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Abstract. We define a regularized variant of the Dual Dynamic Programming algorithm called DDP-REG

to solve nonlinear dynamic programming equations. We extend the algorithm to solve nonlinear stochastic

dynamic programming equations. The corresponding algorithm, called SDDP-REG, can be seen as an exten-
sion of a regularization of the Stochastic Dual Dynamic Programming (SDDP) algorithm recently introduced

which was studied for linear problems only and with less general prox-centers. We show the convergence of

DDP-REG and SDDP-REG. We assess the performance of DDP-REG and SDDP-REG on portfolio models
with direct transaction and market impact costs. In particular, we propose a risk-neutral portfolio selection

model which can be cast as a multistage stochastic second-order cone program. The formulation is motivated

by the impact of market impact costs on large portfolio rebalancing operations. Numerical simulations show
that DDP-REG is much quicker than DDP on all problem instances considered (up to 184 times quicker

than DDP) and that SDDP-REG is quicker on the instances of portfolio selection problems with market
impact costs tested and much faster on the instance of risk-neutral multistage stochastic linear program

implemented (8.2 times faster).
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Multistage stochastic optimization problems are used to model many real-life applications where a se-
quence of decisions has to be made, subject to random costs and constraints arising from the observations of
a stochastic process, see [36, 41] for an overview on multistage stochastic programs. Solving such problems is
challenging and often requires some assumptions on the underlying stochastic process, on the problem struc-
ture, and some sort of decomposition. In this paper, we are interested in problems for which deterministic
or stochastic dynamic programming equations can be written. In this latter case, we will focus on situations
where the underlying stochastic process is discrete interstage independent, the number of stages is moderate
to large, and the state vector is of small size.

Two popular solution methods to solve stochastic dynamic programming equations are Approximate Dy-
namic Programming (ADP) and Stochastic Dual Dynamic Programming (SDDP) [32]. Several enhancements
of SDDP have been proposed such as the extension to interstage dependent stochastic processes [22, 16], the
introduction and analysis of risk-averse variants [20, 21, 23, 34, 40, 42], cut selection strategies [33, 8, 18, 5],
and convergence proofs of the algorithm and variants in [35, 13, 17, 19, 5]. However, a known drawback of
the method is its slow convergence rate. To cope with this difficulty, a regularized variant of SDDP was
recently proposed in [4] for Multistage Stochastic Linear Programs (MSLPs). This variant consists in com-
puting in the forward pass of SDDP the trial points using a Tikhonov regularization [43]. More precisely, the
objective is penalized with a quadratic term depending on a prox-center updated at each iteration. On the
tests reported in [4], the regularized method converges faster than the classical SDDP method on risk-neutral
instances of MSLPs. On the basis of these encouraging numerical results, several natural questions arise:
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2 REGULARIZED SDDP

a) When specialized to deterministic problems, how does the regularized method behave? How to extend
the method when nonlinear objective and constraints are present and under which assumptions to
ensure the convergence of the method?

b) How can the regularized algorithm be extended to solve Multistage Stochastic NonLinear Problems
(MSNLPs) and under which assumptions to ensure the convergence of the algorithm to an optimal
policy?

c) What other prox-centers and penalization schemes can be proposed? Find a MSLP for testing the
new prox-centers and penalization schemes. Can we observe on this application a faster convergence
of the regularized method, as for the application considered in [4]?

d) Find a relevant application, modeled by a MSNLP, to test the regularized variant of SDDP.

The objective of this paper is to study items a)-d) above. Our findings on these topics are as follows:

a) Regularized Dual Dynamic Programming. We propose a regularized variant of Dual Dynamic
Programming (DDP, the deterministic counterpart of SDDP) called DDP-REG, for nonlinear op-
timization problems. For DDP-REG, in Theorem 1.4, we show the convergence of the sequence of
approximate first step optimal values to the optimal value of the problem and that any accumulation
point of the sequence of trial points is an optimal solution of the problem. The same proof, with
weaker assumptions can be used to show the convergence of this regularized variant of DDP applied
to linear problems.

We then consider instances of a portfolio problem with direct transaction costs with a large num-
ber of stages and compare the computational time required to solve these instances with DDP and
DDP-REG. In all experiments, the computational time was drastically reduced using DDP-REG.
More precisely, we tested 6 different implementations of DDP-REG and for problems with T =
10, 50, 100, 150, 200, 250, 300, and 350 time periods, the range (for these 6 implementations) of the re-
duction factor of the overall computational time with DDP-REG was respectively [3.0, 3.0], [13.8, 17.3],
[22.3, 33.5], [37.1, 65.0], [46.6, 76.7], [80.0, 114.3], [71.5, 171.6], and [95.5, 184.4].

b) SDDP-REG: Regularized SDDP. We define a Regularized SDDP method for MSNLPs which
samples in the backward pass to compute cuts at trial points computed, as in [4], in a forward pass,
penalizing the objective with a quadratic term depending on a prox-center. In Theorem 3.2, we show
the convergence of this algorithm. More precisely, we show (i) the convergence of the sequence of
the optimal values of the approximate first stage problems and that (ii) any accumulation point of
the sequence of decisions can be used to define an optimal solution of the problem. It will turn out
that (ii) improves already known results for SDDP.

c) On prox-centers, penalization parameters, and on the performance of the regularization
for MSLPs. We propose new prox-centers and penalization schemes and test them on risk-neutral
and risk-averse instances of portfolio selection problems.

d) Portfolio Selection with Direct Transaction and Market Impact Costs. The multistage
optimization models studied in this paper are directly applicable in finance and in particular for the
rebalancing of portfolios that incur transaction costs. Transaction costs can have a major impact on
the performance of an investment strategy (see, e.g., the survey [7]). Two main types of transaction
costs, implicit and explicit, can be distinguished.

