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Abstract

We consider risk-averse convex stochastic programs expressed in terms of extended polyhe-
dral risk measures. We derive computable confidence intervals on the optimal value of such
stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror De-
scent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a
multistep extension of the Stochastic Mirror Descent algorithm and obtain confidence intervals
on both the optimal values and optimal solutions. Numerical simulations show that our confi-
dence intervals are much less conservative and are quicker to compute than previously obtained
confidence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can
obtain a good approximate solution much quicker than its nonmultistep counterpart.

Keywords: Stochastic Optimization, Risk measures, Multistep Stochastic Mirror Descent, Ro-
bust Stochastic Approximation.

AMS subject classifications: 90C15, 90C90.

1 Introduction

Consider the convex stochastic optimization problem{
min f(x) := R [g(x, ξ)] ,
x ∈ X, (1.1)

where ξ ∈ Lp(Ω,F ,P;Rs) is a random vector with support Ξ and with

• g : E × Rs → R a Borel function which is convex in x for every ξ and P-summable in ξ for
every x;

• X a closed and bounded convex set in a Euclidean space E; and

• R an extended polyhedral risk measure [12].

Given a sample ξ1, . . . , ξN from the distribution of ξ, our goal is to obtain online nonasymptotic
computable confidence intervals for the optimal value of (1.1) using as estimators of the optimal
value variants of the Stochastic Mirror Descent (SMD) algorithm. By computable confidence inter-
val, we mean a confidence interval that does not depend on unknown quantities. For instance, the
confidence intervals from [21] and [13] are obtained using SMD and a variant of SMD but are not
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computable since they require the evaluation of the objective function f at the approximate solution
and typically for problems of form (1.1) this evaluation cannot be performed exactly. The terminol-
ogy online, taken from [18], refers to the fact that the confidence intervals are computed in terms of
the sample ξN = (ξ1, . . . , ξN ) used to solve problem (1.1), whereas offline confidence intervals use an

additional sample ξÑ = (ξN+1, . . . , ξN+Ñ ) independent on ξN . Contrary to asymptotic confidence
intervals that are valid as the sample size tends to infinity, nonasymptotic confidence bounds use
probability inequalities that are valid for all sample sizes, but they can be more conservative for
this reason.

Before deriving a confidence interval on the optimal value of stochastic program (1.1), we need
to define an estimator of this optimal value. A natural estimator is the empirical estimator which
is obtained replacing the risk measure in the objective function by its empirical estimation.1 In the
case of risk-neutral convex problems (when R = E is the expectation), asymptotic and consistency
properties of this estimator have been studied extensively. The asymptotic distribution of the
empirical estimator is obtained using the Delta method (see [31], [37]) and the Functional Central
Limit Theorem. This distribution and the consistency of the estimator were derived in [6], [34], [35]
[15], [23], [2], [3], [4]. In [19] the confidence intervals are built using a multiple replication procedure
while a single replication is used in [2]. The paper [5] deals more specifically with the computation of
asymptotic confidence intervals for the optimal value of risk-neutral multistage stochastic programs.
These results were extended to some stochastic programs with integer recourse in [17] and [8].

Less papers have focused on the determination of nonasymptotic confidence intervals on the opti-
mal value of a stochastic convex program. This problem was however studied in [24] for risk-neutral
convex problems using Talagrand inequality ([38], [39]). Similar results, using large-deviation type
results are obtained in [36] and in [16], [17] for integer models. Instead of using the empirical
estimator, the optimal value of (1.1) can be estimated using algorithms for stochastic convex op-
timization such as the Stochastic Approximation (SA) [29], the Robust Stochastic Approximation
(RSA) [26], [27], or the Stochastic Mirror Descent (SMD) algorithm [21]. This approach is used in
[21] and [18] where nonasymptotic confidence intervals on the optimal value of a stochastic convex
program are derived.

The SMD algorithm applied to stochastic programs minimizing the Conditional Value-at-Risk
(CVaR, introduced in [30]) of a cost function was studied in [18]. However, we are not aware of
papers deriving confidence intervals for the optimal values of stochastic risk-averse convex programs
expressed in terms of large classes of risk measures, namely law invariant coherent or extended
polyhedral risk measures (EPRM).

In this context, the contributions of this paper are the following:

(A) the description and convergence analysis of Stochastic Mirror Descent is based on three im-
portant assumptions: (i) convexity of the objective function, (ii) a stochastic oracle provides
stochastic subgradients, and (iii) bounds on some exponential moments are available. We
extend the SMD algorithm to solve risk-averse stochastic programs that minimize an EPRM
of the cost. We provide conditions on these risk measures such that the aforementioned con-
ditions (i), (ii), and (iii) hold and give a formula for stochastic subgradients of the objective
function in this situation. Examples of EPRM satisfying these conditions are the expecta-
tion, the CVaR, some spectral risk measures, the optimized certainty equivalent, the expected
utility with piecewise affine utility function, and any linear combination of these. We also ob-
serve that such stochastic programs can be reformulated as risk-neutral stochastic programs

1Note, however, that in this case a solution method still needs to be specified to solve the corresponding approxi-
mate problem.
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with additional variables and constraints, making the SMD for risk-neutral problems directly
applicable to these reformulations.

(B) We provide conditions ensuring that assumptions (i), (ii), and (iii) are satisfied for two-stage
stochastic risk-neutral programs and give again formulas for stochastic subgradients of the
objective function in this case.

(C) We define a new computable nonasymptotic online confidence interval on the optimal value
of a risk-neutral stochastic convex program using SMD. Numerical simulations show that this
confidence interval is much less conservative than the online confidence interval from [18] and
is more quickly computed.

(D) We apply the ideas of the multistep method of dual averaging described in [13] to propose
a multistep Stochastic Mirror Descent algorithm. We also analyse the convergence of this
variant of SMD and provide computable confidence intervals on the optimal value using this
algorithm (contrary to [13] where for the stochastic method of dual averaging the confidence
intervals were not computable). We present the results of numerical simulations showing the
interest of the multistep variant of SMD on two stochastic (uniformly) convex optimization
problems.

(E) We study the convergence of SMD when the objective function is uniformly convex.

More precisely, the outline of the study is as follows. In Section 2, we introduce (in Subsection 2.1)
the assumptions on the class of problems (1.1) considered. In this section we also provide examples
of two important classes of problems satisfying these assumptions: two-stage risk-neutral stochastic
convex programs (Subsection 2.2) and some risk-averse stochastic convex programs expressed in
terms of EPRM (Subsection 2.3). Since problem (1.1) can be expressed, eventually after some refor-
mulation (see Section 2), as a risk-neutral stochastic convex program, we then explain in Sections
3 and 4 how to obtain a nonasymptotic confidence interval for the optimal value of (1.1) in the
case when R = E is the expectation. Various algorithms are considered. In Section 3, we consider
the RSA algorithm (Subsection 3.1) and the SMD algorithm (Subsection 3.2). In each case, on the
basis of an independent sample (ξ1, . . . , ξN ) of ξ, the algorithm produces an approximate optimal
value gN for (1.1) and a confidence interval for that optimal value. In the particular case when the
objective function f is uniformly convex, we additionally provide confidence intervals for the opti-
mal solution of (1.1). Applying the techniques discussed in [13] to the SMD algorithm, multistep
versions of the Stochastic Mirror Descent algorithm are proposed and studied in Section 4 in the
case when f is uniformly convex. Confidence intervals for the optimal value of (1.1) obtained using
these multistep algorithms are also given. In Section 5 numerical simulations illustrate our results:
we show that our confidence intervals are less conservative than previously obtained confidence
intervals for SMD and we show the interest of the multistep variant of SMD over its traditional,
nonmultistep, implementation. Finally, in Section 6, we comment on future directions of research.

We use the following notation. For a vector x ∈ Rn, x+ is the vector with i-th component given
by x+(i) = max(x(i), 0). We denote by f ′(x) one of the subgradient(s) of convex function f at
x. For a norm ‖ · ‖ of a Euclidean space E associated to a scalar product 〈·, ·〉, the norm ‖ · ‖∗
conjugate to ‖ · ‖ is given by

‖y‖∗ = max
x:‖x‖≤1

〈x, y〉.

We denote the `p norm of a vector x in Rn by ‖x‖p. The closed ball of center x0 and radius
R is denoted by B(x0, R). By ΠY , we denote the metric projection operator onto the set Y ,
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i.e., ΠY (x) = arg miny∈Y ‖y − x‖2. For a nonempty set X ⊆ Rn, the polar cone X∗ is defined
by X∗ = {x∗ : 〈x, x∗〉 ≤ 0, ∀x ∈ X}, where 〈·, ·〉 is the standard scalar product on Rn. By
ξt = (ξ1, . . . , ξt), we denote the history of the process (ξt) up to time t and by Ft the sigma-algebra
generated by ξt. We will denote the Hessian matrix of f at x by f ′′(x). Finally, unless stated
otherwise, all relations between random variables are supposed to hold almost surely.

2 Class of problems considered and assumptions

Consider problem (1.1) with R an EPRM:

Definition 2.1. [12] Let (Ω,F ,P) be a probability space and let K(z) = (K1(z), . . ., Kn2,2(z))> for
given functions2 K1, . . . ,Kn2,2 : R→ R. A risk measure R on Lp(Ω,F ,P) with p ∈ [2,∞) is called
extended polyhedral if there exist matrices A1, A2, B2,0, B2,1, and vectors a1, a2, c1, c2 such that for
every random variable Z ∈ Lp(Ω,F ,P)

R(Z) =


inf c>1 y1 + E[c>2 y2]
y1 ∈ Rk1 , y2 ∈ Lp(Ω,F ,P;Rk2),
A1y1 ≤ a1, A2y2 ≤ a2 a.s.,
B2,1y1 +B2,0y2 = K(Z) a.s.

(2.2)

In what follows, we make the following assumption on K in (2.2):

(A0’) The function K(z) is affine: K(z) = zk2 + k̃2 for some vectors k2, k̃2.

Representation (2.2) can alternatively be written

R(Z) =

{
infy1 c

>
1 y1 + E[Q(y1, Z)]

A1y1 ≤ a1,
(2.3)

where the recourse function Q(y1, z) is given by

Q(y1, z) =


infy2 c

>
2 y2

A2y2 ≤ a2

B2,0y2 = zk2 + k̃2 −B2,1y1.

(2.4)

In other words, R(Z) is the optimal value of a two-stage stochastic program where Z appears in
the right-hand side of the second-stage problem. It follows that we can re-write (1.1) as{

inf
y1,x

c>1 y1 + E
[
Q
(
y1, g(x, ξ)

)]
A1y1 ≤ a1, x ∈ X,

(2.5)

with Q(·, ·) given by (2.4). This problem is of the form (1.1) with R the expectation and with

x, g(x, ξ), and X respectively replaced by x̃ = (y1, x), g̃(x̃, ξ) = c>1 y1 + Q
(
y1, g(x, ξ)

)
, and X̃ =

{x̃ = (y1, x) : x ∈ X,A1y1 ≤ a1}.
2The number of components n2,2 of K could be denoted by n to alleviate notation. We chose to use, as in [12],

the notation n2,2 where these one-period EPRM are seen as special cases of multiperiod (T -periods) EPRM for which
additional parameters nt,1, nt,2, t = 3, . . . , T are needed. The same observation applies for the notation used for
matrices B2,1 and B2,0.
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For this reason, in Sections 3 and 4, we focus on risk-neutral stochastic problems of the form{
min f(x) := E [g(x, ξ)] ,
x ∈ X. (2.6)

However, our analysis is based on some assumptions on f,X, and ξ, to be described in the next
section. When reformulating risk-averse problem (1.1) under the form (2.6), introducing additional
variables and constraints, one has to make some assumptions on the problem structure and on the
EPRM in such a way that this reformulation (2.6) of the problem satisfies our assumptions. This
issue is addressed in Subsection 2.3.

2.1 Assumptions

For problem (2.6), in addition to the assumptions on f and X mentioned in the introduction, we
make the following assumptions:

Assumption 1. All subgradients of the objective function are bounded on X:

there exists 0 ≤ L < +∞ such that ‖f ′(x)‖∗ ≤ L for every x ∈ X.

Note that Assumption 1 holds if f is finite in a neighborhood of X.

Stochastic Oracle. We assume that samples of ξ can be generated and the existence of
a stochastic oracle: at t-th call to the oracle, x ∈ X being the query point, the oracle returns
g(x, ξt) ∈ R and a measurable selection G(x, ξt) of a stochastic subgradient G(x, ξt) ∈ ∂xg(x, ξt),
where ξ1, ξ2, ... is an i.i.d sample of ξ. We treat g(x, ξ) as an estimate of f(x) and G(x, ξ) as an
estimate of a subgradient of f at x.

Assumption 2. Our estimates are unbiased:

∀x ∈ X : f(x) = Eξ [g(x, ξ)] and f ′(x) := Eξ [G(x, ξ)] ∈ ∂f(x).

From now on, we set

δ(x, ξ) = g(x, ξ)− f(x), ∆(x, ξ) = G(x, ξ)− f ′(x), (2.7)

so that
Eξ [δ(x, ξ)] = 0, Eξ [∆(x, ξ)] = 0.

In the sequel, we assume that the observation errors of our oracle satisfy some assumptions (intro-
duced in [21]) additional to having zero means. Specifically, our minimal assumption is the following:

Assumption 3. For some M1,M2 ∈ (0,∞) and for all x ∈ X

(a) E
[
δ2(x, ξ)

]
≤ M2

1 ,

(b) E
[
‖∆(x, ξ)‖2∗

]
≤ M2

2 .
(2.8)

Under our minimal assumption, we will obtain an upper bound on the average error on the op-
timal value of (1.1). To obtain a confidence interval on this optimal value, we will need a stronger
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assumption:

Assumption 4. For some M1,M2 ∈ (0,∞) and for all x ∈ X it holds that

(a) E
[

exp{δ2(x, ξ)/M2
1 }
]
≤ exp{1},

(b) E
[

exp{‖∆(x, ξ)‖2∗/M2
2 }
]
≤ exp{1}.

