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Abstract

We discuss a general approach to building non-asymptotic confidence bounds for stochas-
tic optimization problems. Our principal contribution is the observation that a Sample Av-
erage Approximation of a problem supplies upper and lower bounds for the optimal value of
the problem which are essentially better than the quality of the corresponding optimal solu-
tions. At the same time, such bounds are more reliable than “standard” confidence bounds
obtained through the asymptotic approach. We also discuss bounding the optimal value
of MinMax Stochastic Optimization and stochastically constrained problems. We conclude
with a simulation study illustrating the numerical behavior of the proposed bounds.

1 Introduction

Consider the following Stochastic Programming (SP) problem

Opt = min
x

[f(x) = E{F (x, ξ)}, x ∈ X] (1)

where X is a nonempty bounded closed convex set of a Euclidean space E, ξ is a random
vector with probability distribution P on Ξ ⊂ Rk and F : X × Ξ → R. There are two
competing approaches for solving (1) when a sample ξN = (ξ1, ..., ξN ) of realizations of ξ (or
a device to sample from the distribution P ) is available — Sample Average Approximation
(SAA) and the Stochastic Approximation (SA). The basic idea of the SAA method is to build
an approximation of the “true” problem (1) by replacing the expectation f(x) with its sample
average approximation

fN (x, ξN ) =
1

N

N∑
t=1

F (x, ξt), x ∈ X.
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The resulting optimization problem has been extensively studied theoretically and numerically
(see, e.g., [9, 11, 12, 24, 26, 29], among many others). In particular, it was shown that the SAA
method (coupled with a deterministic algorithm for minimizing the SAA) is often efficient for
solving large classes of stochastic programs. The alternative SA approach was also extensively
studied since the pioneering work by Robbins and Monro [20]. Though possessing better the-
oretical accuracy estimates, SA was long time believed to underperform numerically. It was
recently demonstrated (cf., [13, 2, 27]) that a proper modification of the SA approach, based on
the ideas behind the Mirror Descent algorithm [14] can be competitive and can even significantly
outperform the SAA method on a large class of convex stochastic programs.

Note that in order to qualify the accuracy of approximate solutions (e.g., to build efficient
stopping criteria) delivered by the stochastic algorithm of choice, one needs to construct lower
and upper bounds for the optimal value Opt of problem (1) from stochastically sampled obser-
vations. Furthermore, the question of computing reliable upper and, especially, lower bounds
for the optimal value is of interest in many applications. Such bounds allow statistical decisions
(e.g., computing confidence intervals, testing statistical hypotheses) about the optimal value.
For instance, using the approach to regret minimization, developed in [3, 16], they may be used
to construct risk averse strategies for multi-armed bandits, and so on.

An important methodological feature of the SAA approach is its asymptotic framework
which explains how to provide asymptotic estimates of the accuracy of the obtained solution
by computing asymptotic upper and lower bounds for the optimal value of the “true” problem
(see, e.g., [4, 23, 8, 17, 12, 18, 19], and references therein).

However, as is always the case with techniques which are validated asymptotically, some
important questions, such as “true” reliability of bounds, cannot be answered by the asymptotic
analysis. Note that the non-asymptotic accuracy of optimal solutions of the SAA problem
was recently analysed (see, e.g., [7, 18, 19, 24, 26, 22]), yet, to the best of our knowledge, the
literature does not provide any non-asymptotic construction of lower and upper bounds for the
optimal value of (1) by SAA. On the other hand, non-asymptotic lower and upper bounds for
the objective value by SA method were built in [10] and [5].

Our objective in this work is to fill this gap, by building reliable finite-time evaluations of
the optimal value of (1), which are also good enough to be of practical interest. Our basic
methodological observation is Proposition 1 which states that the SAA of problem (1) comes
with a “built-in” non-asymptotic lower and upper estimation of the “true” objective value. The
accuracy of these estimations is essentially higher than the available theoretical estimation of
the quality of the optimal solution of the SAA. Indeed, when solving a high-dimensional SAA
problem, the (theoretical bound of) inaccuracy of the optimal solution becomes a function of
dimension. In particular, when the set X is a unit Euclidean ball of Rn, the accuracy of the SAA
optimal solution may be by factor O(n) worse than the corresponding accuracy of the SA solution
[13]. In contrast to this, the optimal value of the SAA problem supplies an approximation of the
“true” optimal value of accuracy which is (almost) independent of problem’s dimension and may
be used to construct non-trivial non-asymptotic confidence bounds for the true optimal value.
This fact is surprising, because the bad theoretical accuracy bound for optimal solutions of SAA
reflects their actual behavior on some problem instances (see Proposition 2 and the discussion
in Section 2.1.3).

The paper is organized as follows.
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We present the construction of lower and upper confidence bounds for the optimal value of
a stochastic problem in Section 2. Specifically, in Section 2.1, we develop confidence bounds for
the optimal value of problem (1). Then in Section 2.2 we build lower and upper bounds for
the optimal value of MinMax Stochastic Optimization and show how the confidence bounds can
be constructed for an ε-underestimation of the optimal value of a (stochastically) constrained
Stochastic Optimization problem.

Finally, several simulation experiments illustrating the properties of the bounds built in
Section 2 are presented in Section 3. Proofs of theoretical statements are collected in the
appendix.

2 Confidence bounds via Sample Average Approximation

2.1 Problem without stochastic constraints

2.1.1 Situation.

In the sequel, we fix a Euclidean space E and a norm ‖ · ‖ on E. We denote by B‖·‖ the unit
ball of the norm ‖ · ‖, and by ‖ · ‖∗ the norm conjugate to ‖ · ‖:

‖y‖∗ = max
‖x‖≤1

〈x, y〉.

Let us now assume that we are given a function ω(·) which is continuously differentiable on B‖·‖
and strongly convex with respect to ‖ · ‖, with parameter of strong convexity equal to one, i.e.,
such that and for every x, y ∈ B‖·‖

(∇ω(x)−∇ω(y))T (x− y) ≥ ‖x− y‖2,

with ω(0) = 0 and ω′(0) = 0 (in other words, ω(·) is a distance-generating function compatible
with ‖ · ‖). We denote

Ω = max
x:‖x‖≤1

√
2ω(x). (2)

Let, further,

• X be a convex compact subset of E,

• R = R‖·‖[X] be the smallest radius of a ‖ · ‖-ball containing X,

• P be a Borel probability distribution on Rk, Ξ be the support of P , and

F (x, y) : E × Ξ→ R

be a Borel function which is convex in x ∈ E and is P -summable for every x ∈ E, so that
the function

f(x) = E{F (x, ξ)} : E → R

is well defined and convex.
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We denote
L(x, ξ) = max {‖g − h‖∗ : g ∈ ∂xF (x, ξ), h ∈ ∂f(x)} .

The outlined data give rise to the stochastic program

Opt = min
x∈X

[f(x) = E{F (x, ξ)}]

and its Sample Average Approximation (SAA)

OptN (ξN ) = min
x∈X

[
fN (x, ξN ) :=

1

N

N∑
t=1

F (x, ξt)

]
, (3)

where ξN = (ξ1, ..., ξN ), and ξ1, ξ2, ... are drawn independently from P . Our immediate goal
is to understand how well the optimal value OptN (ξN ) of SAA approximates the true optimal
value Opt.

2.1.2 Confidence bounds

Our main result is as follows.

Proposition 1. In the situation of Section 2.1.1, let us assume that f is differentiable on X
and that for some positive M1, M2 and all x ∈ X one has

(a) E
[
e(F (x,ξ)−f(x))2/M2

1

]
≤ e, (b) E

[
eL

2(x,ξ)/M2
2

]
≤ e. (4)

Define

a(µ,N) =
µM1√
N

and b(µ, s, λ,N) =
µM1 +

[
Ω[1 + s2] + 2λ

]
M2R√

N
,

where Ω is as in (2), and let τ∗ = 0.557409... be the smallest positive real such that et ≤ t+ eτ∗t
2

for all t ∈ R. Then for all N ∈ Z+ and µ ∈ [0, 2
√
τ∗N ]

Prob
{

OptN (ξN ) > Opt + a(µ,N)
}
≤ e−

µ2

4τ∗ ; (5)

and for all N ∈ Z+, µ ∈ [0, 2
√
τ∗N ], s > 1 and λ ≥ 0,

Prob
{

OptN (ξN ) < Opt− b(µ, s, λ,N)
}
≤ e−N(s2−1) + e−

µ2

4τ∗ + e−
λ2

4τ∗ . (6)

We have the following obvious corollary to this result.

Corollary 1. Under the premise of Proposition 1, let

LowSAA(µ1, N) = OptN (ξN )− a(µ1, N),
UpSAA(µ2, s, λ,N) = OptN (ξN ) + b(µ2, s, λ,N).

Then for all N ∈ Z+, s > 1, λ ≥ 0, µ1, µ2 ∈ [0, 2
√
τ∗N ]

Prob
{

Opt ∈
[
LowSAA(µ1, N), UpSAA(µ2, s, λ,N)

]}
≥ 1− β

where β[= β(µ1, µ2, s, λ,N)] = e−
µ21
4τ∗ + e−

µ22
4τ∗ + e−N(s2−1) + e−

λ2

4τ∗ . In other words, for the choice
of µ1, µ2, s, λ and N such that 0 < β < 1, the segment [LowSAA, UpSAA] is the confidence interval
for Opt of level 1− β.
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2.1.3 Discussion.

The result of Proposition 1 merits some comments.

1. Confidence bounds of Proposition 1 and Corollary 1 involve constants M1 and M2, defined
in (4). Valid upper bounds on these constants are crucial to obtain sound confidence
bounds. To the best of our knowledge there is no generic procedure which allows us to
construct such estimates. Nevertheless, it is possible to build “reasonably good” bounds
for M1 and M2 in specific problem settings. For instance, we provide such bounds for
the examples used to illustrate the results of this section in the numerical experiments of
Section 3 (see Appendix B for details of the calculations).

