obtain the expression of
ct+1.

The portion depending on ε1, . . . , εt+1 can be written

t+1∑
j=t+1−min(t,qt+1)

βt+1,t+1−j
αt+1,0

εj −
t∑

j=1

∑
k∈It,j

αt+1,k

αt+1,0
θt+1−k,j

 εj .
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We then consider the decomposition of ξt+1 obtained replacing t by t+1 in (22). Identifying
the portion of this decomposition depending on ε1, . . . , εt+1 with the expression above, we
obtain the expressions of the coefficients θt+1,j , j = 1, . . . , t+ 1.

The portion that depends on ξ0, ξ−1, . . . , can be written

−
pt+1−t∑

j=1+min(0,pt+1−t)

αt+1,t+j

αt+1,0
ξ1−j −

Xt∑
j=1

 ∑
k∈Jt,j

αt+1,k

αt+1,0
γt+1−k,j

 ξ1−j .

From that expression, we obtain the desired value of rt+1 as well as the announced formulas
for coefficients γt+1j , j = 1, . . . , rt+1.

Finally, the portion depending on ε0, ε−1, . . ., can be written

qt+1−t∑
j=1+min(0,qt+1−t)

βt+1,t+j

αt+1,0
ε1−j −

Yt∑
j=1

 ∑
k∈Ht,j

αt+1,k

αt+1,0
δt+1−k,j

 ε1−j .

From that expression, we obtain the desired value of st+1 as well as the announced formulas
for coefficients δt+1,j , j = 1, . . . , st+1.
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