(2.9)

Note that condition (2.9) is indeed stronger than condition (2.8): if a random variable Y satisfies

E
[

exp{Y }
]
≤ exp{1} then by Jensen inequality, using the concavity of the logarithmic function,

E
[
Y
]

= E
[

ln
(

exp{Y }
)]
≤ ln

(
E
[

exp{Y }
])
≤ 1.

For a given confidence level, a smaller confidence interval can be obtained under an even stronger
assumption:

Assumption 5. For some M1,M2 ∈ (0,∞) and for all x ∈ X it holds that

(a) E
[

exp{δ2(x, ξ)/M2
1 }
]
≤ exp{1},

(b) ‖∆(x, ξ)‖∗ ≤ M2 almost surely.
(2.10)

Observe that the validity of (2.10) for all x ∈ X and some M1,M2 implies the validity of (2.9) for
all x ∈ X with the same M1,M2.

The computation of the confidence intervals on the optimal value of (1.1) using the SMD
and multistep SMD algorithms presented in Sections 3 and 4 requires the knowledge of constants
L,M1, and M2 satisfying the assumptions above. For instance, the best (smallest) constants M1,M2

satisfying Assumption 4 are M1 = supx∈X π[δ(x, ·)] and M2 = supx∈X π[‖∆(x, ·)‖∗] where π is the
Orlicz semi-norm given by

π[h] = inf
{
M ≥ 0 : E{exp{h2(ξ)/M2}} ≤ exp{1}

}
.

For many problems of form (1.1) with R = E the expectation operator, upper bounds on these best
constants can be computed analytically, see for instance [21], [18], [11].

2.2 Two-stage stochastic convex programs

Consider the case when (1.1) is a two-stage risk-neutral stochastic convex program, i.e., R = E is
the expectation, x is the first-stage decision variable, f(x) = f1(x) + Eξ[Q(x, ξ)] where Q(x, ξ) is
the second-stage cost given by

Q(x, ξ) =

{
miny f2(x, y, ξ)
y ∈ S(x, ξ) = {y : g2(x, y, ξ) ≤ 0, Ax+By = ξ} (2.11)

for some function g2 taking values in Rm and some random vector ξ ∈ Lp(Ω,F ,P) with p ≥ 2 and
support Ξ. We make the following assumptions:

(A0) X is a nonempty, compact, and convex set;

(A1) f1 is convex, proper, lower semicontinuous, and is finite in a neighborhood of X;

(A2) for every x ∈ X and y ∈ Rq the function f2(x, y, ·) is measurable and for every ξ ∈ Ξ, the
function f2(·, ·, ξ) is differentiable and convex;
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(A3) for every ξ ∈ Ξ, the function g2(·, ·, ξ) is convex and differentiable;

(A4) for every x ∈ X and for every ξ ∈ Ξ the set S(x, ξ) is compact and there exists yx,ξ ∈ S(x, ξ)
such that g2(x, yx,ξ, ξ) < 0.

With the notation of Section 1, we have f(x) = E[g(x, ξ)] where g(x, ξ) = f1(x)+Q(x, ξ). Assump-
tions (A1), (A2), and (A3) imply the convexity of f . Assumptions (A2) and (A4) imply that for
every ξ ∈ Ξ, the second-stage cost Q(x, ξ) is finite which implies the finiteness of δ(x, ξ) for every
x ∈ X. Relations (2.8)(a), (2.9)(a), and (2.10)(a) in respectively Assumptions 3, 4, and 5 are thus
satisfied. Assumptions (A2), (A3), and (A4) imply that for every ξ ∈ Ξ, the function x→ Q(x, ξ)
is subdifferentiable on X with bounded subgradients at any x ∈ X. For fixed x ∈ X and ξ ∈ Ξ, let
y(x, ξ) be an optimal solution of (2.11) and consider the dual problem

sup
λ∈Rs,µ≥0

θx,ξ(λ, µ) (2.12)

for the dual function

θx,ξ(λ, µ) = inf
y∈Rq

f2(x, y, ξ) + λ>(Ax+By − ξ) + µ>g2(x, y, ξ).

Let (λ(x, ξ), µ(x, ξ)) be an optimal solution of (2.12) (for problem (2.11), λ(x, ξ) and µ(x, ξ) are
optimal Lagrange multipliers for respectively the equality and inequality constraints). Then for
any x ∈ X and ξ ∈ Ξ, denoting by I(x, y, ξ) := {i ∈ {1, . . . ,m} : g2,i(x, y, ξ) = 0} the set of active
inequality constraints at y for problem (2.11),

s(x, ξ) = ∇xf2(x, y(x, ξ), ξ) +A>λ(x, ξ) +
∑

i∈I(x,y(x,ξ),ξ)

µi(x, ξ)∇xg2,i(x, y(x, ξ), ξ)

belongs to the subdifferential ∂xQ(x, ξ) and is bounded (see [10] for instance for a proof). As a
result, for any x ∈ X, denoting by s1(x) an arbitrary element from ∂f1(x), f ′(x) := E[G(x, ξ)] is
a subgradient of f at x for G(x, ξ) = s1(x) + s(x, ξ) and recalling that (A1) holds, ‖G(x, ξ)‖∗ is
bounded for any x ∈ X and ξ ∈ Ξ. It follows that Assumption 1 is satisfied as well as Relations
(2.8)(b), (2.9)(b), and (2.10)(b) in respectively Assumptions 3, 4, and 5.

2.3 Risk-averse stochastic convex programs

Consider reformulation (2.5) of problem (1.1). To guarantee the convexity of the objective function
in this problem as well as Assumptions 1-5, we make the following assumptions on R and g:

(A1’) Complete recourse: Y1 := {y1 : A1y1 ≤ a1} is nonempty and bounded and {B2,0y2 : A2y2 ≤
a2} = Rn2,2 .

(A2’) The feasible set

D = {λ = (λ1, λ2) ∈ Rn2,2×Rn2,1 : λ2 ≤ 0, B>
2,0λ1 +A>

2 λ2 = c2} (2.13)

of the dual of the second-stage problem (2.4) is nonempty.

(A3’) The set D given by (2.13) is bounded.

(A4’) For the set D given by (2.13), we have that D ⊆ {−k2}∗×Rn2,1 .
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(A5’) For every ξ ∈ Ξ, the function g(·, ξ) is convex and lower semicontinuous on X and finite in a
neighborhood of X.

If X is closed, bounded, and convex, (A1’) implies that X̃ is also closed, bounded and convex.
Moreover, we can show that assumptions (A1’), (A2’), (A3’), (A4’), and (A5’) imply that the
objective function in (2.5) is convex and has bounded subgradients:

Lemma 2.2. Consider the objective function f(x̃) = c>1 y1 +E
[
Q
(
y1, g(x, ξ)

)]
of (2.5) in variable

x̃ = (y1, x). Assume that (A1’), (A2’), (A3’), (A4’), and (A5’) hold. Then

(i) Q
(
y1, g(x, ξ̃)

)
is finite for every ξ̃ and every x̃ ∈ X̃ = {x̃ = (y1, x) : x ∈ X,A1y1 ≤ a1};

(ii) for every ξ̃ ∈ Ξ, the function x̃→ Q̃ξ̃(x̃) = Q
(
y1, g(x, ξ̃)

)
is convex and has bounded subgra-

dients on X̃;

(iii) f is convex and has bounded subgradients on X̃.

Proof. Since (A1’) holds, for every y1 ∈ Y1 and every z ∈ R, the feasible set of problem (2.4) which
defines Q(y, z) is nonempty. Due to (A2’), the feasible set of the dual of this problem is nonempty
too. It follows that both the primal and the dual have the same finite optimal value (this shows
item (i)) and by duality we can express Q(y1, z) as the optimal value of the dual problem:

Q(y1, z) = max
(λ1,λ2)∈D

λ>1 (zk2 + k̃2 −B2,1y1) + λ>2 a2 (2.14)

with D given by (2.13). Next, observe that Q(y1, ·) is monotone:

∀y1 ∈ Y1, ∀z1, z2 ∈ R, z1 ≥ z2 ⇒ Q(y1, z1) ≥ Q(y1, z2). (2.15)

Indeed, if z1 ≥ z2, for every (λ1, λ2) ∈ D, since (A4’) holds, we have λ>1 k2 ≥ 0 and

λ>1 (z1k2 + k̃2 −B2,1y1) + λ>2 a2 ≥ λ>1 (z2k2 + k̃2 −B2,1y1) + λ>2 a2

for every y1 ∈ Y1. Taking the maximum when (λ1, λ2) ∈ D in each side of the previous inequality
gives Q(y1, z1) ≥ Q(y1, z2). Now take ξ̃ a realization of ξ and x̃ = (y1, x), x̃0 = (y0

1, x0) ∈ X̃. Using
the convexity of g(·, ξ̃), we have

g(x, ξ̃) ≥ g(x0, ξ̃) +G(x0, ξ̃)
>(x− x0)

recalling that G(x0, ξ) is a measurable selection of a stochastic subgradient of g(·, ξ) at x0. Com-
bining this inequality and (2.15) gives

Q̃ξ̃(x̃) = Q
(
y1, g(x, ξ̃)

)
≥ Q

(
y1, g(x0, ξ̃) +G(x0, ξ̃)

>(x− x0)
)

for every y1 ∈ Y1. Next, we have that Q(y1, z) is convex and its subdifferential is given by

∂Q(y1, z) =

{(
−B>2,1λ1

λ>1 k2

)
: (λ1, λ2) ∈ Dy1,z

}
whereDy1,z is the set of optimal solutions to the dual problem (2.14). Denoting by (λ1(y1, z), λ2(y1, z))
an optimal solution to (2.14), we then have

Q̃ξ̃(x̃) = Q
(
y1, g(x, ξ̃)

)
≥ Q̃ξ̃(x̃0) +

(
−B>2,1λ1(y0

1, g(x0, ξ̃))

λ1(y0
1, g(x0, ξ̃))

>k2G(x0, ξ̃)

)> (
x̃− x̃0

)
.
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It follows that for every ξ̃, Q̃ξ̃(·) is convex and its subdifferential is given by

∂Q̃ξ̃(y
0
1, x0) =

{(
−B>2,1λ1

λ>1 k2G(x0, ξ̃)

)
: (λ1, λ2) ∈ Dy01 , g(x0,ξ̃)

}
.

Since Dy01 , g(x0,ξ̃) is a subset of the bounded set D and since (A5’) holds, all subgradients of Q̃ξ̃(·)
are bounded for every ξ̃ ∈ Ξ: we have proved (ii). Item (iii) follows from (ii) and the fact that f is
finite in a neighborhood of X̃. �

It follows from Lemma 2.2-(iii) that Assumption 1 is satisfied. We also have δ(x̃, ξ) = Qξ(x̃)−
E[Qξ(x̃)], which is finite for every ξ and x̃ ∈ X̃ using Lemma 2.2-(i). It follows that relations
(2.8)(a), (2.9)(a), and (2.10)(a) in respectively Assumptions 3, 4, and 5 are satisfied. Finally
Lemma 2.2-(ii) shows that relations (2.8)(b), (2.9)(b), and (2.10)(b) in respectively Assumptions
3, 4, and 5 are also satisfied. This shows that we can use the developments of Sections 3.1, and
3.2 to solve problem (1.1) and to obtain a confidence interval on its optimal value when R is an
EPRM and when assumptions (A0’), (A1’), (A2’), (A3’), (A4’), and (A5’) are satisfied.

Risk-averse stochastic programs expressed in terms of EPRMs share many properties with risk-
neutral stochastic programs. Moreover, many popular risk measures can be written as EPRMs
satisfying assumptions (A0’), (A1’), (A2’), (A3’), and (A4’). Examples of such risk measures are
the CVaR, some spectral risk measures, the optimized certainty equivalent and the expected utility
with piecewise affine utility function. We refer to Examples 2.16 and 2.17 in [12] for a discussion
on these examples. Conditions ensuring that an EPRM is convex, coherent or consistent with
second order stochastic dominance are given in [12]. Multiperiod versions of these risk measures
are also defined in [12]. In this context, a convenient property of the corresponding risk-averse
program is that we can write dynamic programming equations and solve it, in the case when the
problem is convex, by decomposition using for instance Stochastic Dual Dynamic Programming
(SDDP) [22]; see [12] for more details and examples of multiperiod EPRM. EPRM are an extension
of the polyhedral risk measures introduced in [7] where the reader will find additional examples of
(extended) polyhedral risk measures.

Throughout the paper, we will use two (classes of) problems of form (1.1) for which we will detail
the computation of the parameters necessary to obtain the confidence intervals on their optimal
value given in Sections 3 and 4, in particular parameters L,M1, and M2 introduced in Section 2.1.
These problems are described in the next section.

2.4 Examples

We provide two classes of problems that will be used to illustrate our results.

1. The first class of problems writes{
min f(x) = E

[
α0ξ

>x+ α1
2

(
(ξ>x)2 + λ0‖x‖22

) ]
x ∈ X := {x ∈ Rn :

∑n
i=1 x(i) = a, x(i) ≥ b, i = 1, . . . , n},

(2.16)

where n ≥ 3, α1, a > 0, b, λ0 ≥ 0, with b < a/n, and the support Ξ of ξ is a part of the unit
box {ξ = [ξ(1); ...; ξ(n)] ∈ Rn : ‖ξ‖∞ ≤ 1}.3

3If b = a/n then there is only one feasible point given by xi = b, i = 1, . . . , n, while if b > a/n the problem is not
feasible.
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If a = 1 and b = 0, taking ‖ · ‖ = ‖ · ‖1, ‖ · ‖∗ = ‖ · ‖∞, straightforward computations (see
[11]) show that Assumptions 1-5 are satisfied for this problem with L = |α0| + α1(1 + λ0),
M1 = 2|α0|+ 0.5α1, and M2 = 2|α0|+ α1.