2. “As is”, Proposition 1 requires f(·) to be differentiable. This purely technical assump-
tion is in fact not restrictive at all. Indeed, we can associate with (1) its “smoothed”
approximation

min
x∈X

[
fε(x) :=

∫
Ξ×E

Fε(x, [υ; ξ])P (dξ)p(υ)dυ

]
, Fε(x, [υ; ξ]) = F (x+ ευ, ξ),

where p(·) is, say, the density of the uniform distribution U on the unit ball B∞ in E.
Assuming that bounds (4.a) and (4.b) hold for all x from an open set X+ containing X,
it is immediately seen that fε is, for values of ε small enough, a continuously differentiable
function on X which converges, uniformly on X, to f as ε → +0. Given a possibility to
sample from the distribution P , we can sample from the distribution P+ := P × U on
Ξ+ = Ξ × E, and thus can build the SAA of the problem minx fε(x). When ε is small,
this smoothed problem satisfies the premise of Proposition 1, the parameters M1, M2

remaining unchanged, and its optimal value can be made as close to Opt as we wish by an
appropriate choice of ε. As a result, by passing from the SAA of the original problem to
the SAA of the smoothed one, ε being small, we ensure, “at no cost,” smoothness of the
objective, and thus – applicability of the large deviation bounds stated in Proposition 1.

3. The standard theoretical results on the SAA of a stochastic optimization problem (1),
see, e.g. [13, 25] and references therein, are aimed at quantifying the sample size N =
N(ε, n) which, with overwhelming probability, ensures that an optimal solution x(ξN ) to
the SAA of the problem of interest satisfies the relation f(x(ξN )) ≤ Opt + ε, for a given
ε > 0. The corresponding bounds on N are similar, but not identical, to the bounds in
Proposition 1. Let us consider, for instance, the simplest case of “Euclidean geometry”
where ‖x‖ = ‖x‖2 =

√
〈x, x〉, ω(x) = 1

2‖x‖
2, and X is the unit ‖ · ‖2-ball. In this case

Proposition 1 states that for a given ε > 0, the sample size N for which Opt(ξN ) is, with
probability at least 1−α, ε-close to Opt, can be upper-bounded for small enough ε and α
by

Nε := C
[M1 +M2]2 ln(1/α)

ε2

(here C is a positive absolute constant).1 It should be stressed that both the bound itself

1E.g., for α ≤ 1
2 and ε ≤M1 + 4M2 we have an immediate (though rough) bound

Nε =
4τ∗(M1 + 4M2)2 ln(4/α)

ε2
.
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and the range of “small enough” values of ε, α for which this bound is valid are independent
of the dimension n of the decision vector x. In contrast to this, available estimation of the
complexity N(ε, n) relies upon uniform convergence arguments and is affected by problem’s
dimension: up to logarithmic terms, N(ε, n) = nNε (cf. the discussion in [26, 22]). This
phenomenon – linear dependence on the problem’s dimension n of the SAA sample size
yielding, with high probability, an ε-optimal solution to a stochastic problem – is not an
artifact stemming from an imperfect theoretical analysis of the SAA but reflects the actual
performance of SAA on some instances. Indeed, we have the following:

Proposition 2. For any n ≥ 3, and R,L > 0 one can point out a convex Lipschitz
continuous function f with Lipschitz constant L on the Euclidean ball B2(R) of radius R,
and an integrand F (x, ξ) convex in x such that Eξ{F (x, ξ)} = f(x), ‖F ′(x, ξ)−f ′(x)‖22 ≤ L
a.s., for all x ∈ B2(R), and such that with probability at least 1− e−1 there is an optimal
solution x(ξN ) to the SAA

min

[
fN (x, ξN ) =

1

N

N∑
i=1

F (x, ξi) : x ∈ B2(R)

]
,

sampled over N ≤ n i.i.d. realizations of ξ, satisfying

f(x(ξN ))−Opt ≥ c0LR, (7)

where c0 is a positive absolute constant.

Note that for large-scale problems, the presence of the factor n in the sample size bound is
a definite and serious drawback of SAA. A nice fact about the SAA approach as expressed
by Proposition 1, is that as far as reliable ε-approximation of the optimal value (rather than
building an ε-solution) is concerned, the performance of the SAA approach, at least in the
case of favorable geometry, is not affected by the problem’s dimension. It should be stressed
that the crucial role in Proposition 1 is played by convexity which allows us to express
the quality to which the SAA reproduces the optimal value in (1) in terms of how well
fN (x, ξN ) reproduces the first order information on f at a single point x∗ ∈ ArgminX f ,
see the proof of Proposition 1. In a “favorable geometry” situation, e.g., in the Euclidean
geometry case, the corresponding sample size is not affected by problem’s dimension. In
contrast to this, to yield reliably an ε-solution, the SAA requires, in general, fN (x, ξN )
to be ε-close to f uniformly on X with overwhelming probability; and the corresponding
sample size, even in the case of Euclidean geometry, grows with problem’s dimension.

4. Note that (at least in the case of Euclidean geometry) without additional, as compared to
those in Proposition 1, restrictions on F and/or the distribution P , the quality of the SAA
estimate OptN (ξN ) of Opt (and thus, the quality of the confidence interval for it provided
by Corollary 1) is, within an absolute constant factor, the best allowed by the laws of
Statistics. Namely, we have the following lower bound for the widths of the confidence
intervals for the optimal value valid already for a class of linear stochastic problems.
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α = 0.1 M1 = M2 = 1 M1 = 10, M2 = 1 M1 = 100, M2 = 1

N 10 100 1000 10 100 1000 10 100 1000

RW 8.086 7.803 7.775 3.772 3.744 3.741 3.341 3.338 3.337

α = 0.01 M1 = M2 = 1 M1 = 10, M2 = 1 M1 = 100, M2 = 1

N 10 100 1000 10 100 1000 10 100 1000

RW 5.586 5.362 5.340 2.666 2.644 2.642 2.374 2.372 2.372

α = 0.001 M1 = M2 = 1 M1 = 10, M2 = 1 M1 = 100, M2 = 1

N 10 100 1000 10 100 1000 10 100 1000

RW 4.908 4.689 4.667 2.368 2.346 2.344 2.114 2.112 2.112

Table 1: Ratios RW of the widths of the confidence intervals as given by Corollary 1 and their
lower bounds from Proposition 3.

Proposition 3. For any n ≥ 1, M1 ≥ M2 > 0, one can point out a family of linear
stochastic optimization problems, i.e., linear functions f on the unit Euclidean ball B2

of Rn and corresponding integrands F (x, ξ) linear in x such that Eξ{F (x, ξ)} = f(x),
satisfying the premises of Proposition 1 and Corollary 1, and such that the width of the
confidence interval for Opt = minx∈B2 f(x) of confidence level ≥ 1−α cannot be less than

W = 2γqN (1− α)
M1√
N
, (8)

where qN (β) is the β-quantile of the standard normal distribution, and γ > 0 is given by
the relation

Eζ∼N (0,1)

{
exp{γ2ζ2}

}
= exp{1},

or, equivalently, γ2 = 1
2(1− exp{−2}).

In Table 1, we provide the ratios RW of the widths of the confidence intervals, as given
by Corollary 1 and their lower bounds for some combinations of risks α and parameters
M1,M2 and N .

2.2 Constrained case

Now consider a convex stochastic problem of the form

Opt = min
x∈X

[
f0(x) :=

∫
Ξ
F0(x, ξ)P (dξ) : fi(x) :=

∫
Ξ
Fi(x, ξ)P (dξ) ≤ 0, 1 ≤ i ≤ m

]
, (9)

where, similarly to the above, X is a convex compact set in a Euclidean space E, P is a Borel
probability distribution on Rk, Ξ is the support of P , and

Fi(x, ξ) : E × Ξ→ R, 0 ≤ i ≤ m,

are Borel functions convex in x and P -summable in ξ for every x, implying that the functions fi,
0 ≤ i ≤ m, are convex. As in the previous section, we assume that E is equipped with a norm
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‖ · ‖, the conjugate norm being ‖ · ‖∗, and a compatible with ‖ · ‖ distance-generating function
for the unit ball B‖·‖ of the norm.

We put
L(x, ξ) = max

0≤i≤m
{‖g − h‖∗ : g ∈ ∂xFi(x, ξ), h ∈ ∂fi(x)} .

Assuming that we can sample from the distribution P , and given a sample size N , we can build
Sample Average Approximations (SAA’s) of functions fi, 0 ≤ i ≤ m:

fi,N (x, ξN ) =
1

N

N∑
t=1

Fi(x, ξt).

Here, as above, ξ1, ξ2, ... are drawn, independently of each other from P and ξN = (ξ1, ..., ξN ).
Same as above, we want to use these SAA’s of the objective and the constraints of (9) to infer
conclusions on the optimal value of the problem of interest (9).

Our first observation is that in the constrained case, one can hardly expect a reliable and
tight approximation to Opt to be obtainable from noisy information. The reason is that in the
general constrained case, even the special one where Fi (and thus fi) are affine in x, the optimal
value is highly unstable: arbitrarily small perturbations of the data (e.g., the coefficients of affine
functions Fi in the special case or parameters of distribution P ) can result in large changes in
the optimal value. As a result, with noisy observations of the data, one could hardly expect to
get a good estimate of Opt via a sample of instance-independent size. The standard remedy
is to impose an priori upper bound on the magnitude of optimal Lagrange multipliers for the
problem of interest, e.g., by imposing the assumption that this problem is strictly feasible, with
the level of strict feasibility

κ := −min
x∈X

max[f1(x), ..., fm(x)] (10)

lower-bounded by a known in advance positive quantity. Since in many cases an priori lower
bound on κ is unavailable, we intend in the sequel to utilize an alternative approach, specifically,
as follows. Let us associate with (9) the univariate (max-)function

Φ(r) = min
x∈X

max[f0(x)− r, f1(x), ..., fm(x)].

Clearly, Φ is a continuous convex nonincreasing function of r ∈ R such that Φ(r) → ∞ as
r → −∞. This function has a zero if and only if (9) is feasible, and Opt is nothing but the
smallest zero of Φ.

