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Abstract. We study statistical properties of the optimal value and optimal solutions of the
sample average approximation of risk-averse stochastic problems. Central limit theorem-type results
are derived for the optimal value when the stochastic program is expressed in terms of a law invariant
coherent risk measure having a discrete Kusuoka representation. The obtained results are applied
to hypotheses testing problems aiming at comparing the optimal values of several risk-averse convex
stochastic programs on the basis of samples of the underlying random vectors. We also consider
nonasymptotic tests based on confidence intervals on the optimal values of the stochastic programs
obtained using the stochastic mirror descent algorithm. Numerical simulations show how to use
our developments to choose among different distributions and on the considered class of risk-averse
stochastic programs the asymptotic tests show better results.
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1. Introduction. Consider the following risk-averse stochastic program:

(1) min
x∈X

{
g(x) := R(Gx)

}
.

Here X is a nonempty compact subset of Rm, Gx is a random variable depending on
x ∈ X and R is a risk measure. We assume that Gx is given in the form Gx(ω) =
G(x, ξ(ω)), where G : X × Rd → R and ξ : Ω → Rd is a random vector defined on a
probability space (Ω,F ,P) whose distribution is supported on set Ξ ⊂ Rd. We assume
that the functional R, defined on a space of random variables, is law invariant (we
will give precise definitions in section 2).

Let ξj = ξj(ω), j = 1, . . . , N , be an independently and identically distributed
(i.i.d.) sample of the random vector ξ defined on the same probability space. Then
the respective sample estimate of g(x), denoted ĝN (x), is obtained by replacing the
“true” distribution of the random vector ξ with its empirical estimate. Consequently
the true optimization problem (1) is approximated by the problem

(2) Min
x∈X

ĝN (x),
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referred to as the sample average approximation (SAA) problem. Note that ĝN (x) =
ĝN (x, ω) is a random function; sometimes we suppress dependence on ω in the no-
tation. In particular, if R is the expectation operator, i.e., g(x) = E[Gx], then

ĝN (x) = N−1
∑N
j=1G(x, ξj).

We denote by ϑ∗ and ϑ̂N the optimal values of problems (1) and (2), respectively,

and study statistical properties of ϑ̂N . The random sample can be given by collected
data or can be generated by Monte Carlo sampling techniques in the goal of solving the
true problem by the SAA method. Although conceptually different, both situations
lead to the same statistical inference.

The statistical analysis allows us to address the following question of asymptotic
tests of hypotheses. Suppose that we are given V ≥ 2 optimization problems of
the form (1) with ξ, G, and X respectively replaced by ξv, Gv, and Xv for problem
v ∈ {1, . . . , V }. On the basis of samples ξv1 , . . . , ξ

v
N , of size N , of ξv, v = 1, . . . , V , and

denoting by ϑv∗ the optimal value of problem v, we study statistical tests of the null
hypotheses

(3)

(a) H0 : ϑ1
∗ = ϑ2

∗ = · · · = ϑV∗ ,

(b) H0 : ϑp∗ ≤ ϑq∗ for p fixed and all 1 ≤ q ≤ V,
(c) H0 : ϑ1

∗ ≤ ϑ2
∗ ≤ · · · ≤ ϑV∗ ,

against the corresponding unrestricted alternatives. As a special case, if the feasibility
sets of the V optimizations problems are singletons, say {xv∗} for problem v, the above
tests aim at comparing the risks R(Gx1

∗
), . . . ,R(GxV

∗
). These tests are useful when we

want to choose among V candidate solutions x1
∗, . . . , x

V
∗ of problem (1) the one with

the smallest risk measure value, using risk measure R to rank the distributions Gxv
∗
,

v = 1, . . . , V , e.g., to decide about the preference of one set of assets over another.
In this situation, if the risk measure R is polyhedral [5] or extended polyhedral [9],
then it can be expressed as the optimal value of a risk-neutral optimization problem
and tests on the equality of risk measure values R(Gx1

∗
), . . . ,R(GxV

∗
) are of the form

(3)(a).
Setting θ := (ϑ1

∗, . . . , ϑ
V
∗ ), we also consider the following extension of tests (3):

(4) H0 : θ ∈ Θ0 against H1 : θ ∈ RV ,

with Θ0 ⊂ RV being a linear space or a convex cone. Tests (3) will also be studied in
a nonasymptotic setting.

The paper is organized as follows. In section 2 we specify the type of objective
functions in the optimization problem (1). We introduce the class of so-called law
invariant convex risk measures and point out the specific subclass of risk measures
which we use. In section 3 we study the asymptotics of the SAA estimator for the
optimal value of problem 1. Besides consistency its asymptotic distribution is given
in Theorem 2. As a by product we may derive a result on asymptotic distributions of
sample estimators for the law invariant convex risk measures which we consider, and it
will turn out that it improves already known general results. The proof of Theorem 2
is the subject of section 4. This theorem allows us to derive in section 5.1 asymptotic
rejection regions for tests (3) and (4). In section 5.2 we derive nonasymptotic rejection
regions for tests (3). This analysis is first conducted in a risk-neutral setting (when
R = E is the expectation) and is then extended to risk-averse problems. In particular,
in this latter case, we obtain nonasymptotic confidence intervals for the optimal value
of (1) for a larger class of risk measures than the class considered in [11], where



STATISTICAL INFERENCE OF RISK AVERSE PROGRAMS 1339

R = AVaR (the average value-at-risk; see section 2) was considered. Also, when
R = AVaR, our bounds are slightly refined versions of the bounds from [11]. Finally,
section 6 presents numerical simulations that illustrate our results: we show how to
use our developments to choose, using tests (3), among different distributions. We
also use these tests to compare the optimal value of several risk-averse stochastic
programs. It is shown that the normal (Gaussian) distribution already approximates

well the distribution of ϑ̂N for N = 20 and problem sizes (dimension of decision
variables) up to m = 10 000, and that the asymptotic tests yield much smaller type
II errors than the considered nonasymptotic tests for small to moderate sample size
(N up to 105) and problem size (m up to 500).

We use the following notation throughout the paper. By FZ(z) := P(Z ≤ z) we
denote the cumulative distribution function (c.d.f.) of a random variable Z : Ω→ R.
By F−1(α) = inf{t : F (t) ≥ α} we denote the left-side α-quantile of the c.d.f. F . By
QF (α) we denote the interval of α-quantiles of c.d.f. F , i.e.,

(5) QF (α) = [a, b], where a := F−1(α), b := sup{t : F (t) ≤ α}.

By 1A(·) we denote the indicator function of set A. For p ∈ [1,∞) we consider
the space Z := Lp(Ω,F ,P) of random variables Z : Ω → R having finite pth order
moments. The dual of space Z is the space Z∗ = Lq(Ω,F , P ), where q ∈ (1,∞] is
such that 1/p + 1/q = 1. The notation Z � Z ′ means that Z(ω) ≥ Z ′(ω) for a.e.
ω ∈ Ω. By δ(a) we denote the measure of mass one at a.

2. Preliminary discussion. Let us turn to specifying the functional (risk mea-
sure) R in the goal of problem (1). It is defined as a mapping R : Z → R on a
linear space Z consisting of random variables on (Ω,F ,P). Specifically we assume
that Z := Lp(Ω,F ,P), p ∈ [1,∞). Note that we consider here real-valued risk mea-
sures, i.e., we do not allow R(Z) to have an infinite value. It is said that risk measure
R(Z) is law invariant if it depends only on the distribution of Z, i.e., if Z,Z ′ ∈ Z
and FZ = FZ′ , then R(Z) = R(Z ′).

In the influential paper of Artzner et al. [2] it was suggested that a “good” risk
measure should satisfy the following conditions (axioms).

(i) Monotonicity: If Z,Z ′ ∈ Z and Z � Z ′, then R(Z) ≥ R(Z ′).
(ii) Subadditivity: R(Z + Z ′) ≤ R(Z) +R(Z ′) for all Z,Z ′ ∈ Z.
(iii) Translation equivariance: If a ∈ R and Z ∈ Z, then R(Z + a) = R(Z) + a.
(iv) Positive homogeneity: If t ≥ 0 and Z ∈ Z, then R(tZ) = tR(Z).

Conditions (ii) and (iv) imply that R is convex, i.e.,

R(tZ + (1− t)Z ′) ≤ tR(Z) + (1− t)R(Z ′)

for all Z,Z ′ ∈ Z and all t ∈ [0, 1].
In [2] such risk measures were called coherent and suggested as a mathematical

tool to assess the risks of financial positions. Unless stated otherwise we deal in this
paper with law invariant coherent risk measures. Systematic accounts of this class of
risk measures can be found in the monographs [29, Chapter 6] and [6, Chapter 4].

An important example of law invariant coherent risk measure is the so-called
average value-at-risk (also called conditional value-at-risk, expected shortfall, and
expected tail loss)

(6) AVaRα(Z) :=
1

1− α

∫ 1

α

F−1
Z (t) dt, α ∈ [0, 1).



1340 V. GUIGUES, V. KRÄTSCHMER, AND A. SHAPIRO

It is naturally defined, and is finite valued, on the space Z = L1(Ω,F ,P), and has the
following useful representation (cf. [23]):

(7) AVaRα(Z) = inf
t∈R

{
t+ (1− α)−1E[(Z − t)+]

}
.

Note that AVaR0(·) = E[·].
The average value-at-risk AVaRα(Z) is an index to describe the tail behavior of

the distribution function FZ on the interval (F−1
Z (α),∞). If we want to take into

account different regions of tail behavior, we may choose different levels 0 = α0 <
α1 < · · · < αk < 1 and then weight the average value-at-risk at the respective levels.
That is, consider

(8) R(Z) := sup
w∈W

{
w0E[Z] +

k∑
i=1

wiAVaRαi(Z)

}
,

where W is a nonempty subset of ∆k+1 := {w ∈ Rk+1
+ : w0 + · · ·+wk = 1}. This is a

law invariant coherent risk measure defined on the space Z = L1(Ω,F ,P). Note that
R is not changed if W is replaced by the topological closure of its convex hull. Note
also that the set ∆k+1 and hence the set W are bounded. Therefore if W is closed,
then it is compact. In view of (7) we can write this risk measure in the following
minimax form:

(9) R(Z) = sup
w∈W

inf
τ∈Rk

E[φ(Z,w, τ)],

where

(10) φ(z, w, τ) := w0z +

k∑
i=1

wi
(
τi + (1− αi)−1[z − τi]+

)
.

Assuming that the probability space (Ω,F ,P) is nonatomic, any law invariant
coherent risk measure R : Z → R has the following so-called Kusuoka representation
(cf. [10]):

(11) R(Z) = sup
µ∈M

∫ 1

0

AVaRα(Z)dµ(α),

where M is a set of probability measures on the interval [0,1). We can view risk mea-
sure (8) as a discretized version of Kusuoka representation where probability measures
µ ∈M are restricted to have finite support {α0, . . . , αk}.

3. Asymptotics of the optimization problem. Since a law invariant risk
measure R can be considered as a function of its c.d.f. F (·) = FZ(·), we also write
R(F ) to denote the corresponding value R(Z). Let Z1, . . . , ZN be an i.i.d. sample of

Z and F̂N = N−1
∑N
j=1 1[Zj ,∞) be the corresponding empirical estimate of the c.d.f.

F . By replacing F with its empirical estimate F̂N , we obtain the estimate R(F̂N ) to
which we refer as the sample or empirical estimate of R(F ). We assume that for every
x ∈ X the random variable Gx belongs to the space Z, and hence g(x) = R(Gx) is
well defined for every x ∈ X . Let Fx be the c.d.f. of random variable Gx, x ∈ X , and
F̂x,N be the empirical c.d.f. associated with the sample G(x, ξ1), . . . , G(x, ξN ). Then

we can write g(x) = R(Fx) and ĝN (x) = R(F̂x,N ).
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We have the following result about the convergence of the optimal value and
optimal solutions of the SAA problem (2) to their counterparts of the “true” problem
(1) (cf. [26, Theorem 3.3]).