If a = 1 and b = 0, taking ‖ · ‖ = ‖ · ‖2 = ‖ · ‖∗, and G(x, ξ) = α0ξ + α1(ξξ> + λ0I)x, we have
for every x ∈ X that

‖G(x, ξ)− E[G(x, ξ)]‖2 ≤ |α0|‖ξ − E[ξ]‖2 + α1‖(ξξ> − E[ξξ>])x‖2
≤ 2|α0|

√
n+ α1

√
n‖ξξ> − E[ξξ>]‖∞ ≤ 2

√
n(|α0|+ α1),

‖E[G(x, ξ)]‖2 ≤ |α0|‖E[ξ]‖2 + α1
√
n‖E[ξξ>]x‖∞ + α1λ0‖x‖1

≤ |α0|
√
n+ α1(

√
n+ λ0),

and Assumptions 1 and 5 hold with L = |α0|
√
n + α1(

√
n + λ0), M1 = 2|α0| + 0.5α1, and

M2 = 2
√
n(|α0|+ α1).

2. The second class of problems amounts to minimizing a linear combination of the expectation
and the CVaR of some random linear function:{

min f(x) = α0E[ξ>x] + α1CV aRε(ξ
>x)∑n

i=1 x(i) = 1, x ≥ 0,
(2.17)

where α1, α0 ≥ 0, 0 < ε < 1, the support Ξ of ξ is a part of the unit box {ξ = [ξ(1); ...; ξ(n)] ∈
Rn : ‖ξ‖∞ ≤ 1}, and

CVaRε(ξ
>x) = min

x0∈R
x0 + E

[
ε−1[ξ>x− x0]+

]
is the Conditional Value-at-Risk of level 0 < ε < 1; see [30]. Observing that |ξ>x| ≤ 1 a.s.,
problem (2.17) is of form (2.6) with X = {x = [x(1); ...;x(n);x(n+ 1)] ∈ Rn+1 : |x(n+ 1)| ≤
1, x(1), ..., x(n) ≥ 0,

∑n
i=1 x(i) = 1} and

g(x, ξ) = α0ξ
>[x(1); ...;x(n)] + α1

(
x(n+ 1) +

1

ε
[ξ>[x(1); ...;x(n)]− x(n+ 1)]+

)
.

We will also consider a perturbed version of this problem given by{
minα0E[ξ>x1:n] + α1

(
x(n+ 1) + E

[
ε−1[ξ>x1:n − x(n+ 1)]+

])
+ λ0‖x1:n+1‖22

−1 ≤ x(n+ 1) ≤ 1,
∑n

i=1 x(i) = 1, x(i) ≥ 0, i = 1, . . . , n,
(2.18)

for λ0 > 0 where x1:n = [x(1); ...;x(n)]. For problem (2.18), taking ‖ · ‖ = ‖ · ‖2 = ‖ · ‖∗,
Assumptions 1 and 5 are satisfied (see [11]) with L =

√
α2

1(1− 1
ε )2 + n(α0 + α1

ε )2 + 2λ0,

M1 = 2(α0 + α1
ε ), and M2 =

√(
α1
ε

)2
+ 4n

(
α0 + α1

ε

)2
.

Problems (2.16) and (2.18) have a penalty term in the objective to make the objective function
strongly convex so that multistep SMD, as described in Section 4, can be applied to these problems.

3 Quality of the solutions using RSA and SMD

We consider the RSA and SMD algorithms to solve problem (2.6).
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3.1 Robust Stochastic Approximation algorithm

In this section, we use the scalar product 〈x, y〉 = x>y and the corresponding norm ‖ · ‖ = ‖ · ‖2
with dual norm ‖ · ‖∗ = ‖ · ‖2, meaning that (2.8), (2.9), and (2.10) hold with ‖ · ‖∗ = ‖ · ‖2. The
Robust Stochastic Approximation algorithm solves (2.6) as follows:

Algorithm 1: Robust Stochastic Approximation.

Initialization. Take x1 in X. Fix the number of iterations N − 1 and positive deterministic
stepsizes γ1, . . . , γN .

Loop. For t = 1, . . . , N − 1, compute

xt+1 = ΠX(xt − γtG(xt, ξt)). (3.19)

Outputs:

xN =
1

ΓN

N∑
τ=1

γτxτ and gN =
1

ΓN

[
N∑
τ=1

γτg(xτ , ξτ )

]
with ΓN =

N∑
τ=1

γτ . (3.20)

Note that by convexity of X, we have xN ∈ X and after N −1 iterations, xN is an approximate
solution of (2.6). The value f(xN ) is an approximation of the optimal value of (2.6), but it is not
computable since f is not known. Denoting by x∗ an optimal solution of (2.6), we introduce after
N − 1 iterations the computable approximation4

gN =
1

ΓN

[
N∑
τ=1

γτg(xτ , ξτ )

]
(3.21)

of the optimal value f(x∗) of (2.6) obtained using the points generated by the algorithm and
information from the stochastic oracle. Our goal is to obtain exponential bounds on large deviations
of this estimate gN of f(x∗) from f(x∗) itself, i.e., a confidence interval on the optimal value
of (2.6) using the information provided by the RSA algorithm along iterations. We need two
technical lemmas. The first one gives an O(1/

√
N) upper bound on the first absolute moment of

the estimation error (the average distance of gN to f(x∗)):

Lemma 3.1. Let Assumptions 1, 2, and 3 hold and assume that the number of iterations N − 1 of
the RSA algorithm is fixed in advance with stepsizes given by

γτ = γ =
DX√

2(M2
2 + L2)

√
N
, τ = 1, . . . , N, (3.22)

where
DX = max

x∈X
‖x− x1‖. (3.23)

Let gN be the approximation of f(x∗) given by (3.21). Then

E
[∣∣∣gN − f(x∗)

∣∣∣] ≤ M1 +DX

√
2(M2

2 + L2)√
N

. (3.24)

4Note that the approximation depends on (x1, . . . , xN , ξ1, . . . , ξN , γ1, . . . , γN ) so we could write
gN (x1, . . . , xN , ξ1, . . . , ξN , γ1, . . . , γN ) but we choose, for the moment, to suppress this dependence to alleviate
notation
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Proof. Recalling (3.22), γτ
ΓN

= 1
N and letting

fN =
1

N

N∑
τ=1

f(xτ ), (3.25)

it is known (see [21], Section 2.2) that under our assumptions

E
[
f(xN )− f(x∗)

]
≤ E

[
fN − f(x∗)

]
≤ DX

√
2(M2

2 + L2)√
N

. (3.26)

Since the main steps of the proof of (3.26) will be useful for our further developments, we rewrite
them here. Setting Aτ = 1

2‖xτ − x∗‖
2
2, we can show (see Section 2.1 in [21] for instance) that

N∑
τ=1

γτ 〈G(xτ , ξτ ), xτ − x∗〉 ≤ A1 +
1

2

N∑
τ=1

γ2
τ‖G(xτ , ξτ )‖2∗. (3.27)

To save notation, let us set

δτ = g(xτ , ξτ )− f(xτ ), ∆τ = ∆(xτ , ξτ ), and Gτ = G(xτ , ξτ ) = f ′(xτ ) + ∆τ . (3.28)

Inequality (3.27) can be rewritten

N∑
τ=1

γτ 〈f ′(xτ ), xτ − x∗〉 ≤
D2
X

2
+

1

2

N∑
τ=1

γ2
τ‖Gτ‖2∗ +

N∑
τ=1

γτ 〈∆τ , x∗ − xτ 〉. (3.29)

Taking into account that by convexity of f we have f(xτ )− f(x∗) ≤ 〈f ′(xτ ), xτ − x∗〉, we get

f(xN )− f(x∗) ≤ fN − f(x∗) =
1

ΓN

N∑
τ=1

γτ

(
f(xτ )− f(x∗)

)
≤ 1

ΓN

[
D2
X

2
+

1

2

N∑
τ=1

γ2
τ‖Gτ‖2∗ +

N∑
τ=1

γτ 〈∆τ , x∗ − xτ 〉

] (3.30)

where the first inequality is due to the origin of xN and to the convexity of f .
Next, note that under Assumptions 1, 2, and 3,

E
[
‖Gτ‖2∗

]
= E

[
‖f ′(xτ ) + ∆τ‖2∗

]
≤ 2E

[
‖f ′(xτ )‖2∗ + ‖∆τ‖2∗

]
≤ 2
[
M2

2 + L2
]
. (3.31)

Passing to expectations in (3.30), and taking into account that the conditional, ξτ−1 := (ξ1, ..., ξτ−1)
being fixed, expectation of ∆τ is zero, while xτ by construction is a deterministic function of ξτ−1,
we get

E
[
f(xN )− f(x∗)

]
≤ E

[
fN − f(x∗)

]
≤
D2
X +

N∑
τ=1

γ2
τE
[
‖Gτ‖2∗

]
2ΓN

≤ 1

ΓN

[D2
X

2
+ (M2

2 + L2)
N∑
τ=1

γ2
τ

]
. (3.32)
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Using stepsizes (3.22), we have ΓN = DX
√
N√

2(M2
2 +L2)

. Plugging this value of ΓN into (3.32), we obtain

the announced inequality (3.26).
We now show that

E
[∣∣∣gN − fN ∣∣∣] ≤ M1√

N
. (3.33)

First, note that

gN − fN =
1

N

N∑
τ=1

δτ . (3.34)

By the same argument as above, the conditional, ξτ−1 being fixed, expectation of δτ is 0, whence

E
[( N∑

τ=1

δτ

)2]
=

N∑
τ=1

E
[
δ2
τ

]
≤ NM2

1 ,

where the concluding inequality is due to (2.8)(a). We conclude that

E
[∣∣∣gN − fN ∣∣∣] ≤ 1

N

√√√√√E

( N∑
τ=1

δτ

)2
 ≤ 1

N

√
NM2

1 =
M1√
N
,

which is the announced inequality (3.33). Next, observe that by convexity of f , fN ≥ f(xN ) and
since xN ∈ X, we have f(xN ) ≥ f(x∗), i.e., fN − f(x∗) ≥ f(xN ) − f(x∗) ≥ 0, so that (3.26) and
(3.33) imply

E
[
|gN − f(x∗)|

]
≤ E

[
|gN − fN |+ |fN − f(x∗)|

]
= E

[
|gN − fN |

]
+ E

[
fN − f(x∗)

]
≤

[
M1 +DX

√
2(M2

2 + L2)
] 1√

N
,

which achieves the proof of (3.24). �

To proceed, we need the following lemma:

Lemma 3.2. Let ξ1, . . . , ξN be random vectors and associated sigma algebras Fτ = σ(ξ1, . . . , ξτ ), τ =
1, . . . , N . Let ητ , τ = 1, . . . , N , be a sequence of real-valued random variables with ητ Fτ -measurable.
Let E|τ−1 [·] be the conditional expectation E

[
·|ξτ−1

]
where ξτ−1 = (ξ1, . . . , ξτ−1). Assume that

E|τ−1

[
ητ

]
= 0, E|τ−1

[
exp{η2

τ}
]
≤ exp{1}. (3.35)

Then, for any Θ > 0,

P

(
N∑
τ=1

ητ > Θ
√
N

)
≤ exp{−Θ2/4}. (3.36)

Proof. See the Appendix. �

We are now in a position to provide a confidence interval for the optimal value of (2.6) using
the RSA algorithm:

Proposition 3.3. Assume that the number of iterations N − 1 of the RSA algorithm is fixed in
advance with stepsizes given by (3.22). Let gN be the approximation of f(x∗) given by (3.21). Then
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(i) if Assumptions 1, 2, 3, and 4 hold, for any Θ > 0, we have

P
(∣∣∣gN − f(x∗)

∣∣∣ > K1(X) + ΘK2(X)√
N

)
≤ 4 exp{1} exp{−Θ} (3.37)

where the constants K1(X) and K2(X) are given by

K1(X) =
DX(M2

2 + 2L2)√
2(M2

2 + L2)
and K2(X) =

DXM
2
2√

2(M2
2 + L2)

+ 2DXM2 +M1,

with DX given by (3.23).

(ii) If Assumptions 1, 2, 3, and 5 hold, (3.37) holds with the right-hand side replaced by (3 +
exp{1}) exp{−1

4Θ2}.