Explicit or direct transaction costs are directly observable, are directly charged to the investor,
and are generally modelled as linear or piecewise linear. In reality, it is however not possible to trade
arbitrary large quantities of securities at their current theoretical market price.

Implicit or indirect costs, often called market impact costs, result from imperfect markets due
for example to market or liquidity restrictions (e.g., bid-ask spreads), depend on the order-book
situation when the order is executed, and are not itemized explicitly, thereby making it difficult for
investors to recognize them. Yet, for large orders, they are typically much larger than the direct
transaction costs. Market impact costs are equal to the difference between the transaction price and
the (unperturbed) market price that would have prevailed if the trade had not occurred [44]. Market
impact costs are typically nonlinear (see, e.g., [1, 3, 12, 14, 44]), and much more challenging to model
than direct transaction costs. Market impact costs are particularly important for large institutional
investors, for which they can represent a major proportion of the total transaction costs [27, 44].
They can be viewed as an additional price for the immediate execution of large trades.
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There is a widespread interest in the modeling and analysis of market impact costs as they are
(one of) the main reducible parts of the transaction costs [27]. In this study, we propose a series
of dynamic - deterministic and stochastic (risk-neutral and risk-averse) - optimization models for
portfolio optimization with direct transaction and market impact costs.

We compare the computational time required to solve with SDDP-REG and SDDP instances of
risk-neutral and risk-averse portfolio problems with direct transaction costs. We also compare the
computational time required to solve with SDDP-REG and SDDP risk-neutral instances of portfolio
problems with market impact costs using real data and T = 48 stages. To our knowledge, no dynamic
optimization problem for portfolio optimization with conic market impact costs has been proposed
so far. Also, we are not aware of other published numerical tests on the application of SDDP to
a real-life application modelled by a multistage stochastic second-order cone program with a large
number of stages.

The paper is organized as follows. In section 1, we present a class of convex deterministic nonlinear
optimization problems for which dynamic programming equations can be written. We propose the variant
DDP-REG of DDP to solve these problems and show the convergence of the method in Theorem 1.4. In
section 2, we introduce the type of stochastic nonlinear problems we are interested in and propose SDDP-
REG, a regularized decomposition algorithm to solve these problems. In section 3, we show in Theorem 3.2
the convergence of SDDP-REG. The portfolio selection models described in item d) above are discussed in
section 4. Finally, the last section 5 presents the results of numerical simulations that illustrate our results.
We show that DDP-REG is much quicker than DDP on all problem instances considered (up to 184 times
quicker than DDP) and that SDDP-REG is quicker on the instances of nonlinear stochastic programs tested
and much faster on the instance of risk-neutral multistage stochastic linear program implemented (8.2 times
faster).

We use the following notation and terminology:
- The usual scalar product in Rn is denoted by 〈x, y〉 = xT y for x, y ∈ Rn. The corresponding norm is

‖x‖ = ‖x‖2 =
√
〈x, x〉.

- ri(A) is the relative interior of set A.
- Bn = {x ∈ Rn : ‖x‖ ≤ 1}.
- dom(f) is the domain of function f .
- NA(x) is the normal cone to set A at point x.
- AV@Rα is the Average Value-at-Risk with confidence level α, [37].
- D(X ) is the diameter of set X .

- The notation [A;B] represents the matrix

(
A
B

)
.

1. Regularized dual dynamic programming: Algorithm and convergence

1.1. Problem formulation and assumptions. Consider the problem

(1.1)

{
min

∑T
t=1 ft(xt−1, xt)

xt ∈ Xt(xt−1), ∀t = 1, . . . , T,

where Xt(xt−1) ⊂ Xt ⊂ Rn is given by

Xt(xt−1) = {xt ∈ Xt : Atxt +Btxt−1 = bt, gt(xt−1, xt) ≤ 0},

ft : Rn × Rn → R ∪ {+∞} is a convex function, gt : Rn × Rn → Rp, and x0 is given.
For this problem, we can write dynamic programming equations defining recursively the functions Qt on
Xt−1 as

(1.2) Qt(xt−1) := min {ft(xt−1, xt) +Qt+1(xt) : xt ∈ Xt(xt−1)} , t = T, T − 1, . . . , 1,

with the convention that QT+1 ≡ 0. Clearly, Q1(x0) is the optimal value of (1.1). More generally, we have

Qt(xt−1) = min


T∑
j=t

fj(xj−1, xj) : xj ∈ Xj(xj−1), ∀j = t, . . . , T

 .
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We make the following assumptions: setting X0 = {x0} and

(1.3) X εt := Xt + εBn

(H0) there exists ε > 0 such that for t = 1, . . . , T,

(a) Xt ⊂ Rn is nonempty, convex, and compact;
(b) ft is proper, convex, and lower semicontinuous;
(c) Setting gt(xt−1, xt) = (gt,1(xt−1, xt), . . . , gt,p(xt−1, xt)), for i = 1, . . . , p, the i-th component function

gt,i(xt−1, xt) is a convex lower semicontinuous function;
(d) X εt−1×Xt ⊂ dom(ft) and for every xt−1 ∈ X εt−1, there exists xt ∈ Xt such that gt(xt−1, xt) ≤ 0 and

Atxt +Btxt−1 = bt;
(e) if t ≥ 2, there exists

x̄t = (x̄t,t−1, x̄t,t) ∈ Xt−1×ri(Xt) ∩ ri({gt ≤ 0})

such that x̄t,t ∈ Xt, gt(x̄t,t−1, x̄t,t) ≤ 0 and Atx̄t,t +Btx̄t,t−1 = bt.

The DDP algorithm solves (1.1) exploiting the convexity of recourse functions Qt:

Lemma 1.1. Consider recourse functions Qt, t = 2, . . . , T + 1, given by (1.2). Let Assumptions (H0)-(a),
(H0)-(b), (H0)-(c), and (H0)-(d) hold. Then for t = 2, . . . , T +1, Qt is convex, finite on X εt−1, and Lipschitz
continuous on Xt−1.