Theorem 1. Let R : Z → R be a law invariant risk measure satisfying the
axioms of monotonicity, convexity, and translation equivariance. Suppose that the set
X is nonempty and compact and the following conditions hold: (i) the function Gx(ω)
is random lower semicontinuous, i.e., the epigraphical multifunction ω 7→ {(x, t) ∈
Rn+1 : Gx(ω) ≤ t} is closed valued and measurable; (ii) for every x̄ ∈ Rn there is a
neighborhood Vx̄ of x̄ and a function h ∈ Z such that Gx(·) ≥ h(·) for all x ∈ Vx̄.

Then the optimal value ϑ̂N of problem (2) converges with probability one (w.p.1)
to the optimal value ϑ∗ of the “true” problem (1), and the distance from an optimal
solution x̂N of (2) to the set of optimal solutions of (1) converges w.p.1 to zero as
N →∞.

We derive first order asymptotics of the SAA optimal value for risk measures R of
the form (8), i.e., having discretized Kusuoka representation. We assume that the set
X is nonempty convex compact, G(x, ξ) is convex in x for all ξ ∈ Ξ, and E|Gx| < +∞
for all x ∈ X . It follows that functions g(x) and ĝN (x) are convex and finite valued,
and hence the respective optimization problems (1) and (2) are convex.

Since R is of the form (8), the optimal value ϑ∗ of problem (1) can be written as

(12) ϑ∗ = inf
x∈X

sup
w∈W

{
w0E[Gx] +

k∑
i=1

wiAVaRαi(Gx)

}
.

As it was pointed before we can assume that the set W ⊂ ∆k+1 is convex and closed.
Note that the objective function in the right-hand side of (12) is convex in x and
linear in w. Therefore, since W and X are convex compact, the “min” and “max”
operators can be interchanged, i.e.,

(13) ϑ∗ = sup
w∈W

inf
x∈X

{
w0E[Gx] +

k∑
i=1

wiAVaRαi(Gx)

}
,

and both problems (12) and (13) have nonempty sets of optimal solutions, denoted
respectively as X and W. We make the following assumption.

(A) For every i ∈ {1, . . . , k} there exists w ∈W such that wi 6= 0.
This is a natural condition. Otherwise there is i ∈ {1, . . . , k} such that wi = 0

for all w ∈ W. In that case we can reduce the considered set {α0, α1, . . . , αk} by
removing the corresponding point αi.

We also can write

ϑ∗ = inf
(x,τ)∈X×Rk

sup
w∈W

E[φ(Gx, w, τ)](14)

= sup
w∈W

inf
(x,τ)∈X×Rk

E[φ(Gx, w, τ)],(15)

where the function φ(z, w, τ) is defined in (10). Define Y := X ×Rk and let Y ⊂ Y be
the set of optimal solutions of problem (14). Note that under assumption (A), the set
Y consists of points (x̄, τ̄) such that x̄ ∈ X and τ̄i belongs to the αi-quantile interval
of the c.d.f. of Gx̄, i = 1, . . . , k. It follows that the set Y is nonempty, convex, and
compact. The set of optimal solutions of problem (15) is W, the same as the one of
problem (13). The minimax problem (14)–(15) is convex in (x, τ) ∈ Y and concave
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(linear) in w ∈ Rk. The set of saddle points of this minimax problem is W× Y. The
SAA problem for (14) is written

(16) ϑ̂N = inf
(x,τ)∈X×Rk

sup
w∈W

1

N

N∑
j=1

φ (G(x, ξj), w, τ) .

The following theorem is the main result of this section. Its proof is presented in
section 4. The main tools in the derivation of this result are the minimax representa-
tions (14)–(16) and a minimax functional central limit theorem (cf. [25]).

Theorem 2. Suppose that (i) R is of the form (8) with the set W ⊂ ∆k+1 being
convex and closed, (ii) the set X is nonempty, convex, and compact and G(x, ξ) is
convex in x, (iii) condition (A) holds, (iv) E[G2

x∗ ] is finite for some x∗ ∈ X , (v) there
is a measurable function C(ξ) such that E[C(ξ)2] is finite and

(17) |G(x, ξ)−G(x′, ξ)| ≤ C(ξ)‖x− x′‖ ∀x, x′ ∈ X , ∀ξ ∈ Ξ.

Then

(18)
ϑ̂N = inf(x,τ)∈Y supw∈W

{
w0

N

∑N
j=1G(x, ξj)

+
∑k
i=1 wi

(
τi + 1

N(1−αi)

∑N
j=1[G(x, ξj)− τi]+

)}
+ op(N

−1/2),

and

(19) N1/2
(
ϑ̂N − ϑ̂∗

) D→ sup
w∈W

inf
(x,τ)∈Y

Y(x, τ, w),

where Y(w, τ) is a Gaussian process with mean zero and covariances

(20)
E[Y(x, τ, w)Y(x′, τ ′, w′)] =

Cov
(
w0Gx +

k∑
i=1

wi

1−αi
[Gx − τi]+ , w′0Gx′ +

k∑
i=1

w′i
1−αi

[Gx′ − τ ′i ]+
)
.

Moreover, if the sets W = {w̄} and Y = {(x̄, τ̄)} are singletons, then N1/2
(
ϑ̂N − ϑ∗

)
converges in distribution to normal N (0, ν2

∗) with variance

(21) ν2
∗ := Var [φ(Gx̄, w̄, τ̄)] = Var

{
w̄0Gx̄ +

k∑
i=1

w̄i
1− αi

[
Gx̄ − τ̄i

]
+

}
.

Remark 1. It is assumed in the above theorem that the set X is compact. Actually
it is possible to push the proof through by relaxing this assumption to the respective
set X of optimal solutions being nonempty and compact.

Remark 2. For further calculation of the covariance structure (20) we may invoke
Hoeffding’s covariance formula (e.g., Lemma 5.24 in [15]) to obtain, for t, s ∈ R,

(22) Cov
(
[Gx − t]+, [Gx′ − s]+

)
=

∫ ∞
t

∫ ∞
s

(
Fx,x′(u, v)− Fx(u)Fx′(v)

)
du dv,

where Fx,x′ denotes the joint distribution function of Gx and Gx′ and Fx and Fx′

denote their marginal distribution functions, respectively.



STATISTICAL INFERENCE OF RISK AVERSE PROGRAMS 1343

Let us discuss now estimation of the variance ν2
∗ given in (21). Let (x̂N , τ̂N , ŵN )

be a saddle point of the SAA problem (16). Suppose that the sets W = {w̄} and
Y = {(x̄, τ̄)} are singletons. Since the sets Y and W are convex and the function
φ (G(x, ξ), w, τ) is convex in (x, τ) and concave (linear) in w, it follows that (x̂N , τ̂N )
converges w.p.1 to (x̄, τ̄) and ŵN converges w.p.1 to w̄ as N → ∞ (see, e.g., [29,
Theorem 5.4]). It follows that the variance ν2

∗ can be consistently estimated by its
sample counterpart, i.e., the estimator

(23) ν̂2
N =

1

N − 1

N∑
j=1

φ(G(x̂N , ξj), ŵN , τ̂N )− 1

N

N∑
j=1

φ(G(x̂N , ξj), ŵN , τ̂N )

2

converges w.p.1 to ν2
∗ . Then employing Slutsky’s theorem we obtain that, under the

assumptions of Theorem 2, it follows that

(24)
N1/2

(
ϑ̂N − ϑ∗

)
ν̂N

D→ N (0, 1).

In particular, Theorem 2 provides an interesting asymptotic result concerning
empirical estimates of risk measures. We again assume thatR has representation as in
(8) with W being convex and compact. Let Z be an integrable random variable having
c.d.f. F , and F̂N be the empirical c.d.f. based on an i.i.d. sample Z1, . . . , ZN ∼ F ,
and hence

R(F̂N ) = sup
w∈W

inf
τ∈Rk

1

N

N∑
j=1

φ(Zj , w, τ).

Consider the sets

W(F ) := arg max
w∈W

{
w0E[Z] +

k∑
i=1

wiAVaRαi
(Z)

}
= arg max

w∈W

{
inf
τ∈Rk

E[φ(Z,w, τ)]

}
,

T(F ) := QF (α1)× · · · ×QF (αk)

associated with c.d.f. F of random variable Z. Note that under assumption (A), the
set T(F ) gives the set of minimizers of E[φ(Z,w, τ)] for any w ∈ W. We have that
W(F )×T(F ) is the set of saddle points of the respective minimax problem associated
with R. Then an application of Theorem 2 to the sample estimate R(F̂N ) reads as
follows.

Corollary 3. Suppose that R is of the form (8) with W being convex and closed,
condition (A) holds and EF [Z2] < +∞. Then

R(F̂N ) = sup
w∈W(F )

inf
τ∈T(F )

{w0

N

N∑
j=1

Zj +

k∑
i=1

wi
(
τi +

1

N(1− αi)

N∑
j=1

[Zj − τi]+
)}

+ op(N
−1/2)

and

(25) N1/2
[
R(F̂N )−R(F )

] D→ sup
w∈W(F )

inf
τ∈T(F )

Y(w, τ),

where Y(w, τ) is a Gaussian process with mean zero and covariances

(26)
EF [Y(w, τ)Y(w′, τ ′)] =

CovF

(
w0Z +

∑k
i=1

wi

1−αi
[Z − τi]+ , w′0Z +

∑k
i=1

w′i
1−αi

[Z − τ ′i ]+
)
.
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Moreover, if the sets W(F ) = {w̄} and T(F ) = {τ̄} are singletons, then N1/2
[
R(F̂N )−

R(F )
]

converges in distribution to normal N (0, ν2) with variance

(27) ν2 = VarF

{
w̄0Z +

k∑
i=1

w̄i
1− αi

[Z − τ̄i]+

}
.

Remark 3. Corollary 3 provides an alternative representation of the asymptotic
distribution of the estimator R(F̂N ) in comparison with the already known ones from
[20] and [3]. The results there are formulated for general law invariant coherent risk
measures, with, however, additional assumptions about tail behavior of the distribu-
tion F . In particular, in [20] F is required to have a polynomial tail; more precisely,

sup
α∈]0,1[

(
F−1(α) αd1 (1− αd2)

)
<∞ for some d1, d2 ∈ (0, 1/2)

(cf. [20, Theorem 3.7]). For law invariant coherent risk measures on L1(Ω,F ,P) this
condition was relaxed in [3] by

(28)

∫ ∞
−∞

√
F (u)[1− F (u)] du <∞

(cf. [3, Theorem 3.1]). It is well known that condition (28) is fulfilled if the random
variable Z has absolute moments of order q for some q > 2, that property (28) implies
that Z has absolute moments of order 2 (see, e.g., [13, p. 10]). Moreover, if Z has
absolute moments of second order, it does not satisfy (28) necessarily. Hence in the
case of risk measures with representation of the form (8), Corollary 3 improves existing
results as it only assumes the existence of the second order moments.

Remark 4. Theorem 2 and Corollary 3 give quite a complete description of the
asymptotics in the case in which the risk measure R has the discrete Kusuoka repre-
sentation (8). It would be natural to try to extend this analysis to the general case
of the Kusuoka representation (11) by writing the corresponding risk measure in the
respective minimax form. It turned out to be surprisingly difficult to handle such a
general setting in a rigorous way. The following examples demonstrate that asymp-
totics of empirical estimates of law invariant coherent risk measures could behave in
quite a weird way; some specific conditions are required in order for the empirical
estimates to have asymptotically normal distributions.

Example 1 (absolute semideviation risk measure). Consider the risk measure

(29) Rc(F ) := EF [Z] + cEF [Z − EF (Z)]+, c ∈ (0, 1].