Proof. To prove (i), we shall first prove that for any Θ > 0,

P
(
fN − f(x∗) >

DX√
2(M2

2 +L2)N

[
M2

2 + 2L2 + Θ
[
M2

2 + 2M2

√
2(M2

2 + L2)
]])

≤ 2 exp{1} exp{−Θ},
(3.38)

where fN is given by (3.25). Using Assumption 1, we have ‖Gτ‖2∗ = ‖f ′(xτ )+∆τ‖2∗ ≤ 2(‖f ′(xτ )‖2∗+
‖∆τ‖2∗) ≤ 2(L2 + ‖∆τ‖2∗). Combined with (3.30), this implies that

fN − f(x∗) ≤
1

ΓN

[
D2
X

2
+

N∑
τ=1

γ2
τ

(
L2 + ‖∆τ‖2∗

)]
+

1

ΓN

N∑
τ=1

γτ 〈∆τ , x∗ − xτ 〉

≤ DX(M2
2 + 2L2)√

2(M2
2 + L2)

√
N

+
DXM

2
2√

2(M2
2 + L2)

√
N
A+

2DXM2

N
B

(3.39)

where

A =
1

NM2
2

N∑
τ=1

‖∆τ‖2∗ and B =
1

2DXM2

N∑
τ=1

〈∆τ , x∗ − xτ 〉. (3.40)

Setting ζτ = ‖∆τ‖2∗/M2
2 and invoking (2.9)(b), we get E

[
exp{ζτ}

]
≤ exp{1} for all τ ≤ N , whence,

due to the convexity of the exponent,

E
[

exp{A}
]

= E
[

exp{ 1

N

N∑
τ=1

ζτ}
]
≤ 1

N

N∑
τ=1

E
[

exp{ζτ}
]
≤ exp{1}

as well. As a result,

∀Θ > 0 : P
(
A > Θ

)
≤ exp{−Θ}E

[
exp {A}

]
≤ exp{1−Θ}. (3.41)

Now let us set ητ = 1
2DXM2

〈∆τ , x∗−xτ 〉, so that B =
∑N

τ=1 ητ . Denoting by E|τ−1 the conditional,

ξτ−1 being fixed, expectation, we have

E|τ−1

[
ητ

]
= 0 and E|τ−1

[
exp{η2

τ}
]
≤ exp{1},
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where the first relation is due to E|τ−1

[
∆τ

]
= 0 combined with the fact that x∗−xτ is a deterministic

function of ξτ−1, and the second relation is due to (2.9)(b) combined with the fact that ‖x∗−xτ‖ ≤
2DX . Using Lemma 3.2, we obtain for any Θ > 0

P
(
B > Θ

√
N
)
≤ exp{−Θ2/4}. (3.42)

Combining (3.39), (3.41), and (3.42), we obtain for every Θ > 0

P

(
fN − f(x∗) >

DX(M2
2 + 2L2)√

2(M2
2 + L2)N

+
Θ√
N

[
DXM

2
2√

2(M2
2 + L2)

+ 2DXM2

])
≤ exp{1−Θ}+ exp{−Θ2/4} ≤ 2 exp{1} exp{−Θ},

(3.43)

which is (3.38).
Next,

gN − fN =
M1

N

[
N∑
τ=1

χτ

]
, χτ =

δτ
M1

.

Observing that χτ is a deterministic function of ξτ and that

E|τ−1

[
χτ

]
= 0 and E|τ−1

[
exp{χ2

τ}
]
≤ exp{1}, 1 ≤ τ ≤ N

(we have used (2.9)(a)), we can use once again Lemma 3.2 to obtain for all Θ > 0:

P
(
gN − fN > Θ

M1√
N

)
≤ exp{−Θ2/4}

and

P
(
gN − fN < −Θ

M1√
N

)
≤ exp{−Θ2/4}.

Thus,

∀ Θ > 0 : P
(∣∣∣gN − fN ∣∣∣ > Θ

M1√
N

)
≤ 2 exp{−Θ2/4},

which, combined with (3.38) implies (3.37), i.e., item (i) of the lemma.

Finally, under Assumption 5, we have P
(
A > 1

)
= 0, which combines with (3.41) to imply that

∀Θ > 0 : P
(
A > Θ

)
≤ exp{1−Θ2},

meaning that the right-hand side in (3.38) can be replaced with exp{1−Θ2}+ exp{−Θ2/4}, which
proves item (ii). �

Setting

a(Θ, N) =
ΘM1√
N

and b(Θ, X,N) =
K1(X) + Θ(K2(X)−M1)√

N
, (3.44)

we now combine the upper bound on f(x∗)

Up1(Θ1, N) =
1

N

N∑
t=1

g(xt, ξt) + a(Θ1, N) = gN + a(Θ1, N), (3.45)
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from [18] with the lower bound

Low1(Θ2,Θ3, N) = gN − b(Θ2, X,N)− a(Θ3, N), (3.46)

from Proposition 3.3 to obtain a new confidence interval on the optimal value f(x∗):

Corollary 3.4. Let Up1 and Low1 be the upper and lower bounds given by respectively (3.45) and
(3.46). Then if Assumptions 1, 2, 3, and 5 hold, for any Θ1,Θ2,Θ3 > 0, we have

P
(
f(x∗) ∈

[
Low1(Θ2,Θ3, N), Up1(Θ1, N)

])
≥ 1− e−Θ2

1/4 − e1−Θ2
2 − e−Θ2

2/4 − e−Θ2
3/4. (3.47)

If Assumptions 1, 2, 3, and 4 hold, then (3.47) holds with the term e1−Θ2
2 replaced by e1−Θ2.

Proof. Let Assumptions 1, 2, 3, and 5 hold. Since f(xt) ≥ f(x∗) almost surely, using Lemma 3.2
we get

P
(
Up1(Θ1, N) < f(x∗)

)
≤ P

( 1

N

N∑
t=1

[
g(xt, ξt)− f(xt)

]
< −Θ1M1√

N

)
≤ e−Θ2

1/4.

Next, using the proof of Proposition 3.3, we can define sets S1, S2 ⊂ Ω such that under Assumptions
1, 2, 3, and 5 we have P(S1) ≥ 1− e1−Θ2

2 − e−Θ2
2/4 (resp. P(S2) ≥ 1− e−Θ2

3/4) and on S1 (resp. on
S2) we have fN − b(Θ2, X,N) ≤ f(x∗) (resp. gN − fN ≤ a(Θ3, N)). Now observe that on S1 ∩ S2

we have f(x∗) ≥ Low1(Θ2,Θ3, N) which implies that

P(f(x∗) ≥ Low1(Θ2,Θ3, N)) ≥ P(S1 ∩ S2) ≥ 1− e1−Θ2
2 − e−Θ2

2/4 − e−Θ2
3/4

and (3.47) follows. �

Remark 3.5. Let Assumptions 1, 2, 3, and 5 hold. To equilibrate the risks, for the confidence

interval
[
Low1(Θ2,Θ3, N), Up1(Θ1, N)

]
on f(x∗) to have confidence level at least 0 < 1 − α < 1,

we can take Θ1 such that e−Θ2
1/4 = α/2, i.e., Θ1 = 2

√
ln(2/α), Θ3 such that e−Θ2

3/4 = α/4, i.e.,

Θ3 = 2
√

ln(4/α), and compute by dichotomy Θ2 such that e1−Θ2
2 + e−Θ2

2/4 = α
4 .

Remark 3.6. If an additional sample ξ̄Ñ = (ξ̄1, . . . , ξ̄Ñ ) independent on ξN = (ξ1, . . . , ξN ) is

available, we can use the upper bound Up2(Θ1, N, Ñ) = 1
Ñ

∑Ñ
t=1 g(xN , ξ̄t) + a(Θ1, Ñ) with xN given

by (3.20), see [18].

3.2 Stochastic Mirror Descent algorithm

The algorithm to be described, introduced in [21], is given by a proximal setup, that is, by a norm
‖ · ‖ on E and a distance-generating function ω(x) : X → R. This function should

• be convex and continuous on X,

• admit on Xo = {x ∈ X : ∂ω(x) 6= ∅} a selection ω′(x) of subgradients, and

• be compatible with ‖·‖, meaning that ω(·) is strongly convex, modulus µ(ω) > 0, with respect
to the norm ‖ · ‖:

(ω′(x)− ω′(y))>(x− y) ≥ µ(ω)‖x− y‖2 ∀x, y ∈ Xo.
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The proximal setup induces the following entities:

1. the ω-center of X given by xω = argmin x∈X ω(x) ∈ Xo;

2. the Bregman distance or prox-function

Vx(y) = ω(y)− ω(x)− (y − x)>ω′(x) ≥ µ(ω)

2
‖x− y‖2, (3.48)

for x ∈ Xo, y ∈ X (the concluding inequality is due to the strong convexity of ω);

3. the ω-radius of X defined as

Dω,X =

√
2
[

max
x∈X

ω(x)−min
x∈X

ω(x)
]
. (3.49)

Since (x− xω)>ω′(xω) ≥ 0 for all x ∈ X, we have

∀x ∈ X : µ(ω)
2 ‖x− xω‖

2 ≤ Vxω(x) = ω(x)− ω(xω)− (x− xω)>ω′(xω)︸ ︷︷ ︸
≥0

≤ ω(x)− ω(xω) ≤ 1
2D

2
ω,X ,

(3.50)

and

∀x ∈ X : ‖x− xω‖ ≤
Dω,X√
µ(ω)

. (3.51)

4. The proximal mapping, defined by

Proxx(ζ) = argmin y∈X{ω(y) + y>(ζ − ω′(x))} [x ∈ Xo, ζ ∈ E], (3.52)

takes its values in Xo.

Taking x+ = Proxx(ζ), the optimality conditions for the optimization problem miny∈X{ω(y)+
y>(ζ − ω′(x))} in which x+ is the optimal solution read

∀y ∈ X : (y − x+)>(ω′(x+) + ζ − ω′(x)) ≥ 0.

Rearranging the terms, simple arithmetics show that this condition can be written equiva-
lently as

x+ = Proxx(ζ)⇒ ζ>(x+ − y) ≤ Vx(y)− Vx+(y)− Vx(x+) ∀y ∈ X. (3.53)

Algorithm 2: Stochastic Mirror Descent.

Initialization. Take x1 = xω. Fix the number of iterations N − 1 and positive deterministic
stepsizes γ1, . . . , γN .

Loop. For t = 1, . . . , N − 1, compute

xt+1 = Proxxt(γtG(xt, ξt)). (3.54)
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Outputs:

xN =
1

ΓN

N∑
τ=1

γτxτ and gN =
1

ΓN

[
N∑
τ=1

γτg(xτ , ξτ )

]
with ΓN =

N∑
τ=1

γτ . (3.55)

The choice of ω depends on the feasibility set X. For the feasibility sets of problems (2.16) and
(2.17), several distance-generating functions are of interest.

Example 3.7 (Distance-generating function for (2.16) and (2.17)). For ω(x) = ω1(x) = 1
2‖x‖

2
2

and ‖ · ‖ = ‖ · ‖2 = ‖ · ‖∗, Proxx(ζ) = ΠX(x − ζ) and the Stochastic Mirror Descent algorithm is
the RSA algorithm given by the recurrence (3.19).

Example 3.8 (Distance-generating function for problem (2.16) with a = 1 and b = 0). Let ω be
the entropy function

ω(x) = ω2(x) =
n∑
i=1

x(i) ln(x(i)) (3.56)

used in [21] with ‖ ·‖ = ‖ ·‖1 and ‖ ·‖∗ = ‖ ·‖∞. In this case, it is shown in [21] that x+ = Proxx(ζ)
is given by

x+(i) =
x(i)e−ζ(i)∑n
k=1 x(k)e−ζ(k)

, i = 1, . . . , n,

and that we can take Dω2,X =
√

2 ln(n), µ(ω2) = 1, and x1 = xω2 = 1
n(1, 1, . . . , 1)>. To avoid

numerical instability in the computation of x+ = Proxx(ζ), we compute instead z+ = ln(x+) from
z = ln(x) using the alternative representation

z+ = w − ln

(
n∑
i=1

ew(i)

)
1 where w = z − ζ −max

i
[z(i)− ζ(i)].

Example 3.9 (Distance-generating function for problem (2.16) with 0 < b < a/n.). Let ‖·‖ = ‖·‖1,
‖ · ‖∗ = ‖ · ‖∞, and as in [11], [14, Section 5.7], consider the distance-generating function

ω(x) = ω3(x) =
1

pγ

n∑
i=1

|x(i)|p with p = 1 + 1/ ln(n) and γ =
1

exp(1) ln(n)
. (3.57)

For every x ∈ X, since p → ‖x‖p is nonincreasing and p > 1, we get ‖x‖p ≤ ‖x‖1 = a and
maxx∈X ω3(x) ≤ ap

pγ . Next, using Hölder’s inequality, for x ∈ X we have a =
∑n

i=1 x(i) ≤ n1/q‖x‖p
where 1

p + 1
q = 1. We deduce that minx∈X ω3(x) ≥ ap

pγn1/ ln(n) and that Dω3,X ≤
√

2ap

pγ (1− n−1/ ln(n)).

We also observe that DX ≤
√

2(a− nb) and that µ(ω3) = exp(1)
na2−p : for x, y ∈ X we have

(ω′3(x)− ω′3(y))>(x− y) =
1

γ

n∑
i=1

(y(i)− x(i))(ϕ(y(i))− ϕ(x(i))) =
1

γ

n∑
i=1

ϕ′(ci)(y(i)− x(i))2

for some 0 < ci ≤ a where ϕ(x) = xp−1. Since ϕ′(ci) ≥ ϕ′(a) = (p − 1)ap−2, we obtain that

(ω′3(x) − ω′3(y))>(x − y) ≥ µ(ω3)‖y − x‖21 with µ(ω3) = exp(1)
na2−p . In this context, each iteration of

the SMD algorithm can be performed efficiently using Newton’s method: setting x+ = Proxx(ζ) and
z = ζ − ω′3(x), x+ is the solution of the optimization problem miny∈X

∑n
i=1(1/pγ)y(i)p + z(i)y(i).
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Hence, there are Lagrange multiplers µ ≥ 0 and ν such that µ(i)(b − x+(i)) = 0, (1/γ)x+(i)p−1 +
z(i) − ν − µ(i) = 0 for i = 1, . . . , n, and

∑n
i=1 x+(i) = a. If x+(i) > b then µ(i) = 0 and

ν − z(i) = (1/γ)x+(i)p−1 > bp−1/γ, i.e., x+(i) = max((γ(ν − z(i)))
1
p−1 , b). If x+(i) = b then

µ(i) ≥ 0 can be written (1/γ)x+(i)p−1 = 1
γ b
p−1 ≥ ν − z(i). It follows that in all cases x+(i) =

max((γ(ν − z(i)))
1
p−1 , b). Plugging this relation into

∑n
i=1 x+(i) = a, computing x+ amounts to

finding a root of the function f(ν) =
∑n

i=1 max((γ(ν − z(i)))
1
p−1 , b)− a.

