
DUAL DYNAMIC PROGRAMMING WITH CUT SELECTION:

CONVERGENCE PROOF AND NUMERICAL EXPERIMENTS

VINCENT GUIGUES

Fundação Getulio Vargas, School of applied mathematics

190 Praia de Botafogo, Rio de Janeiro, Brazil,

Tel: 55 21 3799 6093, Fax: 55 21 3799 5996, vguigues@fgv.br

Abstract. We consider convex optimization problems formulated using dynamic programming

equations. Such problems can be solved using the Dual Dynamic Programming algorithm com-

bined with the Level 1 cut selection strategy or the Territory algorithm to select the most

relevant Benders cuts. We propose a limited memory variant of Level 1 and show the con-

vergence of DDP combined with the Territory algorithm, Level 1 or its variant for nonlinear

optimization problems. In the special case of linear programs, we show convergence in a finite

number of iterations. Numerical simulations illustrate the interest of our variant and show that

it can be much quicker than a simplex algorithm on some large instances of portfolio selection

and inventory problems.

Dynamic Programming and Nonlinear programming and Decomposition algorithms and Dual

Dynamic Programming and Pruning methods

1. Introduction

Dual Dynamic Programming (DDP) is a decomposition algorithm to solve some convex op-

timization problems. The algorithm computes lower approximations of the cost-to-go functions

expressed as a supremum of affine functions called optimality cuts. Typically, at each iteration,

a fixed number of cuts is added for each cost-to-go function. It is the deterministic counterpart

of the Stochastic Dual Dynamic Programming (SDDP) algorithm pioneered by [9]. SDDP is still

studied and has been the object of several recent improvements and extensions [15], [11], [5], [6],

[3], [7], [17], [12], [10]. In particular, these last three references discuss strategies for selecting the

most relevant optimality cuts which can be applied to DDP. In stochastic optimization, the prob-

lem of cut selection for lower approximations of the cost-to-go functions associated to each node

of the scenario tree was discussed for the first time in [14] where only the active cuts are selected.

Pruning strategies of basis (quadratic) functions have been proposed in [2] and [8] for max-plus

based approximation methods which, similarly to SDDP, approximate the cost-to-go functions of

a nonlinear optimal control problem by a supremum of basis functions. More precisely, in [2],

a fixed number of cuts is pruned and cut selection is done solving a combinatorial optimization
1

2 VINCENT GUIGUES

problem. For SDDP, in [17] it is suggested at some iterations to eliminate redundant cuts (a cut

is redundant if it is never active in describing the lower approximate cost-to-go function). This

procedure is called test of usefulness in [10]. This requires solving at each stage as many linear

programs as there are cuts. In [10] and [12], only the cuts that have the largest value for at least

one of the trial points computed are considered relevant, see Section 4 for details. This strategy

is called the Territory algorithm in [10] and Level 1 cut selection in [12]. It was presented for the

first time in 2007 at the ROADEF congress by David Game and Guillaume Le Roy (GDF-Suez),

see [10]. However, a difference between [10] and [12] is that in [10] the nonrelevant cuts are pruned

whereas in [12] all computed cuts are stored and the relevant cuts are selected from this set of

cuts.

In this context the contributions of this paper are as follows. We propose a limited memory

variant of Level 1. We study the convergence of DDP combined with a class of cut selection

strategies that satisfy an assumption (Assumption (H2), see Section 4.2) satisfied by the Territory

algorithm, the Level 1 cut selection strategy, and its variant. In particular, the analysis applies to

(i) mixed cut selection strategies that use the Territory algorithm, Level 1, or its variant to select

a first set of cuts and then apply the test of usefulness to these cuts and to (ii) the Level H cut

selection strategy from [12] that keeps at each trial point the H cuts having the largest values.

In the case when the problem is linear, we additionally show convergence in a finite number of

iterations. Numerical simulations show the interest of the proposed limited memory variant of

Level 1 and show that it can be much more efficient than a simplex algorithm on some instances

of portfolio selection and inventory problems.

The outline of the study is as follows. Section 2 recalls from [4] a formula for the subdifferential

of the value function of a convex optimization problem. It is useful for the implementation and

convergence analysis of DDP applied to convex nonlinear problems. Section 3 describes the class

of problems considered and assumptions. Section 4.1 recalls the DDP algorithm while Section 4.2

recalls Level 1 cut selection, the Territory algorithm and describes the limited memory variant

we propose. Section 5 studies the convergence of DDP with cut selection applied to nonlinear

problems while Section 6 studies the convergence for linear programs. Numerical simulations are

reported in Section 7.

We use the following notation and terminology:

- The usual scalar product in R
n is denoted by 〈x, y〉 = x⊤y for x, y ∈ R

n.

- ri(A) is the relative interior of set A.

- Bn is the closed unit ball in R
n.

- dom(f) is the domain of function f .

- |I| is the cardinality of the set I.

- N∗ is the set of positive integers.

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 3

2. Formula for the subdifferential of the value function of a convex

optimization problem

We recall from [4] a formula for the subdifferential of the value function of a convex optimization

problem. It plays a central role in the implementation and convergence analysis of DDP method

applied to convex problems and will be used in the sequel.

Let Q : X → R, be the value function given by

(2.1) Q(x) =







infy∈Rn f(x, y)

y ∈ S(x) := {y ∈ Y : Ax+By = b, g(x, y) ≤ 0}.

Here, A and B are matrices of appropriate dimensions, and X ⊆ R
m and Y ⊆ R

n are nonempty,

compact, and convex sets. Denoting by

(2.2) Xε := X + εBm

the ε-fattening of the set X , we make the following assumption (H):

1) f : Rm×Rn → R ∪ {+∞} is lower semicontinuous, proper, and convex.

2) For i = 1, . . . , p, the i-th component of function g(x, y) is a convex lower semicontinuous

function gi : R
m×Rn → R ∪ {+∞}.

3) There exists ε > 0 such that Xε×Y ⊂ dom(f).

Consider the dual problem

(2.3) sup
(λ,µ)∈Rq×R

p

+

θx(λ, µ)

for the dual function

θx(λ, µ) = inf
y∈Y

f(x, y) + λ⊤(Ax+By − b) + µ⊤g(x, y).

We denote by Λ(x) the set of optimal solutions of the dual problem (2.3) and we use the notation

Sol(x) := {y ∈ S(x) : f(x, y) = Q(x)}

to indicate the solution set to (2.1).

It is well known that under Assumption (H), Q is convex. The description of the subdifferential

of Q is given in the following lemma:

Lemma 2.1 (Lemma 2.1 in [4]). Consider the value function Q given by (2.1) and take x0 ∈ X

such that S(x0) 6= ∅. Let Assumption (H) hold and assume the Slater-type constraint qualification

condition:

there exists (x̄, ȳ) ∈ X×ri(Y) such that Ax̄+Bȳ = b and (x̄, ȳ) ∈ ri({g ≤ 0}).

4 VINCENT GUIGUES

Then s ∈ ∂Q(x0) if and only if

(2.4)

(s, 0) ∈ ∂f(x0, y0) +
{

[A⊤;B⊤]λ : λ ∈ R
q
}

+
{

∑

i∈I(x0,y0)

µi∂gi(x0, y0) : µi ≥ 0
}

+ {0}×NY (y0),

where y0 is any element in the solution set Sol(x0) and with

I(x0, y0) =
{

i ∈ {1, . . . , p} : gi(x0, y0) = 0
}

.

In particular, if f and g are differentiable, then

∂Q(x0) =
{

∇xf(x0, y0) +A⊤λ+
∑

i∈I(x0,y0)

µi∇xgi(x0, y0) : (λ, µ) ∈ Λ(x0)
}

.