We assume that the c.d.f. F has finite first order moment. This risk measure has the
following representation (cf. [27]):

Rc(F ) = sup
γ∈[0,1]

{
(1− cγ)EF (Z) + cγAVaR1−γ(F )

}
(30)

= sup
γ∈[0,1]

inf
t∈R

EF
{

(1− cγ)Z + cγt+ c[Z − t]+
}

(31)

= inf
t∈R

sup
γ∈[0,1]

EF
{

(1− cγ)Z + cγt+ c[Z − t]+
}
.(32)

Representation (30) is the (minimal) Kusuoka representation (11) of Rc with the
corresponding set M =

⋃
γ∈[0,1]{(1− cγ)δ(0) + cγδ(1− γ)}. Since

sup
γ∈[0,1]

EF
{

(1− cγ)Z + cγt+ c[Z − t]+
}

= EF [Z] + cmax {EF [Z − t]+,EF [t− Z]+} ,
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it follows that problem (32) has unique optimal solution t∗ = m, where m := EF [Z],
i.e., Rc(F ) = EF [Z] + cmax{EF [Z − EF [Z]]+,EF [EF [Z]− Z]+}, which is consistent
with definition (29) of Rc because EF [Z − EF [Z]]+ = EF [EF [Z]− Z]+.

Now the set of minimizers of γt+E[Z− t]+, over t ∈ R, is defined by the equation
F (t) = 1 − γ. It follows that the set of saddle points of the minimax representation
(31) is [γ, γ]× {m}, where

γ := 1− Pr(Z ≤ m), γ := 1− Pr(Z < m)

(cf. [29, section 6.6.2]). In other words, here the set of maximizers of measures µ ∈M
in the Kusuoka representation is

M̄(F ) =
⋃

γ∈[γ,γ]

{(1− cγ)δ(0) + cγδ(1− γ)},

and the respective set T̄(F ) = {τ̄(α)} is the singleton with τ̄(α) = EF [Z] for all
α ∈ [0, 1).

The minimax representation (31) leads to the following asymptotics. Suppose
that EF [Z2] < +∞. Then by a finite-dimensional minimax asymptotics theorem (cf.
[25]),

(33) Rc(F̂N ) = sup
γ∈[γ,γ]

cγm + (1− cγ)Z̄ + cN−1
N∑
j=1

[
Zj −m

]
+

+ op(N
−1/2),

where Z̄ := N−1
∑N
j=1 Zj . We have here that a condition which is required for asymp-

totic normality of the corresponding empirical estimate is that γ = γ, i.e., that F (·)
should be continuous at m = EF [Z]. If the c.d.f. F (·) is continuous at m = EF [Z],

then N1/2
[
Rc(F̂N )−Rc(F )

]
converges in distribution to normal N (0, ν2) with vari-

ance

(34) ν2 = VarF
{

(1− cγ∗)Z + c[Z −m]+
}
,

where γ∗ := 1− F (m) = F̄ (m).

Example 2 (mean-semideviation risk measure). Consider the following risk mea-
sure:

(35) Rc(F ) := EF [Z] + c
(
EF [Z − EF (Z)]2+

)1/2
, c ∈ (0, 1].

Asymptotics of empirical estimates of such risk measures were discussed in [4]. If
F (·) is continuous at m := EF [Z], then Rc(·) is Gâteaux differentiable at F and the
corresponding influence function is

(36) IF (z) = z + c(2θ)−1
(
[z −m]2+ − θ2 + 2κ(1− F (m))(z −m)

)
,

where θ :=
(
EF [Z − EF [Z]]2+

)1/2
and κ := EF [Z − m]+ (see, e.g., [29, p. 345] for a

more detailed discussion of this example). This indicates that continuity of F (·) at
m is a necessary condition for Rc(·) to be Gâteaux differentiable at F . Here again

continuity of F (·) at m is a required condition for R(F̂N ) to be asymptotically normal.
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4. Proof of Theorem 2. Throughout this section, we shall use notation and
assumptions from Theorem 2. Moreover, let us define for x ∈ X , τ ∈ Rk, and w ∈W
the function

fx,τ,w : Rd → R, z 7→ w0G(x, z) +

k∑
i=1

wi

(
τi +

1

1− αi
[G(x, z)− τi]+

)
.

The idea to show Theorem 2 is to apply asymptotic results from empirical process
theory to the class of the functions fx,τ,w, and then to invoke a minimax delta theorem.
In preparation to make use of mentioned results from empirical process theory, we
shall verify first that the functions fx,τ,w satisfy pointwise some certain Lipschitz
continuity w.r.t. their parameters.

Lemma 4. For any n ∈ N, there is a Borel-measurable function Cn : Rd → R
such that E[Cn(ξ)2] <∞ holds, and

|fx,τ,w(z)− fx,τ,w(z)| ≤ Cn(z)
(
‖x− x‖m,2 + ‖τ − τ‖k,2 + ‖w − w‖k+1,2

)
is valid for any z ∈ Rd, x, x ∈ X , τ, τ ∈ [−n, n]k as well as w,w ∈W. Here ‖ · ‖m,2,
‖ · ‖k,2, and ‖ · ‖k+1,2 respectively denote the Euclidean norms on Rm, Rk, and Rk+1.

Proof. Let x, x ∈ X , τ, τ ∈ [−n, n]k and w,w ∈ W. Furthermore, let x∗ ∈ X as
in assumption (iv) of Theorem 2. Then using the triangle inequality several times we
may observe, for z ∈ Rd, that

|fx,τ,w(z)− fx,τ,w(z)|

≤ w0|G(x, z)−G(x, z)|+ |(w0 − w0)(G(x, z)−G(x∗, z))|+ |w0 − w0||G(x∗, z)|

+

k∑
i=1

wi
∣∣(τi − τ i) + (1− αi)−1

[
(G(x, z)− τi)+ − (G(x, z)− τ i)+

]∣∣
+

k∑
i=1

|wi − wi|
1− αi

·
(
|(G(x∗, z)− τ i)+ − (G(x, z)− τ i)+|

+|(1− αi)τi + (G(x∗, z)− τ i)+|
)

≤ w0|G(x, z)−G(x, z)|+ |(w0 − w0)(G(x, z)−G(x∗, z))|+ |w0 − w0||G(x∗, z)|

+

k∑
i=1

wi
1− αi

· ((2− αi)|τi − τ i|+ |G(x, z)−G(x, z)|)

+

k∑
i=1

|wi − wi|
1− αi

·
(
|G(x, z)−G(x∗, z)|+ (2− αi)|τ i|+ |G(x∗, z)|

)
.

Then invoking the Cauchy–Schwarz inequality we obtain

|fx,τ,w(z)− fx,τ,w(z)|

≤ max
i=1,...,k

(1− αi)−1 · ‖w‖k+1,2

(√
k + 1|G(x, z)−G(x, z)|+ 2‖τ − τ‖k,2

)
+ max
i=1,...,k

(1− αi)−1

·‖w − w‖k+1,2

(√
k + 1(|G(x∗, z)−G(x, z)|+ |G(x∗, z)|) + 2‖τ‖k,2

)
.
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By assumption the inequalities

|G(x∗, z)−G(x, z)| ≤ C(z)‖x∗ − x‖m,2 ≤ C(z) diam(X )

and |G(x, z) − G(x, z)| ≤ C(z)‖x − x‖m,2 hold, where C denotes the nonnegative
Borel-measurable function C as in assumption (v) of Theorem 2, and diam(X ) stands
for the diameter of the compact set X w.r.t. the Euclidean norm on Rn. Hence

|fx,τ,w(z)− fx,τ,w(z)|
≤ max

i=1,...,k
(1− αi)−1 · ‖w‖k+1,2

(√
k + 1C(z)‖x− x‖m,2 + 2‖τ − τ‖k,2

)
+ max
i=1,...,k

(1− αi)−1 · ‖w − w‖k+1,2

(√
k + 1(C(z) diam(X ) + |G(x∗, z)|) + 2‖τ‖k,2

)
≤ max

i=1,...,k
(1− αi)−1 ·

(√
k + 1C(z)‖x− x‖m,2 + 2‖τ − τ‖k,2

)
+ max
i=1,...,k

(1− αi)−1 · ‖w − w‖k+1,2

(√
k + 1(C(z) diam(X ) + |G(x∗, z)|) + 2

√
kn
)
.

Now the function Cn : Rd → R, defined by

Cn(z) := max
i=1,...,k

(1−αi)−1 ·max
[√

k + 1C(z), 2
√
kn+

√
k + 1(C(z) diam(X ) + |G(x∗, z)|)

]
,

is as required due to assumptions (iv) and (v) of Theorem 2.

In the next step we want to show that from an asymptotic view point we may
replace the estimator ϑ̂N with the estimator

ϑ̃ := inf
(x,τ)∈K

sup
w∈W

{w0

N

N∑
j=1

G(x, ξj) +

k∑
i=1

wi

(
τi +

1

N(1− αi)

N∑
j=1

[G(x, ξj)− τi]+
)}

for some compact subset K of X ×Rk. This estimator is more convenient as it allows
us to apply the minimax functional central limit theorem from [25].

Lemma 5. Let n0 ∈ N such that Y ⊆ X × (−n0, n0)k. Then

ϑ̂N = inf
(x,τ)∈K

sup
w∈W

{
w0

N

∑N
j=1G(x, ξj)

+
∑k
i=1 wi

(
τi + 1

N(1−αi)

∑N
j=1[G(x, ξj)− τi]+

)}
+ op(N

−1/2),

where K := X × [−n0, n0]k.

Proof. Let φ denote the mapping as defined in (10). In particular,

(37) fx,τ,w(z) = φ(G(x, z), w, τ) for (x, τ, w, z) ∈ X × Rk ×W× Rd.

According to Lemma 4, we may draw on [32, Example 19.7 and Theorem 19.4] to find
for every n ∈ N some An ∈ F with P(An) = 1 such that

(38) sup
(x,τ)∈X×[−n,n]k

sup
w∈W

∣∣∣ 1

N

N∑
j=1

φ
(
G(x, ξj(ω)), w, τ

)
− E

[
φ
(
G(x, ξ), w, τ

)]∣∣∣→ 0

for ω ∈ An. Then A :=
⋂∞
n=1An satisfies P(A) = 1. Moreover, in view of Lemma 4

along with (38),

hN : X × Rk × Ω→ R, (x, τ, ω) 7→ sup
w∈W

1

N

N∑
j=1

φ
(
G(x, ξj(ω)), w, τ

)
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defines a sequence (hN )N∈N of mappings such that, for any ω ∈ A, the mapping
hN (·, ·, ω) is lower-semicontinuous and the sequence (hN (·, ·, ω))N∈N converges uni-
formly on compact subsets to the function supw∈W E[φ(G(·, ξ), w, ·)] with

inf
(x,τ)∈K

hN (x, τ, ω)→ inf
(x,τ)∈K

sup
w∈W

E[φ(G(·, ξ), w, ·)] = ϑ∗ for N →∞.

Since K is compact, we may find for every ω ∈ A a sequence
(
(x̂N (ω), τ̂N (ω))

)
N∈N

in K such that (x̂N (ω), τ̂N (ω)) minimizes hN (·, ·, ω)|K for any N ∈ N. By compact-
ness of K for any ω ∈ A, the sequence

(
(x̂N (ω), τ̂N (ω))

)
N∈N has cluster points which

all belong to the set S of minimizers of the function supw∈W E[φ(G(·, ξ), w, ·)]|K be-
cause (hN (·, ·, ω))N∈N converges uniformly on K to supw∈W E[φ(G(·, ξ), w, ·)] (cf. [24,
Theorem 7.31]). In particular, the distance of (x̂N (ω), τ̂N (ω)) to S tends to zero as
N →∞ for every ω ∈ A. Note S = Y so that for every ω ∈ A there is some N(ω) ∈ N
such that

(39) (x̂N (ω), τ̂N (ω)) ∈ X × (−n0, n0)k for arbitrary N ∈ N with N ≥ N(ω).