In what follows, we provide confidence intervals for the optimal value of (2.6) on the basis of the
points generated by the SMD algorithm, thus extending Proposition 3.3. We first need a technical
lemma:

Lemma 3.10. Let e1, ..., eN be a sequence of vectors from E, γ1, ..., γN be nonnegative reals, and
let u1, ..., uN ∈ X be given by the recurrence

u1 = xω
uτ+1 = Proxuτ (γτeτ ), 1 ≤ τ ≤ N − 1.

Then

∀y ∈ X :
N∑
τ=1

γτe
>
τ (uτ − y) ≤ 1

2
D2
ω,X +

1

2µ(ω)

N∑
τ=1

γ2
τ‖eτ‖2∗. (3.58)

Proof. See the Appendix. �

Applying Lemma 3.10 to eτ = G(xτ , ξτ ) and in relation (3.58) specifying y as a minimizer x∗
of f over X, we get:

N∑
τ=1

γτG(xτ , ξτ )>(xτ − x∗) ≤
1

2
D2
ω,X +

1

2µ(ω)

N∑
τ=1

γ2
τ‖G(xτ , ξτ )‖2∗.

Using notation (3.28) of the previous section, the above inequality can be rewritten

N∑
τ=1

γτ (xτ − x∗)>f ′(xτ ) ≤
D2
ω,X

2
+

1

2µ(ω)

N∑
τ=1

γ2
τ‖Gτ‖2∗ +

N∑
τ=1

γτ∆>τ (x∗ − xτ ). (3.59)

We mentioned that when ω(x) = 1
2‖x‖

2
2, the SMD algorithm is the RSA algorithm of the previous

section. In that case, µ(ω) = 1, ‖ · ‖ = ‖ · ‖2, ‖ · ‖∗ = ‖ · ‖2, and (3.59) is obtained from inequality
(3.29) of the previous section for the RSA algorithm substituting DX by Dω,X (note that when
choosing x1 = xω for the RSA algorithm, we have DX ≤ Dω,X so for the RSA algorithm (3.29)
gives a tighter upper bound). We can now extend the results of Lemma 3.1 and Proposition 3.3 to
the SMD algorithm:

Lemma 3.11. Let Assumptions 1, 2, and 3 hold and assume that the number of iterations N − 1
of the SMD algorithm is fixed in advance with stepsizes given by

γτ = γ =
Dω,X

√
µ(ω)√

2(M2
2 + L2)

√
N
, τ = 1, . . . , N. (3.60)
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Consider the approximation gN =
1

N

N∑
τ=1

g(xτ , ξτ ) of f(x∗). Then

E
[∣∣∣gN − f(x∗)

∣∣∣] ≤ M1 +
Dω,X√
µ(ω)

√
2(M2

2 + L2)

√
N

. (3.61)

Proof. It suffices to follow the proof of Lemma 3.1, starting from inequality (3.29) which needs to
be replaced by (3.59) for the Mirror Descent algorithm. �

Proposition 3.12. Assume that the number of iterations N − 1 of the SMD algorithm is fixed in

advance with stepsizes given by (3.60). Consider the approximation gN =
1

N

N∑
τ=1

g(xτ , ξτ ) of f(x∗).

Then,

(i) if Assumptions 1, 2, 3, and 4 hold, for any Θ > 0, we have

P
(∣∣∣gN − f(x∗)

∣∣∣ > K1(X) + ΘK2(X)√
N

)
≤ 4 exp{1} exp{−Θ} (3.62)

where the constants K1(X) and K2(X) are given by

K1(X) =
Dω,X(M2

2 + 2L2)√
2(M2

2 + L2)µ(ω)
and K2(X) =

Dω,XM
2
2√

2(M2
2 + L2)µ(ω)

+
2Dω,XM2√

µ(ω)
+M1. (3.63)

(ii) If Assumptions 1, 2, 3, and 5 hold, then (3.62) holds with the right-hand side replaced by
(3 + exp{1}) exp{−1

4Θ2}.

Proof. It suffices to follow the proof of Proposition 3.3, knowing that inequality (3.29) needs to
be replaced by (3.59) for the Mirror Descent algorithm. In particular, recalling that (3.51) holds,
inequality (3.39) becomes

fN − f(x∗) ≤
Dω,X(M2

2 + 2L2)√
2(M2

2 + L2)µ(ω)N
+

Dω,XM
2
2√

2(M2
2 + L2)µ(ω)N

A+
2Dω,XM2√
µ(ω)N

B

now with

A =
1

NM2
2

N∑
τ=1

‖∆τ‖2∗ and B =

√
µ(ω)

2Dω,XM2

N∑
τ=1

∆>τ (x∗ − xτ ).

�

Similarly to Corollary 3.4, we have the following corollary of Proposition 3.12:

Corollary 3.13. Let Up1 and Low1 be the upper and lower bounds given by respectively (3.45) and
(3.46) now with K1(X) and K2(X) given by (3.63) and gN given by (3.55). Then if Assumptions
1, 2, 3, and 5 hold, for any Θ1,Θ2,Θ3 > 0, we have

P
(
f(x∗) ∈

[
Low1(Θ2,Θ3, N), Up1(Θ1, N)

])
≥ 1− e−Θ2

1/4 − e1−Θ2
2 − e−Θ2

2/4 − e−Θ2
3/4 (3.64)

and parameters Θ1,Θ2,Θ3 can be chosen as in Remark 3.5 for
[
Low1(Θ2,Θ3, N), Up1(Θ1, N)

]
to

be a confidence interval with confidence level of at least 1− α. If Assumptions 1, 2, 3, and 4 hold,
then (3.64) holds with the term e1−Θ2

2 replaced by e1−Θ2.
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In the case when f is uniformly convex with convexity parameters ρ and µ(f), (2.6) has a unique
optimal solution x∗ and we can additionally bound from above E[‖xN−x∗‖ρ] by an O(1/

√
N) upper

bound. We recall that f is uniformly convex on X with convexity parameters ρ ≥ 2 and µ(f) > 0
if for all t ∈ [0, 1] and for all x, y ∈ X,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− µ(f)

2
t(1− t)(tρ−1 + (1− t)ρ−1)‖x− y‖ρ. (3.65)

A uniformly convex function with ρ = 2 is called strongly convex. If a uniformly convex function
f is subdifferentiable at x, then

∀y ∈ X, f(y) ≥ f(x) + (y − x)>f ′(x) +
µ(f)

2
‖y − x‖ρ

and if f is subdifferentiable at two points x, y ∈ X, then

(y − x)>(f ′(y)− f ′(x)) ≥ µ(f)‖y − x‖ρ.

Note that if g(·, ξ) is uniformly convex for every ξ then f(x) = E
[
g(x, ξ)

]
is uniformly convex with

the same convexity parameters.

Example 3.14. For problem (2.16), setting V = E[ξξT ] and taking ‖ · ‖ = ‖ · ‖1, if λ0 > 0, the

objective function f is uniformly convex with convexity parameters ρ = 2 and µ(f) = α1(λmin(V )+λ0)
n

where λmin(V ) is the smallest eigenvalue of V :

(f ′(y)− f ′(x))>(y − x) = α1(y − x)>(V + λ0I)(y − x)

≥ α1(λmin(V ) + λ0)‖y − x‖22 ≥
α1(λmin(V )+λ0)

n ‖y − x‖21.

Example 3.15. For problem (2.17), taking ‖ · ‖ = ‖ · ‖2, if λ0 > 0 the objective function f is
uniformly convex with convexity parameters ρ = 2 and µ(f) = 2λ0.

Example 3.16 (Two-stage stochastic programs). For the two-stage stochastic convex program
defined in Section 2.2, if f1 is uniformly convex on X and if for every ξ ∈ Ξ the function f2(·, ·, ξ)
is uniformly convex, then f is uniformly convex on X. For conditions ensuring strong convexity in
some two-stage stochastic programs with complete recourse, we refer to [32] and [33].

Lemma 3.17. Let Assumptions 1, 2, and 3 hold and assume that the number of iterations N−1 of
the SMD algorithm is fixed in advance with stepsizes given by (3.60). Consider the approximation

gN =
1

N

N∑
τ=1

g(xτ , ξτ ) of f(x∗) and assume that f is uniformly convex. Then (3.61) holds and

E
[
‖xN − x∗‖ρ

]
≤
Dω,X

√
2(M2

2 + L2)

µ(f)
√
µ(ω)

√
N

. (3.66)

Proof. For every τ = 1, . . . , N , since xτ ∈ X, the first order optimality conditions give

(xτ − x∗)>f ′(x∗) ≥ 0.

Using this inequality and the fact that f is uniformly convex yields

µ(f)‖xτ − x∗‖ρ ≤ (xτ − x∗)>(f ′(xτ )− f ′(x∗)) ≤ (xτ − x∗)>f ′(xτ ). (3.67)

21



Next, note that since ρ ≥ 2, the function ‖x‖ρ from E to R+ is convex as a composition of the
convex monotone function xρ from R+ to R+ and of the convex function ‖x‖ from E to R+. It
follows that

‖xN − x∗‖ρ =

∥∥∥∥∥ 1

ΓN

N∑
τ=1

γτ (xτ − x∗)

∥∥∥∥∥
ρ

≤
N∑
τ=1

γτ
ΓN
‖xτ − x∗‖ρ

≤ 1

µ(f)

N∑
τ=1

γτ
ΓN

(xτ − x∗)>f ′(xτ ) using (3.67).

(3.68)

Finally, we prove (3.66) using the above inequality and (3.59), and following the proof of Lemma
3.1. �

4 Multistep Stochastic Mirror Descent

The analysis of the SMD algorithm of the previous section was done taking x1 = xω as a starting
point. In the case when f is uniformly convex, Algorithm 3 below is a multistep version of the
Stochastic Mirror Descent algorithm starting from an arbitrary point y1 = x1 ∈ X. A similar
multistep algorithm was presented in [13] for the method of dual averaging. The proofs of this
section are adaptations of the proofs of [13] to our setting. However, in [13] the confidence intervals
defined using the stochastic method of dual averaging were not computable whereas the confidence
intervals to be given in this section for the multistep SMD are computable.

We assume in this section that f is uniformly convex, i.e., satisfies (3.65). For multistep Algo-
rithm 3, at step t, Algorithm 2 is run for Nt− 1 iterations starting from yt instead of xω with steps
that are constant along these iterations but that are decreasing with the algorithm step t. The
output yt+1 of step t is the initial point for the next run of Algorithm 2, at step t+ 1. To describe
Algorithm 3, it is convenient to introduce

(1) xN (x, γ): the approximate solution of (2.6) computed as in (3.55) where the points x1, . . . , xN
are generated by Algorithm 2 run for N − 1 iterations with constant step γ and using x1 = x
instead of x1 = xω as a starting point.;

(2) gN (x, γ): the approximation of the optimal value of (2.6) computed as in (3.55) where the
points x1, . . . , xN are generated by Algorithm 2 run for N − 1 iterations with constant step
γ and using x1 = x instead of x1 = xω as a starting point.

In Proposition 4.3, we provide an upper bound for the mean error on the optimal value that is
divided by two at each step. We will assume that the prox-function is quadratically growing:

Assumption 6. There exists 0 < M(ω) < +∞ such that

Vx(y) ≤ 1

2
M(ω)‖x− y‖2 for all x, y ∈ X. (4.69)

Assumption 6 holds if ω is twice continuously differentiable on X and in this case M(ω) can be
related to a uniform upper bound on the norm of the Hessian matrix of ω.

Example 4.1. When ω(x) = ω1(x) = 1
2‖x‖

2
2, we get Vx(y) = 1

2‖x − y‖
2 and Assumption 6 holds

with M(ω) = 1 (this is the setting of RSA).

Assumption 6 also holds for distance-generating functions ω2 and ω3 provided X does not
contain 0:
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Example 4.2. For X := {x ∈ Rn :
∑n

i=1 x(i) = a, x(i) ≥ b, i = 1, . . . , n}, with 0 < b < a/n,
ω(x) = ω3(x) = 1

pγ

∑n
i=1 |x(i)|p with p = 1 + 1/ ln(n) and γ = 1

exp(1) ln(n) , ‖ · ‖ = ‖ · ‖1 and

‖ · ‖∗ = ‖ · ‖∞, Assumption 6 is satisfied with M(ω3) = exp(1)

b1−1/ ln(n) : indeed, since ω3 is twice

continuously differentiable on X with ω′′3(x) = p−1
γ diag(x(1)p−2, . . . , x(n)p−2), for every x, y ∈ X,

there exists some 0 < θ̃ < 1 such that

Vx(y) = ω3(y)− ω3(x)− ω′3(x)>(y − x) = 1
2(y − x)>ω′′3(x+ θ̃(y − x))(y − x),

which implies that

µ(ω3)

2
‖y−x‖21 =

p− 1

2γa2−pn
‖y−x‖21 ≤

p− 1

2γa2−p ‖y−x‖
2
2 ≤ Vx(y) ≤ p− 1

2γb2−p
‖y−x‖22 ≤

p− 1

2γb2−p
‖y−x‖21,

where for the last inequality, we have used the fact that ‖y − x‖22 ≤ ‖y − x‖21.

Algorithm 3: multistep Stochastic Mirror Descent.

Initialization. Take y1 = x1 ∈ X. Fix the number of steps m.

Loop. For t = 1, . . . ,m,

1) Compute

Nt = 1 +

2
3+

2(t−1)(ρ−1)
ρ (L2 +M2

2 )M(ω)

µ2(f)µ(ω)D
2(ρ−1)
X

 (4.70)

where dxe is the smallest integer greater than or equal to x.

2) Compute γt =
DX

2
t−1
ρ
√
Nt

√
M(ω)µ(ω)

2(L2 +M2
2 )

.