Proof. See [4]. �

3. Problem formulation

Consider the convex optimization problem

(3.5)















inf
x1,...,xT

T
∑

t=1

ft(xt, xt−1)

xt ∈ Xt, gt(xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt, t = 1, . . . , T,

for x0 given and the corresponding dynamic programming equations

(3.6) Qt(xt−1) =







inf
xt

Ft(xt, xt−1) := ft(xt, xt−1) +Qt+1(xt)

xt ∈ Xt, gt(xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt,

for t = 1, . . . , T , with QT+1 ≡ 0, and gt(xt, xt−1) = (gt,1(xt, xt−1), . . . , gt,p(xt, xt−1)) with gt,i :

R
n×Rn → R ∪ {+∞}.

Cost-to-go function Qt+1(xt) represents the optimal (minimal) total cost for time steps t +

1, . . . , T , starting from state xt at the beginning of step t+ 1.

We make the following assumptions (H1):

(H1) Setting X ε
t := Xt + εBn, for t = 1, . . . , T,

(a) Xt ⊂ R
n is nonempty, convex, and compact.

(b) ft is proper, convex, and lower semicontinuous.

(c) setting gt(xt, xt−1) = (gt,1(xt, xt−1), . . . , gt,p(xt, xt−1)), for i = 1, . . . , p, the i-th compo-

nent function gt,i(xt, xt−1) is a convex lower semicontinuous function.

(d) There exists ε > 0 such that Xt×X ε
t−1 ⊂ dom(ft) and for every xt−1 ∈ X ε

t−1, there exists

xt ∈ Xt such that gt(xt, xt−1) ≤ 0 and Atxt +Btxt−1 = bt.

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 5

(e) If t ≥ 2, there exists

x̄t = (x̄t,t, x̄t,t−1) ∈ ri(Xt)×Xt−1 ∩ ri({gt ≤ 0})

such that x̄t,t ∈ Xt, gt(x̄t,t, x̄t,t−1) ≤ 0 and Atx̄t,t +Btx̄t,t−1 = bt.

Comments on the assumptions. Assumptions (H1)-(a), (H1)-(b), and (H1)-(c) ensure that

the cost-to-go functions Qt, t = 2, . . . , T are convex.

Assumption (H1)-(d) guarantees that Qt is finite on X ε
t−1 and has bounded subgradients on

Xt−1. It also ensures that the cut coefficients are finite and therefore that the lower piecewise affine

approximations computed for Qt by the DDP algorithm are convex and Lipschitz continuous on

X ε
t−1 (see Lemmas 4.1 and 5.1 below and [4] for a proof).

Assumption (H1)-(e) is used to obtain an explicit description of the subdifferentials of the value

functions (see Lemma 2.1). This description is necessary to obtain the coefficients of the cuts.

4. Algorithm

4.1. DDP without cut selection. The Dual Dynamic Programming (DDP) algorithm to be

presented in this section is a decomposition method for solving problems of form (3.5). It relies

on the convexity of recourse functions Qt, t = 1, . . . , T + 1:

Lemma 4.1. Consider the optimization problem (3.5) and recourse functions Qt, t = 1, . . . , T +1,

given by (3.6). Let Assumptions (H1)-(a), (H1)-(b), (H1)-(c), and (H1)-(d) hold. Then for

t = 1, . . . , T + 1, Qt is convex, finite on X ε
t−1, and continuous on Xt−1.

Proof. See the proof of Proposition 3.1 in [4]. �

The DDP algorithm builds for each t = 2, . . . , T + 1, a polyhedral lower approximation Qk
t at

iteration k for Qt. We start with Q0
t = −∞. At the beginning of iteration k, are available the

lower polyhedral approximations

Qk−1
t (xt−1) = max

j∈Sk−1

t

Cjt

(

xt−1

)

:= θ
j
t + 〈β

j
t , xt−1 − x

j
t−1〉,

for Qt, t = 2, . . . , T + 1, where Sk−1
t is a subset of {0, 1, . . . , k − 1}, initialized taking S0t = {0}

and Cjt is the cut computed at iteration j, as explained below.

Let Qk
t
: Xt−1 → R be the function given by

Qk
t
(xt−1) =







inf
x

F k−1
t (x, xt−1) := ft(x, xt−1) +Q

k−1
t+1 (x)

x ∈ Xt, gt(x, xt−1) ≤ 0, Atx+Btxt−1 = bt.

6 VINCENT GUIGUES

At iteration k, in a forward pass, for t = 1, . . . , T , we compute an optimal solution xk
t of

(4.7) Qk
t
(xk

t−1) =







inf
x

F k−1
t (x, xk

t−1) := ft(x, x
k
t−1) +Q

k−1
t+1 (x)

x ∈ Xt, gt(x, x
k
t−1) ≤ 0, Atx+Btx

k
t−1 = bt,

starting from xk
0 = x0 and knowing that Qk

T+1 = QT+1 ≡ 0. We have that Qk−1
t ≤ Qt for all t

and cut Ckt is built for Qt in such a way that Qk
t ≤ Qt holds. For step t, since Qk−1

t+1 ≤ Qt+1, we

have Qt ≥ Q
k
t
. Setting θkt = Qk

t
(xk

t−1) and taking βk
t ∈ ∂Qk

t
(xk

t−1), it follows that

Qt(xt−1) ≥ Qk
t
(xt−1) ≥ Ckt (xt−1) = θkt + 〈βk

t , xt−1 − xk
t−1〉.

Vector βk
t from the set ∂Qk

t
(xk

t−1) is computed using Lemma 2.1. In the original description of

DDP, the cut Ckt is automatically added to the set of cuts that make up the approximation Qk
t ,

i.e., Skt = {0, 1, . . . , k}.

4.2. Cut selection methods.

4.2.1. Level 1 and Territory algorithm. We now describe the Territory algorithm, the Level 1 cut

selection and its limited memory variant which satisfy the following assumption:

(H2) The height of the cutting plane approximations Qk
t at the trial points xk

t−1 is nondecreas-

ing, i.e., for all t = 2, . . . , T , for all k1 ∈ N
∗, for all k2 ≥ k1, we haveQ

k1

t (xk1

t−1) ≥ C
k1

t (xk1

t−1)

and Qk2

t (xj
t−1) ≥ Q

k1

t (xj
t−1) for every j = 1, . . . , k2.

To describe the Level 1 cut selection strategy, we introduce the set Ikt,i of cuts computed at

iteration k or before that have the largest value at xi
t−1:

(4.8) Ikt,i = argmax
ℓ=1,...,k

Cℓt (x
i
t−1).

With this notation, with Level 1 cut selection strategy, the cuts that make up Qk
t are the cuts

that have the largest value for at least one trial point, i.e.,

(4.9) Qk
t (xt−1) = max

ℓ∈Sk
t

Cℓt (xt−1) with S
k
t =

k
⋃

i=1

Ikt,i.

For the Territory algorithm, Qk
t and Skt are still given by (4.9) but with Ikt,i now given by

(4.10) Ikt,i = argmax
ℓ∈Sk−1

t ∪{k}

Cℓt (x
i
t−1),

starting from S0t = {0}.

4.2.2. Limited memory Level 1. Note that if several cuts are the highest at the same trial point

and in particular if they are identical (which can happen in practice, see the numerical experi-

ments of Section 7) then Level 1 will select all of them. This leads us to propose a limited memory

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 7

It,k = {1}, mt,k = C1t (x
k
t−1).