Definition 1. Given ε > 0, a real ρ ε-underestimates Opt if ρ ≤ Opt and Φ(ρ) ≤ ε.

Note that Φ(ρ) ≤ ε implies that

ρ ≥ Opt(ε) := min
x∈X

[f0(x)− ε : fi(x) ≤ ε, 1 ≤ i ≤ m] .

Thus, ρ ε-underestimates Opt if and only if ρ is in-between the optimal value of the problem of
interest (9) and the problem obtained from (9) by “optimistic” ε-perturbation of the objective
and the constraints.
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Remark 1. Let ρ ε-underestimate Opt. When (9) is feasible and the magnitude (absolute value)
ϑ of the left derivative of Φ(·) taken at Opt is positive, from convexity of Φ it follows that

Opt− ε

ϑ
≤ ρ < Opt.

Thus, unless ϑ is small, ρ is an O(ε)-tight lower bound on Opt. Note that when (9) is
strictly feasible, ϑ indeed is positive, and it can be bounded away from zero. Indeed, we have
the following:

Lemma 1. Let ϑ be the magnitude of the left derivative of Φ at Opt and assume that κ given
by (10) is positive. Then

ϑ ≥ κ
V + κ

, where V = max
x∈X

f0(x)−Opt.

In respect to the constrained problem (9), our main result is as follows:

Proposition 4. In the just described situation, assume that fi, 0 ≤ i ≤ m, are differentiable
on X, and that for some positive M1, M2 one has for i = 0, 1, ...,m and all x ∈ X:

E
[
e(Fi(x,ξ)−fi(x))2/M2

1

]
≤ e, E

[
eL

2(x,ξ)/M2
2

]
≤ e.

Assume also that (9) is feasible, and that for N ∈ Z+, s > 1, and λ, µ ∈ [0, 2
√
τ∗N ], ε and β

satisfy
ε > 2N−1/2

[
µM1 +M2R

[
Ω
2 [1 + s2] + λ

]]
,

β = β(µ, s, λ,N) = e−N(s2−1) + e−
λ2

4τ∗ + (m+ 2)e−
µ2

4τ∗ ,
(11)

where Ω is given by (2), and τ∗ is given in Proposition 1. Then the random quantity

OptN (ξN ) = min
x∈X

[
f0,N (x, ξN )− µM1N

−1/2 : fi,N (x, ξN )− µM1N
−1/2 ≤ 0, 1 ≤ i ≤ m

]
ε-underestimates Opt with probability ≥ 1− β.

MinMax Stochastic Optimization. The proof of Proposition 4 also yields the following
result which is of interest by its own right:

Proposition 5. In the notation and under assumptions of Proposition 4, consider the minimax
problem

Opt = min
x∈X

max[f1(x), ..., fm(x)] (12)

along with its Sample Average Approximation

OptN (ξN ) = min
x∈X

max[f1,N (x, ξN ), ..., fm,N (x, ξN )].

Then for every N ∈ Z+, s > 1 and λ, µ ∈ [0, 2
√
τ∗N ] one has

Prob
{

OptN (ξN ) > Opt + µM1N
−1/2

}
≤ me−

µ2

4τ∗ (13)
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and
Prob

{
OptN (ξN ) < Opt−

[
µM1 + 2M2

[
Ω
2 [1 + s2] + 2λ

]]
N−1/2

}
≤ e−

µ2

4τ∗ + 2

[
e−N(s2−1) + e−

λ2

4τ∗

]
.

(14)

An attractive feature of bounds (13) and (14) is that they are only weakly affected by the
number m of components in the minimax problem (12).

3 Numerical experiments

The goal of the experiments of this section is to illustrate numerically the ideas developed above.

3.1 Confidence intervals for problems without stochastic constraints

Here we consider three risk-averse optimization problems of the form (1) and we compare the
properties of three confidence intervals for Opt computed for the confidence level 1− α = 0.9:

1. the asymptotic confidence interval

Ca(α) =

[
f̂2N − qN

(
1− α

2

) σ̂2N√
N
, f̂2N + qN

(
1− α

2

) σ̂2N√
N

]
. (15)

Here f̂2N and σ̂2
2N are estimations of expectation f(x(ξN )) of F (x(ξN ), ξ′) and of its

variance, taken over the distribution of independent from ξN random vector ξ′ (here x(ξN )
is the SAA (3) optimal solution built using the N -sample ξN ). They are computed using
a second sample ξ̄N of ξ of size N independent of ξN :

f̂2N =
1

N

N∑
t=1

F (x(ξN ), ξ̄t), σ̂2
2N =

1

N

N∑
t=1

F (x(ξN ), ξ̄t)
2 − f̂2

2N (16)

(for a justification, see [25]).

2. The (non-asymptotic) confidence interval CSMD(α) is built using the offline accuracy cer-
tificates for the Stochastic Mirror Descent algorithm, cf. Section 3.2 and Theorem 2 of
[10]. The non-Euclidean algorithm with entropy distance-generating function provided the
best results in these experiments and was used for comparison.

3. The (non-asymptotic) confidence interval, denoted CSAA(α), is based on the bounds of
Proposition 1. Specifically, we use the lower 1−α/2-confidence bound LowSAA of Corollary
1. To construct the upper bound we proceed as follows: first we compute the optimal
solution x(ξN ) of the SAA using a simulation sample ξN of size N ; then we compute an
estimation f̂2N of the objective value using the independent sample ξ̄N as in (16). Finally,
we build the upper confidence bound

Up′ = f̂2N + 2M1

√
τ∗ ln[4α−1]

N
,
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Sample Problem size n
size N 2 10 20 100

20 0.94 0.68 0.59 0.10

100 0.95 0.87 0.70 0.46

10 000 0.94 0.95 0.91 0.85

Table 2: Quadratic risk minimization. Estimated coverage probabilities of the asymptotic con-
fidence intervals Ca(0.1).

where τ∗ and M1 are as in Proposition 1 (cf. the bound (5)). Finally, the upper bound
Up

SAA
computed as the minimum of Up′ and the upper bound UpSAA by Corollary 1, tuned

for the confidence level 1− α/4, was used.2

For the sake of completeness, for the three optimization problems considered in this section we
provide the detail of computing of the constants involved in Appendix B. SAA formulations of
these problems were solved numerically using Mosek Optimization Toolbox [1].

3.1.1 Quadratic risk minimization

Consider the following instance of problem (1): let X be the standard simplex in Rn: X = {x ∈
Rn : xi ≥ 0,

∑n
i=1 xi = 1}, Ξ is a part of the unit box {ξ = [ξ1; ...; ξn] ∈ Rn : ‖ξ‖∞ ≤ 1},

F (x, ξ) = κ0ξ
Tx+

κ1

2

(
ξTx

)2
, f(x) = κ0µ

Tx+
κ1

2
xTV x,

with κ1 ≥ 0 and µ = E{ξ}, V = E{ξξT }.
In our experiments, κ0 = 0.1, κ1 = 0.9, and ξ has independent Bernoulli entries: Prob(ξi =

1) = θi, Prob(ξi = −1) = 1− θi, with θi drawn uniformly over [0, 1]. This implies that

µi = 2θi − 1, Vi,j =

{
E{ξi}E{ξj} = (2θi − 1)(2θj − 1) for i 6= j,
E{ξ2

i } = 1 for i = j.

For several problem and sample sizes, we present in Table 2 the empirical “coverage proba-
bilities” of the “asymptotic” confidence interval Ca(α) (i.e., the ratio of realizations for which
Ca(α) covers the true optimal value) for α = 0.1 and “target coverage probability” 1− α = 0.9,
computed over 500 realizations (the coverage probabilities of the two non-asymptotic confidence
intervals are equal to one for all parameter combinations). We observe that empirical coverage
probabilities degrade when the problem size n increases (and, as expected, they tend to increase
with the sample size). For instance, these probabilities are much smaller than the target level,
unless the size N of the simulation sample is much larger than problem dimension n. On the
other hand, not surprisingly, the non-asymptotic bounds yield confidence intervals much larger
than the asymptotic confidence interval. We report in Table 3 the mean ratio of the widths of
non-asymptotic – CSAA(α) and CSMD(α) – and asymptotic confidence intervals Ca(α).3 These

2It is worth to mention that in our experiments the upper bound UpSAA was too conservative and was system-
atically “outperformed” by the upper bound Up′.

3Note that asymptotic estimation σ̂N of the noise variance often degenerates. To avoid division by zero
problems, we only kept the realizations where asymptotic confidence intervals cover the true optimal value.
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Sample |CSAA(α)|
|Ca(α)| , problem size n |CSMD(α)|

|Ca(α)| , problem size n

size N 2 10 20 100 200 2 10 20 100 200

100 6.37 9.18 10.18 29.50 47.43 30.57 65.87 78.5 274.63 474.68

1000 3.27 4.33 4.52 13.92 22.46 15.52 32.56 36.98 134.67 232.32

10 000 3.15 4.37 4.40 13.44 21.96 15.46 32.40 35.87 131.70 227.56

Table 3: Quadratic risk minimization. Average ratio of the widths of the non-asymptotic and
asymptotic confidence intervals.

Sample Problem size n
size N 2 10 20 100

20 0.95 0.73 0.53 0.05

100 0.9 0.78 0.48 0.006

10 000 0.92 0.91 0.92 0.68

100 000 0.94 0.92 0.92 0.92

Table 4: Gaussian VaR optimization. Estimated coverage probabilities of asymptotic confidence
intervals.

ratios increase significantly with problem size (in part because the asymptotic interval becomes
indeed too short), and we observe that the confidence interval CSAA(α) based on Sample Av-
erage Approximation remains much smaller than the interval CSMD(α) yielded by Stochastic
Approximation.

3.1.2 Gaussian VaR optimization

We consider the instance of problem (1) where X ⊂ Rn is the standard simplex, ξ has normal
distribution N (0,Σ) on Rn with Σi,i ≤ σmax, and F (x, ξ) = κ0ξ

Tx + κ1|ξTx|, with κ1 ≥ 0,

so that f(x) = κ1

√
2/π
√
xTΣx. Observe that in the present situation, minimizing f(x) is

equivalent to maximizing the ε-quantile of the distribution of ξTx (Value-at-Risk VaR(ε)) with

ε = 1−Ψ
(
κ1

√
2/π

)
where Ψ(·) is the standard normal CDF.