3) Run Algorithm 2 (Stochastic Mirror Descent) for Nt − 1 iterations, starting from yt instead
of xω, to compute yt+1 = xNt(yt, γ

t) obtained using iterations (3.54) with constant step γt at
each iteration.

Outputs: ym+1 = xNm(ym, γ
m) and gNm(ym, γ

m).

If for Algorithm 2 (SMD algorithm), the initialization phase consists in taking an arbitrary
point x1 in X instead of xω, analogues of Lemmas 3.11, 3.17, and of Proposition 3.12 can be
obtained using Assumption 6 and replacing (3.59) by the relation (see the proof of Lemma 3.10 for
a justification):

N∑
τ=1

γτ (xτ − x∗)>f ′(xτ ) ≤ M(ω)

2
‖x1 − x∗‖2 +

1

2µ(ω)

N∑
τ=1

γ2
τ‖Gτ‖2∗ +

N∑
τ=1

γτ (x∗ − xτ )>∆τ , (4.71)

which will be used in the sequel.
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Proposition 4.3. Let ym+1 be the solution generated by Algorithm 3 after m steps. Assume that
f is uniformly convex and that Assumptions 1, 2, 3, and 6 hold. Then

E
[
‖ym+1 − x∗‖

]
≤ DX

2m/ρ
, E

[∣∣∣f(ym+1)− f(x∗)
∣∣∣] ≤ µ(f)

Dρ
X

2m
, (4.72)

E
[∣∣∣gNm(ym, γ

m)− f(x∗)
]
≤ µ(f)

Dρ
X

2m
+

M1√
Nm

. (4.73)

Proof. We prove by induction that E
[
‖yk − x∗‖

]
≤ Dk := DX

2(k−1)/ρ and E
[
‖yk − x∗‖ρ

]
≤ Dρ

k for

k = 1, . . . ,m+ 1. For k = 1, the inequality holds. Assume that it holds for some k < m+ 1. Using
(4.71) and following the proof of Lemmas 3.11 and 3.17, we obtain

E
[
‖xNk(yk, γ

k)− x∗‖ρ
]
≤ Dk

µ(f)
√
Nk

√
2(L2 +M2

2 )M(ω)

µ(ω)
, (4.74)

E
[
f(xNk(yk, γ

k))− f(x∗)
]

= E
[
f(yk+1)− f(x∗)

]
≤ Dk√

Nk

√
2(L2 +M2

2 )M(ω)

µ(ω)
. (4.75)

For (4.74), we have used the fact that

E
[
‖yk − x∗‖2

]
= E

[
(‖yk − x∗‖ρ)2/ρ

]
≤
(
E
[
‖yk − x∗‖ρ

])2/ρ
≤ D2

k,

which holds using the induction hypothesis and Jensen inequality. Plugging

Nk ≥ 8
2

2(k−1)(ρ−1)
ρ (L2 +M2

2 )M(ω)

µ2(f)µ(ω)D
2(ρ−1)
X

=
8(L2 +M2

2 )M(ω)

µ2(f)µ(ω)D
2(ρ−1)
k

into (4.74) gives

E
[
‖yk+1 − x∗‖ρ

]
= E

[
‖xNk(yk, γ

k)− x∗‖ρ
]
≤ Dk

Dρ−1
k

2
= Dρ

k+1.

Since for ρ ≥ 2, the function x1/ρ is concave, using Jensen inequality we conclude that E
[
‖yk+1 −

x∗‖
]
≤ Dk+1 which achieves the induction. Next, using (4.75), we obtain E

[∣∣∣f(yk+1) − f(x∗)
∣∣∣] ≤

µ(f)Dρ
k+1. Finally, we prove (4.73) using (4.72) and following the end of the proof of Lemma 3.1.

�

Corollary 4.4. Let ym+1 be the solution generated by Algorithm 3 after m steps. Assume that f is

uniformly convex and that Assumptions 1, 2, 3, and 6 hold. Then for any Θ > 0, P
(
‖ym+1−x∗‖ρ >

2−
m
2 Θ
)
≤ DρX

Θ 2−
m
2 .

If at most N calls to the oracle are allowed, Algorithm 3 becomes Algorithm 4.

Algorithm 4: multistep Stochastic Mirror Descent with no more than N calls to
the oracle.
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Initialization. Take y1 = x1 ∈ X, set Steps = 1, NbCall = N1−1 and fix the maximal number
of calls N to the oracle.

Loop. While NbCall ≤ N ,

1) Compute γSteps =
DX

2
Steps−1

ρ
√
NSteps

√
M(ω)µ(ω)

2(L2 +M2
2 )

with NSteps given by (4.70).

2) Run Algorithm 2 (Stochastic Mirror Descent) for NSteps − 1 iterations with NSteps given by
(4.70), starting from ySteps instead of xω, to compute ySteps+1 = xNSteps(ySteps, γ

Steps) ob-
tained using iterations (3.54) with constant step γSteps at each iteration.

3) Steps← Steps + 1, NbCall ← NbCall + NSteps − 1.

End while

Steps← Steps− 1.

Outputs: ySteps+1 = xNSteps(ySteps, γ
Steps) and gNSteps(ySteps, γ

Steps).

Proposition 4.5. Let ySteps+1 be the solution generated by Algorithm 4. Assume that f is uni-
formly convex and that N is sufficiently large, namely that

N > 1 +
2(2β + 1)

β ln 2
ln

(
1 +

(2β − 1)

A(f, ω)
N

)
, (4.76)

where A(f, ω) =
8(L2+M2

2 )M(ω)

µ2(f)µ(ω)D
2(ρ−1)
X

and where 1 ≤ β = 2ρ−1
ρ < 2. If Assumptions 1, 2, 3, and 6 hold

then

E
[
‖ySteps+1 − x∗‖ρ

]
≤ Dρ

X

[
2β+1A(f, ω)

(2β − 1)(N − 1) + 2A(f, ω)

]1/β

,

E
[∣∣∣f(ySteps+1)− f(x∗)

∣∣∣] ≤ µ(f)Dρ
X

[
2β+1A(f, ω)

(2β − 1)(N − 1) + 2A(f, ω)

]1/β

,

(4.77)

and E
[∣∣∣gNSteps(ySteps, γ

Steps)− f(x∗)
∣∣∣] is bounded from above by

µ(f)Dρ
X

[
2β+1A(f, ω)

(2β − 1)(N − 1) + 2A(f, ω)

]1/β

+
M1√
NSteps

.

Proof. In the proof of Proposition 4.3, we have shown that

E
[
‖ySteps+1 − x∗‖ρ

]
≤

Dρ
X

2Steps
and E

[∣∣∣f(ySteps+1)− f(x∗)
∣∣∣] ≤ µ(f)

Dρ
X

2Steps
. (4.78)

Denoting for short A(f, ω) by A, we will show that

1

2Steps
≤
[

2β+1A

(2β − 1)(N − 1) + 2A

]1/β

, (4.79)
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which, plugged into (4.78), will prove the proposition. Let us check that (4.79) indeed holds. By
definition of Nt and of the number of steps of Algorithm 4, we have

Steps + 1 +
2β(Steps+1) − 1

2β − 1
A =

Steps+1∑
t=1

(1 + 2(t−1)βA) >

Steps+1∑
t=1

(Nt − 1) > N

which can be written
2β Steps

2β − 1
A >

1

2β

(
N − Steps− 1 +

A

2β − 1

)
, (4.80)

and

N ≥
Steps∑
t=1

(Nt − 1) ≥
Steps∑
t=1

2(t−1)βA =
2β Steps − 1

2β − 1
A. (4.81)

From (4.81), we obtain an upper bound on the number of steps:

Steps ≤
ln
(

1 + (2β−1)
A N

)
β ln 2

. (4.82)

Combining (4.80), (4.81), and (4.82) gives

−A
2β − 1

+
1

2β

(
N − 1 +

A

2β − 1

)
≤ Steps

2β
+

Steps∑
t=1

(Nt − 1)

≤ Steps

2β
+

Steps∑
t=1

(1 + 2(t−1)βA) ≤ Steps(1 +
1

2β
) +

2β Steps − 1

2β − 1
A

≤
ln
(

1 + (2β−1)
A N

)
β ln 2

(1 +
1

2β
) +

2β Steps − 1

2β − 1
A. (4.83)

Plugging (4.76) into (4.83) and rearranging the terms gives (4.79). �

Proposition 4.5 gives an O(1/Nρ/2(ρ−1)) upper bound for E
[∣∣∣f(ySteps+1) − f(x∗)

∣∣∣], which is

tighter, since 1
β = ρ/2(ρ− 1) > 1

2 , than the upper bounds obtained in the previous sections in the
convex case. When ρ = 2, we obtain the rate O(1/N) which is the best known convergence rate for
stochastic methods for minimizing strongly convex functions; see [9], [20], [28]. Finally, we provide
a confidence interval for the optimal value of (2.6), obtained using the following multistep modified
version of Algorithm 3 (a confidence interval can also be obtained for the optimal value of (2.6)
using a similar modified version of Algorithm 4):

Algorithm 3’: variant of Algorithm 3.
Algorithm 3 with the following modification: for each step t, when Algorithm 2 is run for Nt−1

iterations, the proximal mapping used in (3.54) is now defined by replacing in (3.52) the set X by
X ∩B(yt,

DX
2(t−1)/ρ ).

Proposition 4.6. Let ym+1 be the solution generated by Algorithm 3’. Assume that f is uniformly
convex, fix Θ > 0, and assume that Nk is sufficiently large for k = 1, . . . ,m, namely that

Nk ≥ 2

[
2k−2

(k−1)
ρ

](
K1(X) + ΘK2(X)

)2
(4.84)

26



with

K1(X) =
√

M(ω)
2µ(ω)(L2+M2

2 )

(
2L2+M2

2

µ(f)Dρ−1
X

)
and

K2(X) =
(
M2

2

√
M(ω)

2µ(ω)(L2+M2
2 )

+ 2M2

)
1

µ(f)Dρ−1
X

.

Then if Assumptions 1, 2, 3, 4, and 6 hold, we have

P
(∣∣∣gNm(ym, γ

m)− f(x∗)
∣∣∣ > µ(f)DρX

2m + Θ M1√
Nm

)
≤ 2m exp{1−Θ}+ 2 exp{−1

4Θ2}.

Proof. Let us fix Θ > 0. Denoting by xτ , τ = 1, . . . , Nm, the last Nm points generated by the
algorithm and setting fNm = 1

Nm

∑Nm
τ=1 f(xτ ), following the proof of Proposition 3.3, we have

P
(∣∣∣gNm(ym, γ

m)− fNm
∣∣∣ > Θ M1√

Nm

)
≤ 2 exp{−1

4Θ2}. We now show that

P
(∣∣∣fNm − f(x∗)

∣∣∣ > µ(f)DρX
2m

)
≤ 2m exp{1−Θ}, (4.85)

which will achieve the proof of the proposition. The proof is by induction on the number of
steps of the algorithm. The induction hypothesis is that for some step k ∈ {1, . . . ,m} and for all
` = 1, . . . , k, there is a set S` of probability 1 if ` = 1 and at least 1− 2 exp{1−Θ} otherwise such
that on ∩k`=1S`, we have ‖yk − x∗‖ ≤ Dk = DX

2(k−1)/ρ . For k = 1, the result holds. Assume now
the induction hypothesis for some k ∈ {1, . . . ,m}. We intend to show that (4.85) holds with m
substituted by k and that there is a set Sk+1 of probability at least 1− 2 exp{1−Θ} such that on
on ∩k+1

`=1S`, we have ‖yk+1 − x∗‖ ≤ Dk+1 = DX
2k/ρ

. Denoting now by xτ , τ = 1, . . . , Nk, the points

generated at the k-th step of the algorithm, using (4.71) and the fact that ‖Gτ‖2∗ ≤ 2(L2 + ‖∆τ‖2∗),
we have for fNk − f(x∗) the upper bound

1

Nkγk

[
M(ω)

2
‖yk − x∗‖2 +

1

µ(ω)

Nk∑
τ=1

(γk)2(L2 + ‖∆τ‖2∗) +

Nk∑
τ=1

γk∆>τ (x∗ − xτ )

]
≤ Uk :=

M(ω)D2
k

2Nkγk
+
L2γk

µ(ω)
+
γkM2

2

µ(ω)
Ak +

2DkM2

Nk
Bk

(4.86)

on ∩k`=1S` where

Ak =
1

NkM
2
2

Nk∑
τ=1

‖∆τ‖2∗ and Bk =
1

2DkM2

Nk∑
τ=1

∆>τ (x∗ − xτ ).

Observe that on ∩k`=1S`, we have ‖x∗ − yk‖ ≤ Dk and by definition of xτ , we have ‖yk − xτ‖ ≤ Dk

for τ = 1, . . . , Nk. It follows that we can follow the proof of Proposition 3.3 to show that for any
Θ > 0,

P
(
Ak > Θ

)
≤ exp{1−Θ} and P

(
Bk > Θ

√
Nk

)
≤ exp{−1

4
Θ2}.