For ℓ = 1, . . . , k − 1,
If Ckt (x

ℓ
t−1) > mt,ℓ then It,ℓ = {k}, mt,ℓ = Ckt (x

ℓ
t−1) End If

If Cℓ+1
t (xk

t−1) > mt,k then It,k = {ℓ+ 1}, mt,k = Cℓ+1
t (xk

t−1) End If

End For

For ℓ = 1, . . . , k,
Selected[ℓ]=False

End For

For ℓ = 1, . . . , k
For j = 1, . . . , |It,ℓ|

Selected[It,ℓ[j]]=True

End For

End For

Skt = ∅
For ℓ = 1, . . . , k

If Selected[ℓ]=True then Skt = Skt ∪ {ℓ} End If

End For

Figure 1. Pseudo-code for limited memory Level 1 cut selection for DDP.

variant of this cut selection method.

Limited memory Level 1 cut selection: with the notation of the previous section, at

iteration k, after computing the cut for Qt, we store in Ikt,i, i = 1, . . . , k, the index of only one of

the highest cuts at xi
t−1, namely among the cuts computed up to iteration k that have the highest

value at xi
t−1, we store the oldest cut, i.e., the cut that was first computed among the cuts that

have the highest value at that point.

The pseudo-code for selecting the cuts for Qt at iteration k using this limited memory variant

of Level 1 is given in Figure 1. In this pseudo-code, we use the notation It,i in place of Ikt,i. We

also store in variable mt,i the current value of the highest cut for Qt at x
i
t−1. At the end of the

first iteration, we initialize mt,1 = C1t (x
1
t−1). After cut Ckt is computed at iteration k ≥ 2, these

variables are updated using the relations







mt,i ← max
(

mt,i, Ckt (x
i
t−1)

)

, i = 1, . . . , k − 1,

mt,k ← max
(

Cjt (x
k
t−1), j = 1, . . . , k

)

.

Finally, we use an array Selected of Boolean using the information given by variables It,i whose

i-th entry is True if cut i is selected and False otherwise. The index set Skt is updated corre-

spondingly. Though all cuts are stored, only the selected cuts are used in the problems solved in

the forward pass.

Discussion. With these cut selection strategies, we do not have anymore Qk
t ≥ Q

k−1
t for all

iterations k. However, the relation Qk
t ≥ Q

k−1
t holds for iterations k such that, at the previous

8 VINCENT GUIGUES

trial points xℓ
t−1, ℓ = 1, . . . , k − 1, the value of the new cut Ckt is below the value of Qk−1

t :

(4.11) Ckt (x
ℓ
t−1) ≤ Q

k−1
t (xℓ

t−1), ℓ = 1, . . . , k − 1.

For the Territory algorithm, Level 1, and its limited memory variant, we have that

(4.12) Qk
t (x

k
t−1) ≥ θkt = Ckt (x

k
t−1), ∀t = 2, . . . , T, ∀k ∈ N

∗,

and by definition of the cut selection strategies we have for k2 ≥ k1 and j = 1, . . . , k2, that

Qk2

t (xj
t−1) = max

ℓ=1,...,k2

Cℓt

(

x
j
t−1

)

,

which implies that for all k2 ≥ k1 and for j = 1, . . . , k2,

(4.13) Qk2

t (xj
t−1) ≥ max

ℓ=1,...,k1

Cℓt

(

x
j
t−1

)

= Qk1

t (xj
t−1),

i.e., Assumption (H2) is satisfied.

Remark 4.2. Relation (4.12) means that whenever a new trial point is generated, the value of

the approximate cost-to-go function at this point is a better (larger) approximation of the value of

the cost-to-go function at this point than the value of the last computed cut at this point. Relations

(4.13) show that at the trial points, the approximations of the cost-to-go functions tend to be better

along the iterations, i.e., for every k the sequence Qj
t (x

k
t−1)j≥k−1 is nondecreasing.

5. Convergence analysis for nonlinear problems

To proceed, we need the following lemma:

Lemma 5.1. Consider optimization problem (3.5), recourse functions Qt, t = 1, . . . , T + 1, given

by (3.6), and let Assumption (H1) hold. To solve that problem, consider the DDP algorithm with

cut selection presented in the previous section. Then for t = 2, . . . , T + 1 and all k ∈ N, Qk
t is

convex and for all k ≥ T − t+ 1, Qk
t , is Lipschitz continuous on X ε

t−1, and coefficients θkt and βk
t

are bounded.

Proof. See the proof of Lemma 3.2 in [4]. �

The convergence of DDP with cut selection for nonlinear programs is given in Theorem 5.2

below. In particular, introducing at iteration k the approximation Q
k
= supn≤kQ

n
1 (x0) (which

can be computed at iteration k) of Q1(x0), we show that the whole sequence Q
k
converges to

Q1(x0). This proof relies on the following properties:

(1) decisions belong to compact sets ((H1)-(a));

(2) for t = 1, . . . , T + 1, Qt is convex and continuous on Xt−1 (Lemma 4.1);

(3) for all t = 2, . . . , T + 1 and all k ∈ N, Qk
t is convex and for all k ≥ T − t + 1, Qk

t , is

Lipschitz continuous on Xt−1, and coefficients θkt and βk
t are bounded (Lemma 5.1).

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 9

Theorem 5.2 (Convergence of DDP with cut selection for nonlinear programs.). To solve problem

(3.5), consider the DDP algorithm presented in Section 4 combined with a cut selection strategy

satisfying Assumption (H2). Consider the sequences of vectors xk
t and functions Qk

t generated by

this algorithm. Let Assumption (H1) hold. Let (x∗
1, . . . , x

∗
T) ∈ X1× · · · ×XT be an accumulation

point of the sequence (xk
1 , . . . , x

k
T)k≥1 and let K be an infinite subset of integers such that for

t = 1, . . . , T , limk→+∞, k∈K xk
t = x∗

t . Then

(i) for all k ≥ 1 we have QT+1(x
k
T) = Q

k
T+1(x

k
T),

(5.14) QT (x
k
T−1) = Q

k
T (x

k
T−1) = Q

k
T
(xk

T−1),

and for t = 2, . . . , T − 1,

H(t) : lim
k→+∞, k∈K

Qk
t (x

k
t−1) = lim

k→+∞, k∈K
Qk

t
(xk

t−1) = Qt(x
∗
t−1).

(ii) Setting Q
k
= supn≤kQ

n
1 (x0), we have lim

k→∞
Q

k
= Q1(x0) and (x∗

1, . . . , x
∗
T) is an optimal

solution of (3.5).

Proof. First note that the existence of an accumulation point comes from the fact that the sequence

(xk
1 , x

k
2 , . . . , x

k
T)k≥1 is a sequence of the compact set X1× · · ·×XT .

(i) Since QT+1 = Qk
T+1 = 0, we have QT+1(x

k
T) = Q

k
T+1(x

k
T) = 0 and by definition of QT ,Q

k
T
,

we also have QT = Qk
T
. Next, recall that Qk

T (x
k
T−1) ≤ QT (x

k
T−1) and using Assumption (H2), we

have

Qk
T (x

k
T−1) ≥ C

k
T (x

k
T−1) = θkT = Qk

T
(xk

T−1) = QT (x
k
T−1).

We have thus shown (5.14).

We show H(t), t = 2, . . . , T − 1, by backward induction on t. Due to (5.14) and the continuity

of QT , we have that H(T) hold. Now assume that H(t+1) holds for some t ∈ {2, . . . , T − 1}. We

want to show that H(t) holds. We have for k ∈ K that

(5.15)

Qt(x
k
t−1) ≥ Q

k
t (x

k
t−1) ≥ θkt using (H2),

≥ ft(x
k
t , x

k
t−1) +Q

k−1
t+1 (x

k
t) by definition of θkt ,

≥ Ft(x
k
t , x

k
t−1)−Qt+1(x

k
t) +Q

k−1
t+1 (x

k
t) by definition of Ft,

≥ Qt(x
k
t−1)−Qt+1(x

k
t) +Q

k−1
t+1 (x

k
t),

where the last inequality comes from the fact that xk
t is feasible for the problem defining Qt(x

k
t−1).