Proof: See the proof of Proposition 3.1 in [17].

The description of the subdifferential of Qt given in the following proposition will be useful for DDP, DDP-
REG, and SDDP-REG:

Proposition 1.2. Lemma 2.1 in [17]. Let Asssumptions (H0) hold. Let xt(xt−1) be an optimal solution of
(1.2). Then for every t = 2, . . . , T, for every xt−1 ∈ Xt−1, s ∈ ∂Qt(xt−1) if and only if

(s, 0) ∈ ∂ft(xt−1, xt(xt−1)) +
{

[AT
t ;BT

t ]ν : ν ∈ Rq
}

+
{ ∑

i∈I(xt−1,xt(xt−1))

µi∂gt,i(xt−1, xt(xt−1)) : µi ≥ 0
}

+ {0}×NXt(xt(xt−1))

where I(xt−1, xt(xt−1)) =
{
i ∈ {1, . . . , p} : gt,i(xt−1, xt(xt−1)) = 0

}
.

Proof: See [17].

1.2. Dual Dynamic Programming. We first recall DDP method to solve (1.2). It uses approximations
Qkt of Qt. At iteration k, let functions Qkt : Xt−1 → R such that

(1.4) QkT+1 = QT+1, Qkt ≤ Qt t = 2, 3, . . . , T,

be given and define for t = 1, 2, . . . , T the function Qkt : Xt−1 → R as

Qkt (xt−1) = min
{
ft(xt−1, xt) +Qkt+1(xt) : xt ∈ Xt(xt−1)

}
∀xt−1 ∈ Xt−1.

Clearly, (1.4) implies that: QkT = QT , Qkt ≤ Qt t = 1, 2, . . . , T − 1. It is assumed that the functions Qkt
can be evaluated at any point xt−1 ∈ Xt−1. The DDP algorithm works as follows:
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DDP (Dual Dynamic Programming).

Step 1) Initialization. Let Q0
t : Xt−1 → R∪{−∞}, t = 2, . . . , T +1, satisfying (1.4)

be given. Set k = 1.
Step 2) Forward pass. Setting xk0 = x0, for t = 1, 2, . . . , T , compute

xkt ∈ argmin
{
ft(x

k
t−1, xt) +Qk−1

t+1 (xt) : xt ∈ Xt(x
k
t−1)

}
.(1.5)

Step 3) Backward pass. Define QkT+1 ≡ 0. For t = T, T − 1, . . . , 2, solve

Qkt (xkt−1) = min
{
ft(x

k
t−1, xt) +Qkt+1(xt) : xt ∈ Xt(x

k
t−1)

}
,(1.6)

using Proposition 1.2 take a subgradient βkt of Qkt (·) at xkt−1, and store the
new cut

Ckt (xt−1) := Qkt (xkt−1) + 〈βkt , xt−1 − xkt−1〉
for Qt, making up the new approximation Qkt = max{Qk−1

t , Ckt }.
Step 4) Do k ← k + 1 and go to Step 2).

1.3. Regularized Dual Dynamic Programming. For the regularized DDP to be presented in this sec-
tion, we still define

Qkt (xt−1) = min
{
F kt (xt−1, xt) : xt ∈ Xt(xt−1)

}
∀xt−1 ∈ Xt−1, where

(1.7) F kt (xt−1, xt) = ft(xt−1, xt) +Qkt+1(xt).

However, since the function Qkt+1 computed by regularized DDP is different from the function Qkt+1 com-

puted by DDP, the functions Qkt obtained with respectively regularized DDP and DDP are different. The
regularized DDP algorithm is given below:

Regularized DDP (DDP-REG).

Step 1) Initialization. Let Q0
t : Xt−1 → R∪{−∞}, t = 2, . . . , T +1, satisfying (1.4)

be given. Set k = 1.
Step 2) Forward pass. Setting xk0 = x0, for t = 1, 2, . . . , T , compute

(1.8) xkt ∈ argmin
{
F̄ k−1
t (xkt−1, xt, x

P,k
t ) : xt ∈ Xt(x

k
t−1)

}
,

where the prox-center xP,kt is any point in Xt and where F̄ k−1
t :

Xt−1×Xt×Xt → R is

F̄ k−1
t (xt−1, xt, x

P
t ) = ft(xt−1, xt) +Qk−1

t+1 (xt) + λt,k‖xt − xPt ‖2

for some exogenous nonnegative penalization λt,k with λt,k = 0 if t = T or
k = 1.

Step 3) Backward pass. Define QkT+1 ≡ 0. For t = T, T − 1, . . . , 2, solve

Qkt (xkt−1) = min
{
ft(x

k
t−1, xt) +Qkt+1(xt) : xt ∈ Xt(x

k
t−1)

}
,(1.9)

using Proposition 1.2 take a subgradient βkt of Qkt (·) at xkt−1, and store the
new cut

Ckt (xt−1) := Qkt (xkt−1) + 〈βkt , xt−1 − xkt−1〉
for Qt, making up the new approximation Qkt = max{Qk−1

t , Ckt }.
Step 4) Do k ← k + 1 and go to Step 2).

Observe that the backward passes of the regularized and non-regularized DDP are the same. The algo-
rithms differ from the way the trial points are computed: for regularized DDP a proximal term is added to
the objective function of each period to avoid moving too far from the prox-center.

1.4. Convergence analysis. The following lemma will be useful to analyze the convergence of regularized
DDP:
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Lemma 1.3. Let Assumptions (H0) hold. Then the functions Qkt , t = 2, . . . , T + 1, k ≥ 1, generated by

DDP-REG are Lipschitz continuous on X εt−1, satisfy Qkt ≤ Qt, and Qkt (xkt−1) and βkt are bounded for all
t ≥ 2, k ≥ 1.