We generated instances of the problem of different sizes with κ0 = 0.9, κ1 = 0.1, and diagonal
matrix Σ with diagonal entries drawn uniformly over [1, 6] (σmax =

√
6).

We reproduce the experiments of the previous section in this setting, namely, for several
problem and sample sizes, we compute empirical “coverage probabilities” of the confidence in-
tervals over 500 realizations. We report the results for the “asymptotic” confidence interval Ca(α)
in Table 4 for “target coverage probability” 1− α = 0.9 (same as above, coverage probabilities
of non-asymptotic intervals are equal to one for all parameter combinations). We especially
observe extremely low coverage probabilities for n = 100 and N = 20 or N = 100.

In Table 5 the average ratios of the widths of non-asymptotic and asymptotic confidence
intervals are provided for the same experiment. Same as in the experiments described in the
previous section, these ratios increase with problem size, and the confidence intervals by SMD
are much more conservative than those by SAA.
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Sample |CSAA(α)|
|Ca(α)| for problem size n |CSMD(α)|

|Ca(α)| for problem size n

size N 2 10 20 100 200 2 10 20 100 200

20 4.42 6.15 6.11 6.27 6.35 40.16 112.38 133.80 183.61 205.66

100 5.04 9.11 10.79 12.87 13.44 46.41 172.00 244.68 397.01 458.85

10 000 5.27 12.17 16.29 26.65 30.28 49.15 237.79 386.31 974.32 1088.90

Table 5: Gaussian VaR optimization. Average ratio of the widths of the non-asymptotic and
asymptotic confidence intervals.

3.1.3 CVaR optimization

We consider here the following CVaR optimization problem: given ε > 0, find

Optε = minx′ κ0E{ξTx′}+ κ1CVaRε(ξ
Tx′)

x′ ∈ Rn
∑n

i=1 x
′
i = 1, x′ ≥ 0,

(17)

where the support Ξ of ξ is a part of the unit box {ξ = [ξ1; ...; ξn] ∈ Rn : ‖ξ‖∞ ≤ 1}, and where

CVaRε(ξ
Tx′) = min

x0∈R
{x0 + E{ε−1[ξTx′ − x0]+}}

is the Conditional Value-at-Risk of level 0 < ε < 1, see [21]. Observing that |ξTx′| ≤ 1 a.s.,
the above problem is clearly of the form (1) with X = {x = [x0;x′1; ...;x′n] ∈ Rn+1 : |x0| ≤
1, x′1, ..., x

′
n ≥ 0,

∑n
i=1 x

′
i = 1} and

F (x, ξ) = κ0ξ
Tx′ + κ1

(
x0 +

1

ε
[ξTx′ − x0]+

)
.

We consider random instances of the problem with κ0, κ1 ∈ [0, 1], and ξ with independent
Bernoulli entries: Prob(ξi = 1) = θi, Prob(ξi = −1) = 1 − θi, with θi, i = 1, ..., n drawn
uniformly from [0, 1].

We compare the non-asymptotic confidence interval CSAA(α) for Optε to the asymptotic
confidence interval Ca(α) with confidence level 1 − α = 0.9. We consider two sets of problem
parameters: (κ0, κ1, ε) = (0.9, 0.1, 0.9) and the risk-averse variant (κ0, κ1, ε) = (0.1, 0.9, 0.1).
The empirical coverage probabilities for the asymptotic confidence interval are reported in Table
6. As in other experiments, the coverage probability is still below the target probability 1−α =
0.9 when the sample size is not much larger than the problem size. For SAA, the coverage
probabilities are equal to one for all parameter combinations.

We report in Table 7 the average ratio of the widths of non-asymptotic and asymptotic
confidence intervals. Note that the Lipschitz constant of F (·, ξ) is proportional to 1/ε when
ε is small. This explains the fact that for small values of ε, the ratio of the widths of the
proposed non-asymptotic and asymptotic confidence intervals grows up significantly, especially
for problem size n+ 1 = 3.

The experiments of this section show that when the sample size is not much larger than
the problem dimension, the asymptotic computations fail to provide the confidence set of the
prescribed risk. In such case the proposed approach, though conservative, seems to be the only
option available for constructing a reliable confidence interval.
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Sample ε = 0.1, problem size n+ 1 ε = 0.9, problem size n+ 1
size N 3 11 21 101 3 11 21 101

100 0.96 0.74 0.85 0.78 0.96 0.95 0.95 0.78

1000 0.95 0.88 0.86 0.67 0.95 0.92 0.84 0.84

10 000 0.92 0.93 0.91 0.94 0.92 0.95 0.96 0.96

Table 6: CVaR optimization. Estimated coverage probabilities of asymptotic confidence inter-
vals.

Sample ε = 0.9, problem size n+ 1 ε = 0.1, problem size n+ 1
size N 3 11 21 101 201 3 11 21 101 201

100 3.09 3.69 7.33 14.25 13.79 293.47 27.61 9.14 14.32 14.44

1000 3.25 3.67 8.63 35.04 36.72 294.16 27.04 8.72 34.43 37.42

10 000 3.22 3.68 8.61 32.08 34.00 293.92 26.91 8.66 31.70 34.18

Table 7: CVaR optimization. Average ratio |CSAA(α)|
|Ca(α)| of the widths of the non-asymptotic and

asymptotic confidence intervals.

3.2 Lower bounding the optimal value of a minimax problem

We illustrate here the application of Proposition 5 to lower bounding the optimal value of the
MinMax problem (12). To this end we consider the toy problem

Opt = min
x

max

[
fi(x), i = 1, ..., 3, x = [u; v], v ∈ R, u ∈ Rn,

n∑
i=1

ui = 1, u ≥ 0

]
, (18)

where

f1(x) = v + E{ε−1[ξTu− v]+}+ χ1, f2(x) = E{ξTu}+ χ2, f3(x) = χ3 −E{ξTu},

ε and χ being some given parameters. The SAA of the problem reads

Opt(ξN ) = min
x

max

[
fi,N (x, ξN ), i = 1, ..., 3, x = [u; v] v ∈ R, u ∈ Rn,

n∑
i=1

ui = 1, u ≥ 0

]
,(19)

with

f1,N (x, ξN ) = v +
1

Nε

N∑
t=1

[ξTt u− v]+ + χ1,

f2,N (x, ξN ) =
1

N

N∑
t=1

ξTt u+ χ2, f3,N (x, ξN ) = χ3 −
1

N

N∑
t=1

ξTt u.

One can try to build an “asymptotic” lower bound for Opt as follows (note that here we are not
concerned with the theoretical validity of this construction): given the optimal solution x(ξN )
to SAA (19) and an independent sample ξ̄N , compute empirical estimations f̂i,2N and σ̂2

i,2N of
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Figure 1: Optimal value Opt of the stochastic program (18) along with lower bound derived from the

results of Proposition 5 and “asymptotic” lower bound Opt(ξN ). The results for ε = 0.5 on plot (a), for

ε = 0.1 on plot (b).

expectation and variance of Fi(x(ξN ), ξ′), as explained in Section 3.1, then compute the lower
bound “of asymptotic risk α” according to

Opt(ξN ) = max
i=1,...,3

{
f̂i,2N − qN

(
1− α

3

) σ̂i,2N√
N

}
.

On Figure 1 we present the simulation results for the case of ξ ∈ Rn with independent Bernoulli
components: Prob(ξi = 1) = θi, Prob(ξi = −1) = 1 − θi, with θi randomly drawn over [0, 1].
Parameters χi, i = 1, 2, 3 are chosen in such a way that f1, f2 and f3 are equal at the minimizer
of (18). More precisely, the results of 100 simulations of the problem with n = 2 and N = 128
are presented on Figure 1 for the value of CVaR parameter ε = 0.5 and ε = 0.1. Note that
in this case the risk of the lower bound Opt(ξN ) is significantly larger than the prescribed risk
ε = 0.1 already for small problem dimension – the “asymptotic” lower bound failed in 33 of 100
realizations in the experiment with ε = 0.5, and in 36 of 100 realizations in the experiment with
ε = 0.1.

3.3 Optimal value of a stochastically constrained problem

An SAA of a stochastically constrained problem, even with a single linear constraint, can easily
become unstable when the constraint is “stiff”. As a simple illustration, let us consider a
stochastically (linearly) constrained problem

Optχ = min
x

[
f0(x) : f1(x) ≤ 0, x = [u; v], v ∈ R, u ∈ Rn,

n∑
i=1

ui = 1, u ≥ 0

]
, (20)
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Figure 2: Plot (a): optimal value Opt of the stochastic program (20) with constraint right-hand side

χ and χ − δ, along with corresponding optimal values of the SAA. Plot (b): “true value” of the linear

form µTx(ξN ) at the SAA solution.

where
f0(x) = v + E{ε−1[ξTu− v]+} and f1(x) = χ−E{ξTu},

and ε and χ are problem parameters. The SAA of the problem is

Optχ(ξN ) = min
x=[u;v]

[
f0,N (x) : f1,N (x) ≤ 0, v ∈ R, u ∈ Rn,

n∑
i=1

ui = 1, u ≥ 0

]
, (21)

where

f0,N (x, ξN ) = v +
1

Nε

N∑
t=1

[ξTt u− v]+ and f1,N (x, ξN ) = χ− 1

N

N∑
t=1

ξTt u.