Thus there is a set Sk+1 of probability at least 1−2 exp{1−Θ} such that on Sk+1, we have Ak ≤ Θ
and Bk ≤ Θ

√
Nk. Next, on ∩k+1

`=1S`, plugging into (4.86) the upper bounds Θ and Θ
√
Nk for

respectively Ak and Bk, using the definition of γk, and the lower bound (4.84) on Nk, we obtain for

fNk −f(x∗) the upper bound
µ(f)DρX

2k
= µ(f)Dρ

k+1. Observing that P(∩k+1
`=1S`) ≥ 1−2k exp{1−Θ},

we have shown (4.85) with step m substituted by step k. Finally, using (3.68), we have on ∩k+1
`=1S`

for ‖yk+1−x∗‖ρ the upper bound Uk
µ(f) where Uk is defined in (4.86). Since we have just shown that

on ∩k+1
`=1S`, Uk is bounded from above by µ(f)Dρ

k+1, this achieves the induction step. �
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Similarly to Corollary 3.4, we can combine the upper bound gNm(ym, γ
m) + Θ1M1√

Nm
with the

lower bound from Proposition 4.6 to obtain a less conservative (smaller, for fixed confidence level)
confidence interval for f(x∗):

Corollary 4.7. Let ym+1 be the solution generated by Algorithm 3’. Assume that f is uniformly
convex, fix Θ > 0, and assume that Nk is sufficiently large for k = 1, . . . ,m, namely that (4.84)
holds. Then if Assumptions 1, 2, 3, 4, and 6 hold, for any Θ1,Θ2 > 0 we have

P
(
f(x∗) ∈

[
gNm(ym, γ

m)− µ(f)DρX
2m − Θ2M1√

Nm
, gNm(ym, γ

m) + Θ1M1√
Nm

])
≥ 1− 2m exp{1−Θ} − exp{−Θ4

1/4} − exp{−Θ4
2/4}.

Proof. It suffices to use Proposition 4.6 and to follow the proof of Corollary 3.4. �

5 Numerical experiments

5.1 Comparison of the confidence intervals from Section 3 and from [18]

We compare the coverage probabilities and the computational time of two confidence intervals with
confidence level at least 1−α = 0.9 on the optimal value of (2.16) and (2.17), built using a sample
ξN = (ξ1, . . . , ξN ) of size N of ξ:

1. the (non-asymptotic) confidence interval CSMD 1 =
[
Low1(Θ2,Θ3, N), Up1(Θ1, N)

]
proposed in

Section 3.2 with Θ1,Θ2,Θ3 as in Corollary 3.13.

2. The (non-asymptotic) confidence interval CSMD 2 =
[
Low2(Θ2, N), Up1(Θ1, N)

]
proposed in [18]

where5

Low2(Θ2, N) = fN − 1√
N

((
1

2θ
+ 2θ

)
Dω,XM∗√

µ(ω)
+ Θ2

[
M1 +

[
8 +

2θ√
N

]Dω,XM∗√
µ(ω)

])
(5.87)

with fN = min
x∈X

1

N

N∑
t=1

[
g(xt, ξt) + G(xt, ξt)

>(x − xt)
]
, taking for x1, . . . , xN , the sequence

of points generated by the SMD algorithm with constant step γ =
θ
√
µ(ω)Dω,X

M∗
√
N

. In this

expression, M∗ satisfies E
[

exp{‖G(x, ξ)‖2∗/M2
∗ }
]
≤ exp{1} for all x ∈ X. Using Theorem 1 of

[18], we have P(f(x∗) < Low2(Θ2, N)) ≤ 6 exp{−Θ2
2/3}+ exp{−Θ2

2/12}+ exp{−0.75Θ2

√
N}.

Recalling that P(f(x∗) > Up1(Θ1, N)) ≤ exp{−Θ2
1/4}, it follows that we can take Θ1 =

2
√

ln(2/α) and Θ2 satisfying 6 exp{−Θ2
2/3}+ exp{−Θ2

2/12}+ exp{−0.75Θ2

√
N} = α/2.

All simulations were implemented in Matlab using Mosek Optimization Toolbox [1].

5.1.1 Comparison of the confidence intervals on a risk-neutral problem

We consider problem (2.16) with α0 = 0.1, α1 = 0.9, λ0 = b = 0, a = 1, n ∈ {40, 60, 80, 100},
and where ξ is a random vector with i.i.d. Bernoulli entries: Prob(ξi = 1) = Ψi, Prob(ξi =
−1) = 1−Ψi, with Ψi randomly drawn over [0, 1]. It follows that f(x) = α0µ

>x+ α1
2 x
>V x where

5Note that parameter Dω,X in [18] is parameter Dω,X given by (3.49) divided by
√

2.
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Sample |CSMD 2|/|CSMD 1|, problem size n
size N 40 60 80 100

1 000 3.82 3.83 3.84 3.85

5 000 3.81 3.82 3.83 3.85

10 000 3.80 3.82 3.83 3.84

Table 1: Average ratio of the widths of the confidence intervals for problem (2.16).

Confidence Problem size n
interval 40 60 80 100

CSMD 1, N = 1 000 0.075 0.091 0.094 0.109

CSMD 2, N = 1 000 0.080 0.100 0.104 0.118

CSMD 1, N = 10 000 0.61 0.62 0.61 0.70

CSMD 2, N = 10 000 0.59 0.61 0.64 0.73

Table 2: Average computational time (in seconds) of a confidence interval estimated computing
500 confidence intervals for problem (2.16).

µi = E[ξi] = 2Ψi − 1 and Vi,j = E[ξi]E[ξj ] = (2Ψi − 1)(2Ψj − 1) for i 6= j while Vi,i = E[ξ2
i ] = 1.

For SMD, we take ‖ · ‖ = ‖ · ‖1 and for the distance-generating function the entropy function
ω(x) = ω2(x) =

∑n
i=1 x(i) ln(x(i)). We (first) take θ = 1 in (5.87), meaning that CSMD 2 is obtained

running SMD with constant step γ =

√
µ(ω)Dω,X

M∗
√
N

where M∗ = |α0|+α1. We simulate 500 instances of

this problem and compute for each instance the confidence intervals CSMD 1 and CSMD 2. The coverage
probabilities of the two non-asymptotic confidence intervals are equal to one for all parameter
combinations.

We report in Table 1 the mean ratio of the widths of the non-asymptotic confidence intervals.
Interestingly, we observe that the confidence interval CSMD 1 we proposed in Section 3 is less con-
servative than CSMD 2: in these experiments, the mean length of the width of CSMD 2 divided by the
width of CSMD 1 varies between 3.80 and 3.85, as can be seen in Table 1.

Another advantage of CSMD 1 is that it tends to be computed more quickly (see Table 2 for
problem sizes n = 40, 60, 80, and 100), especially when the problem size n increases (see Table 3
for n = 1000, 2000, 5000, and 10 000), due to the fact that CSMD 1 is computed using an analytic
formula while solving an (additional) optimization problem of size n is required to compute CSMD 2.

We now fix a problem size n = 100 and compute 100 realizations of the confidence intervals on
the optimal value of that problem. On the top left plot of Figure 1, we report the optimal value
as well as the approximate optimal values gN using variants SMD 1 and SMD 2 of SMD for three
sample sizes: N = 1000, 5000, and 10 000. On the remaining plots of this figure, the upper and
lower bounds of confidence intervals CSMD 1 and CSMD 2 are reported for sample sizes N = 1000, 5000,

Confidence Problem size n
interval 1000 2000 5000 10 000

CSMD 1, N = 100 0.426 1.353 6.099 23.902

CSMD 2, N = 100 0.435 1.378 6.153 24.171

Table 3: Average computational time (in seconds) of a confidence interval estimated computing 50
confidence intervals for problem (2.16).
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and 10 000. We observe that the upper limits of CSMD 1 and CSMD 2 are very close (though not identical
since the SMD variants SMD 1 and SMD 2 use different steps). When the sample size N increases,
gN gets closer to the optimal value and the upper (resp. lower) limits tend to decrease (resp.
increase). In this figure, we also see that CSMD 1 lower limit is much larger than CSMD 2 lower limit (in
accordance with the results of Table 1). We also note that SMD 1 and SMD 2 lower bounds appear
to be almost straight lines for these simulations. This comes from the fact that the random part
gN in these bounds is quite small compared to the deterministic part (remaining terms).
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Figure 1: Approximate optimal value, upper and lower bounds for CSMD 1 and CSMD 2, on 100 instances
of problem (2.16) of size n = 100.

Finally, we consider for parameter θ involved in the computation of CSMD 2 the range of values
0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 considered in [18]. For these values of θ, the average ratios of
CSMD 2 and CSMD 1 widths are given in Table 4. These average ratios are all above 3.79 and as high
as 11.04 for (θ,N, n) = (0.005, 1000, 100), which shows again that CSMD 2 is much more conservative
than the interval CSMD 1 proposed in Section 3.2 for this range of values of θ.

5.1.2 Comparison of the confidence intervals on a risk-averse problem

We reproduce the experiments of the previous section for problem (2.17) with ‖·‖ = ‖·‖∗ = ‖·‖2 and

the distance-generating function ω(x) = ω1(x) = 1
2‖x‖

2
2. We takeM∗ =

√
α2

1(1− 1
ε )2 + n(α0 + α1

ε )2,

and two sets of values for (α0, α1, ε): (α0, α1, ε) = (0.9, 0.1, 0.9) and the more risk-averse variant
(α0, α1, ε) = (0.1, 0.9, 0.1).
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Problem size n
(Ratio, θ, N) 40 60 80 100

|CSMD 2|/|CSMD 1|, θ = 0.005, N = 1 000 10.99 11.01 11.03 11.04

|CSMD 2|/|CSMD 1|, θ = 0.01, N = 1 000 7.39 7.39 7.40 7.40

|CSMD 2|/|CSMD 1|, θ = 0.05, N = 1 000 4.45 4.45 4.45 4.46

|CSMD 2|/|CSMD 1|, θ = 0.1, N = 1 000 4.06 4.07 4.07 4.08

|CSMD 2|/|CSMD 1|, θ = 0.5, N = 1 000 3.79 3.81 3.81 3.82

|CSMD 2|/|CSMD 1|, θ = 1, N = 1 000 3.82 3.84 3.85 3.85

|CSMD 2|/|CSMD 1|, θ = 5, N = 1 000 4.36 4.38 4.39 4.40

|CSMD 2|/|CSMD 1|, θ = 10, N = 1 000 5.07 5.10 5.11 5.12

Table 4: Average ratio of the widths of confidence intervals CSMD 1 and CSMD 2, problem (2.16).

Confidence interval and ε = 0.1, problem size ε = 0.9, problem size
sample size N 41 61 81 101 41 61 81 101

CSMD 1, N = 100 0.057 0.069 0.073 0.094 0.058 0.065 0.071 0.082

CSMD 2, N = 100 0.057 0.064 0.069 0.094 0.055 0.062 0.066 0.074

CSMD 1, N = 10 000 5.74 6.13 6.92 7.47 5.79 6.59 7.22 7.97

CSMD 2, N = 10 000 5.97 6.41 7.22 7.81 5.85 6.63 7.28 8.00

Table 5: CVaR optimization (problem (2.17)). Average computational time (in seconds) of a
confidence interval estimated computing 500 confidence intervals.

For these problems, we first discretize ξ, generating a sample of size 105 which becomes the
sample space. We compute the optimal value of (2.17) using this sample and sample from this set
of scenarios to generate the problem instances.

For different problem and sample sizes, we generate again 500 instances. Coverage probabilities
of the non-asymptotic confidence intervals are equal to one for all parameter combinations. The
time required to compute these confidence intervals is given in Table 5 while the the average ratios
of the widths of CSMD 2 and CSMD 1 are reported in Table 6.

We observe again on this problem that CSMD 2 is much more conservative than CSMD 1 and for
N = 10 000 that CSMD 1 is computed quicker than CSMD 1 for all problem sizes. When ε is small and
more weight is given to the CVaR, the optimization problem becomes more difficult, i.e., we need
a large sample size to obtain a solution of good quality. This can be seen in Figures 2 and 3.

On the top left plots of Figures 2 and 3, for a problem of size n = 100, we plot 100 realizations
of the approximate optimal values gN using variants SMD 1 and SMD 2 of SMD for two sample sizes:
N = 100 and N = 10 000 (ε = 0.1 for Figure 2 and ε = 0.9 for Figure 2). For fixed sample size
N , for ε = 0.9 these realizations are much closer to the optimal value than for ε = 0.1. On the
remaining plots of Figure 2 and 3, we report the upper and lower bounds of confidence intervals

Ratio and ε = 0.1, problem size ε = 0.9, problem size
sample size N 41 61 81 101 41 61 81 101

|CSMD 2|/|CSMD 1|, N = 100 2.29 2.30 2.31 2.31 2.29 2.30 2.31 2.32

|CSMD 2|/|CSMD 1|, N = 10 000 2.30 2.30 2.30 2.31 2.31 2.31 2.32 2.31

Table 6: CVaR optimization (problem (2.17)). Average ratio of the widths of the confidence
intervals CSMD 2 and CSMD 1.

31



0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

Optimal value
Approximate optimal value, SMD 1, N=100, 10 000
Approximate optimal value, SMD 2, N=100, 10 000

0 10 20 30 40 50 60 70 80 90 100
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

 

 

Optimal value
Lower bound, SMD 1, N=100, 10 000
Lower bound, SMD 2, N=100, 10 000

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

6

7

 

 

Optimal value
Upper bound, SMD 1, N=100
Upper bound, SMD 1, N=10 000

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

6

7

 

 

Optimal value
Upper bound, SMD 2, N=100
Upper bound, SMD 2, N=10 000

Figure 2: CVaR optimization (problem (2.17)). Approximate optimal value gN , upper and lower
bounds of CSMD 2 and CSMD 1 on 100 instances, problem size n = 100 and ε = 0.1.
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Figure 3: CVaR optimization (problem (2.17)). Approximate optimal value gN , upper and lower
bounds of CSMD 2 and CSMD 1 on 100 instances, problem size n = 100 and ε = 0.9.

CSMD 1 and CSMD 2. We observe again that (i) upper (resp. lower) bounds decrease (resp. increase)
when the sample size increases, (ii) CSMD 2 and CSMD 1 upper bounds are very close, and (iii) CSMD 1
lower bound is much larger than CSMD 2 lower bound (reflecting the fact that CSMD 2 is much more
conservative than CSMD 1). Additionally, we observe that when ε is small (ε = 0.1) and more weight
is given to the CVaR (α1 = 0.9) the upper and lower bounds become more distant to the optimal
value, i.e., the width of the confidence intervals increases.