Proof: It suffices to follow the proof of Lemma 3.2 in [17].

We have for DDP-REG the following convergence theorem which is a special case of Theorem 3.2 shown in
section 3 (obtained considering deterministic processes ξt).

Theorem 1.4. Consider the sequences of decisions xkt and approximate recourse functions Qkt generated by
DDP-REG. Let Assumptions (H0) hold and assume that for t = 1, . . . , T −1, we have limk→+∞ λt,k = 0 and
λT,k = 0 for every k ≥ 1. Then we have QT+1(xkT ) = QkT+1(xkT ),

(1.10) QT (xkT−1) = QkT (xkT−1) = QkT (xkT−1),

and for t = 2, . . . , T − 1,

H(t) : lim
k→+∞

Qt(xkt−1)−Qkt (xkt−1) = lim
k→+∞

Qt(xkt−1)−Qkt (xkt−1) = 0.

Also, (i) limk→+∞Qk1(x0) = limk→+∞ F̄ k−1
1 (x0, x

k
1 , x

P,k
1 ) = Q1(x0), the optimal value of (1.1), and (ii) any

accumulation point (x∗1, . . . , x
∗
T ) of the sequence (xk1 , . . . , x

k
T )k is an optimal solution of (1.1).

If convergence of DDP-REG holds for any sequence (xP,kt )k≥2 of prox-centers in Xt and of penalty pa-
rameters λt,k converging to zero for every t, the performance of the method depends on how these sequences
are chosen. DDP is obtained taking λt,k = 0 for every t, k.

For all numerical experiments of section 5.2, DDP-REG was much faster than DDP. Some natural candi-

dates for λt,k and xP,kt , used in our numerical tests, are the following:

• Weighted average of previous values: xP,kt = 1
Γt,k

∑k−1
j=1 γt,k,jx

j
t with γt,k,j nonnegative weights and

Γt,k =
∑k−1
j=1 γt,k,j . Note that xP,kt ∈ Xt because all xjt are in the convex set Xt. Special cases include

the average of previous values xP,kt = 1
k−1

∑k−1
j=1 x

j
t and the last trial point xP,kt = xk−1

t for t < T ,
k ≥ 2.

• λt,k = ρkt where 0 < ρt < 1 or λt,k = 1
k2 for t < T , k ≥ 2.

If for a given stage t, Xt is a polytope and we do not have the nonlinear constraints given by constraint
functions gt (i.e., the constraints for this stage are linear), then the conclusions of Lemmas 1.1, 1.3, and
Theorem 1.4 hold under weaker assumptions. More precisely, for such stages t, we assume (H0)-a), (H0)-(b),
and instead of (H0)-(d), (H0)-(e), the weaker assumption (H0)-(c’):

(H0)-(c’) There exists ε > 0 such that:

(c’).1) X εt−1×Xt ⊂ dom ft;
(c’).2) for every xt−1 ∈ Xt−1, the set Xt(xt−1) is nonempty.

2. Regularized Stochastic Dual Dynamic programming

2.1. Problem formulation and assumptions. Consider a stochastic process (ξt) where ξt is a discrete
random vector with finite support containing in particular as components the entries in (bt, At, Bt) in a given
order where bt are random vectors and At, Bt are random matrices.

Let Ft denote the sigma-algebra σ(ξ1, . . . , ξt), Zt be the set of Ft-measurable functions, and E|Ft−1
: Zt →

Zt−1 be the conditional expectation at t.
With this notation, we are interested in solving problems of form

(2.11)

inf
x1∈X1(x0,ξ1)

f1(x0, x1, ξ1) + E|F1

(
inf

x2∈X2(x1,ξ2)
f2(x1, x2, ξ2) + . . .

+E|FT−2

(
inf

xT−1∈XT−1(xT−2, ξT−1)
fT−1(xT−2, xT−1, ξT−1)

+E|FT−1

(
inf

xT∈XT (xT−1, ξT )
fT (xT−1, xT , ξT )

))
. . .

)
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for some functions ft taking values in R ∪ {+∞}, where x0 is given and where

Xt(xt−1, ξt) =
{
xt ∈ Xt : gt(xt−1, xt, ξt) ≤ 0, Atxt +Btxt−1 = bt

}
for some vector-valued function gt and some nonempty compact convex set Xt ⊂ Rn.

We make the following assumption on (ξt):

(H1) (ξt) is interstage independent and for t = 2, . . . , T , ξt is a random vector taking values in RK with
discrete distribution and finite support Θt = {ξt,1, . . . , ξt,M} while ξ1 is deterministic.

To alleviate notation and without loss of generality, we have assumed that the number M of possible real-
izations of ξt, the size K of ξt, and dimension n of xt do not depend on t.

Under Assumption (H1), E|Ft−1
coincides with its unconditional counterpart Et where Et is the expectation

computed with respect to the distribution of ξt. To ease notation, we will drop the index t in Et. As a result,
for problem (2.11), we can write the following dynamic programming equations: we set QT+1 ≡ 0 and for
t = 2, . . . , T , define

(2.12) Qt(xt−1) = E
(
Qt(xt−1, ξt)

)
with

(2.13) Qt(xt−1, ξt) =

{
inf
xt

Ft(xt−1, xt, ξt) := ft(xt−1, xt, ξt) +Qt+1(xt)

xt ∈ Xt(xt−1, ξt).