Consider now a toy example of the problem with u ∈ R2, ξ ∼ N (µ,Σ) with µ = [0.1; 0.5]
and Σ = diag([1; 4]). Let N = 128, χ = 0.3, and ε = 0.1. One can expect that in this
case the optimal value Optχ(ξN ) of the SAA is unstable (in fact, problem (21) is infeasible

with probability Prob
{

1
N

∑N
t=1 ξt,2 < χ

}
= Prob

{
2N (0,1)√

N
≤ −0.2

}
= 0.128...). We compare

the solution to (21) with the SAA in which the right-hand side χ of the stochastic constraint
is replaced with χ − δ where δ = qN (1 − ε/n)σmax√

N
= 0.5815..., σmax = maxi Σi,i. On Figure

2 we present the simulation results of 100 independent realizations of the above problem. As
expected, the SAA (21) is unstable; the problem turned infeasible in 22% of realizations. The
SAA with the relaxed constraint exhibits much better stability.
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A Proofs

A.1 Preliminaries: Large deviations of vector-valued martingales

The result to follow is a slightly simplified and refined version of the bounds on probability of
large deviations for vector-valued martingales developed in [6, 13].

Let ‖ · ‖ be a norm on Euclidean space E, ‖ · ‖∗ be the conjugate norm, and B‖·‖ be the unit
ball of the norm. Further, let ω be a continuously differentiable distance-generating function for
B‖·‖ compatible with the norm ‖ · ‖ and attaining its minimum on B‖·‖ at the origin: ω′(0) = 0,

with ω(0) = 0 and Ω = maxx:‖x‖≤1

√
2[ω(x)].

Lemma 2. Let d1, d1, ... be a scalar martingale-difference such that for some σ > 0 it holds

E{ed2t /σ2 |d1, ..., dt−1} ≤ e a.s., t = 1, 2, ...

Then

Prob
{∑N

t=1
dt︸ ︷︷ ︸

DN

> λσ
√
N
}
≤

 e−
λ2

4τ∗ , 0 ≤ λ ≤ 2
√
τ∗N,

e−
λ2

3 , λ > 2
√
τ∗N,

(22)

where τ∗ is defined in Proposition 1.

Proof. Assuming without loss of generality that σ = 1 observe that under the Lemma’s premise
we have E{eτ∗θ2d2t |d1, ..., dt−1} ≤ eτ∗θ

2
whenever τ∗θ

2 ≤ 1 where τ∗ is defined in Proposition 1,
and therefore for almost all dt−1 = (d1, ..., dt−1) we have for 0 ≤ θ ≤ 1√

τ∗

E
{

eθdt
∣∣dt−1

}
≤ E

{
θdt + eτ∗θ

2d2t
∣∣dt−1

}
= E

{
eτ∗θ

2d2t
∣∣dt−1

}
≤ eτ∗θ

2
. (23)

Thus, for 0 ≤ θ ≤ 1√
τ∗

, we have E{eθDN } ≤ eτ∗θ
2N , and ∀λ > 0

Prob{DN > λ
√
N} ≤ eτ∗θ

2N−λθ
√
N .

When minimizing the resulting probability bound over 0 ≤ θ ≤ 1√
τ∗

we get the inequality

(22) for λ ∈ [0, 2
√
τ∗N ]: Prob{DN > λ

√
N} ≤ e−

λ2

4τ∗ . The corresponding bound for λ > 2
√
τ∗N

is given by exactly the same reasoning as above in which (23) is substituted with the inequality

E
{

eθdt
∣∣dt−1

}
≤ E

{
e

3θ2

8
+

2d2t
3

∣∣∣dt−1

}
≤ e

3θ2

8
+ 2

3 ≤ e
3θ2

4

when θ > 1/
√
τ∗. �

Proposition 6. Let (χt)t=1,2,..., χt ∈ E, be a martingale-difference such that for some σ > 0 it
holds

E
{

e‖χt‖
2
∗/σ

2∣∣χ1, ..., χt−1

}
≤ e a.s., t = 1, 2, ... (24)

Then for every s > 1, we have

Prob

{
‖

N∑
t=1

χt‖∗ > σ

[
Ω
√
N

2
[1 + s2] + λ

√
N

]}
≤

 e−N(s2−1) + e−
λ2

4τ∗ , 0 ≤ λ ≤ 2
√
τ∗N,

e−N(s2−1) + e−
λ2

3 , λ > 2
√
τ∗N,

(25)
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where τ∗ is defined in Proposition 1 and Ω is given by (2).

Proof. By homogeneity, it suffices to consider the case when σ = 1, which we assume from now
on.

10. Let γ > 0. We denote

Vx(u) = ω(u)− ω(x)− 〈ω′(x), u− x〉 [u, x ∈ B‖·‖]

and consider the recurrence

x1 = 0, xt+1 = argmin
y∈B‖·‖

[Vxt(y)− 〈γχt, y〉] .

Observe that xt is a deterministic function of χt−1 = (χ1, ..., χt−1), and that by the standard
properties of proximal mapping (see. e.g. [13, Lemma 2.1]),

∀(u ∈ B‖·‖) : γ

N∑
t=1

〈χt, u− xt〉 ≤ V0(u)− VxN+1(u) +
γ2

2

N∑
t=1

‖χt‖2∗ ≤ 1
2Ω2 +

γ2

2

N∑
t=1

‖χt‖2∗.

Thus

max
u∈B‖·‖

〈 N∑
t=1

χt, u
〉
≤ Ω2

2γ
+
γ

2

N∑
t=1

‖χt‖2∗︸ ︷︷ ︸
ηN

+
N∑
t=1

〈χt, xt〉︸ ︷︷ ︸
ζN

.

Setting γ = Ω/
√
N , we arrive at

max
u∈B‖·‖

〈 N∑
t=1

χt, u
〉
≤ Ω
√
N

2

[
1 +

ηN
N

]
+ ζN . (26)

Invoking (24), we get
E{eηN } ≤ eN

(recall that σ = 1), whence

∀s > 0 : Prob
{
ηN > s2N

}
≤ min

[
1, eN(1−s2)

]
. (27)

20. When invoking (24) and taking into account that xt is a deterministic function of χt−1

such that ‖xt‖ ≤ 1 (since xt ∈ B‖·‖), we get

E{〈χt, xt〉|χt−1} = 0, E{e〈χt,xt〉2 |χt−1} ≤ e. (28)

Applying Lemma 2 to the random sequence dt = 〈χt, xt〉, t = 1, 2, ... (which is legitimate, with
σ set to 1, by (28)), we get

Prob
{
ζN > λ

√
N
}
≤

 e−
λ2

4τ∗ , 0 ≤ λ ≤ 2
√
τ∗N,

e−
λ2

3 , λ > 2
√
τ∗N.

(29)

In view of (27) and (29), relation (26) implies the bound (25) of the proposition. �
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A.2 Proof of Proposition 1

Let x∗ be an optimal solution to (SP), and let h = ∇f(x∗), so that by optimality conditions

〈h, x− x∗〉 ≥ 0 ∀x ∈ X. (30)

10. Setting δ(ξ) = F (x∗, ξ) − f(x∗), invoking (4.a) and applying Lemma 2 to the random
sequence dt = δ(ξt) and σ = M1 (which is legitimate by (4.a)), we get

∀(N ∈ Z+, µ ∈ [0, 2
√
τ∗N ]) : Prob

{ 1

N

N∑
t=1

δ(ξt) > µM1N
−1/2

}
≤ e−

µ2

4τ∗ . (31)

Since clearly

OptN (ξN ) ≤ fN (x∗, ξ
N ) = Opt +

1

N

N∑
t=1

δ(ξt),

we get

Prob
{

OptN (ξN ) > Opt + µM1N
−1/2

}
≤ e−

µ2

4τ∗ . (32)

20. It is immediately seen that under the premise of Proposition 1, for every measurable
vector-valued function g(ξ) ∈ ∂xF (x∗, ξ) we have

h =

∫
Ξ
g(ξ)P (dξ). (33)

Observe that hN (ξN ) = 1
N

∑N
t=1 g(ξt) is a subgradient of fN (x, ξN ) at the point x∗. Conse-

quently, for all x ∈ X,

fN (x, ξN ) ≥ fN (x∗, ξ
N ) + 〈hN (ξN ), x− x∗〉

≥ [f(x∗) + 〈h, x− x∗〉]︸ ︷︷ ︸
≥Opt by (30)

+[[fN (x∗, ξ
N )− f(x∗)] + 〈hN (ξN )− h, x− x∗〉]

≥ Opt +
1

N

N∑
t=1

δ(ξt)− ‖h− hN (ξN )‖∗‖x− x∗‖ ≥ Opt +
1

N

N∑
t=1

δ(ξt)− 2‖h− hN (ξN )‖∗R

(the concluding inequality is due to x, x∗ ∈ X and thus ‖x − x∗‖ ≤ 2R by definition of R). It
follows that

OptN (ξN ) ≥ Opt +
1

N

N∑
t=1

δ(ξt)− 2‖h− hN (ξN )‖∗R. (34)

Applying Lemma 2 to the random sequence dt = −δ(ξt) we, similarly to the above, get

∀(N,µ ∈ [0, 2
√
τ∗N ]) : Prob

{
1

N

N∑
t=1

δ(ξt) < −µM1N
−1/2

}
≤ e−

µ2

4τ∗ . (35)
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Further, setting ∆(ξ) = g(ξ)−∇f(x∗), the random vectors χt = ∆(ξt), t = 1, 2, ..., are i.i.d.,
zero mean (by (33)), and satisfy the relation

E
{

e‖χt‖
2
∗/M

2
2

}
≤ e

by (4.b); besides this, hN (ξN )− h = 1
N

∑N
t=1 χt. Applying Proposition 6, we get

∀(N ∈ Z+, s > 1, λ ∈ [0, 2
√
τ∗N ]) :

Prob{‖h− hN (ξN )‖∗ ≥M2

[
Ω
2 [1 + s2] + λ

]
N−1/2} ≤ e−N(s2−1) + e−

λ2

4τ∗ .