Let K = {yk | k ∈ N}. Denoting ℓ = limk→+∞Q
yk

t+1(x
yk

t), we now show that

ℓ = lim
k→+∞

Qyk−1
t+1 (xyk

t).

Fix ε0 > 0. From Lemma 5.1, functions Qk
t+1, k ≥ T , are Lipschitz continuous on Xt. Let L

be a Lipschitz constant for these functions, independent on k (see [4] for an expression of L,

10 VINCENT GUIGUES

independent on k, expressed in terms of the problem data). Since limk→+∞ x
yk

t = x∗
t , there exists

k0 ∈ N with k0 ≥ T such that for k ≥ k0, we have

(5.16) ‖xyk

t − x∗
t ‖ ≤

ε0

4L
and ℓ−

ε0

2
≤ Qyk

t+1(x
yk

t) ≤ ℓ+
ε0

2
.

Take now k ≥ k0 + 1. Since yk ≥ yk0
+ 1, using Assumption (H2) we have

(5.17) Qyk−1
t+1 (x

yk0

t) ≥ Q
yk0

t+1(x
yk0

t).

Using Assumption (H2) again, we obtain

(5.18) Qyk

t+1(x
yk

t) ≥ Qyk−1
t+1 (xyk

t).

Recalling that k ≥ k0 + 1 and that yk − 1 ≥ yk0
≥ k0 ≥ T , observe that

(5.19) |Qyk−1
t+1 (xyk

t)−Qyk−1
t+1 (x

yk0

t)| ≤ L‖xyk

t − x
yk0

t ‖
(5.16)

≤
ε0

2
.

It follows that

(5.20)

max
(

Qyk−1
t+1 (x

yk0

t),Qyk−1
t+1 (xyk

t)
) (5.19)

≤ min
(

Qyk−1
t+1 (x

yk0

t),Qyk−1
t+1 (xyk

t)
)

+ ε0
2

(5.18)

≤ Qyk

t+1(x
yk

t) + ε0
2

(5.16)

≤ ℓ+ ε0.

We also have

(5.21)

max
(

Qyk−1
t+1 (x

yk0

t),Qyk−1
t+1 (xyk

t)
)

≥ min
(

Qyk−1
t+1 (x

yk0

t),Qyk−1
t+1 (xyk

t)
)

(5.19)

≥ max
(

Qyk−1
t+1 (x

yk0

t),Qyk−1
t+1 (xyk

t)
)

− ε0
2

(5.17)

≥ Q
yk0

t+1(x
yk0

t)− ε0
2

(5.16)

≥ ℓ− ε0.

We have thus shown that both Qyk−1
t+1 (x

yk0

t) and Qyk−1
t+1 (xyk

t) belong to the interval [ℓ− ε0, ℓ+ ε0].

Summarizing, we have shown that for every ε0 > 0, there exists k0 such that for all k ≥ k0 +1 we

have

ℓ− ε0 ≤ Q
yk−1
t+1 (xyk

t) ≤ ℓ+ ε0,

which shows that ℓ = limk→+∞Q
yk−1
t+1 (xyk

t). It follows that

(5.22) lim
k→+∞, k∈K

Qk−1
t+1 (x

k
t)−Qt+1(x

k
t) = lim

k→+∞, k∈K
Qk

t+1(x
k
t)−Qt+1(x

k
t).

Due to H(t + 1) and the continuity of Qt+1 on Xt (Lemma 4.1), the right hand side of (5.22) is

null. It follows that

(5.23) lim
k→+∞, k∈K

−Qt+1(x
k
t) +Q

k−1
t+1 (x

k
t) = 0.

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 11

Plugging (5.23) into (5.15), recalling that θkt = Qk
t
(xk

t−1), using the fact that limk→+∞, k∈K xk
t−1 =

x∗
t−1 and the continuity of Qt (Lemma 4.1), we obtain H(t).

(ii) By definition of Qk

1
, we have

Qk

1
(x0) = F1(x

k
1 , x0)−Q2(x

k
1) +Q

k−1
2 (xk

1)

which implies

(5.24) 0 ≤ −Qk

1
(x0) +Q1(x0) ≤ Q2(x

k
1)−Q

k−1
2 (xk

1).

From (i), H(2) holds, which, combined with the continuity of Q2 (Lemma 4.1), gives

lim
k→+∞, k∈K

Q2(x
k
1)−Q

k
2(x

k
1) = 0.

Following the proof of (i), we show that this implies

(5.25) lim
k→+∞, k∈K

Q2(x
k
1)−Q

k−1
2 (xk

1) = 0.

Combining this relation with (5.24), we obtain

(5.26) lim
k→+∞, k∈K

Qk

1
(x0) = Q1(x0).

It follows that for every ε0 > 0, there exists k0 ∈ K such that for k ∈ K with k ≥ k0, we have

0 ≤ Q1(x0)−Q
k
1(x0) ≤ ε0. We then have for every k ∈ N with k ≥ k0 that

0 ≤ Q1(x0)−Qk
≤ Q1(x0)−Q

k0

1 (x0) ≤ ε0,

which shows that limk→+∞Qk
= Q1(x0).

Take now t ∈ {1, . . . , T }. By definition of xk
t , we have

(5.27) ft(x
k
t , x

k
t−1) +Q

k−1
t+1 (x

k
t) = Qk

t
(xk

t−1).

Setting x∗
0 = x0, recall that we have shown that limk∈K,k→+∞ Qk

t
(xk

t−1) = Qt(x
∗
t−1) (for t = 1,

this is (5.26); for t ∈ {2, . . . , T − 1} this is H(t); and for t = T this is obtained taking the limit in

(5.14) when k → +∞ with k ∈ K).

Taking the limit in (5.27) when k → +∞ with k ∈ K, using (5.23), the continuity of Qt+1

(Lemma 4.1) and the lower semi-continuity of ft, we obtain

(5.28) Ft(x
∗
t , x

∗
t−1) = ft(x

∗
t , x

∗
t−1) +Qt+1(x

∗
t) ≤ lim

k∈K,k→+∞
Qk

t
(xk

t−1) = Qt(x
∗
t−1).

Passing to the limit in the relations Atx
k
t +Btx

k
t−1 = bt, we obtain Atx

∗
t +Btx

∗
t−1 = bt. Since gt is

lower semicontinuous, its level sets are closed, which implies that gt(x
∗
t , x

∗
t−1) ≤ 0. Recalling that

xt ∈ Xt, we have that x
∗
t is feasible for the problem defining Qt(x

∗
t−1). Combining this observation

12 VINCENT GUIGUES

with (5.28), we have shown that x∗
t is an optimal solution for the problem defining Qt(x

∗
t−1), i.e.,

problem (3.6) written for xt−1 = x∗
t−1. This shows that (x∗

1, . . . , x
∗
T) is an optimal solution to

(3.5). �

We now discuss the case when for some time steps the objective and/or the constraints are

linear. If for a given time step t, Xt is a polytope, and we do not have the nonlinear constraints

gt(xt, xt−1) ≤ 0 (i.e., the constraints are linear), then the conclusions of Lemmas 4.1 and 5.1 hold

and thus Theorem 5.2 holds too under weaker assumptions. More precisely, for such time steps,

we assume (H1)-(a), (H1)-(b), and instead of (H1)-(d), the weaker assumption:

(H1)-(d’) there exists ε > 0 such that X ε
t ×Xt−1 ⊂ dom(ft) and for every xt−1 ∈ Xt−1, there

exists xt ∈ Xt such that Atxt +Btxt−1 = bt.