To conclude, confidence intervals CSMD 1 and CSMD 2 cannot be compared directly because both the
constants involved and the steps used to generate the points x1, . . . , xN , are different. However, we
hypothesize that the optimization in SMD 2 results in both the conservativeness and the computation
time difference.

5.2 Comparing the multistep and nonmultistep variants of SMD to solve prob-
lem (2.16)

We solve various instances of problem (2.16) (with a = 1, b = 0) using SMD and its multistep version
defined in Section 4 taking ω(x) = ω2(x) = 1

2‖x‖
2
2. These algorithms in this case are the RSA and

multistep RSA. We fix the parameters α1 = 0.9, α0 = 0.1, λ0 = 4, x1 = [1; 0; . . . ; 0]], DX =
√

2, and
recall that µ(ω) = µ(ω2) = M(ω2) = µ(f) = 1, ρ = 2, L = |α0|

√
n+α1(

√
n+λ0), M1 = 2|α0|+0.5α1,

and M2 = 2
√
n(|α0| + α1). In this and the next section, ξ is again a random vector with i.i.d.

Bernoulli entries: Prob(ξi = 1) = Ψi, Prob(ξi = −1) = 1−Ψi, with Ψi randomly drawn over [0, 1].
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Figure 4: Steps (left plot), average (computed over 50 runs) approximate optimal values (middle
plot), and average (computed over 50 runs) value of the objective function at the solution (right
plot) along the iterations of the SMD and MSSMD algorithms run on problem (2.16) with n = 100,
N = 312 248.

We first take n = 100 and choose the number of iterations using Proposition 4.5, namely we take

N = d1 + 78A(f, ω2)e = 312 248 which ensures that for the MSSMD algorithm E
[∣∣∣f(ySteps+1) −

f(x∗)
∣∣∣ ≤ 0.1. (we also check that for this value of N , relation (4.76) (an assumption of Proposition

4.5) holds). For this value of N , the values of γt for each iteration of the MSSMD algorithm as
well as the constant value of γ for the SMD algorithm are represented in the left plot of Figure
4. We observe that the MSRSA algorithm starts with larger steps (when we are still far from the
optimal solution) and ends with smaller steps (when we get closer to the optimal solution) than
the RSA algorithm. We run each algorithm 50 times and report in the middle plot of Figure 4 the
average (over the 50 runs) of the approximate optimal values computed along the iterations with
both algorithms. We also report in the right plot of Figure 4 the average (over these 50 runs) of
the value of the objective function at the SMD and MSSMD solutions.

More precisely, for each run of the SMD algorithm, for iteration i the approximate optimal value
is gi = 1

i

∑i
k=1 g(xk, ξk) (defined in Algorithm 1) while for iteration j of the i-th step of the MSSMD

algorithm, the approximate optimal value is gi,j = 1
j

∑j
k=1 g(xi,k, ξi,k) (defined in Algorithm 3)

where ξi,k and xi,k are respectively the k-th realization of ξ and the k-th point generated for that
step i (of course, for a given run, the same samples are used for SMD and MSSMD).

We observe that we get better (lower) approximations of the optimal value using the MSRSA
algorithm. After a large number of iterations, the algorithms provide very close approximations of
the optimal value (themselves close to the optimal value of the problem), which is in agreement
with the results of Sections 3 and 4 which state that for both algorithms the approximate optimal
values converge in probability to the optimal value of the problem. However, it is observed that the
MSRSA algorithm provides an approximate solution of good quality much quicker than the RSA
algorithm.

We also observe that if the value of the sample size N = 312 248 chosen based on Proposition
4.5 indeed allows us to solve the problem with a good accuracy, it is very conservative. In a second
series of experiments, we choose various problem sizes n and smaller sample sizes N , namely
(n,N) = (50, 1000), (n,N) = (100, 1000), (n,N) = (500, 10 000), and (n,N) = (1000, 10 000), still
observing solutions of good quality. For these values of the pair (n,N), the values of the steps used
for the SMD and MSSMD algorithms are reported in Figure 5. Here again the MSRSA algorithm
starts with larger steps and ends with smaller steps.
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Figure 5: Steps used for the SMD and MSSMD algorithms to solve problem (2.16) with (n,N) =
(50, 1000) (top left plot), (n,N) = (100, 5000) (top right plot), (n,N) = (500, 10 000) (bottom left),
(n,N) = (1000, 10 000) (bottom right).

The average (over 50 runs) of the approximate optimal value and of the value of the objective
function at the SMD and MSSMD solutions are reported in Figures 6 and 7. We still observe on
these simulations that MSSMD allows us to obtain a solution of good quality much quicker than
SMD and ends up with a better solution, even when only two different step sizes are used for
MSSMD.
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Figure 6: Average over 50 realizations of the approximate optimal values computed by the SMD and
MSSMD algorithms to solve (2.16). Top left: (n,N) = (50, 1000), top right: (n,N) = (100, 5000),
bottom left: (n,N) = (500, 10 000), bottom right: (n,N) = (1000, 10 000).
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Figure 7: Average over 50 realizations of the values of the objective function at the approximate
solutions computed by the SMD and MSSMD algorithms to solve (2.16). Top left: (n,N) =
(50, 1000), top right: (n,N) = (100, 5000), bottom left: (n,N) = (500, 10 000), bottom right:
(n,N) = (1000, 10 000).
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5.3 Comparing the multistep and nonmultistep variants of SMD to solve prob-
lem (2.18)

We reproduce the experiment of the previous section running 50 times SMD and MSSMD on
problem (2.18) taking ω(x) = ω2(x) = 1

2‖x‖
2
2, ε = 0.9, α1 = 0.1, α0 = 0.9, λ0 = 1, x1 =

[0; 1; 0; . . . ; 0]], DX =
√

3, and recall that µ(ω) = µ(ω2) = M(ω2) = µ(f) = 1, ρ = 2, L =√
α2

1(1− 1
ε )2 + n(α0 + α1

ε )2 + 2λ0, M1 = 2(α0 + α1
ε ), and M2 =

√(
α1
ε

)2
+ 4n

(
α0 + α1

ε

)2
. We

consider again four combinations for the pair (n,N): (n,N) = (50, 1000), (100, 1000), (500, 10 000),
and (1000, 10 000).

The steps used along the iterations of the SMD and MSSMD algorithms are reported in Figure 8.
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Figure 8: Steps used for the SMD and MSSMD algorithms to solve problem (2.18) with (n,N) =
(50, 1000) (top left plot), (n,N) = (100, 5000) (top right plot), (n,N) = (500, 10 000) (bottom left),
(n,N) = (1000, 10 000) (bottom right).

The average (computed running the algorithms 50 times) of the approximate optimal values
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Figure 9: Average over 50 realizations of the approximate optimal values computed by the SMD and
MSSMD algorithms to solve (2.18). Top left: (n,N) = (50, 1000), top right: (n,N) = (100, 5000),
bottom left: (n,N) = (500, 10 000), bottom right: (n,N) = (1000, 10 000).

and of the value of the objective function at the approximate solutions are reported in Figures
9 and 10. In these experiments we observe again that MSSMD approximate solutions are better
along the iterations and at the end of the optimization process.

6 Conclusion and future work

We derived a new confidence interval on the optimal value of a convex stochastic program using
the SMD algorithm that has the advantage of being quicker to compute and much less conservative
than previous confidence intervals.

We introduced a multistep extension of the SMD algorithm and derived a computable nonasymp-
totic confidence interval on the optimal value of a risk-averse stochastic program, expressed in terms
of EPRM, using this algorithm. We have shown (using two stochastic optimization problems) that
the multistep SMD algorithm can obtain “good” solutions much quicker that the SMD algorithm.

Our work is applicable to obtain confidence intervals on the risk measure value of a distribution
on the basis of a sample from this distribution, if this risk measure is an EPRM.

The analysis presented in this paper can be extended in several ways.
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Figure 10: Average over 50 realizations of the values of the objective function at the approximate
solutions (right plots) computed by the SMD and MSSMD algorithms to solve (2.18). Top left:
(n,N) = (50, 1000), top right: (n,N) = (100, 5000), bottom left: (n,N) = (500, 10 000), bottom
right: (n,N) = (1000, 10 000).

First, numerical tests could be performed to analyze the quality of the confidence intervals given
by Corollary 4.7 for multistep SMD. Other algorithms could be considered to solve (1.1) and the
corresponding confidence intervals derived. More general classes of problems, for instance involving
integer variables, could also be analyzed.

Next, we could take a law invariant coherent risk measure for R in (1.1). In this situation,
asymptotic confidence intervals on the optimal value of (1.1) could be obtained combining the
Central Limit Theorem for risk measures given in [25], the Delta theorem, and the Functional
Central Limit Theorem.

Finally, our analysis can be used to study the following problem: defining

ρi(ξ) =

{
min f(x) := Ri [g(x, ξ)] ,
x ∈ X (6.88)

for an EPRM Ri and given samples from the distributions of random vectors ξ1, . . . , ξm, our de-
velopments can be used to compare the optimal values ρi(ξi), i = 1, . . . ,m, studying the following
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statistical tests:
(a) H0 : ρ1(ξ1) = ρ2(ξ2) = . . . = ρm(ξm) against H0,

(b) H i
0 : ρi(ξi) ≤ ρj(ξj), 1 ≤ j 6= i ≤ m against H i

0,

(c) H0 : ρ1(ξ1) ≤ ρ2(ξ2) ≤ . . . ≤ ρm(ξm) against H0,

(6.89)

where H0 is the complement of H0. Without assuming the independence of ξ1, . . . , ξm, a special
case of (6.89) is obtained taking a singleton X = {x∗i } for the set X defining ρi, fixing the risk
measure Ri = R and the distribution ξi = ξ. Setting ηi = g(x∗i , ξ), test (6.89) boils down in this
case to

(a) H0 : R(η1) = R(η2) = . . . = R(ηm) against H0,

(b) H i
0 : R(ηi) ≤ R(ηj), 1 ≤ j 6= i ≤ m against H i

0,

(c) H0 : R(η1) ≤ R(η2) ≤ . . . ≤ R(ηm) against H0.

(6.90)

These tests are useful when we want to choose among m candidate solutions x∗1, . . . , x
∗
m for the

problem {
min f(x) := R [g(x, ξ)] ,
x ∈ X,

the best one (the one with the smallest risk measure value), using risk measure R to rank the
distributions ηi.
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Appendix

We have collected in the Appendix two proofs, essentially known, see [21].

Proof of Lemma 3.2. We first show that for any γ > 0 and τ = 1, . . . , N , we have

E|τ−1

[
exp{γητ}

]
≤ exp{γ2}. (6.91)

Let us fix 0 < γ ≤ 1. Observing that

ex ≤ x+ ex
2

for every x ∈ R, (6.92)
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we obtain
E|τ−1

[
exp{γητ}

]
≤ E|τ−1

[
γητ

]
+ E|τ−1

[
exp{γ2η2

τ}
]

≤ E|τ−1

[
exp{γ2η2

τ}
]

using (3.35)

≤ E|τ−1

[
(exp{η2

τ})γ
2
]
≤
(
E|τ−1

[
exp{η2

τ}
])γ2

,

where the last inequality is Jensen inequality applied to the concave function xγ
2
. Plugging (3.35)

into the above inequality shows that (6.91) holds for 0 < γ ≤ 1.
For γ > 1,

E|τ−1

[
exp{γητ}

]
≤ E|τ−1

[
exp{1

2γ
2 + 1

2η
2
τ}
]

≤ exp{γ
2

2 }
√

E|τ−1

[
exp{η2

τ}
]
≤ exp{γ

2+1
2 } ≤ exp{γ2},

where we have used (3.35) for the third inequality and the fact that γ > 1 for the last one. We
have thus shown that (6.91) holds for every γ > 0. As a result, for γ > 0, setting Sτ =

∑τ
s=1 ηs,

we have
E
[

exp{γSτ}
]

= E
[

exp{γSτ−1}E|τ−1

[
exp{γητ}

]]
≤ exp{γ2}E

[
exp{γSτ−1}

]
using (6.91).

It follows that for γ > 0

E
[

exp{γSτ}
]
≤ exp{γ2(τ − 1)}E

[
exp{γη1}

]
≤ exp{γ2τ} using (6.91). (6.93)

Next, for γ > 0,

P
(
SN > Θ

√
N
)

= P
(

exp{γSN} > exp{Θ
√
Nγ}

)
≤ min

γ>0
exp{−Θ

√
Nγ}E

[
exp{γSN}

]
using Chernoff bound,

≤ exp{min
γ>0

[
γ2N −Θ

√
Nγ
]
} = exp{−Θ2/4} using (6.93).

This achieves the proof of inequality (3.36). �

Proof of Lemma 3.10. Invoking (3.53), we get

∀y ∈ X : γτe
>
τ (uτ+1 − y) ≤ Vuτ (y)− Vuτ+1(y)− Vuτ (uτ+1),

whence for all x ∈ X, we have

γτe
>
τ (uτ − y) ≤ Vuτ (y)− Vuτ+1(y) +

[
γτe

>
τ (uτ − uτ+1)− Vuτ (uτ+1)

]
≤ Vuτ (y)− Vuτ+1(y) +

[
γτ‖eτ‖∗‖uτ − uτ+1‖ − µ(ω)

2 ‖uτ − uτ+1‖2
]

≤ Vuτ (y)− Vuτ+1(y) +
γ2
τ‖eτ‖2∗
2µ(ω)

,

where we have used (3.48) for the second inequality. Summing up the resulting inequalities over
τ = 1, ..., N , and taking into account that VuN+1(y) ≥ 0 by (3.48) and Vu1(y) ≤ 1

2D
2
ω,X by (3.50)

(recall that u1 = xω), we arrive at (3.58). �
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