This combines with (34), and (35) to imply (6). �

A.3 Proof of Proposition 2

Due to similarity reasons, it suffices to prove the proposition for L = R = 1. Let B2 be the unit
Euclidean ball of Rn, and let for a unit v ∈ Rn and 0 < θ ≤ π/2, hv,θ be the spherical cap of
B2 with “center” v and angle θ. In other words, if δ = 2 sin2(θ/2) is the “elevation” of the cap
hv,θ then hv,θ = {x ∈ B2 : vTx ≥ 1− δ}. Observe that for any ϑ > 4θ we can straightforwardly
build the system Dθ of vectors in the n-dimensional unit sphere Sn−1 in such a way that the
angle between every two distinct vectors of the system is > 2θ, so that the spherical caps hv,θ
with v ∈ Dθ are mutually disjoint, while the spherical caps hv,ϑ cover Sn−1. If we denote
by An−1(ϑ) the area of the spherical cap of angle ϑ ≤ π/2, then Card(Dθ)An−1(ϑ) ≥ sn−1(1),

where sn−1(r) = 2πn/2rn−1

Γ(n/2) is the area of the n-dimensional sphere of radius r. Note that An−1(ϑ)
satisfies

An−1(ϑ) =

∫ ϑ

0
sn−2(sin t)dt = sn−2(1)

∫ ϑ

0
sinn−2 tdt ≤ sn−2(1)

∫ ϑ

0
tn−2dt = sn−2(1)

ϑn−1

n− 1
.

We conclude that

Card(Dθ) ≥
sn−1(1)(n− 1)

sn−2(1)ϑn−1
≥ 3ϑ1−n

for n ≥ 2. From now on we fix θ = 1/8 and when choosing ϑ arbitrarily close to 4θ = 1
2 , we

conclude that for any n ≥ 2 one can build Dθ such that Card(Dθ) ≥ 2n.
Now consider the following construction: for v ∈ Dθ, let gv,θ(·) : B2 → R be defined

according to gv,θ(x) = [vTx− (1− δ)]+, where δ = 2 sin2(θ/2) = 0.0078023... is the elevation of
hv,θ. Let us put

f(x) =
∑
v∈Dθ

gv,θ(x),

and consider the optimization problem Opt = min[f(x) : x ∈ B2]. Since gv,δ is affine on hv,δ
and vanishes elsewhere on B2, and ‖v‖2 = 1, we conclude that f is Lipschitz continuous on B2

with Lipschitz constant 1. Let now

F (x, ξ) =
∑
v∈Dθ

2ξvgv,θ(x),
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where ξv, v ∈ Dθ are i.i.d. Bernoulli random variables with Prob{ξv = 0} = Prob{ξv = 1} = 1
2 .

Note that Eξ{F (x, ξ)} = f(x) ∀x ∈ B2. Further, for x ∈ hv,θ, Eξ{F (x, ξ)2 − f(x)2} = g2
v,θ(x) ≤

δ2, and
‖F ′(x, ξ)− f ′(x)‖22 = ‖(2ξv − 1)g′v,θ(x)‖22 ≤ 1.

Let us now consider the SAA fN (x, ξN ) of f ,

fN (x, ξN ) =
1

N

N∑
t=1

F (x, ξt) =
∑
v∈Dθ

1

N

N∑
t=1

ξt,vgv,θ(x)︸ ︷︷ ︸
gNv,θ(x)

, (36)

ξt, t = 1, ..., N being independent realizations of ξ, and the problem of computing

OptN (ξN ) = min[fN (x, ξN ) : x ∈ B2]. (37)

Note that for a given v ∈ Dθ, Prob{
∑N

t=1 ξt,v = 0} = 2−N . Due to the independence of ξv, we
have

Prob

{
N∑
t=1

ξt,v > 0, ∀v ∈ Dθ

}
= (1− 2−N )Card(Dθ) ≤ (1− 2−N )2n ≤ e

− 2n

2N ≤ exp(−1),

for N ≤ n. We conclude that for N ≤ n, with probability ≥ 1−e−1, at least one of the summands
in the right-hand side of (36), let it be gNv̄,θ(x), is identically zero on B2. The optimal value

OptN (ξN ) of (37) being zero, the point x(ξN ) = v̄ is clearly a minimizer of fN (x, ξN ) on B2,
yet f(x(ξN )) = δ, i.e., (7) holds with c0 = δ. �

A.4 Proof of Proposition 3

10. Let us consider a family of stochastic optimization problems as follows. Let ‖ · ‖ = ‖ · ‖2 and
let X be the unit ‖ · ‖2-ball in Rn. Given a unit vector h in Rn, positive reals σ, s and δ, d, and
setting ξ = [η; ζ] ∼ N (0, I2), consider two integrands:

F0(x, ξ) = σηhTx+ sζ, F1(x, ξ) = (δh+ σηh)Tx+ (sζ − d),

so that
f0(x) := Eξ {F0(x, ξ)} = 0, f1(x) := Eξ {F1(x, ξ)} = δhTx− d.

Let us now check that F0 and F1 verify the premises of Proposition 1. In the notation of
Proposition 1, we have for F1

L(x, ξ) = ‖[δh+ σηh]− δh‖2 = σ|η|,

whence, setting M2 = σ/γ with γ2 = 1
2(1− e−2),

Eξ

{
exp{L(x, ξ)2/M2

2 }
}

= exp{1}.
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Similarly, setting M1 =
√
σ2 + s2/γ, we have

Eξ

{
exp{(ση + sζ)2/M2

1 }
}

= exp{1},

so that, for every z ∈ [−1, 1],

Eξ

{
exp{(σηz + sζ)2/M2

1 }
}
≤ exp{1}.

When x ∈ Rn and ‖x‖2 ≤ 1, we have F1(x, ξ)− f1(x) = σηhTx+ sζ, therefore

Eξ

{
exp{(F1(x, ξ)− f1(x))2/M2

1 }
}
≤ exp{1}.

We conclude that F = F1 satisfies the premise of Proposition 1 with

M1 =
√
σ2 + s2/γ, M2 = σ/γ.

It is immediately seen that F = F0 satisfies the premise of Proposition 1 with the same M1, M2.

20. Now, with X = {x ∈ Rn : ‖x‖2 ≤ 1}, the optimal values in the problems of minimizing
over X the functions f0 and f1 are, respectively,

Opt0 = 0, Opt1 = −δ − d.

Suppose that there exists a procedure which, under the premise of Proposition 1 with some
fixed M1, M2, is able, given N observations of ∇xF (·, ξt), F (·, ξt), to cover Opt, with confidence
1 − α, by an interval of width W . Note that when W < |Opt1|, the same procedure can
distinguish between the hypotheses stating that the observed first order information on f comes
from F0 or from F1, with risk (the maximal probability of rejecting the true hypothesis) α. On
the other hand, when F = F0 or F = F1, our observations are deterministic functions of the

samples ω1,...,ωN drawn from the 2-dimensional normal distribution N
([

0
0

]
,

[
σ2 0
0 s2

])
for F = F0, and N

([
δ
d

]
,

[
σ2 0
0 s2

])
for F = F1. It is well known that deciding between

such hypotheses with risk ≤ α is possible only if√
δ2

σ2
+
d2

s2
≥ 2√

N
qN (1− α).

We arrive at the following lower bound on W , given M1, M2, with M1 ≥M2 > 0:

W ≥ max
δ≥0, d≥0

{
δ + d :

√
δ2

γ2M2
2

+
d2

γ2(M2
1 −M2

2 )
≤ 2√

N
qN (1− α)

}
=

2γM1√
N

qN (1− α) = W. �
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A.5 Proof of Lemma 1

Without loss of generality we may assume that Opt = 0. Let x̄ be such that fi(x̄) ≤ −κ,
1 ≤ i ≤ m. Given δ > 0, there exists xδ ∈ X such that f0(xδ) + δ ≤ Φ(−δ) and fi(xδ) ≤ Φ(−δ),
1 ≤ i ≤ m; note that Φ(−δ) > 0 due to −δ < 0 = Opt. The point

x =
Φ(−δ)

κ + Φ(−δ)
x̄+

κ
κ + Φ(−δ)

xδ

belongs to X and is feasible for (9), since for i ≥ 1 one has

fi(x) ≤ Φ(−δ)
κ + Φ(−δ)

fi(x̄) +
κ

κ + Φ(−δ)
fi(xδ) ≤ −

Φ(−δ)κ
κ + Φ(−δ)

+
κΦ(−δ)

κ + Φ(−δ)
= 0.

As a result,

0 = Opt ≤ f0(x) ≤ Φ(−δ)
κ + Φ(−δ)

f0(x̄)+
κ

κ + Φ(−δ)
f0(xδ) ≤

Φ(−δ)V
κ + Φ(−δ)

+
κ

κ + Φ(−δ)
[Φ(−δ)−δ].

The resulting inequality implies (Φ(−δ) − Φ(0))/δ = Φ(−δ)/δ ≥ κ/(κ + V ); when passing to
the limit as δ → +0, we get ϑ ≥ κ/(V + κ). �

A.6 Proof of Proposition 4

Let us fix parameters N , s, λ, µ satisfying the premise of the proposition, let ε, δ be associated
with these parameters according to (11). We denote

f̄0,N (x, ξN ) = f0,N (x, ξN )− µM1N
−1/2,

f̄i,N (x, ξN ) = fi,N (x, ξN )− µM1N
−1/2, 1 ≤ i ≤ m,

and set
ΦN (r, ξN ) = min

x∈X
max

[
f̄0,N (x, ξN )− r, f̄1,N (x, ξN ), ..., f̄m,N (x, ξN )

]
.

Then ΦN (r, ξN ) is a convex nonincreasing function of r ∈ R such that

OptN (ξN ) = min{r : ΦN (r, ξN ) ≤ 0}.

Finally, let r̄ be the smallest r such that Φ(r) ≤ ε. Since (9) is feasible and Φ(r) → ∞ as
r → −∞, r̄ is a well defined real which is < Opt (since Opt is the smallest root of Φ) and
satisfies Φ(r̄) = ε.

Let us set
Ξ̂ =

{
ξN : ΦN (Opt, ξN ) ≤ 0

}︸ ︷︷ ︸
Ξ1

∩
{
ξN : ΦN (r̄, ξN ) > 0

}︸ ︷︷ ︸
Ξ2

.