In view of assumption (ii) of Theorem 2, the mapping φ(G(·, z), w, ·) is convex for
every z ∈ Rd and any w ∈ W. This implies that hN (·, ·, ω) is convex for N ∈ N and
ω ∈ A, and thus

min
λ∈(0,1)

hN
(
λ(x, τ) + (1− λ)(x̂N (ω), τ̂N (ω)), ω

)
≤ min

{
hN (x, τ, ω), hN

(
x̂N (ω), τ̂N (ω), ω

)
}

holds for (x, τ) ∈ X ×Rk. Then by (39), we obtain, for any ω ∈ A and every N ∈ N
with N ≥ N(ω),

ϑ̂N (ω) = inf
(x,τ)∈Rk

hN (x, τ, ω) = inf
(x,τ)∈K

hN (x, τ, ω),

and then

√
N
[

inf
(x,τ)∈X×Rk

sup
w∈W

{
1
N

∑N
j=1 φ

(
G(x, ξj(ω)), w, τ

)
− inf

(x,τ)∈K
sup
w∈W

1
N

∑N
j=1 φ

(
G(x, ξj(ω)), w, τ

)}]
= 0

for N ∈ N with N ≥ N(ω). Hence

√
N
[

inf
(x,τ)∈X×Rk

sup
w∈W

{
1
N

N∑
j=1

φ
(
G(x, ξj(ω)), w, τ

)
− inf

(x,τ)∈K
sup
w∈W

1
N

N∑
j=1

φ
(
G(x, ξj(ω)), w, τ

)}]
→ 0 P-a.s.,

implying

√
N
[

inf
(x,τ)∈X×Rk

sup
w∈W

{
1
N

N∑
j=1

φ
(
G(x, ξj(ω)), w, τ

)
− inf

(x,τ)∈K
sup
w∈W

1
N

N∑
j=1

φ
(
G(x, ξj(ω)), w, τ

)}]
→ 0

in probability. This completes the proof.

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Let φ denote the function defined in (10). By Lemma 5 we
may find some n0 ∈ N such that Y ⊆ X × [−n0, n0]k,

(40) ϑ∗ = inf
(x,τ)∈X×[−n0,n0]k

sup
w∈W

E[φ(G(x, ξ), w, τ)]

and

(41) ϑ̂N = inf
(x,τ)∈X×[−n0,n0]k

sup
w∈W

1

N

N∑
j=1

φ(G(x, ξj), w, τ) + op(N
−1/2).

Set K := X × [−n0, n0]k and

ϑN = inf
(x,τ)∈K

sup
w∈W

1

N

N∑
j=1

φ(G(x, ξj), w, τ).

The idea now is to apply Theorem 2.1 from [25], a minimax delta theorem, to (ϑN )N∈N
and ϑ∗. For this purpose consider the stochastic process (V Nx,τ,w)(x,τ,w)∈K×W, defined
by

V Nx,τ,w =
1

N

N∑
j=1

φ(G(x, ξj), w, τ) for (x, τ, w) ∈ K ×W.

Using Lemma 4 and recalling (37) it may be viewed as a Borel random element V N of
the space C(K×W) of continuous real-valued mappings on K×W which is endowed
with the uniform metric. In the same way the mapping

V : K ×W→ R, (x, τ, w) 7→ E[φ(G(x, ξ), w, τ)]

may be verified as a member of C(K×W). Drawing on Lemma 4 again, we may apply
Example 19.7 from [32] to conclude that the sequence N−1/2(V N − V )N∈N converges
in law to some centered Gaussian random element Y of C(K ×W) with covariances

(42) E[Y(x, τ, w) · Y(x′, τ ′, w′)] = Cov
(
φ(G(x, ξ), w, τ), φ(G(x′, ξ), w′, τ ′)

)
.

By assumption (ii) of Theorem 2, the mapping φ(G(·, z), w, ·) is convex for every
z ∈ Rd and any w ∈ W. Hence the stochastic process (V Nx,τ,w)(x,τ)∈K has convex
paths and V (·, ·, w) is convex for any w ∈W. Moreover, the mapping φ(G(x, z), ·, τ)
is concave for every (x, τ) ∈ K, which implies that the stochastic process (V Nx,τ,w)w∈W
has concave paths and V (x, τ, ·) is concave for arbitrary (x, τ) ∈ K. Now the statement
of Theorem 2 follows immediately from [25, Theorem 2.1] along with (40), (41), and
(42).

5. Hypotheses testing. Using the results of the previous sections, we now
propose asymptotic rejection regions for tests (3) and (4) (in section 5.1) on the basis
of samples ξN,v = (ξv1 , . . . , ξ

v
N ) of ξv for v = 1, . . . , V . We will also study tests (3) in a

nonasymptotic framework (in section 5.2) deriving nonasymptotic confidence intervals
on the optimal value of (1). We will denote by 0 < β < 1 the maximal probability of
type I error.
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5.1. Asymptotic tests. Tests (3) and (4). Let us consider V > 1 opti-
mization problems of the form (1) with ξ, g(x), and X respectively replaced by ξv,
gv(x) = R(Gvx), and Xv for problem v. In the above definition of gv, Gvx satisfies
Gvx(ω) = Gv(x, ξ

v(ω)). For v = 1, . . . , V , let (ξv1 , . . . , ξ
v
N ) be a sample from the distri-

bution of ξv, let ϑv∗ be the optimal value of problem v and let zv∗ = (xv∗, τ
v
∗ , w

v
∗) be an

optimal solution of the problem, written under form (14), in variables z = (x, τ, w).

Let ϑ̂vN be the SAA estimator of the optimal value for problem v = 1, . . . , V . Defining
the function Hv(z, ξ

v) = φ(Gv(x, ξ
v), w, τ) in variables z = (x, τ, w) with φ given by

(10), we also denote by ν̂vN the empirical estimator of the variance Var[Hv(z
v
∗ , ξ

v)]
based on the sample for problem v. We assume that the samples are i.i.d. and that
ξN,1, . . . , ξN,V are independent. Under the assumptions of Theorem 2 for N large
we can approximate the distribution of N1/2

(
ϑ̂vN − ϑv∗

)
/ν̂vN by the standard normal

N (0, 1).
Let us first consider the statistical tests (3)(a) and (3)(b) with V = 2:

H0 : ϑ1
∗ = ϑ2

∗ against H1 : ϑ1
∗ 6= ϑ2

∗,

H0 : ϑ1
∗ ≤ ϑ2

∗ against H1 : ϑ1
∗ > ϑ2

∗.

For N large, we approximate the distribution of

(ϑ̂
1

N − ϑ̂
2

N )− (ϑ1
∗ − ϑ2

∗)√
(ν̂1

N )2

N +
(ν̂2

N )2

N

by the standard normal N (0, 1) and we obtain the rejection regions
(43){

(ξN,1, ξN,2) : |ϑ̂
1

N − ϑ̂
2

N | >
√

(ν̂1
N

)2

N
+

(ν̂2
N

)2

N
Φ−1(1− β

2
)

}
for test (3)(a) with V = 2,{

(ξN,1, ξN,2) : ϑ̂
1

N > ϑ̂
2

N +

√
(ν̂1

N
)2

N
+

(ν̂2
N

)2

N
Φ−1(1− β)

}
for test (3)(b) with V = 2.

Let us now consider test (4):

H0 : θ ∈ Θ0 against H1 : θ ∈ RV

for θ = (ϑ1
∗, . . . , ϑ

V
∗ )> with Θ0 a linear space or a closed convex cone.

Let Θ0 be the subspace

(44) Θ0 = {θ ∈ RV : Aθ = 0},

where A is a k0×V matrix of full rank k0. Note that test (3)(a) can be written
in this form with A a (V − 1)×V matrix of rank V − 1. We have for θ the es-

timator θ̂N = (ϑ̂
1

N , . . . , ϑ̂
V

N )T . Fixing N large, since ξN,1, . . . , ξN,V are indepen-

dent, using the fact that N1/2(ϑ̂vN − ϑv∗)/ν̂
v
N
D−→ N (0, 1), the distribution of θ̂N

can be approximated by the Gaussian N (θ,Σ) distribution with Σ the diagonal ma-
trix Σ = (1/N)diag(Var(H1(z1

∗, ξ
1)), . . . ,Var(HV (zV∗ , ξ

V ))). The log-likelihood ratio
statistic for test (4) is Λ = supθ∈Θ0,Σ�0 L(θ,Σ)/ supθ,Σ�0 L(θ,Σ), where L(θ,Σ) is

the likelihood function for a Gaussian multivariate model. For a sample (θ̃1, . . . , θ̃M )
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of θ̂N
1, introducing the estimators

θ̂ =
1

M

M∑
i=1

θ̃i and Σ̂ =
1

M − 1

M∑
i=1

(
θ̃i − θ̂

)(
θ̃i − θ̂

)T
of θ and Σ, respectively, we have

(45) − 2 ln Λ = V ln
(

1 +
T 2

M − 1

)
, where T 2 = V min

θ∈Θ0

(
θ̂ − θ

)T
Σ̂
−1
(
θ̂ − θ

)
and when Θ0 is of the form (44), under H0, we have that Hotelling’s T 2 squared

statistic approximately has distribution k0(M−1)
M−k0 Fk0,M−k0 (see, e.g., [16]), where Fp,q

is the Fisher–Snedecor distribution with degrees of freedom p and q. For asymp-
totic test (4) at confidence level β with Θ0 given by (44), we then reject H0 if

T 2 ≥ k0(M−1)
M−k0 F−1

k0,M−k0(1−β), where F−1
p,q (β) is the β-quantile of the Fisher–Snedecor

distribution.
Now take for Θ0 the convex cone Θ0 = {θ ∈ RV : Aθ ≤ 0}, where A is a k0×V

matrix of full rank k0 (tests (3)(b), (c) are special cases) and assume that M ≥ V +1.
Since the corresponding null hypothesis is θ belongs to a one-sided cone, on the basis
of the sample (θ̃1, . . . , θ̃M ) of θ̂N , we can use [18] and we reject H0 for large values of
the statistic

U(Θ0) = ‖θ̂‖2S − ‖ΠS(θ̂|Θ0)‖2S = ‖θ̂ −ΠS(θ̂|Θ0)‖2S ,
where S = M−1

M Σ̂, ‖x‖S =
√
xTS−1x, and ΠS(x|A) is any point in A minimizing

‖y−x‖S among all y ∈ A. For a type I error of at most 0 < β < 1, knowing that [18]

(46) sup
θ∈Θ0,Σ�0

P
(
U(Θ0) ≥ u

)
≤ Err(u) :=

1

2

[
P
(
GV−1,M−V−1 ≥ u

)
+ P

(
GV,M−V ≥ u

)]
,

where Gm,n = (m/n)Fm,n, we reject H0 if U(Θ0) ≥ uβ , where uβ satisfies β =
Err(uβ) with Err(·) given by (46).