If, additionally, for a given time step t the objective ft is linear, i.e., if both the objective and

the constraints are linear, then (H1)-(b) and the first part of (H1)-(d’), namely the existence of

ε > 0 such that X ε
t ×Xt−1 ⊂ dom(ft), are automatically satisfied. It follows that Theorem 5.2

still holds assuming (H1) for the time steps where the constraints are nonlinear and (H1)-(a),

(H1)-(b), (H1)-(d’) for the time steps where the constraints are linear, i.e., the time steps where

Xt is a polytope and the constraints gt(xt, xt−1) ≤ 0 are absent.

However, in the special case of linear programs, we prove in Theorem 6.1 below that DDP with

cut selection converges in a finite number of iterations

6. Convergence analysis for linear problems

The DDP algorithm can be applied to the following linear programs of form (3.5) without the

nonlinear constraints gt(xt, xt−1) ≤ 0:

(6.29)















inf
x1,...,xT

T
∑

t=1

ft(xt, xt−1) := cTt xt + dTt xt−1

xt ∈ Xt, Atxt +Btxt−1 = bt, t = 1, . . . , T,

where X1, . . . ,XT , are polytopes. Making Assumptions (H1)-(a) and (H1)-(d’) for every time

t = 1, . . . , T , Theorem 5.2 applies. However, in this special case, we prove in Theorem 6.1 that

DDP converges in a finite number of iterations to an optimal solution. The proof of this theorem

is similar to the proof of Lemmas 1 and 4 in [13]. Observe also that for problems of form (6.29),

Assumptions (H1)-(a) and (H1)-(d’) can be stated as follows: Xt is a nonempty, convex, compact

polytope and for every xt−1 ∈ Xt−1, there exists xt ∈ Xt such that Atxt +Btxt−1 = bt.

Theorem 6.1 (Convergence of DDP with cut selection for linear programs.). To solve problem

(6.29), consider the DDP algorithm combined with the Territory algorithm, Level 1 cut selection,

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 13

or limited memory Level 1 cut selection. Consider the sequences of vectors xk
t and functions Qk

t

generated by this algorithm. Setting X0 = {x0}, assume that for t = 1, . . . , T , Xt is a nonempty,

convex, compact, polytope and that for every xt−1 ∈ Xt−1, there exists xt ∈ Xt such that Atxt +

Btxt−1 = bt. Assume also that

(H3) the linear subproblems solved along the iterations of DDP are solved using an algorithm

that necessarily outputs a vertex as an optimal solution.1

Then there exists k0 ∈ N
∗ such that

(i) for every k ≥ k0 − 1, for every t = 2, . . . , T , we have Qk
t = Qk0−1

t .

(ii) (xk0

1 , . . . , xk0

T) is an optimal solution to (6.29).

Proof. (i) Using Assumption (H3), the algorithm can only generate a finite number of different

trial points xk
t .

2 Indeed, this is true for t = 1 (under Assumption (H3), xk
1 is an extreme point

of a polyhedron) and assuming that the result is true for t < T then there is a finite number of

polyhedrons, parametrized by xk
t , to which xk

t+1 can belong and xk
t+1 is an extreme point of one of

these polyhedrons. Reasoning as in the proof of Lemma 1 in [13], we also check that the algorithm

can only compute a finite number of different cuts. Once no new trial point is computed, a cut

that is suppressed will never be selected again (since it is already dominated at all the trial points

generated by the algorithm). It follows that after a given iteration k0 − 1, no new trial point and

no new cut is computed. Since the cut selection strategy is uniquely defined by the history of cuts,

the cost-to-go functions stabilize (note that the final selected cuts can be different for Level 1 and

its limited memory variant but for a fixed cut selection strategy, they are uniquely defined by the

set of trial points and cuts computed until iteration k0 − 1).

(ii) We first show by backward induction that for t = 1, . . . , T , we have

H2(t) : Q
k0

t
(xk0

t−1) = Qt(x
k0

t−1).

Since Qk0

T
= QT , the relation holds for t = T . Assume now that the relation holds for t+ 1 with

t ∈ {1, . . . , T − 1}. By definition of xk0

t , we have

Qk0

t
(xk0

t−1) = ft(x
k0

t , xk0

t−1) +Q
k0−1
t+1 (xk0

t).

Recall that Qk0−1
t+1 (xk0

t) ≤ Qt+1(x
k0

t). If this inequality was strict, i.e., if we had

(6.30) Qk0−1
t+1 (xk0

t) < Qt+1(x
k0

t)

then using H2(t + 1) we would also have Qk0−1
t+1 (xk0

t) < Qk0

t+1(x
k0

t) and at iteration k0 we could

add a new cut for Qt+1 at xk0

t with height Qk0

t+1(x
k0

t) at this point, which is in contradiction with

1For instance a simplex algorithm.
2Without this assumption, if a face of a polyhedron is solution, the algorithm could potentially return an infinite
number of trial points and cuts.

14 VINCENT GUIGUES

(i). Therefore we must have Qk0−1
t+1 (xk0

t) = Qt+1(x
k0

t) which implies Qk0

t
(xk0

t−1) = Ft(x
k0

t , xk0

t−1) ≥

Qt(x
k0

t−1). Since we also haveQk0

t
≤ Qt, we have shownH2(t). We now check that for t = 1, . . . , T ,

we have

H3(t) : Q1(x0) =

t
∑

j=1

fj(x
k0

j , xk0

j−1) +Qt+1(x
k0

t),

recalling that xk0

0 = x0. Indeed, we have

Q1(x0)
H2(1)
= Qk0

1 (x0) = f1(x
k0

1 , x0) +Q
k0−1
2 (xk0

1) = f1(x
k0

1 , x0) +Q2(x
k0

1)

which is H3(1). Assuming that H3(t) holds for t < T , we have

Q1(x0) =
∑t

j=1 fj(x
k0

j , xk0

j−1) +Qt+1(x
k0

t)
H2(t+1)

=
∑t

j=1 fj(x
k0

j , xk0

j−1) +Q
k0

t+1(x
k0

t)

=
∑t

j=1 fj(x
k0

j , xk0

j−1) + ft+1(x
k0

t+1, x
k0

t) +Qk0−1
t+2 (xk0

t+1), by definition of xk0

t+1,

=
∑t+1

j=1 fj(x
k0

j , xk0

j−1) +Qt+2(x
k0

t+1),

which shows H3(t+ 1). H3(T) means than (xk0

1 , . . . , xk0

T) is an optimal solution to (6.29). �

7. Numerical experiments

We consider a portfolio selection and an inventory problem and compare the computational time

required to solve these problems using a simplex algorithm and DDP both with and without cut

selection. In practice, the parameters of these problems (respectively the returns and the demands)

are not known in advance and stochastic optimization models are used for these applications. In

our experiments where we intend to compare various solution methods for deterministic problems

of form (3.5), we see these classes of problems as test problems for DDP with and without cut

selection. Feasible instances of these problems can be easily generated choosing randomly the

problem parameters (initial wealth and the returns for the first; initial stock and demands for the

second) which are assumed to be known for our experiments.

7.1. An inventory problem. We consider the deterministic counterpart of the inventory prob-

lem described in Section 1.2.3 of [16]. For each time step t = 1, . . . , T , of a given horizon of T

steps, on the basis of the inventory level yt at the beginning of period t, we have to decide the

quantity xt− yt of a product to buy so that the inventory level becomes xt. Knowing the demand

Dt for that product for time t, the inventory level is yt+1 = xt − Dt at the beginning of period

t+1. The inventory level can become negative, in which case a backorder cost is paid. We obtain

the following optimization problem, of form (3.5):

(7.31)

min
∑T

t=1 ct(xt − yt) + bt(Dt − xt)+ + ht(xt −Dt)+

xt ≥ yt, t = 1, . . . , T,

yt+1 = xt −Dt, t = 1, . . . , T − 1,

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 15

where ct, bt, ht are respectively ordering, backorder penalty, and holding costs per unit, at time

t. We take ct = 1.5+ cos(πt6), bt = 2.8 > ct, ht = 0.2, y1 = 10, and Dt = 5+ 1
2 t. For this problem,

we can write the following DP equations

Qt(yt) =







min ct(xt − yt) + bt(Dt − xt)+ + ht(xt −Dt)+ +Qt+1(yt+1)

yt+1 = xt −Dt, xt ≥ yt,

for t = 1, . . . , T , with state vector yt of size one and QT+1 ≡ 0.