Since ΦN (r, ξN ) is a nonincreasing function of r and OptN (ξN ) is the smallest root of ΦN (·, ξN ),
for ξN ∈ Ξ̂ we have r̄ ≤ OptN (ξN ) ≤ Opt. The left inequality here implies that Φ(OptN (ξN )) ≤ ε
(recall that Φ is nonincreasing and Φ(r̄) = ε). The bottom line is that when ξN ∈ Ξ̂, OptN (ξN )
ε-underestimates Opt. Consequently, all we need to prove is that ξN 6∈ Ξ̂ with probability at
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most δ.

10. Let x∗ be an optimal solution to (9). Same as in the proof of Proposition 1, for every i,
0 ≤ i ≤ m, we have (see (31))

Prob
{
fi,N (x∗, ξ

N ) > fi(x∗) + µM1N
−1/2

}
≤ e−

µ2

4τ∗ ,

whence for the event

Ξ′ =
{
ξN : fi,N (x∗, ξ

N ) ≤ fi(x∗) + µM1N
−1/2, 0 ≤ i ≤ m

}
it holds

Prob
{
ξN 6∈ Ξ′

}
≤ (m+ 1)e−

µ2

4τ∗ . (38)

By the origin of x∗ we have f0(x∗) ≤ Opt and fi(x∗) ≤ 0, 1 ≤ i ≤ m. Therefore, for ξN ∈ Ξ′ it
holds f̄0,N (x∗, ξ

N ) ≤ Opt and f̄i,N (x∗, ξ
N ) ≤ 0, 1 ≤ i ≤ m, that is,

ΦN (Opt, ξN ) ≤ max[f̄0,N (x∗, ξ
N )−Opt, f̄1,N (x∗, ξ

N ), ..., f̄m,N (x∗, ξ
N )] ≤ 0,

implying that ξN ∈ Ξ1. We conclude that Ξ′ ⊂ Ξ1, and, by (38),

Prob{ξN 6∈ Ξ1} ≤ (m+ 1)e−
µ2

4τ∗ . (39)

20. We have ε = Φ(r̄) = minx∈X max[f0(x)− r̄, f1(x), ..., fm(x)], whence by von Neumann’s
Lemma there exist nonnegative yi ≥ 0, 0 ≤ i ≤ m, summing up to 1, such that

ε = minx∈X [`(x) := y0(f0(x)− r̄) +
∑m

i=1 yifi(x)]

= minx∈X

[ ∫
Ξ

[
y0[F0(x, ξ)− r̄] +

∑m

i=1
yiFi(x, ξ)

]︸ ︷︷ ︸
L(x,ξ)

P (dξ)
]
.

Under the premise of the proposition, the integrand F satisfies all assumptions of Proposition
1. Setting

`N (x, ξN ) =
1

N

N∑
i=1

L(x, ξi)

and applying Proposition 1 we get

Prob

ξN : minx∈X `N (x, ξN ) < minx∈X`(x)︸ ︷︷ ︸
=ε

−
[
µM1 +

[
Ω[1 + s2] + 2λ

]
M2R

]
N−1/2


≤ e−N(s2−1) + e−

µ2

4τ∗ + e−
λ2

4τ∗ .

Now, in view of

`N (x, ξN ) = λ0[f̄0,N (x, ξN )− r̄] +
m∑
i=1

λif̄i,N (x, ξN )︸ ︷︷ ︸
¯̀
N (x,ξN )

+µM1N
−1/2,
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and due to the evident relation minx∈X ¯̀
N (x, ξN ) ≤ ΦN (r̄, ξN ), we get

Prob
{

ΦN (r̄, ξN ) < ε−
[
µM1 +

[
Ω[1 + s2] + 2λ

]
M2R

]
N−1/2 − µM1N

−1/2
}

≤ Prob

{
min
x∈X

`N (x, ξN ) < ε− 2N−1/2

[
µM1 +M2R

[
Ω

2
[1 + s2] + λ

]]}
≤ e−

µ2

4τ∗ + e−N(s2−1) + e−
λ2

4τ∗ .

By (11), we have

ε− 2

[
µM1 +M2R

[
Ω

2
[1 + s2] + λ

]]
N−1/2 > 0,

and we arrive at

Prob
{
ξN 6∈ Ξ2

}
= Prob

{
ΦN (r̄, ξN ) ≤ 0

}
≤ e−

µ2

4τ∗ + e−N(s2−1) + e−
λ2

4τ∗ .

The latter bound combines with (39) to imply the desired relation

Prob
{
ξN 6∈ Ξ

}
≤ e−

µ2

4τ∗ + e−N(s2−1) + e−
λ2

4τ∗ + (m+ 1)e−
µ2

4τ∗ = β. �

B Evaluating approximation parameters

For the sake of completeness we provide here the straightforward derivations of the parameter
estimates used to build the bounds in the numerical section.

B.1 Notation

Let P be a Borel probability distribution on Rk and let Ξ be the support of P . Consider the
space C of all Borel functions g(·) : Ξ → R such that Eξ∼P {exp{g2(ξ)/M2}} < ∞ for some
M = M(g). For g ∈ C, we set

π[g] = inf
{
M ≥ 0 : Eξ∼P {exp{g2(ξ)/M2}} ≤ exp{1}

}
. (40)

It is well known [28] that C is a linear subspace in the space of real-valued Borel functions on Ξ
and π[·] is a semi-norm on this (Orlicz) space. Besides, for a constant g(·) ≡ a we have π[g] = |a|,
and |g(·)| ≤ |h(·)| with h ∈ C and Borel g implies g ∈ C and π[g] ≤ π[h].

Given a convex compact set X ⊂ Rn, a norm ‖ · ‖ on Rn, and a continuously differentiable
distance-generating function ω(·) for the unit ball B‖·‖ which is compatible with this norm, let R
be the radius of the smallest ‖·‖-ball containing X. Given a Borel function F (x, ξ) : Rn×Ξ→ R
which is convex in x ∈ Rn and P -summable in ξ for every x, let

f(x) = E{F (x, ξ)} : X → R.

We set
M1,∞ = supx∈X,ξ∈Ξ |F (x, ξ)− f(x)|,
M1,exp = supx∈X π[F (x, ·)− f(x)],
L(x, ξ) = supg∈∂xF (x,ξ),h∈∂f(x) ‖g − h‖∗,

M2 = supx∈X π[L(x, ·)].
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Note that adding to F (x, ξ) a differentiable function g of x: F (x, ξ) 7→ F (x, ξ) + g(x) does not
affect the quantities M1,∞, M1,exp, and M2.

Our goal is to compute upper bounds on M1,∞, M1,exp, and M2 in the different settings of
Section 3.1.1.

B.2 Quadratic risk minimization

In this case

• X = {x = [x1; ...;xn] ∈ Rn : x1, ..., xn ≥ 0,
∑n

i=1 xi = 1},

• Ξ is a part of the unit box {ξ = [ξ1; ...; ξn] ∈ Rn : ‖ξ‖∞ ≤ 1},

• F (x, ξ) = κ0ξ
Tx + κ1

2

(
ξTx

)2
, with κ1 ≥ 0, and f(x) = κ0µ

Tx + κ1
2 x

TE{ξξT }x, where
µ = E{ξ}.

The parameters M1, M2, R and Ω of construction can be set according to:

M1 ≤ 2|κ0|+
κ1

2
, M2 = 2|κ0|+ κ1, R = 1, Ω =


1, n = 1√

2, n = 2

ln(n)
√

2e
1+ln(n) , n ≥ 3.

. (41)

Indeed, for ξ ∈ Ξ and x ∈ X, we get

|F (x, ξ)− f(x)| ≤ |κ0||(ξ − µ)Tx|+ κ1

2
|xT (V − ξξT )x| ≤ |κ0|‖ξ − µ‖∞ +

κ1

2

(indeed, since V is positive semidefinite with ‖V ‖∞ ≤ 1 and ‖ξ‖∞ ≤ 1, we have |xT (V −
ξξT )x| ≤ 1 for all x such that ‖x‖1 ≤ 1), and

M1,exp ≤M1,∞ ≤ |κ0|(1 + ‖µ‖∞) +
κ1

2
≤ 2|κ0|+

κ1

2
.

Further, let us equip Rn with the norm ‖ · ‖ = ‖ · ‖1, so that ‖ · ‖∗ = ‖ · ‖∞, and endow the
unit ball of the norm with the distance generating function4.

ω(x) =
1

pγ

n∑
i=1

|xi|p, p =

{
2 for n ≤ 2,
1 + 1/ ln(n) for n ≥ 3,

, γ =


1, n ≤ 1
1
2 , n = 2,

1
e ln(n) , n ≥ 3

(42)

resulting in Ω =
√

2
pγ and R = 1. Now let x ∈ X and ξ ∈ Ξ, and let g be a subgradient

of F (x, ξ) with respect to x, and h be a subgradient of f at x. We have

g = κ0ξ + κ1ξ(ξ
Tx), h = κ0µ+ κ1V x,

thus
‖g − h‖∗ ≤ |κ0|‖ξ − µ‖∞ + κ1‖V − ξξ>‖∞ ≤ |κ0|(1 + ‖µ‖∞) + 2κ1.

We conclude that
M2 ≤ |κ0|(1 + ‖µ‖∞) + 2κ1 ≤ 2|κ0|+ 2κ1.

4For details, see e.g., [15, Theorem 2.1]
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B.3 Gaussian VaR optimization

Here the situation is as follows:

• X = {x = [x1; ...;xn] ∈ Rn : x1, ..., xn ≥ 0,
∑n

i=1 xi = 1},

• ξ ∼ N (0,Σ) on Rn, Σ � 0,

• F (x, ξ) = κ0ξ
Tx+ κ1|ξTx|, with κ1 ≥ 0.

We have f(x) =
√

2
πκ1σx, with σx =

√
xTΣx. In this case one can set Ω and R as in (41),

along with

M1 =
[√

2e2

e2−1
|κ0|+

√
2κ1

]
σmax,

M2 = (|κ0|+ κ1)σmax

√
2(2 + lnn) + κ1σmax

√
2
π ,

where σ2
max = max1≤i≤n Σi,i.