5.2. Nonasymptotic tests.

5.2.1. Risk-neutral case. Let us consider V ≥ 2 optimization problems of
the form (1) with R := E the expectation. In this situation, several papers have
derived nonasymptotic confidence intervals on the optimal value of (1): [19], using
the Talagrand inequality (see [30, 31]); [28, 8], using large-deviation-type results;
[17, 11, 7], using robust stochastic approximation (RSA) [21, 22], stochastic mirror
descent (SMD) [17], and variants of SMD; see also [33]. In all cases, the confidence
interval depends on a sample ξN = (ξ1, . . . , ξN ) of ξ and of parameters. For instance,
the confidence interval [Low(Θ2,Θ3, N), Up(Θ1, N)] with confidence level 1 − β from
[7] obtained using RSA depends on parameters Θ1 = 2

√
ln(2/β), Θ3 = 2

√
ln(4/β),

Θ2 satisfying e1−Θ2
2 + e−Θ2

2/4 = β
4 , and L, M1, M2, D(X ) with D(X ) the maximal

Euclidean distance in X to x1 (the initial point of the RSA algorithm), L a uniform
upper bound on X on the ‖ · ‖2-norm of some selection (say, selection g′(x) ∈ ∂g(x)
at x) of subgradients of g, and M1,M2 < +∞ such that for all x ∈ X it holds that

(47)
(a) E

[
(G(x, ξ)− g(x))2

]
≤ M2

1 ,

(b) E
[
‖G′x(x, ξ)− E[G′x(x, ξ)]‖22

]
≤ M2

2

1This sample is obtained from independent samples ξN,m,v of size N of ξv for m = 1, . . . ,M, v =
1, . . . , V . More precisely, the vth component of θ̃m is the optimal value of the SAA of problem v
obtained taking sample ξN,m,v of ξv .
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for some selection G′x(x, ξ) belonging to the subdifferential ∂xG(x, ξ).
With this notation, on the basis of a sample ξN = (ξ1, . . . , ξN ) of size N of ξ and

of the trajectory x1, . . . , xN of the RSA algorithm, setting

(48) a(Θ, N) =
ΘM1√
N

and b(Θ,X , N) =
K1(X ) + Θ(K2(X )−M1)√

N
,

where the constants K1(X ) and K2(X ) are given by

K1(X ) =
D(X )(M2

2 + 2L2)√
2(M2

2 + L2)
and K2(X ) =

D(X )M2
2√

2(M2
2 + L2)

+ 2D(X )M2 +M1,

the lower bound Low(Θ2,Θ3, N) is

(49) Low(Θ2,Θ3, N) =
1

N

N∑
t=1

G(xt, ξt)− b(Θ2,X , N)− a(Θ3, N)

and the upper bound Up(Θ1, N) is

(50) Up(Θ1, N) =
1

N

N∑
t=1

G(xt, ξt) + a(Θ1, N).

More precisely, we have P(ϑ∗ < Low(Θ2,Θ3, N)) ≤ β/2 and P(ϑ∗ > Up(Θ1, N) ≤ β/2.

Test (3)(a). Using the bounds Low and Up or one of the aforementioned cited
procedures, we can determine for the optimization problem v ∈ {1, . . . , V } (stochastic)
lower and upper bounds on ϑv∗ which we will respectively denote by Lowv and Upv for

short, such that P(ϑv∗ < Lowv) ≤ β
2V and P(ϑv∗ > Upv) ≤

β
2V .

We define for test (3)(a) the rejection region W(3)(a) to be the set of samples
such that the realizations of the confidence intervals [Lowv, Upv], v = 1, . . . , V , on the
optimal values have no intersection, i.e.,

W(3)(a) =

{
(ξN,1, . . . , ξN,V ) :

V⋂
v=1

[
Lowv, Upv

]
= ∅

}
=

{
(ξN,1, . . . , ξN,V ) : max

v=1,...,V
Lowv > min

v=1,...,V
Upv

}
.

If H0 holds, writing ϑ∗ = ϑ1
∗ = ϑ2

∗ = · · · = ϑV∗ , we have

P
(

max
v=1,...,V

Lowv > min
v=1,...,V

Upv

)
= P

(
max

v=1,...,V

[
Lowv − ϑ∗

]
+ max
v=1,...,V

[
ϑ∗ − Upv

]
> 0

)
≤
∑V
v=1

[
P
(
Lowv − ϑv∗ > 0

)
+ P

(
ϑv∗ − Upv > 0

)]
≤ β

and W(3)(a) is a rejection region for (3)(a) yielding a probability of type I error of
at most β. Moreover, as stated in the following lemma, if H0 does not hold and if
two optimal values are sufficiently distant then the probability of accepting H0 will
be small.

Lemma 6. Consider test (3)(a) with rejection region W(3)(a). If for some p, q ∈
{1, . . . , V } with p 6= q we have almost surely ϑp∗ > ϑq∗+ Upp− Lowp + Upq − Lowq, then

the probability of accepting H0 is not larger than β
V .
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Proof. We first check that

(51)


ϑp∗ > ϑq∗ + Upq − Lowq + Upp − Lowp (a)

Lowq ≤ ϑq∗ (b)

ϑp∗ ≤ Upp (c)

⇒ Upq < Lowp.

Indeed, if (51)(a), (b), and (c) hold, then

Upq = Lowq + Upq − Lowq
(51)(b)

≤ ϑq∗ + Upq − Lowq
(51)(a)
< ϑp∗ + Lowp − Upp

(51)(c)

≤ Lowp.

Assume now that ϑp∗ > ϑq∗ + Upq − Lowq + Upp − Lowp. Since Upq < Lowp implies that
H0 is rejected, we get

P
(

reject H0

)
≥ P

(
Upq < Lowp

) (51)

≥ P
({

Lowq ≤ ϑq∗
}⋂{

ϑp∗ ≤ Upp

})
≥ P

(
Lowq ≤ ϑq∗

)
+ P

(
ϑp∗ ≤ Upp

)
− 1 ≥ 1− β

V ,

which achieves the proof of the lemma.

Simlarly, for tests (3)(b) and (c), we respectively define the rejection regions
W(3)(b) and W(3)(c) by

W(3)(b) =
{

(ξN,1, . . . , ξN,V ) : ∃1 ≤ q 6= p ≤ V such that Lowp > Upq
}
,

W(3)(c) =
{

(ξN,1, . . . , ξN,V ) : ∃v ∈ {1, . . . , V − 1} such that Lowv > Upv+1

}
,

yielding a probability of type I error of at most β provided [Lowv, Upv] is a confidence
interval with confidence level at least 1− β/2(V − 1) for problem v:

(52) P(ϑv∗ < Lowv) ≤ β/2(V − 1) and P(ϑv∗ > Upv) ≤ β/2(V − 1).

Similarly to Lemma 6, we can bound from above the probability of type I error for
test (3)(b) if ϑp∗ > ϑq∗ + Upp − Lowp + Upq − Lowq almost surely and for test (3)(c) if

ϑv∗ > ϑv+1
∗ + Upv − Lowv + Upv+1 − Lowv+1 almost surely.

Remark 5. Though Low and Up are stochastic, for bounds (49) and (50), the dif-
ference Up−Low = a(Θ1, N)+b(Θ2,X , N)+a(Θ3, N) is deterministic and inequalities
ϑp∗ > ϑq∗+Upp−Lowp+Upq−Lowq in Lemma 6 and ϑv∗ > ϑv+1

∗ +Upv−Lowv +Upv+1−
Lowv+1 are deterministic too.

5.2.2. Risk-averse case. Consider K ≥ 2 optimization problems of the form
(1). For such problems, nonasymptotic confidence intervals [Low, Up] on the optimal
value ϑ∗ were derived in [7] and [11] using RSA and SMD, taking for R an extended
polyhedral risk measure (introduced in [9]) in [7] and R = AVaRα and G(x, ξ) = ξ>x
in [11]. With such confidence intervals at hand, we can use the developments of
the previous section for testing hypotheses (3). However, the analysis in [7] assumes
boundedness of the feasible set of the optimization problem defining the risk measure;
an assumption that can be enforced for risk measure R given by (53). We provide
in this situation formulas for the constants L, M1, and M2 defined in the previous
section, necessary to compute the bounds from [7]. These constants are slightly
refined versions of the constants given in section 4.2 of [11] for the special case in
which R = AVaRα and G(x, ξ) = ξ>x.
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We assume here that the set Ξ is compact, G(·, ·) is continuous, for every x ∈ X
the distribution of Gx is continuous, and that the set W = {w} is a singleton, i.e.,

(53) R(Z) = w0E[Z] +

k∑
i=1

wiAVaRαi
(Z)

for some w ∈ ∆k+1. Consequently problem (1) can be written as

(54) ϑ∗ = inf
(x,τ)∈X×Rk

{
E[φ(Gx, τ)] = E[H(x, τ, ξ)]

}
,

where φ(Gx, τ) is defined in (10), with vector w omitted, and

H(x, τ, ξ) := w0G(x, ξ) +

k∑
i=1

wi

(
τi +

1

1− αi
[G(x, ξ)− τi]+

)
.

For a given x ∈ X the minimum in (54) is attained at τi = F−1
x (αi), i = 1, . . . , k,

where Fx is the c.d.f. of Gx. Therefore, using the lower and upper bounds from [11]
for the quantile of a continuous distribution with finite mean and variance, we can
restrict τ to the compact set T = [

¯
τ , τ̄ ] ⊂ Rk, where

(55) ¯
τ i = minx∈X E[Gx]−

√
1−αi

αi

√
maxx∈X Var(Gx),

τ̄i = maxx∈X E[Gx] +
√

αi

1−αi

√
maxx∈X Var(Gx)

for i = 1, . . . , k. This implies that we can take D(X × T ) =
√
D(X )2 + ‖τ̄ −

¯
τ‖22.

Computation of M1. Setting

M0 := max
(x,ξ)∈X×Ξ

G(x, ξ) and m0 := min
(x,ξ)∈X×Ξ

G(x, ξ),

we have for (x, τ) ∈ X×T that |Gx−E[Gx]| ≤M0−m0 and |[Gx−τi]+−E[Gx−τi]+| ≤
M0 −

¯
τ i, which implies that almost surely

|φ(Gx, τ)− E[φ(Gx, τ)]| ≤M1 := w0(M0 −m0) +

k∑
i=1

wi
1− αi

(M0 −
¯
τ i).

Computation of M2 and L. We have H ′x,τ (x, τ, ξ) = [H ′x(x, τ, ξ);H ′τ (x, τ, ξ)]
with

H ′x(x, τ, ξ) = w0G
′
x(x, ξ) +

∑k
i=1

wi

1−αi
G′x(x, ξ)1G(x,ξ)≥τi ,

H ′τ (x, τ, ξ) = (wi(1− 1
1−αi

1G(x,ξ)≥τi))i=1,...,k.

We assume that for every x ∈ X the stochastic subgradients G′x(x, ξ) are almost surely
bounded and we denote by m and M vectors such that almost surely m ≤ G′x(x, ξ) ≤
M . Then, for (x, τ) ∈ X × T , setting bi = max(w0M i, (w0 +

∑k
j=1

wj

1−αj
)M i) and

ai = min(w0mi, (w0 +
∑k
j=1

wj

1−αj
)mi), we have

‖E[H ′x,τ (x, τ, ξ)]‖22 ≤ L2 :=
∑m
i=1 max(a2

i , b
2
i ) +

∑k
i=1 w

2
i max

(
1,

α2
i

(1−αi)2

)
,

E‖H ′x,τ (x, τ, ξ)− E[H ′x,τ (x, τ, ξ)]‖22 ≤M2
2 :=

∑m
i=1(ai − bi)2 +

∑k
i=1

(
wi

1−αi

)2

.

In some cases, the above formulas for τ̄ ,
¯
τ , L, M1, and M2 can be simplified, as is

shown by the following example.
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Example 3. Let k = 1 in (53) and G(x, ξ) = ξTx, where ξ is a random vector
with mean µ and covariance matrix Σ. In this case minx∈X E[Gx] and maxx∈X E[Gx]
are convex optimization problems with linear objective functions and, denoting by
U1 the quantity maxx∈X ‖x‖1 or an upper bound on this quantity, we can replace
maxx∈X Var(Gx) by U2

1 maxi Σ(i, i) in the expressions of
¯
τ i and τ̄ i. Computing M0

and m0 also amounts to solving convex optimization problems with linear objective.
Assume also that almost surely ‖ξ‖∞ ≤ U2 for some 0 < U2 < +∞. We have
|Gx−E[Gx]| ≤ 2U1U2 and |[Gx− τ ]+−E[Gx− τ ]+| ≤ U1U2−

¯
τ , which shows that we

can take M1 = 2w0U1U2 + w1

1−α1
(U1U2−

¯
τ). We have E[H ′τ (x, τ, ξ)] = w1(1− P(ξT x≥τ)

1−α1
)

so that |E[H ′τ (x, τ, ξ)]| ≤ w1 max(1, α1

1−α1
) and ‖E[H ′x(x, τ, ξ)]‖22 ≤ m(w0 + w1

1−α1
)2U2

2 ,
i.e., we can take

L2 = w2
1 max

(
1,

α2
1

(1− α1)2

)
+m

(
w0 +

w1

1− α1

)2

U2
2 .