Problem (2.11) can then be written

(2.14)

{
inf
x1

F1(x0, x1, ξ1) := f1(x0, x1, ξ1) +Q2(x1)

x1 ∈ X1(x0, ξ1) = {x1 ∈ X1 : g1(x0, x1, ξ1) ≤ 0, A1x1 +B1x0 = b1},

with optimal value denoted by Q1(x0) = Q1(x0, ξ1).
Recalling definition (1.3) of the ε-fattening of a set, we make the following Assumption (H2): setting

X0 = {x0}, there exists ε > 0 such that for t = 1, . . . , T :

1) Xt ⊂ Rn is nonempty, convex, and compact.
2) For every j = 1, . . . ,M , the function ft(·, ·, ξt,j) is proper, convex, and lower semicontinuous.
3) For every j = 1, . . . ,M , each component of the function gt(·, ·, ξt,j) is a convex lower semicontinuous

function.
4) we have

4.1) for every j = 1, . . . ,M , X εt−1×Xt ⊂ dom ft(·, ·, ξt,j);
4.2) for every j = 1, . . . ,M , for every xt−1 ∈ X εt−1, the set Xt(xt−1, ξt,j) is nonempty.

5) If t ≥ 2, for every j = 1, . . . ,M , there exists

x̄t,j = (x̄t,j,t−1, x̄t,j,t) ∈ Xt−1×ri(Xt) ∩ ri({gt(·, ·, ξt,j) ≤ 0})

such that x̄t,j,t ∈ Xt(x̄t,j,t−1, ξt,j).

The following proposition, proved in [17], shows that Assumption (H2) guarantees that for t = 2, . . . , T ,
recourse function Qt is convex and Lipschitz continuous on the set X ε̂t−1 for every 0 < ε̂ < ε. SDDP-REG
and its convergence analysis are based on this proposition.

Proposition 2.1. Under Assumption (H2), for t = 2, . . . , T + 1, for every 0 < ε̂ < ε, the recourse function
Qt is convex, finite and Lipschitz continuous on X ε̂t−1.

Proof: We refer to the proof of Proposition 3.1 in [17] where similar value functions are considered.

Assumption (H2) will also be used to derive explicit formulas for the cuts to be built for recourse functions
Qt in SDDP-REG applied to the nonlinear problems we are interested in.
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2.2. Algorithm. Recalling Assumption (H1), the distribution of (ξ2, . . . , ξT ) is discrete and the MT−1

possible realizations of (ξ2, . . . , ξT ) can be organized in a finite scenario tree with the root node n0 associated
to a stage 0 (with decision x0 taken at that node) having one child node n1 associated to the first stage (with
ξ1 deterministic). In this section, we describe SDDP-REG algorithm, a regularization of SDDP which can
be seen as an extension of the regularization proposed in [4] (which applied to linear problems) to nonlinear
problems.

To describe this algorithm, we need some notation: N is the set of nodes, Nodes(t) is the set of nodes of
the scenario tree for stage t and for a node n of the tree, we denote by:

• C(n) the set of its children nodes (the empty set for the leaves);
• xn a decision taken at that node;
• pn the transition probability from the parent node of n to n;
• ξn the realization of process (ξt) at node n1: for a node n of stage t, this realization ξn contains in

particular the realizations bn of bt, An of At, and Bn of Bt;
• ξ[n] is the history of the realizations of process (ξt) from the first stage node n1 to node n: for a node
n of stage t, the i-th component of ξ[n] is ξPt−i(n) for i = 1, . . . , t, where P : N → N is the function
associating to a node its parent node (the empty set for the root node).

At iteration k of the algorithm, trial points xkn are computed for a set of sampled nodes n of the scenario

tree replacing recourse functionsQt+1 by the approximationsQk−1
t+1 available at the beginning of this iteration

and penalizing the objective with a quadratic term with prox-center xP,kt for all the nodes of stage t. The
nodes selected at iteration k are denoted (nk1 , n

k
2 , . . . , n

k
T ) (with nk1 = n1, and for t ≥ 2, nkt a node of stage

t, child of node nkt−1) and correspond to a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) of (ξ1, ξ2, . . . , ξT ). For t = 2, . . . , T , a cut

(2.15) Ckt (xt−1) = θkt + 〈βkt , xt−1 − xknk
t−1
〉

is computed for Qt at xk
nk
t−1

(see the algorithm below for details). To alleviate notation, we will write

xkt−1 := xk
nk
t−1

.

Gathering the cuts computed until iteration k, we get at the end of this iteration for Qt the polyhedral
lower approximations Qkt , t = 2, . . . , T + 1, given by

Qkt (xt−1) = max
0≤`≤k

C`t (xt−1).

To describe and analyze the algorithm, it is convenient to introduce the function Qk
t : Xt−1×Θt → R given

by

(2.16) Qk
t (xn, ξm) =

{
infxm

F kt (xn, xm, ξm)
xm ∈ Xt(xn, ξm)

where

(2.17) F kt (xn, xm, ξm) = ft(xn, xm, ξm) +Qkt+1(xm).

The SDDP-REG algorithm is given below:

SDDP-REG (Regularized SDDP).

Step 1) Initialization. Let Q0
t : Xt−1 → R ∪ {−∞}, t = 2, . . . , T , satisfying Q0

t ≤ Qt be given and
Q0
T+1 ≡ 0. Set C0

t = Q0
t , t = 2, . . . , T + 1, k = 1.

Step 2) Forward pass.

Sample a scenario (ξ1, ξ̃
k
2 , . . . , ξ̃

k
T ) from the distribution of ξk = (ξ1, ξ

k
2 , . . . , ξ

k
T ) ∼ (ξ1, ξ2, . . . , ξT )

corresponding to a set of nodes (n1, n
k
2 , . . . , n

k
T ).