Indeed, we have ξTx ∼ N (0, σ2
x), we conclude that f(x) = κ1

√
2
πσx, whence

|F (x, ξ)− f(x)| ≤ |κ0||ξTx|+ κ1||ξTx| −
√

2/πσx| = σx

[
|κ0||ηx|+ κ1||ηx| −

√
2/π|

]
where ηx = ξTx/σx ∼ N (0, 1). By direct computation we get

π[|ηx|] = ν :=

√
2e2

e2 − 1
= 1.52...

Next, setting ϑ =
√

2/π we observe that

1√
2π

∫
exp{||s| − ϑ|2/2− s2/2}ds = ϑ

∫∞
0

exp{[s2 − 2ϑs+ ϑ2 − s2]/2}ds
= ϑ

∫∞
0

exp{ϑ2/2− ϑs}ds = exp{ϑ2/2} < exp{1},

implying that
π[||ηx| −

√
2/π|] ≤

√
2.

As a result,

π[F (x, ·)− f(x)] ≤ σx
[
|κ0|π[|ηx|] + κ1π[||ηx| −

√
2/π|]

]
≤ σx

[
ν|κ0|+

√
2κ1

]
.

Taking into account that for all x ∈ X σ2
x = xTΣx ≤ ‖Σ‖∞, we arrive at

M1,exp ≤
[
ν|κ0|+

√
2κ1

]√
‖Σ‖∞ =

[
ν|κ0|+

√
2κ1

]
σmax. (43)

Let x ∈ X, and let g be a subgradient with respect to x of F (x, ξ), and h be a subgradient
of f(x). We have

g = κ0ξ + κ1ξχ

with χ = χ(x, ξ) ∈ [−1, 1], so that

‖g‖∞ ≤ [|κ0|+ κ1]‖ξ‖∞.
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Note that

∂
[√

xTΣx
]

=

{ {(
xTΣx

)−1/2
Σx
}
, x 6= 0,{

Σ1/2u, ‖u‖2 ≤ 1
}
, x = 0.

Therefore, for all h ∈ ∂f(x) one has

‖h‖∞ ≤ κ1

√
2

π
sup
x 6=0

‖Σx‖∞√
xTΣx

= κ1

√
2

π
sup
y 6=0

‖Σ1/2y‖∞
‖y‖2

= κ1

√
2

π
max

1≤i≤n
‖Σ1/2

i ‖2 ≤ κ1σmax

√
2

π

(here Σ
1/2
i stands for the i-th row of Σ1/2), and

‖g − h‖∗ = ‖g − h‖∞ ≤ [|κ0|+ κ1]‖ξ‖∞ + κ1σmax

√
2

π
,

that is,

L(x, ξ) ≤ [|κ0|+ κ1]‖ξ‖∞ + κ1σmax

√
2

π
.

We conclude that

π[L(x, ·)] ≤ [|κ0|+ κ1]π[‖ξ‖∞] + κ1σmax

√
2

π
. (44)

We now use the following simple result.5

Lemma 3. Let ξ be a zero-mean Gaussian random vector in Rn, and let σ̄2 ≥ max1≤i≤n E{ξ2
i }.

Then for M ≥ σ̄
√

2(2 + lnn)

E
{

e‖ξ‖
2
∞/M2}

≤ e.

Proof. Let ηn = max1≤i≤n |ξi|. We have the following well-known fact:

ψn(r) := Prob{ηn ≥ r} ≤ min
{

1, ne−
r2

2σ̄2

}
.

Therefore, for |t| < (
√

2σ̄)−1,

E
{

et
2η2
n
}

= −
∫ ∞

0

et
2r2

dψn(r) = 1 +

∫ ∞
0

2t2ret
2r2

ψn(r)dr

≤ e2t2σ̄2 lnn + 2nt2
∫ ∞
σ̄
√

2 lnn

r exp
{
− (1− 2t2σ̄2)r2

2σ̄2

}
dr

= e2t2σ̄2 lnn +
2t2σ̄2

1− 2t2σ̄2
e2t2σ̄2 lnn =

n2t2σ̄2

1− 2t2σ̄2
.

5In fact, in the numerical experiments we have used a slightly better bound M2 which can be defined as follows.
Let tn, 0 < tn < σmax be the unique solution of the equation

h̃n(tn) =
n2t2nσ

2
max

1− 2t2nσ2
max

= e

(observe that h̃n(·) is monotone on ]0, 1√
2σmax

[, so tn can be computed using bisection). The same reasoning as

in the proof of Lemma 3 results in the bound

M2 =
(|κ0|+ κ1)

tn
+ κ1σmax

√
2

π
. (45)

For instance, in the experiments of Section 3.1.2, for σmax =
√

6 and n ∈ {2, 10, 20, 100}, the values of 1/tn (resp.
of its upper bound σmax

√
2(2 + lnn)) were 4.97, 6.46, 7.05, 8.27 (resp. 5.68, 7.19, 7.74, 8.90).

28



Note that e−x ≤ 1− x/2 for 0 ≤ x ≤ 1. Thus for all n ≥ 1 and t ≤
(
σ̄
√

2(2 + lnn)
)−1

,

n2t2σ̄2

1− 2t2σ̄2
≤ e

lnn
2+lnn

1− 1
2+lnn

= e1− 2
2+lnn

2 + lnn

1 + lnn
≤ e. �

Finally, using the result of the lemma we conclude from (44) that one can take for M2

the expression

(|κ0|+ κ1)σmax

√
2(2 + lnn) + κ1σmax

√
2

π
. (46)

B.4 CVaR optimization

Consider the portfolio problem of Section 3.1.3. With some terminology abuse, in what follows,
we refer to the special case n = 1 with x1 ≡ 1 as to the case of n = 0.

• X = {x = [x0;x1; ...;xn] ∈ Rn+1 : |x0| ≤ 1, x1, ..., xn ≥ 0,
∑n

i=1 xi = 1},

• Ξ be a part of the unit box {ξ = [ξ1; ...; ξn] ∈ Rn : ‖ξ‖∞ ≤ 1},

• F (x, ξ) = κ0
∑n

i=1 ξixi + κ1

[
x0 + 1

ε [
∑n

i=1 ξixi − x0]+
]
, with κ0, κ1 ∈ [0, 1].

The parameters M1, M2, R and Ω of construction can be set according to:

M1 = 2
(
κ0 + κ1

ε

)
, M2 =

{
κ1
ε , n = 0,√(

κ1
ε

)2
+ 4

(
κ0 + κ1

ε

)2
, n ≥ 1,

R =

{
1, n = 0√

2, n ≥ 1.
, Ω =


1, n = 0,√

2, n = 1,√
3, n = 2,√
1 + 2e(ln(n))2

1+ln(n) , n ≥ 3.

Indeed, denoting ξx = ξTx and µi = E{ξi}, we have

f(x) = κ0

n∑
i=1

µixi + κ1

[
x0 +

1

ε
E{[ξx − x0]+}

]
,

whence for ξ ∈ Ξ and x ∈ X

|F (x, ξ)− f(x)| ≤ κ0|
n∑
i=1

[ξi − µi]xi|+
κ1

ε
|[ξx − x0]+ −E{[ξx − x0]+}|.

We have |ξx| ≤ 1, whence 0 ≤ [ξx−x0]+ ≤ 1 + [−x0]+ and 0 ≤ E{[ξx−x0]+} ≤ 1 + [−x0]+.
Then,

−2 ≤ −1− [−x0]+ ≤ [ξx − x0]+ −E{[ξx − x0]+} ≤ 1 + [−x0]+,

so that
|[ξx − x0]+ −E{[ξx − x0]+}| ≤ 2.
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We conclude that

M1,exp ≤M1,∞ ≤ κ0(1 + ‖µ‖∞) +
2κ1

ε
≤ 2

(
κ0 +

κ1

ε

)
. (47)

In what follows, for a vector from Rn+1, say, z = [z0; z1; ...; zn], we set z′ = [z1; ...; zn], so
that z = [z0; z′]. Let us define norm ‖ · ‖ on Rn+1 as

‖[x0;x′]‖ =
√
x2

0 + ‖x′‖21,

implying that

‖[x0;x′]‖∗ =
√
x2

0 + ‖x′‖2∞.

A distance-generating function ω([x0;x′]) for the unit ball of the norm ‖ · ‖ can be taken as

ω([x0;x′]) =
1

2
x2

0 +
1

pγ

n∑
i=1

|xi|p, p =

{
2, n ≤ 2
1 + 1/ ln(n), n ≥ 3

, γ =


1, n ≤ 1
1
2 , n = 2,

1
e ln(n) , n ≥ 3,

resulting in

Ω =

{
1, n = 0√

1 + 2
pγ , n ≥ 1,

and R =

{
1, n = 0√

2, n ≥ 1.
(48)

Let x ∈ X and ξ ∈ Ξ, and let g = [g0; g′] be a subgradient of F (x, ξ) with respect to x, and
h be a subgradient of f at x. We clearly have

g0 = κ1 −
κ1

ε
χ0, g′ = κ0ξ +

κ1

ε
ξχ1, h0 = κ1 −

κ1

ε
χ2,

where χi ∈ [0, 1]. Next, for n ≥ 2,

|f([x0;x′])− f([x0; y′])| = |κ0µ
T (x′ − y′) + κ1

ε

(
E{[ξTx′ − x0]+} −E{[ξT y′ − x0]+}

)
|

≤ κ0‖µ‖∞‖x′ − y′‖1 + κ1

ε E{|ξT (x′ − y′)|}
≤ (κ0 + κ1

ε )‖x′ − y′‖1.

It follows that f([x0;x′]) is Lipschitz continuous in x′ with constant κ0 + κ1

ε with respect to
‖ · ‖1 and we have ‖h′‖∞ ≤ κ0 + κ1

ε . As a result, we obtain for n ≥ 2

‖g − h‖∗ =
√
|g0 − h0|2 + ‖g′ − h′‖2∞ ≤

√(κ1

ε

)2

+ 4
(
κ0 +

κ1

ε

)2

while ‖g − h‖∗ ≤ κ1

ε for n = 1.
We conclude that

M2 =

{
κ1

ε , n = 0,√(
κ1

ε

)2
+ 4

(
κ0 + κ1

ε

)2
, n ≥ 1.

(49)
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