We consider five algorithms to solve (7.31):

• Simplex as implemented by Mosek Optimization Toolbox [1];

• DDP as described in Section 4;

• DDP with Level 1 cut selection (DDP-CS-1 for short);

• DDP with the limited memory variant of Level 1 cut selection described in Section 4.2

(DDP-CS-2 for short).

• Dynamic Programming (DP for short) which computes in a backward pass for each t =

2, . . . , T , approximate values for Qt at a discrete set of N points equally spaced over the

interval [−100, 2000]. These approximate values allow us to obtain accurate representa-

tions of the recourse functions using affine interpolations between these points.

We stop algorithms DDP, DDP-CS-1, and DDP-CS-2 when the gap between the upper bound (given

by the value of the objective at the feasible decisions) and the lower bound (given by the optimal

value of the approximate first stage problem , i.e., problem (4.7) written for t = 1) computed along

the iterations is below a fixed tolerance ε > 0. All subproblems to be solved along the iterations

of DP, DDP, DDP-CS-1, and DDP-CS-2 were solved using Mosek Optimization Toolbox [1].

We first take T = 600, N = 2001, and ε = 0.1. For this instance, the evolution of the upper and

lower bounds computed along the iterations of DDP and DDP-CS-2 are represented in Figure 2.3

We report in Table 1 the corresponding computational time and approximate optimal value

obtained with each algorithm. For DDP, DDP-CS-1, and DDP-CS-2, we additionally report the

number of iterations of the algorithm. We see that on this instance, up to the precision ε, all

algorithms provide the same approximate optimal value. Simplex is the quickest, DP is by far the

slowest, and DDP and its variants are in between, with DDP-CS-1 and DDP-CS-2 variants requiring

more iterations than DDP without cut selection to converge. Though DDP-CS-1 and DDP-CS-2 run

for the same number of iterations, DDP-CS-2 is quicker than DDP-CS-1 (and than DDP too), due to

the fact that for many iterations and stages it selects much less cuts than DDP-CS-1. More precisely,

DDP-CS-2 is 13.7% quicker than DDP and 20.4% quicker than DDP-CS-1. As an illustration, we

plot on Figure 3 approximations of value functions Qt(yt) for step t = 401 estimated using DP

3This graph shows the typical evolution of the upper (which tends to decrease) and lower (which is nondecreasing)
bounds for DDP.

16 VINCENT GUIGUES

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14
x 10

5

Iteration

DDP
CS−2

Figure 2. Upper and lower bounds computed along the iterations of DDP and
DDP-CS-2 to solve an instance of (7.31) for T = 600 and ε = 0.1.

Algorithm Computational time Iterations Optimal value

Simplex 0.0868 - 110 660
DP 20 623 - 110 660
DDP 76.0214 72 110 660

DDP-CS-2 65.6318 78 110 660
DDP-CS-1 82.4705 78 110 660

Table 1. Computational time (in seconds) and approximate optimal values solv-
ing an instance of (7.31) with Simplex, DP, DDP, DDP-CS-1, and DDP-CS-2 with
T = 600, N = 2001, and ε = 0.1.

and the cuts for these functions obtained at the last iteration of DDP, DDP-CS-1, and DDP-CS-2.

Surprisingly, DDP-CS-2 only selected one cut at the last iteration. For DDP-CS-1, we observe that

though 44 cuts are selected, they are all equal. This explains why graphically, we obtain on Figure

3 the same cuts for DDP-CS-1 and DDP-CS-2 for t = 401. Moreover, looking at Figure 3, we see

that for t = 400, the cuts built by DDP have similar slopes and many of these cuts are useless, i.e.,

they are below the approximate cost-to-go function on the interval [−100, 2000]. This explains

why so many cuts are pruned.

Similar conclusions were drawn taking T = 96 and several values of t, see Figure 3 for T = 96

and t = 61. For this experiment (T = 96), at the last iteration, for t = 61 DDP-CS-2 only selects

one cut and DDP 17 cuts (the number of iterations). Surprisingly again, not only does DDP-CS-1

select more cuts (6 for t = 61) but all these cuts are identical.

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 17

−500 0 500 1000 1500 2000
−10

−8

−6

−4

−2

0

2
x 10

5

Inventory level at the end of time 400
−500 0 500 1000 1500 2000

0

1

2

3

4

5

6

7
x 10

4

Inventory level at the end of time 400

−500 0 500 1000 1500 2000
0

1

2

3

4

5

6

7
x 10

4

Inventory level at the end of time 400
−500 0 500 1000 1500 2000

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

Inventory level at the end of time 60

−500 0 500 1000 1500 2000
−2000

0

2000

4000

6000

8000

10000

Inventory level at the end of time 60
−500 0 500 1000 1500 2000

−2000

0

2000

4000

6000

8000

10000

Inventory level at the end of time 60

Figure 3. Approximate value functions Qt(yt) estimated using DP (solid lines)
and cuts for these functions (dashed lines) obtained at the last iteration of DDP,
DDP-CS-1, and DDP-CS-2. Top left: t = 401, T = 600, DDP. Top right: t =
401, T = 600, DDP-CS-1. Middle left: t = 401, T = 600, DDP-CS-2. Middle
right: t = 61, T = 96, DDP. Bottom left: t = 61, T = 96, DDP-CS-1. Bottom right:
t = 61, T = 96, DDP-CS-2. Trial points less than 2000 are represented by diamond
markers on the x-axis.

Finally, for DDP and its variants, we report in Figure 4 the log-log evolution of the compu-

tational time for DDP and its variants as a function of the number of steps T (fixing ε = 0.1)

running the algorithms for T in the set {50, 100, 150, 200, 400, 600, 800, 1000, 5000}. We observe

18 VINCENT GUIGUES

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

T

DDP
CS−1
CS−2

10
−5

10
0

10
5

10
0

10
1

10
2

epsilon

DDP
CS−2

Figure 4. Computational time (in seconds) as a function of T and ε for DDP and
its variants DDP-CS-1 and DDP-CS-2 (CS-1 and CS-2 for short)

.

that for sufficiently large values of T , DDP-CS-2 is the quickest. On this figure, we also re-

port the log-log evolution of the computational time as a function of ε taking ε in the set

{0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 50, 100, 500, 1 000, 2 000, 3 000, 4 000, 5 000, 6 000, 7 000, 8 000,

9 000, 10 061} and fixing T = 400 for DDP and DDP-CS-2 (the last value 10 061 of ε taken corre-

sponds to 25% of the optimal value of the problem). We see that unless ε is very large, the

computational time slowly decreases with ε.

7.2. A portfolio problem. Consider the portfolio problem with known returns

(7.32)

max
n+1
∑

i=1

(1 + riT)x
i
T

xi
t = (1 + rit−1)x

i
t−1 − yit + zit, i = 1, . . . , n, t = 1, . . . , T,

xn+1
t = (1 + rn+1

t−1)x
n+1
t−1 +

n
∑

i=1

(1 − ηi)y
i
t −

n
∑

i=1

(1 + νi)z
i
t, t = 1, . . . , T,

xi
t ≤ ui

n+1
∑

i=1

(1 + rit−1)x
i
t−1, i = 1, . . . , n, t = 1, . . . , T,

xi
t ≥ 0, i = 1, . . . , n+ 1, t = 1, . . . , T,

yit ≥ 0, zit ≥ 0, i = 1, . . . , n, t = 1, . . . , T.