Next, for all ξ0 ∈ Ξ we have

|H ′τ (x, τ, ξ0)− E[H ′τ (x, τ, ξ)]| = w1(1−P(ξT x≥τ))
1−α1

if ξT0 x ≥ τ,
= w1P(ξT x≥τ)

1−α1
otherwise,

implying that |H ′τ (x, τ, ξ0)− E[H ′τ (x, τ, ξ)]| ≤ w1

1−α1
.

Since ‖H ′x(x, τ, ξ0)−E[H ′x(x, τ, ξ)]‖∞ is bounded from above by 2(w0 + w1

1−α1
)U2,

we can take

M2
2 =

w2
1

(1− α1)2
+ 4m

(
w0 +

w1

1− α1

)2

U2
2 .

In the special case in which X = {x∗} is a singleton, defining η = ξTx∗, we have
ϑ∗ = R(η), H(x, τ, ξ) = H(x∗, τ, ξ), H

′
x(x, τ, ξ) = 0 almost surely and the above

computations show that we can take

(56) L = w1 max(1, α1

1−α1
), M1 = w0(b0 − a0) + w1

1−α1
(b0 −

¯
τ), and M2 = w1

1−α1
,

where
¯
τ = E[η]−

√
1−α1

α1

√
Var(η) with a0, b0 satisfying a0 ≤ η ≤ b0 almost surely.

Discussion: Asymptotic versus nonasymptotic tests and confidence in-
tervals for the optimal value of (1). The nonasymptotic tests of this and the
previous section do not require the independence of ξN,1, . . . , ξN,V and are valid for
any sample size N . On the contrary, the asymptotic tests are valid as the sample
size N goes to infinity and theory does not tell us for which values of N the Gaus-
sian distribution “approximates well” the optimal value of SAA (2) of (1). Moreover,
experiments in [8] and in the next section show that this value of N depends on
dimension m of x.

A (known) drawback of nonasymptotic confidence bounds is their conservative-
ness. On the one hand, this conservativeness allows us, when the sample size N is not
much larger than problem dimension m, to provide confidence sets of the prescribed
risk, which asymptotic confidence intervals (based on the CLT of section 3) fail to
do; see [8]. On the other hand, for testing problems (3), (4), nonasymptotic rejection
regions can lead to large probabilities of type II errors. Even if the asymptotic tests
of section 5.1 are valid as the sample size tends to infinity, they can work well in prac-
tice for small sample sizes (N = 20) and problems of small to moderate size (m up to
500); see the numerical simulations of section 6. The derivation of less conservative
nonasymptotic confidence sets (especially the lower bound) is an interesting future
research goal.
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6. Numerical experiments.

6.1. Comparing the risk of two distributions: Test (3) with a singleton
for X . We consider test (3) with V = 2 and X a singleton. We use the rejection
regions given in section 5.2 (resp., given by (43)) in the nonasymptotic (resp., asymp-
totic) case. In this situation, the test aims at comparing the risk of two distributions.
We use the notation N (m0, σ

2; a0, b0) for the normal distribution with mean m0 and
variance σ2 conditional on this random variable being in [a0, b0] (truncated normal dis-
tribution with support [a0, b0]). More precisely, we compare the risks R(ξ1) and R(ξ2)
of two truncated normal (loss) distributions ξ1 and ξ2 with support [a0, b0] = [0, 30]
in three cases: (I) ξ1 ∼ N (10, 1; 0, 30), ξ2 ∼ N (20, 1; 0, 30), (II) ξ1 ∼ N (5, 1; 0, 30),
ξ2 ∼ N (10, 25; 0, 30), and (III) ξ1 ∼ N (10, 49; 0, 30), ξ2 ∼ N (14, 0.25; 0, 30). For these
three cases, the densities of ξ1 and ξ2 are represented in Figure 1 (left for (I), middle
for (II), right for (III)).
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Fig. 1. Densities of truncated normal loss distributions ξ1 and ξ2. Left plot: ξ1 ∼ N (10, 1; 0, 30)
and ξ2 ∼ N (20, 1; 0, 30). Middle plot: ξ1 ∼ N (5, 1; 0, 30) and ξ2 ∼ N (10, 25; 0, 30). Right plot:
ξ1 ∼ N (10, 49; 0, 30) and ξ2 ∼ N (14, 0.25; 0, 30).

We take for R the risk measure R(ξ) = w0E[ξ] + w1AVaRα(ξ) for 0 < α < 1,
where w0, w1 ≥ 0 with w0 + w1 = 1. We assume that only the support [a0, b0] of ξ1
and ξ2 and two samples ξN1 and ξN2 of size N of ξ1 and ξ2, respectively, are known.
Since the distribution of ξ has support [a0, b0], we can write

(57) R(ξ) = min
τ∈[a0,b0]

w0E[ξ] + w1

(
τ +

1

1− α
E[ξ − τ ]+

)
,

which is of the form (1) with a risk-neutral objective function, G(τ, ξ) = w0ξ+w1τ +
w1

1−α [ξ − τ ]+, and X the compact set X = [a0, b0] = [0, 30].
It follows that the RSA algorithm can be used to estimate R(ξ1) and R(ξ2) and

to compute the confidence bounds (49) and (50) with L, M1, and M2 given by (56).
In these formulas, we replace

¯
τ by its lower bound 0 since we do not assume that the

mean and standard deviation of ξ1 and ξ2 are known. We obtain L = w1 max(1, α
1−α ),

M2 = w1

1−α , and M1 = 30(w0 + w1

1−α ).
Let us first consider Case (I). We illustrate Corollary 3 computing the empir-

ical estimation R(F̂N,1) of R(ξ1) on 200 samples of size N of ξ1 ∼ N (10, 1; 0, 30)
for w0 = 0.1, w1 = 0.9, and various values of α and of the sample size N . For this
experiment, the QQ-plots of the empirical distribution of R(F̂N,1) versus the normal
distribution with parameters the empirical mean and standard deviation of this em-
pirical distribution are reported in the supplementary materials of this article. We see
that even for small values of 1−α and N as small as 20, the distribution of R(F̂N,1)
is well approximated by a Gaussian distribution: for N = 20 the Jarque–Bera test
accepts the hypothesis of normality at the significance level 0.05 for 1−α = 0.01 and
1− α = 0.5.
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Table 1
Estimation of the risk measure value R(ξ1) for ξ1 ∼ N (10, 1; 0, 30) using SAA and RSA for

various values of (w0, w1, α) and various sample sizes N .

Sample size N

(w0, w1) 1− α Method 20 50 102 103 104 105 106

(0.1, 0.9) 10−2 SAA 11.71 12.00 12.21 12.37 12.40 12.40 12.40

(0.1, 0.9) 10−2 RSA 14.35 14.26 14.16 13.46 12.75 12.51 12.43

(0.1, 0.9) 0.1 SAA 11.51 11.50 11.54 11.58 11.58 11.58 11.58

(0.1, 0.9) 0.1 RSA 20.50 16.78 15.10 12.61 11.90 11.68 11.61

(0.1, 0.9) 0.5 SAA 10.71 10.69 10.72 10.72 10.72 10.72 10.72

(0.1, 0.9) 0.5 RSA 11.42 11.12 11.02 10.81 10.75 10.73 10.72

(0.9, 0.1) 10−2 SAA 10.19 10.23 10.25 10.26 10.27 10.27 10.27

(0.9, 0.1) 10−2 RSA 10.49 10.48 10.47 10.38 10.31 10.28 10.27

(0.9, 0.1) 0.1 SAA 10.17 10.16 10.19 10.18 10.18 10.18 10.18

(0.9, 0.1) 0.1 RSA 10.34 10.28 10.27 10.20 10.18 10.18 10.18

(0.9, 0.1) 0.5 SAA 10.09 10.07 10.08 10.08 10.08 10.08 10.08

(0.9, 0.1) 0.5 RSA 10.17 10.11 10.12 10.09 10.08 10.08 10.08

We fix again the distribution ξ1 ∼ N (10, 1; 0, 30) and approximately compute
R(ξ1) for various values of (w0, w1, α,N) using the RSA and SAA methods on samples
ξN1 of size N of ξ1. For a sample of size N of ξ1, let R̂N, RSA(ξ1) and R̂N, SAA(ξ1) =

R(F̂N,1) be these estimations using RSA and SAA, respectively. For fixed (w0, w1,
α,N), we generate 200 samples of size N of ξ1 and for each sample we compute
R̂N, RSA(ξ1) and R̂N, SAA(ξ1) and report in Table 1 the average of these values for
N ∈ {20, 50, 100, 103, 104, 105, 106}. Considering that R(ξ1) is the value obtained
using SAA for N = 106, we observe that RSA correctly approximates R(ξ1) as N
grows and that the estimation of E[R̂N,SAA(ξ1)] (resp., E[R̂N,RSA(ξ1)]) increases (resp.,
decreases) with the sample size N , as expected. We also naturally observe that the
more weight is given to the AVaR and the smaller 1 − α, the more difficult it is to
estimate the risk measure, i.e., the more distant the expectation of the approximation
is to the optimal value and the larger the sample size needs to be to obtain an expected
approximation with given accuracy.

We now study for Case (I) the test

(58) H0 : R(ξ1) = R(ξ2) against H1 : R(ξ1) 6= R(ξ2).

We first fix (w0, w1) = (0.1, 0.9) and report in Tables 2 and 3 for various values of the
pair (α,N) the average nonasymptotic and asymptotic confidence bounds for R(ξ1)
and R(ξ2) when ξ1 ∼ N (10, 1; 0, 30) and ξ2 ∼ N (20, 1; 0, 30).2 We observe that even
for small values of the sample size and of the confidence level 1 − α, the asymptotic
confidence interval is of small width and its bounds are close to the risk measure
value. For RSA, a large sample is needed to obtain a confidence interval of small
width, especially when 1− α is small.

2The nonasymptotic confidence interval is given by (49), (50). Recalling that R(ξ) is the optimal
value of optimization problem (57), which is of the form (1), we compute for R(ξ) the asymptotic

confidence interval [ϑ̂N −Φ−1(1− β/2) ν̂N√
N
, ϑ̂N + Φ−1(1− β/2) ν̂N√

N
], where ϑ̂N is the optimal value

of the SAA of (57). See also [12, 14] for the computation of asymptotic confidence intervals on the
optimal value of a risk-neutral optimization problem (observe that for reformulation (57) of the risk
measure, the objective is risk-neutral). Note that in this case the optimal value τ̂N of the SAA
problem is the α-quantile of the distribution of ξ (no optimization step is necessary to solve the SAA
problem).
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Table 2
Average values of the asymptotic and nonasymptotic confidence bounds for R(ξ1) and R(ξ2)

when ξ1 ∼ N (10, 1; 0, 30) and ξ2 ∼ N (20, 1; 0, 30), 1 − α = 0.1. For R(ξi), the average asymptotic
confidence interval is [L-Ai, U-Ai] and the average nonasymptotic confidence interval is [L-NAi, U-NAi].

N L-A1 U-A1 L-NA1 U-NA1 L-A2 U-A2 L-NA2 U-NA2

50 11.20 11.94 -347 146 21.30 21.97 -335 158

103 11.49 11.67 -68.65 41.71 21.49 21.67 -58.37 51.99

104 11.55 11.61 -13.79 21.11 21.55 21.61 -3.71 31.19

105 11.57 11.59 3.56 14.59 21.57 21.59 13.58 24.62

1.5×105 11.57 11.59 5.03 14.04 21.57 21.59 15.05 24.06

Table 3
Average values of the asymptotic and nonasymptotic confidence bounds for R(ξ1) and R(ξ2)

when ξ1 ∼ N (10, 1; 0, 30) and ξ2 ∼ N (20, 1; 0, 30), 1 − α = 0.5. For R(ξi), the average asymptotic
confidence interval is [L-Ai, U-Ai] and the average nonasymptotic confidence interval is [L-NAi, U-NAi].