1Note that to simplify notation, the same notation ξIndex is used to denote the realization of the process at node Index of
the scenario tree and the value of the process (ξt) for stage Index. The context will allow us to know which concept is being

referred to. In particular, letters n and m will only be used to refer to nodes while t will be used to refer to stages.
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For t = 1, . . . , T ,
Find an optimal solution xkt of

(2.18)

{
inf
xt

F̄ k−1
t (xt, x

k
t−1, x

P,k
t , ξ̃kt )

xt ∈ Xt(x
k
t−1, ξ̃

k
t ),

where xk0 = x0, xP,kt is any point in Xt and where

F̄ k−1
t is the function given by

(2.19)
F̄ k−1
t (xt, xt−1, x

P
t , ξt) = ft(xt−1, xt, ξt) +Qk−1

t+1 (xt)
+λt,k‖xt − xPt ‖2,

with λt,k = 0 if t = T or k = 1.
End For

Step 3) Backward pass.
Set θkT+1 = 0 and βkT+1 = 0.
For t = T, . . . , 2,

For every child node m of n = nkt−1 solve

Qk
t (xn, ξm) =

{
infxm F kt (xn, xm, ξm)
xm ∈ Xt(xn, ξm)

and compute, using Proposition 1.2, a subgradient
πkm ∈ ∂Q

k
t (·, ξm) at xkn.2

End For
The new cut Ckt is obtained computing

(2.20) θkt =
∑

m∈C(n)

pmQk
t (xkn, ξm), βkt =

∑
m∈C(n)

pmπ
k
m.

End For
Step 4) Do k ← k + 1 and go to Step 2).

2.3. On the prox-centers and penalizations. Though xP,kt are now random variables, the remarks of
section 1.4 on the choice of the prox-centers for DDP-REG still apply for SDDP-REG. Indeed, convergence of

SDDP-REG holds for any sequence (xP,kt )k≥2 of prox-centers in Xt and of penalty parameters λt,k converging
to zero for every t, but the performance of the method depends on how these sequences are chosen. The

following choices for λt,k and xP,kt will be used in our numerical tests of SDDP-REG:

• Weighted average of previous values: xP,kt = 1
Γt,k

∑k−1
j=1 γt,k,jx

j
t with γt,k,j nonnegative weights and

Γt,k =
∑k−1
j=1 γt,k,j . As a special case, xP,kt = xk−1

t was used in [4].

• λt,k = ρkt where 0 < ρt < 1 (used in [4] with ρt constant) or λt,k = 1
k2 for t < T , k ≥ 2.

3. Convergence analysis of SDDP-REG

The approximate recourse functions Qk−1
t available at the end of iteration k − 1 of SDDP-REG define a

policy allowing us to compute decisions xkn for every node n of the scenario tree with the following loops:

Simulation of SDDP-REG in the end of iteration k − 1.

For t = 1, . . . , T ,
For every node n of stage t− 1,

For every child node m of node n, compute an optimal solution xkm of

(3.21)

{
inf
xm

F̄ k−1
t (xkn, xm, x

P,k
t , ξm)

xm ∈ Xt(x
k
n, ξm),

2Note that the proposition can be applied because Assumption (H2) holds and thus the assumptions of the proposition are

satisfied for value function Qk
t (·, ξm).
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where xk0 = x0.
End For

End For
End For

We will assume that the sampling procedure in SDDP-REG satisfies the following property:

(H3) for every j = 1, . . . ,M , for every t = 2, . . . , T , and for every k ∈ N∗, P(ξkt = ξt,j) = P(ξt = ξt,j) > 0.
For every t = 2, . . . , T , and k ≥ 1,

ξkt is independent on σ(ξ1
2 , . . . , ξ

1
T , . . . , ξ

k−1
2 , . . . , ξk−1

T , ξk2 , . . . , ξ
k
t−1).

The following lemma will be useful in the sequel:

Lemma 3.1. Consider the sequences Qkt , θkt , and βkt generated by SDDP-REG. Under Assumptions (H1),
(H2), then almost surely, for t = 2, . . . , T + 1, the following holds:

(a) Qkt is convex with Qkt ≤ Qt on X εt−1 for all k ≥ 1;

(b) the sequences (θkt )k≥1 and (βkt )k≥1 are bounded;
(c) for k ≥ 1, Qkt is Lipschitz continuous on X εt−1.

Proof: The proof is similar to the proof of Lemma 3.2 in [17].3 We give the main steps of the proof which
is by backward induction on t starting with t = T + 1 where the statement holds by definition of QT+1.
Assuming for t ∈ {2, . . . , T} that Qkt+1 is Lipschitz continuous on X εt with Qkt+1 ≤ Qt+1, then setting

n = nkt−1, for every m ∈ C(n) we have Qt(·, ξm) ≥ Qk
t (·, ξm) which gives

Qt(xt−1) =
∑

m∈C(n)

pmQt(xt−1, ξm)

≥
∑

m∈C(n)

pmQk
t (xt−1, ξm)

≥
∑

m∈C(n)

pm

(
Qk
t (xkn, ξm) + 〈πkm, xt−1 − xkn〉

)
= Ckt (xt−1),

where for the last inequality, we have used Proposition 1.2 which can be applied since Assumption (H2)-5)
holds. Therefore, Ckt defines a valid cut for Qt and Qt ≥ Qkt . Assumptions (H2)-1)-4) and finiteness of Qt
on X εt−1 imply that Qk

t (xkn, ξm) and πkm are bounded for every m ∈ C(n), and allow us to obtain a uniform

upper bound on βkt , i.e., a Lipschitz constant valid for all functions Qkt , t = 2, . . . , T + 1, k ≥ 1.

Theorem 3.2 shows the convergence of the sequence Qk
1(x0, ξ1) to the optimal value Q1(x0) of (2.11) and

that any accumulation point of the sequence ((xkn)n∈N )k≥1 can be used to define an optimal solution of
(2.11).

Theorem 3.2 (Convergence analysis of SDDP-REG). Consider the sequences of stochastic decisions xkn
and of recourse functions Qkt generated by SDDP-REG to solve dynamic programming equations (2.12)-
(2.13)-(2.14). Let Assumptions (H1), (H2), and (H3) hold and assume that λT,k = 0 and that for every
t = 1, . . . , T − 1, we have limk→+∞ λt,k = 0. Then

(i) almost surely, for t = 2, . . . , T + 1, the following holds:

H(t) : ∀n ∈ Nodes(t− 1), lim
k→+∞

Qt(xkn)−Qkt (xkn) = 0.