Here n is the number of assets, asset n+1 is cash, T is the number of time periods, xi
t is the value

of asset i = 1, . . . , n+1 at the beginning of time period t = 1, . . . , T , rit is the return of asset i for

period t, yit is the amount of asset i sold at time t, zit is the amount of asset i bought at time t,

ηi > 0 and νi > 0 are the respective transaction costs. The components xi
0, i = 1, . . . , n + 1 are

drawn independently of each other from the uniform distribution over the interval [0, 100] (x0 is

the initial portfolio). The expression
n+1
∑

i=1

(1+ rit−1)x
i
t−1 is the budget available at the beginning of

period t. The notation ui in the third group of constraints is a parameter defining the maximal

proportion that can be invested in financial security i.

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 19

We take ui = 1 for all i, and define several instances of (7.32) with T = 90 and n (the size of state

vector xt in (3.5)) ∈ {2, 3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180,

200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500}. The returns of assets i = 1, . . . , n, are drawn

independently of each other from the uniform distribution over the interval [0.00005, 0.0004], the

return of asset n + 1 is fixed to 0.0001 (assuming daily returns, this amounts to a 3.72% return

over 365 days), and transaction costs νi, µi are set to 0.001.

In the notation of the previous section, these instances are solved using Simplex, DDP, DDP-CS-1,

and DDP-CS-2. Since we consider in this section problems and state vectors of large size (state

vector size up to 1500 and problems with up to 405 090 variables and up to 675 090 constraints

[including box constraints]), DP leads to prohibitive computational times and is not used. The

computational time required to solve these instances is reported in Table 2 (all implementations

are in Matlab, using Mosek Optimization Toolbox [1] and for all algorithms the computational

time includes the time to fill the constraint matrices). For DDP and its variants, we take ε = 1.

To check the implementation, we report in the Appendix, in Table 6, the approximate optimal

values obtained for these instances with all algorithms. We observe that Simplex tends to be

quicker on small instances but when the state vector is large, DDP and its variants are much

quicker. The variants with and without cut selection have similar performances on most instances

with DDP-CS-1 and DDP-CS-2 tending to be quicker for the instances with large n (for instance

for DDP-CS-2 compared to DDP: 18 seconds instead of 21 seconds for (T, n) = (90, 1500)).

If the DDP algorithms are very efficient, the variants with cut selection have not yielded a

significant reduction in computational time on these instances. This can be partly explained by

the small number of iterations (at most 5) needed for DDP algorithms to converge on these runs.

Finally, we apply Simplex, DDP, DDP-CS-1, and DDP-CS-2 algorithms on a portfolio problem

of form (7.32) using daily historical returns of n assets of the S&P 500 index for a period of

T days starting on January 4, 2010, assuming these returns known (which provides us with the

maximal possible return over this period using these assets). We consider 8 combinations for the

pair (T, n): (25, 50), (50, 50), (75, 50), (100, 50), (25, 100), (50, 100), (75, 100), and (100, 100). We

take again νi = µi = 0.001 and ui = 1 for all i. The components xi
0, i = 1, . . . , n + 1 of x0 are

drawn independently of each other from the uniform distribution over the interval [0, 100]. The

return of asset n+ 1 is 0.001 for all steps.

For this experiment, we report the computational time and the approximate optimal values

in respectively Tables 3 and 4. Again the DDP variants are much quicker than simplex for

problems with large T, n. The variants with cut selection are quicker, especially when T and n

are large (compared to DDP, DDP-CS-2 is 5% quicker for (T, n) = (75, 100) and 6% quicker for

(T, n) = (100, 100)). The number of iterations needed for the DDP variants to converge is given

in Table 5.

20 VINCENT GUIGUES

n 2 3 5 8 10 15 20 25
Simplex 0.0847 0.0246 0.0413 0.0786 0.1070 0.2685 0.3831 0.6089
DDP 0.2314 0.2440 0.4721 0.2845 0.5880 0.7401 0.6886 0.7738

DDP-CS-2 0.2652 0.2626 0.5021 0.3018 0.6129 0.6651 0.7079 0.7800
DDP-CS-1 0.2480 0.2630 0.5372 0.3105 0.6227 0.6888 0.7821 0.791

n 30 35 40 45 50 60 70 80
Simplex 0.9670 1.3484 1.5092 1.9607 2.5572 3.5763 5.5887 7.2446
DDP 0.7735 0.7906 0.8337 0.8501 0.9177 0.9733 1.0739 1.1434

DDP-CS-2 0.8045 0.8198 0.8676 0.8771 0.9520 1.0036 1.1068 1.1766
DDP-CS-1 0.8056 0.8267 0.8788 0.8816 0.9545 1.0094 1.1103 1.1795

n 90 100 120 140 160 180 200 300
Simplex 8.5491 12.1851 25.7598 36.5120 38.4824 46.0557 72.2004 129.2468
DDP 1.1687 1.3347 1.4285 1.5798 1.7350 1.8178 2.0015 2.9424

DDP-CS-2 1.1833 1.3600 1.4464 1.5713 1.7479 1.8459 2.0315 2.9600
DDP-CS-1 1.1909 1.3571 1.4459 1.5728 1.7509 1.8488 2.0413 2.9551

n 400 500 600 700 800 900 1000 1500
Simplex 263.4561 509.4387 765.1 1084.8 1568 2080.9 2922 10 449
DDP 3.8153 5.7445 7.5 8.8 9.0 10.0 11 21

DDP-CS-2 3.8197 5.7206 7.4 8.6 8.9 10.0 11 18
DDP-CS-1 3.8319 5.7955 7.4 8.7 9.0 10.1 11 18

Table 2. Computational time (in seconds) to solve instances of (7.32) with
Simplex, DDP, DDP-CS-1, and DDP-CS-2 for T = 90 and several values of n.

(T, n) (25, 50) (50, 50) (75, 50) (100, 50) (25, 100) (50, 100) (75, 100) (100, 100)
Simplex 0.5642 1.2783 1.9757 2.6020 2.6305 8.3588 9.2925 12.1430
DDP 0.3386 0.8705 1.6381 3.2622 1.2789 2.7525 6.0626 8.3887

DDP-CS-2 0.3207 0.8138 1.2053 2.8012 1.2520 2.2616 5.7634 7.8885
DDP-CS-1 0.3206 0.8036 1.2022 2.8261 1.2670 2.2801 5.8442 9.1096

Table 3. Computational time (in seconds) to solve instances of (7.32) with
Simplex, DDP, DDP-CS-1, and DDP-CS-2 for several values of (T, n) using his-
torical returns of n assets of S&P 500 index.

(T, n) (25, 50) (50, 50) (75, 50) (100, 50) (25, 100) (50, 100) (75, 100) (100, 100)
Simplex 4 754.3 10 600 24 525 46 496 13 584 53 576 178 190 403 800
DDP 4 754.2 10 600 24 525 46 496 13 584 53 576 178 190 403 800

DDP-CS-2 4 754.2 10 600 24 525 46 496 13 584 53 576 178 190 403 800
DDP-CS-1 4 754.2 10 600 24 525 46 496 13 584 53 576 178 190 403 800

Table 4. Approximate optimal value of instances of (7.32) obtained with
Simplex, DDP, DDP-CS-1, and DDP-CS-2 for several values of (T, n) using his-
torical returns of n assets of S&P 500 index.

(T, n) (25, 50) (50, 50) (75, 50) (100, 50) (25, 100) (50, 100) (75, 100) (100, 100)
DDP 6 7 7 11 12 13 17 17

DDP-CS-2 5 6 6 10 13 12 20 23
DDP-CS-1 5 6 6 10 13 12 20 20

Table 5. Number of iterations of DDP method with DDP, DDP-CS-1, and
DDP-CS-2 for instances of (7.32) built using historical returns of n assets of S&P
500 index.