N L-A1 U-A1 L-NA1 U-NA1 L-A2 U-A2 L-NA2 U-NA2

50 10.45 10.98 -230.29 40.16 20.47 21.00 -220.25 50.21

103 10.65 10.77 -43.18 17.30 20.65 20.77 -33.18 27.29

104 10.70 10.74 -6.33 12.80 20.70 20.74 3.68 22.80

105 10.71 10.72 5.33 11.38 20.71 20.72 15.33 21.38

1.5×105 10.71 10.72 6.32 11.26 20.71 20.72 16.32 21.25

For all the remaining tests of this section, we choose β = 0.1 for the maximal type I
error and 1−α = 0.1. Since in Case (I) we haveR(ξ1) 6= R(ξ2) (see Figure 1), from this
experiment we expect to obtain a large probability of type II error using the nonasymp-
totic tests of section 5.2 based on the confidence intervals computed using RSA, unless
the sample size is very large. More precisely, we compute the probability of type II
error3 for (58) considering asymptotic and nonasymptotic rejection regions using var-
ious sample sizes N ∈ {20, 50, 100, 1 000, 5 000, 10 000, 20 000, 50 000, 100 000, 130 000,
150 000}, taking 1 − α = 0.1 and (w0, w1) ∈ {(0, 1), (0.1, 0.9), (0.2, 0.8), (0.3, 0.7),
(0.4, 0.6), (0.5, 0.5), (0.6, 0.4), (0.7, 0.3), (0.8, 0.2), (0.9, 0.1)}. For fixed N , the proba-
bility of type II error is estimated using 100 samples of size N of ξ1 and ξ2. Using
the asymptotic rejection region, we reject H0 for all realizations and all parameter
combinations, meaning that the probability of type II error is null (since H1 holds for
all parameter combinations). For the nonasymptotic test, the probabilities of type II
errors are reported in Table 4. For sample sizes less than 5 000, the probability of type
II error is always 1 (the nonasymptotic test always takes the wrong decision) and the
larger w1 the larger the sample size N needs to be to obtain a probability of type II
error of zero. In particular, if w1 = 1 (we estimate the AVaRα of the distribution) as
much as 150 000 observations are needed to obtain a null probability of type II error.
However, if the sample size is sufficiently large, both tests always take the correct
decision R(ξ1) 6= R(ξ2).

Given (possibly small) samples of size N of ξ1 and ξ2, to know which of the two
risks R(ξ1) and R(ξ2) is the smallest, we now consider the test

(59) H0 : R(ξ1) ≥ R(ξ2) against H1 : R(ξ1) < R(ξ2).

Computing R(ξ1) and R(ξ2) with a very large sample (of size 106) of ξ1 and ξ2

3All computed probabilities of type II error are empirical probabilities. However, for short, we
will use in what follows the term probabilities of type II error.
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Table 4
Empirical probabilities of type II error for tests (58) and (59) using a nonasymptotic rejection

region when ξ1 ∼ N (10, 1; 0, 30), ξ2 ∼ N (20, 1; 0, 30), and 1− α = 0.1.

Sample size N

(w0, w1) 5 000 10 000 20 000 50 000 100 000 130 000 150 000

(0.0, 1.0) 1 1 1 1 1 1 0

(0.1, 0.9) 1 1 1 1 1 0 0

(0.2, 0.8) 1 1 1 1 0 0 0

(0.3, 0.7) 1 1 1 1 0 0 0

(0.4, 0.6) 1 1 1 1 0 0 0

(0.5, 0.5) 1 1 1 0 0 0 0

(0.6, 0.4) 1 1 1 0 0 0 0

(0.7, 0.3) 1 1 0 0 0 0 0

(0.8, 0.2) 1 0 0 0 0 0 0

(0.9, 0.1) 0 0 0 0 0 0 0

either with SAA or RSA or looking at Figure 1, we know that R(ξ1) < R(ξ2). We
again analyze the probability of type II error using the asymptotic and nonasymptotic
rejection regions when the decision is taken on the basis of a much smaller sample.
For the nonasymptotic test, the empirical probabilities of type II error for various
sample sizes (estimated, for fixed N , using 100 samples of size N of ξ1 and ξ2) are
exactly those obtained for test (58) and are given in Table 4. The asymptotic test
again always takes the correct decision R(ξ1) < R(ξ2) while a large sample size is
needed to always take the correct decision using the nonasymptotic test (as large as
150 000 for w1 = 1).

We now consider tests (58) and (59) for Case (II). In this case, there is a larger
overlap between the distributions of ξ1 and ξ2. However, from Figure 1 and computing
R(ξ1) and R(ξ2) with a very large sample (say of size 106) of ξ1 and ξ2 either using
SAA or RSA, we check that we have again R(ξ2) > R(ξ1) for all values of (w0, w1).
The empirical probabilities of type II error are null for the asymptotic test for all
sample sizes N tested while, for the nonasymptotic test, the probabilities of type
II error are given in Table 5 for both tests (58) and (59). As a result, here again,
the asymptotic test always takes the correct decision R(ξ1) < R(ξ2) while a large
sample size is needed to always take the correct decision using the nonasymptotic
test (as large as 110 000 for w1 = 1). For sample sizes less than 10 000, the empirical
probability of type II error with the nonasymptotic test is 1. We see that for fixed
(w0, w1), in most cases, we need a larger sample size than in Case (I) to have a null
probability of type II error, due the overlap of the two distributions.

We finally consider Case (III), where the choice between ξ1 and ξ2 is more
delicate and depends on the pair (w0, w1). In this case, we have (see Figure 1)
E[ξ2] > E[ξ1] and AVaRα(ξ2) < AVaRα(ξ1) for 1 − α = 0.1. It follows that for pairs
(w0, w1) summing to one, when

0 ≤ w0 < wCrit =
AVaRα(ξ1)− AVaRα(ξ2)

E[ξ2]− E[ξ1] + AVaRα(ξ1)− AVaRα(ξ2)
,

we have R(ξ2) < R(ξ1) and, for w0 > wCrit, we have R(ξ2) > R(ξ1). The empirical
estimation of wCrit (estimated using a sample of size 106) is 0.71. For w0 close to wCrit,
R(ξ1) and R(ξ2) are close and the probability of type II error for test (58) can be large
even for the asymptotic test if the sample size is not sufficiently large. More precisely,
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Table 5
Empirical probabilities of type II error for tests (58) and (59) using a nonasymptotic rejection

region when ξ1 ∼ N (5, 1; 0, 30), ξ2 ∼ N (10, 25; 0, 30), and 1− α = 0.1.

Sample size N

(w0, w1) 10 000 20 000 50 000 100 000 110 000

(0.0, 1.0) 1 1 1 1 0

(0.1, 0.9) 1 1 1 0 0

(0.2, 0.8) 1 1 1 0 0

(0.3, 0.7) 1 1 1 0 0

(0.4, 0.6) 1 1 1 0 0

(0.5, 0.5) 1 1 1 0 0

(0.6, 0.4) 1 1 0 0 0

(0.7, 0.3) 1 1 0 0 0

(0.8, 0.2) 1 1 0 0 0

(0.9, 0.1) 0.06 0 0 0 0

Table 6
Empirical probabilities of type II error for test (58) using an asymptotic rejection region when

ξ1 ∼ N (10, 49; 0, 30), ξ2 ∼ N (14, 0.25; 0, 30), and 1− α = 0.1.

Sample size N

(w0, w1) 20 50 100 200 500 1000 2000 5000

(0.0, 1.0) 0.13 0.01 0 0 0 0 0 0

(0.1, 0.9) 0.24 0 0 0 0 0 0 0

(0.2, 0.8) 0.32 0.03 0 0 0 0 0 0

(0.3, 0.7) 0.50 0.07 0 0 0 0 0 0

(0.4, 0.6) 0.61 0.11 0 0 0 0 0 0

(0.5, 0.5) 0.71 0.46 0.11 0.01 0 0 0 0

(0.6, 0.4) 0.86 0.69 0.50 0.28 0.01 0 0 0

(0.7, 0.3) 0.83 0.85 0.90 0.91 0.87 0.89 0.69 0.53

(0.8, 0.2) 0.71 0.71 0.65 0.29 0.07 0 0 0

(0.9, 0.1) 0.57 0.34 0.09 0 0 0 0 0

for the asymptotic test, when (w0, w1) = (0.7, 0.3), the empirical probabilities of type
II error are given in Table 6 for N ∈ {20, 50, 100, 200, 500, 1 000, 2 000, 5000}, and are
0.28, 0.11, 0.01, and 0 for N = 10 000, 20 000, 40 000, and 45 000, respectively. For the
remaining values of w0 the empirical probabilities of type II error are given in Table 6
for the asymptotic test. For the nonasymptotic test, the empirical probabilities of
type II error for test (58) are given in Table 7. It is seen that much larger sample
sizes are needed in this case to obtain a small probability of type II error. However,
for the sample size N = 5×106, the nonasymptotic test still always takes the wrong
decision for the difficult case w0 = 0.7.

For w0 < wCrit with w0 ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, we are interested in
the probability of type II error of the test

(60) H0 : R(ξ2) ≥ R(ξ2) against H1 : R(ξ2) < R(ξ1)

since H1 holds in this case. Using the asymptotic rejection region, except for the
difficult case w0 = 0.7 where the probability of type II error is still positive for
N = 30 000, the empirical probability of type II error is null for small to moderate
(at most 1 000) sample sizes; see Table 8. Using the nonasymptotic rejection region,
much larger sample sizes are necessary to obtain a small probability of type II error;
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Table 7
Empirical probabilities of type II error for test (58) using a nonasymptotic rejection region

when ξ1 ∼ N (10, 49; 0, 30), ξ2 ∼ N (14, 0.25; 0, 30), and 1− α = 0.1.

Sample size N

(w0, w1) 100 000 300 000 500 000 700 000 106 5×106

(0.0, 1.0) 1 0.83 0 0 0 0

(0.1, 0.9) 1 1 0 0 0 0

(0.2, 0.8) 1 1 0 0 0 0

(0.3, 0.7) 1 1 0 0 0 0

(0.4, 0.6) 1 1 1 0 0 0

(0.5, 0.5) 1 1 1 1 0 0

(0.6, 0.4) 1 1 1 1 1 0

(0.7, 0.3) 1 1 1 1 1 1

(0.8, 0.2) 1 1 1 1 1 0

(0.9, 0.1) 0 0 0 0 0 0

Table 8
Empirical probabilities of type II error for test (60) using an asymptotic rejection region when

ξ1 ∼ N (10, 49; 0, 30), ξ2 ∼ N (14, 0.25; 0, 30), and 1− α = 0.1.

Sample size N

(w0, w1) 20 100 200 1 000 5 000 10 000 30 000 50 000

(0.0, 1.0) 0.11 0 0 0 0 0 0 0

(0.1, 0.9) 0.26 0 0 0 0 0 0 0

(0.2, 0.8) 0.28 0 0 0 0 0 0 0

(0.3, 0.7) 0.35 0 0 0 0 0 0 0

(0.4, 0.6) 0.51 0 0 0 0 0 0 0

(0.5, 0.5) 0.66 0.2 0.01 0 0 0 0 0

(0.6, 0.4) 0.83 0.53 0.22 0 0 0 0 0

(0.7, 0.3) 0.87 0.88 0.90 0.81 0.61 0.39 0.05 0

see Table 9.
For w0 > wCrit with w0 ∈ {0.8, 0.9}, we are interested in the probability of type

II error for test (59) since H1 holds in this case. The probability of type II error for
this test using the nonasymptotic rejection region is 1 (resp., 0) for (N,w0, w1) =
(106, 0.8, 0.2) (resp., (N,w0, w1) = (106, 0.9, 0.1)), and null for (N,w0, w1) = (5×106,
0.8, 0.2), (5×106, 0.9, 0.1), meaning that we always take the correct decision R(ξ1) <
R(ξ2) for N = 5×106 and (w0, w1) = (0.8, 0.2), (0.9, 0.1). Using the asymptotic
rejection region, the probabilities of type II errors are null already for N = 1 000. For
N = 100, we get probabilities of type II error of 0.09 and 0.42 for (w0, w1) = (0.8, 0.2)
and (w0, w1) = (0.9, 0.1), respectively.