(ii) Almost surely, the limit of the sequence (F̄ k−1
1 (x0, x

k
n1
, xP,k1 , ξ1))k of the approximate first stage opti-

mal values and of the sequence (Qk
1(x0, ξ1))k is the optimal value Q1(x0) of (2.11). Also, let (x∗n)n∈N

be any accumulation point of the sequence ((xkn)n∈N )k≥1. Now define x1, . . . , xT with xt : Zt → Rn
by xt(ξ1, . . . , ξt) = x∗m where m is given by ξ[m] = (ξ1, . . . , ξt). Then (x1, . . . , xT ) is an optimal
solution to (2.11).

3In [17] a forward, instead of a forward-backward algorithm, is considered. In this setting, finiteness of coefficients θkt and

βk
t is not guaranteed for the first iterations (for instance (θ1t )t are −∞) but the proof is similar.
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Proof: See the Appendix.

Remark: [Extension of SDDP-REG to risk-averse nonlinear problems.] Using [17], SDDP-REG algorithm
can be extended to nested risk-averse formulations of risk-averse multistage stochastic nonlinear programs
of form

(3.22)

inf
x1∈X1(x0,ξ1)

f1(x1, ξ1) + ρ2|F1

(
inf

x2∈X2(x1,ξ2)
f2(x1:2, ξ2) + . . .

+ρT−1|FT−2

(
inf

xT−1∈XT−1(xT−2, ξT−1)
fT−1(x1:T−1, ξT−1)

+ρT |FT−1

(
inf

xT∈XT (xT−1, ξT )
fT (x1:T , ξT )

))
. . .

)
,

where ρt+1|Ft
: Zt+1 → Zt is a coherent and law invariant conditional risk measure. The convergence

proof of this variant of SDDP-REG can be easily obtained combining the convergence proof of risk-averse
decomposition methods from [17] with the convergence proof of Theorem 3.2.

Similary to DDP-REG, if for a given stage t, Xt is a polytope and we do not have the nonlinear constraints
given by constraint functions gt (i.e., the constraints for this stage are linear), then the conclusions of
Proposition 2.1, Lemma 3.1, and Theorem 3.2 hold under weaker assumptions. More precisely, for such
stages t, we assume (H2)-1), (H2)-2), and instead of (H2)-4), (H2)-5), the weaker assumption (H2)-3’):

there exists ε > 0 such that 3.1’) for every j = 1, . . . ,M , X εt−1×Xt ⊂ dom ft

(
·, ·, ξt,j

)
; and 3.2’) for every

j = 1, . . . ,M , for every xt−1 ∈ Xt−1, the set Xt(xt−1, ξt,j) is nonempty.

4. Multistage portfolio optimization models with direct transaction and market impact
costs

4.1. Multistage portfolio selection models with direct transaction costs. This section presents
risk-neutral and risk-averse multistage portfolio optimization models with direct transaction costs over a
discretized horizon of T stages. We model the direct transaction costs incurred by selling and purchasing
securities as being proportional to the amount of the transaction [9].

Let n be the number of risky assets and asset n + 1 be cash. Next xit is the dollar value of asset
i = 1, . . . , n + 1 at the end of stage t = 1, . . . , T , ξit is the return of asset i at t, yit is the amount of asset i
sold at the end of t, zit is the amount of asset i bought at the end of t, ηi > 0 and νi > 0 are respectively the
proportional selling and purchasing transaction costs. Each component xi0, i = 1, . . . , n+ 1, of x0 is a known

parameter. The expression
∑n+1
i=1 ξ

i
1x
i
0 is the budget available at the start of the investment planning horizon.

The notation ui is a parameter defining the maximal amount that can be invested in each financial security
i. To allow for a direct application of SDDP-REG to solve the problem, we will assume that returns ξt are
interstage independent. Simple modifications of SDDP-REG could be used to deal with returns following
generalized linear models with finite memory (as in [16]) and with Markov chain approximations of the
returns (as in [28]).

For t = 1, . . . , T , given a portfolio xt−1 = (x1
t−1, . . . , x

n
t−1, x

n+1
t−1 ) and ξt, we define the set Xt(xt−1, ξt) as

the set of (xt, yt, zt) ∈ Rn+1×Rn×Rn satisfying

(4.23) xn+1
t = ξn+1

t xn+1
t−1 +

n∑
i=1

(
(1− ηi)yit − (1 + νi)z

i
t

)
,
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and for i = 1, . . . , n,

xit = ξitx
i
t−1 − yit + zit,(4.24a)

yit ≤ ξitxit−1,(4.24b)

xit ≤ ui
n+1∑
i=1

ξitx
i
t−1,(4.24c)

xit, y
i
t, z

i
t ≥ 0.(4.24d)

Constraints (4.24a) define the amount of security i held at each stage t and take into account the propor-
tional transaction costs. Constraints (4.23) are the cash flow balance constraints and define how much cash is
available at each stage. Constraints (4.24b) preclude selling an amount larger than the one held. Constraints
(4.24c) do not allow the position in security i at time t to exceed a specified limit ui, while (4.24d) prevents
short-selling and enforces the non-negativity of the amounts purchased and sold.