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 21

8. Conclusion

We proved the convergence of DDP with cut selection for cut selection strategies satisfying

Assumption (H2). This assumption is satisfied by the Territory algorithm [10], the Level H cut

selection [12], as well as the limited memory variant we proposed.

Numerical simulations on an inventory and a portfolio problem have shown that DDP can be

much quicker than simplex and that cut selection can speed up the convergence of DDP for some

large scale instances. For instance, for the simulated portfolio problem with (T, n) = (90, 1500) of

Section 7, DDP was about 500 times quicker than simplex. We also recall that for the inventory

problem solved for T = 600, DDP-CS-2 (that uses the limited memory variant) was 13.7% quicker

than DDP and 20.4% quicker than DDP-CS-1. A possible explanation is that DDP produced a large

number of dominated/useless cuts, which are below the useful cuts on the whole range of admissible

states. We expect more generally the cut selection strategies to be helpful when the number of

iterations of DDP (and thus the number of cuts built) is large.

For the porfolio management instances with large n, DDP-CS-1 and DDP-CS-2 tend to be quicker

(for the tests using historical daily returns of S&P 500 index, compared to DDP, DDP-CS-2 is 5%

quicker for (T, n) = (75, 100) and 6% quicker for (T, n) = (100, 100)).

The proof of this paper can be extended in several ways:

• As in [4], we can consider the case where ft and the constraint set for step t depend not

only on xt−1 but on the full history of decisions x1, x2, . . . , xt−1. In this case, Qt also

depends on the full history of decisions x1, x2, . . . , xt−1. This larger problem class was

considered for risk-averse convex programs without cut selection in [4].

• It is also possible to consider a variant of DDP that uses a backward pass to compute the

cuts, i.e., that computes the cuts using at iteration k functionQk
t+1 instead ofQk−1

t+1 in (4.7).

The corresponding convergence proof can be easily obtained following the convergence

proof of Theorem 5.2.

• Extend the convergence proof for decomposition methods with cut selection to solve mul-

tistage risk-averse nonlinear stochastic optimization problems.

Acknowledgments

The author’s research was partially supported by an FGV grant, CNPq grant 307287/2013-0,

FAPERJ grants E-26/110.313/2014 and E-26/201.599/2014. We would also like to thank the

reviewers for beneficial comments and suggestions.

References

[1] E. D. Andersen and K. D. Andersen. The MOSEK optimization toolbox for MATLAB manual. Version 7.0,

2013. http://docs.mosek.com/7.0/toolbox/.

22 VINCENT GUIGUES

[2] S. Gaubert, W. McEneaney, and Z. Qu. Curse of dimensionality reduction in max-plus based approximation

methods: Theoretical estimates and improved pruning algorithms. 50th IEEE Conference on Decision and

Control and European Control Conference (CDC-ECC), pages 1054–1061, 2011.

[3] V. Guigues. SDDP for some interstage dependent risk-averse problems and application to hydro-thermal plan-

ning. Computational Optimization and Applications, 57:167–203, 2014.

[4] V. Guigues. Convergence analysis of sampling-based decomposition methods for risk-averse multistage sto-

chastic convex programs. Accepted for publication in Siam Journal on Optimization, available on arXiv at

http://arxiv.org/abs/1408.4439, 2016.

[5] V. Guigues and W. Römisch. Sampling-based decomposition methods for multistage stochastic programs based

on extended polyhedral risk measures. SIAM Journal on Optimization, 22:286–312, 2012.

[6] V. Guigues and W. Römisch. SDDP for multistage stochastic linear programs based on spectral risk measures.

Operations Research Letters, 40:313–318, 2012.

[7] V. Kozmik and D.P. Morton. Evaluating policies in risk-averse multi-stage stochastic programming. Mathe-

matical Programming, 152:275–300, 2015.

[8] W.M. McEneaney, A. Deshpande, and S. Gaubert. Curse of complexity attenuation in the curse of dimension-

ality free method for HJB PDEs. American Control Conference, pages 4684–4690, 2008.

[9] M.V.F. Pereira and L.M.V.G Pinto. Multi-stage stochastic optimization applied to energy planning. Mathe-

matical Programming, 52:359–375, 1991.

[10] Laurent Pfeiffer, Romain Apparigliato, and Sophie Auchapt. Two methods of pruning benders’ cuts and their

application to the management of a gas portfolio. Research Report RR-8133, hal-00753578, 2012.

[11] A. Philpott and V. de Matos. Dynamic sampling algorithms for multi-stage stochastic programs with risk

aversion. European Journal of Operational Research, 218:470–483, 2012.

[12] A. Philpott, V. de Matos, and E. Finardi. Improving the performance of stochastic dual dynamic programming.

Journal of Computational and Applied Mathematics, 290:196–208, 2012.

[13] A. B. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming and related methods.

Operations Research Letters, 36:450–455, 2008.

[14] A. Ruszczyński. Parallel decomposition of multistage stochastic programming problems. Math. Programming,

58:201–228, 1993.

[15] A. Shapiro. Analysis of stochastic dual dynamic programming method. European Journal of Operational Re-

search, 209:63–72, 2011.

[16] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling and Theory.

SIAM, Philadelphia, 2009.

[17] A. Shapiro, W. Tekaya, J.P. da Costa, and M.P. Soares. Worst-case-expectation approach to optimization

under uncertainty. Operations Research, 61:1435–1449, 2013.

CONVERGENCE ANALYSIS OF DDP WITH CUT SELECTION 23

Appendix

n 2 3 5 8 10 15 20 25

Simplex 63.9523 265.7561 300.7989 527.9508 515.5728 649.9466 1 156 1 138.4

DDP 63.9314 265.6687 300.7989 527.9489 515.5728 649.8515 1 156 1 138.4

DDP-CS-2 63.9314 265.6687 300.7989 527.9489 515.5728 649.8515 1 156 1 138.4

DDP-CS-1 63.9314 265.6687 300.7989 527.9489 515.5728 649.8515 1 156 1 138.4

n 30 35 40 45 50 60 70 80

Simplex 1 620.3 1 877.8 2 127.4 2 037.0 2 183.4 2 894.3 3 420.6 4 101.5

DDP 1 620.3 1 877.8 2 127.4 2 037.0 2 183.4 2 894.3 3 420.6 4 101.5

DDP-CS-2 1 620.3 1 877.8 2 127.4 2 037.0 2 183.4 2 894.3 3 420.6 4 101.5

DDP-CS-1 1 620.3 1 877.8 2 127.4 2 037.0 2 183.4 2 894.3 3 420.6 4 101.5

n 90 100 120 140 160 180 200 300

Simplex 4 919 5 147 6 306 6 835 8 254 9 151 9 773 16 016

DDP 4 919 5 147 6 306 6 835 8 254 9 151 9 773 16 016

DDP-CS-2 4 919 5 147 6 306 6 835 8 254 9 151 9 773 16 016

DDP-CS-1 4 919 5 147 6 306 6 835 8 254 9 151 9 773 16 016

n 400 500 600 700 800 900 1000 1500

Simplex 21 050 25 863 30 410 36 229 41 145 45 024 50 994 76 695

DDP 21 050 25 863 30 410 36 229 41 145 45 024 50 994 76 695

DDP-CS-2 21 050 25 863 30 410 36 229 41 145 45 024 50 994 76 695

DDP-CS-1 21 050 25 863 30 410 36 229 41 145 45 024 50 994 76 695

Table 6. Optimal values of instances of (7.32) considered in Section 7.2 solved

with Simplex, DDP, DDP-CS-1, and DDP-CS-2 for T = 90 and several values of n.