6.2. Tests on the optimal value of two risk-averse stochastic programs.
We illustrate the results of section 3 on the risk-averse problem
(61)

minw0E[
∑m
i=1 ξixi] + w1

(
x0 + E

[
1

1−α [
∑m
i=1 ξixi − x0]+

])
+ λ0‖[x0;x1; · · · ;xm]‖22 + c0

−1 ≤ x0 ≤ 1,
∑m
i=1 xi = 1, xi ≥ 0, i = 1, . . . ,m,
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Table 9
Empirical probabilities of type II error for test (60) using a nonasymptotic rejection region

when ξ1 ∼ N (10, 49; 0, 30), ξ2 ∼ N (14, 0.25; 0, 30), and 1− α = 0.1.

Sample size N

(w0, w1) 300 000 400 000 500 000 700 000 900 000 2×106 5×106

(0.0, 1.0) 0 0 0 0 0 0 0

(0.1, 0.9) 0.85 0 0 0 0 0 0

(0.2, 0.8) 1 0 0 0 0 0 0

(0.3, 0.7) 1 1 0 0 0 0 0

(0.4, 0.6) 1 1 1 0 0 0 0

(0.5, 0.5) 1 1 1 1 0 0 0

(0.6, 0.4) 1 1 1 1 1 0.75 0

(0.7, 0.3) 1 1 1 1 1 1 1

Table 10
Definition of instances I1, I2, I3, I4, I5, and I6 of problem (61) (Ψ1 and Ψ2 are vectors with

entries drawn independently and randomly over [0, 1]).

Instance (w0, w1, 1− α, λ0) c0 m (P(ξi = 1))i

I1 (0.9, 0.1, 0.1, 2) 0 100 Ψ1

I2 (0.9, 0.1, 0.1, 2) 0 100 0.8Ψ1

I3 (0.9, 0.1, 0.1, 2) −3 100 0.8Ψ1

I4 (0.9, 0.1, 0.1, 2) 0 500 Ψ2

I5 (0.9, 0.1, 0.1, 2) 0 500 0.8Ψ2

I6 (0.9, 0.1, 0.1, 2) −3 500 0.8Ψ2

where ξ is a random vector with i.i.d. Bernoulli entries: P(ξi = 1) = Ψi, P(ξi = −1) =
1 − Ψi, with Ψi randomly drawn over [0, 1].4 This problem amounts to minimizing
a linear combination of the expectation and the AVaRα of

∑m
i=1 ξixi plus a penalty

obtained taking λ0 > 0. Therefore, it has a unique optimal solution. SAA formulation
of this problem as well as the quadratic problems of each iteration of RSA were
solved numerically using the MOSEK optimization toolbox [1]. We will again use
the rejection regions given in section 5.2 (resp., given by (43)) in the nonasymptotic
(resp., asymptotic) case.

To illustrate Theorem 2, for several instances of this problem, we report in the
supplementary materials of this article the QQ-plots of the empirical distribution of
the SAA optimal value for problem (61) versus the normal distribution with param-
eters the empirical mean and standard deviation of this empirical distribution for
various sample sizes N . We observe again that this distribution is well approximated
by a Gaussian distribution even when the sample size is small (N = 20): For all prob-
lem sizes (m = 100, m = 500, m = 103, and m = 104) and the smallest sample size
tested (N = 20), the Jarque–Bera test accepts the null hypothesis (the data comes
from a normal distribution with unknown mean and variance) at the 5% significance
level.

We now define in Table 10 six instances I1, I2, I3, I4, I5, and I6 of problem (61).

4Of course c0 can be ignored to solve the problem. However, it will be used to define several
instances and test the equality about their optimal values.
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Table 11
Average approximate optimal value of instance I2 (computed using 100 samples of ξN ) using

SAA and RSA for various sample sizes N .

Method N = 20 N = 50 N = 102 N = 103 N = 104 N = 105

SAA -0.7205 -0.6965 -0.6883 -0.6799 -0.6791 -0.6791

RSA -0.4615 -0.5274 -0.5646 -0.6389 -0.6654 -0.6738

We first compare the estimation of the optimal value of I2 using RSA and SAA.
For the RSA algorithm, we take ‖ · ‖ = ‖ · ‖2 = ‖ · ‖∗ and (see [7])

M1 = 2

(
w0 +

w1

1− α

)
,

L =

√(
w1α

1− α

)2

+m

(
w0 +

w1

1− α

)2

+ 2λ0,

M2 =

√(
w1

1− α

)2

+ 4m

(
w0 +

w1

1− α

)2

.

The average approximate optimal value of instance I2 (averaging taking 100 samples
of ξN ) using RSA and SAA is given in Table 11 for various sample sizes N . These
values increase (resp., decrease) with the sample size for SAA (resp., RSA). With
SAA, the optimal value is already well approximated with small sample sizes while
large samples are needed to obtain a good approximation with RSA. We also report in
Table 12 the average values of the asymptotic and nonasymptotic confidence bounds
(computed using 100 samples of ξN ) on the optimal values of instances I1 and I2 and
various sample sizes.5 Knowing that the optimal values of I1 and I2, estimated using
SAA with a sample of size 106, are, respectively, ϑ1 = −0.6515 and ϑ2 = −0.6791, we
observe that the asymptotic confidence interval is in mean much closer to the optimal
value and of small width while large samples are needed to obtain a nonasymptotic
confidence interval of small width. However, the confidence bounds on the optimal
value obtained using RSA are almost independent of the problem size and, as for the
one-dimensional problem of the previous section, the sample size N = 105 provides
confidence intervals of small width and allows us to have small probabilities of type
I and type II errors for nonasymptotic tests on the optimal value of two instances of
(61) if their optimal values are sufficiently distant (see Lemma 6). To check that and
the superiority of the asymptotic tests for problems of moderate sizes (m = 100 and
m = 500), we compare the empirical probabilities of type II error of several tests of
form (3) with K = 2 for which H1 holds and where ϑi is the optimal value of instance
Ii.

More precisely, the empirical probabilities of type II error of asymptotic and
nonasymptotic tests of form

(62) H0 : ϑp = ϑq against H1 : ϑp 6= ϑq,

are reported in Table 13 (for all these tests, we check that H1 holds computing ϑv

5The nonasymptotic confidence interval is [Low(Θ2,Θ3, N), Up(Θ1, N)] with Low(Θ2,Θ3, N),

Up(Θ1, N) given by (49), (50) and Θ1 = 2
√

ln(2/β), Θ3 = 2
√

ln(4/β), and Θ2 satisfying

e1−Θ2
2 + e−Θ2

2/4 = β/4. The asymptotic confidence interval for (61) is [ϑ̂N −Φ−1(1−β/2) ν̂N√
N
ϑ̂N +

Φ−1(1− β/2) ν̂N√
N

].
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Table 12
Average values of the asymptotic and nonasymptotic confidence bounds (computed using 100

samples of ξN ) for instances I1 and I2 and various sample sizes. For instance Ii, the average
asymptotic confidence interval is [L-Ai, U-Ai] and the average nonasymptotic confidence interval is
[L-NAi, U-NAi].

N L-A1 U-A1 L-NA1 U-NA1 L-A2 U-A2 L-NA2 U-NA2

20 -0.7207 -0.6666 -95.7926 2.5227 -0.7443 -0.6967 -95.8354 2.4799

50 -0.6888 -0.6475 -60.8057 1.3743 -0.7148 -0.6781 -60.8472 1.3329

102 -0.6752 -0.6444 -43.1779 0.7900 -0.7019 -0.6746 -43.2171 0.7508

103 -0.6573 -0.6474 -14.0952 -0.1913 -0.6843 -0.6755 -14.1269 -0.2230

104 -0.6532 -0.6501 -4.9019 -0.5051 -0.6805 -0.6777 -4.9307 -0.5339

105 -0.6520 -0.6510 -1.9947 -0.6043 -0.6796 -0.6787 -2.0226 -0.6322

Table 13
Empirical probabilities of type II error for tests of form (62).

Sample size N

H0 H1 Test type 20 50 102 103 104 105

ϑ1 = ϑ2 ϑ1 6= ϑ2 Asymptotic 0.72 0.45 0.29 0 0 0

ϑ1 = ϑ2 ϑ1 6= ϑ2 Nonasymptotic 1 1 1 1 1 1

ϑ1 = ϑ3 ϑ1 6= ϑ3 Asymptotic 0 0 0 0 0 0

ϑ1 = ϑ3 ϑ1 6= ϑ3 Nonasymptotic 1 1 1 1 1 0

ϑ4 = ϑ5 ϑ4 6= ϑ5 Asymptotic 0.33 0.36 0.21 0 0 0

ϑ4 = ϑ5 ϑ4 6= ϑ5 Nonasymptotic 1 1 1 1 1 1

ϑ4 = ϑ6 ϑ4 6= ϑ6 Asymptotic 0 0 0 0 0 0

ϑ4 = ϑ6 ϑ4 6= ϑ6 Nonasymptotic 1 1 1 1 1 0

solving the SAA problem of instance Iv with a sample of ξ of size 106: ϑ1 = −0.6515,
ϑ2 = −0.6791, ϑ3 = −3.6791, ϑ4 = −0.7725, ϑ5 = −0.7868, and ϑ6 = −3.7868).

Though it was observed in [7, 8] that for sample sizes that are not much larger than
the problem size the coverage probability of the asymptotic confidence interval is much
lower than the coverage probability of the nonasymptotic confidence interval and than
the target coverage probability, the asymptotic confidence bounds are much closer to
each other and much closer to the optimal value than the nonasymptotic confidence
bounds. This explains why the probability of type II error of the asymptotic test is
much less than the probability of type II error of the nonasymptotic test, even for
small sample sizes, and a smaller sample is needed to always take the correct decision
H1 with the asymptotic test, i.e., to obtain a null probability of type II error. Of
course, in both cases, for fixed N , the empirical probability of type II error depends
on the distance between ϑp and ϑq.

Similar conclusions can be drawn from Table 14, which reports the empirical
probability of type II error for various tests of form

(63) H0 : ϑp ≤ ϑq against H1 : ϑq < ϑp.

In particular, from these results, we see that we always take the correct decision H1

with the asymptotic test for sample sizes above N = 100.
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Table 14
Empirical probabilities of type II error for tests of form (63).

Sample size N

H0 H1 Test type 20 50 102 103 104 105

ϑ1 ≤ ϑ2 ϑ1 > ϑ2 Asymptotic 0.54 0.38 0.16 0 0 0

ϑ1 ≤ ϑ2 ϑ1 > ϑ2 Nonasymptotic 1 1 1 1 1 1

ϑ1 ≤ ϑ3 ϑ1 > ϑ3 Asymptotic 0 0 0 0 0 0

ϑ1 ≤ ϑ3 ϑ1 > ϑ3 Nonasymptotic 1 1 1 1 1 0

ϑ4 ≤ ϑ5 ϑ4 > ϑ5 Asymptotic 0.29 0.26 0.15 0 0 0

ϑ4 ≤ ϑ5 ϑ4 > ϑ5 Nonasymptotic 1 1 1 1 1 1

ϑ4 ≤ ϑ6 ϑ4 > ϑ6 Asymptotic 0 0 0 0 0 0

ϑ4 ≤ ϑ6 ϑ4 > ϑ6 Nonasymptotic 1 1 1 1 1 0
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