Risk-neutral model. With this notation, the dynamic programming equations of a risk-neutral portfolio

model of form (2.12), (2.13), (2.14) can be written4: for t = T , setting QT+1(xT ) = E[
n+1∑
i=1

ξiT+1x
i
T ] we solve

the problem

(4.25) QT (xT−1, ξT ) =

{
Max QT+1(xT )
(xT , yT , zT ) ∈ XT (xT−1, ξT ),

while at stage t = T − 1, . . . , 1, we solve

(4.26) Qt (xt−1, ξt) =

{
Max Qt+1 (xt)
(xt, yt, zt) ∈ Xt(xt−1, ξt),

where for t = 2, . . . , T , Qt(xt−1) = E[Qt (xt−1, ξt)]. With this model, we maximize the expected return of
the portfolio taking into account the transaction costs, non-negativity constraints, and bounds imposed on
the different securities.

Risk-averse model. As we recall from the previous section, SDDP-REG can be easily extended to
solve risk-averse problems of form (3.22). We can therefore define a nested risk-averse counterpart of the
risk-neutral portfolio problem we have just introduced and solve it with SDDP-REG. This model is ob-
tained replacing the expectation in the risk-neutral portfolio problem above by the (unconditional, due to
Assumption (H1)) risk measure ρt : Zt → R given by

ρt [Z] = (1− κt)E [Z] + κtAV@Rαt
[Z] ,

where κt ∈ (0, 1), αt ∈ (0, 1) is the confidence level of the Average Value-at-Risk, and ρt is computed with
respect to the distribution of ξt. Therefore, a risk-averse portfolio problem with direct transaction costs is

written as follows: at stage T , setting QT+1(xT ) = ρT+1[
n+1∑
i=1

ξiT+1x
i
T ], we solve

(4.27) QT (xT−1, ξT ) =

{
Max QT+1(xT )
(xT , yT , zT ) ∈ XT (xT−1, ξT ),

while at stage t = T − 1, . . . , 1, we solve

(4.28) Qt (xt−1, ξt) =

{
Max Qt+1 (xt)
(xt, yt, zt) ∈ Xt(xt−1, ξt),

where for t = 2, . . . , T , Qt(xt−1) = ρt[Qt (xt−1, ξt)].

4It is indeed immediately seen that (4.25)-(4.26) is of form (2.12), (2.13), (2.14), writing the maximization problems as

minimization problems and introducing the extended state st = (xt, yt, zt).
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4.2. Conic quadratic models for multistage portfolio selection with market impact costs. Due to
market imperfections, securities can seldom be traded at their current theoretical market price, which leads
to additional costs, called market impact costs. If the trade is very large and involves the purchase (resp.,
selling) of a security, the price of the share may rise (resp., drop) between the placement of the trade and the
completion of its execution [30]. As more of a security is bought or sold, the proportional cost increases due
to the scarcity effect. Market impact costs are particularly important for large institutional investors, for
which they represent a major proportion of the total transaction costs [27, 44]. Often, large trading orders
are not executed at once, but are instead split into a sequence of smaller orders executed within a given time
window. Taken individually, these small orders exert little or no pressure on the market [45], which can curb
market impact costs. The downside is that the execution of the entire trade order is postponed, which may
lead to a loss in opportunities caused by (unfavorable) changes in market prices.

The change in a security price is impacted by the size of the transaction and is often modelled as a concave
monotonically increasing function of the trade size [2]. In that vein, Lillo et al. [25] and Gabaix et al. [11]
model market impact costs as a concave power law function of the transaction size. Bouchaud et al. [6] use
a logarithmic function of the transaction size and assert that the market impact is temporary and decays as
a power law. Moazeni et al. [29] propose linear market impact costs and evaluate the sensitivity of optimal
execution strategies with respect to errors in the estimation of the parameters. Mitchell and Braun [27]
study the standard portfolio selection problem in which they incorporate convex transaction costs, including
market impact costs, incurred when rebalancing the portfolio. They rescale the budget available after paying
transaction costs, which results into a fractional problem that can be reformulated as a convex one. Frino et
al. [10] approximate impact costs with a linear regression based on quantized transaction sizes, while Zagst
and Kalin [45] use a piecewise linear function. Loeb [26] shows that market impact costs are a function of
the square root of the amount traded. Similarly, Torre [44] models the price change as proportional to the
square root of the order size. This led to the so-called square-formula which defines the market impact costs
as proportional to the square root of the ratio of the number of shares traded to the average daily trading
volume of the security [12]. The square-root formula is widely used in the financial practice [12] to provide
a pre-trade estimate of market impact costs and is preconized by Andersen et al. [3] as well as by Grinold
and Kahn [15]. The latter observe that this approach is consistent with the trading rule-of-thumb according
to which it costs roughly one day’s volatility to trade one day’s volume. In Barra’s Market Impact Model
Handbook [44], it is showed that the square-root formula fits transaction cost data remarkably well. An
empirical study conducted by Almgren et al. [2] advocates to set the price change as proportional to a 3/5
power law of block size.

In this study, the modeling of the market impact costs is based on the square-formula. More precisely,
we follow the approach proposed by Grinold and Kahn [15] and Andersen [3], and model the market impact
costs as proportional to a 3/2 power law of the transacted amount (see (4.30)).

Let αit be the volume of security i in the considered transaction and γit be the overall market volume for
security i at t. Additionally, git is the monetary value of asset i transacted at t. The market impact costs
for asset i are defined as:

(4.29) θit

√
αit
γit
≈ mi

t

√∣∣git∣∣ ,
where θit and mi

t are non-negative parameters that must be estimated. The market impact costs capture the
fact that the price of an asset increases or decreases if one buys or sells very many shares of this asset. The
total market impact costs depend on both the cost per unit mi

t and the square root of the amount traded git
(which is aligned with the empirical tests reported in [26]):

(4.30) gitm
i
t

√∣∣git∣∣ .
For t = 1, . . . , T , given a portfolio xt−1 = (x1

t−1, . . . , x
n
t−1, x

n+1
t−1 ) and ξt, we define
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(4.31) XMIt (xt−1, ξt) =



(xt, yt, zt, qt, gt) ∈ Rn+1
+ ×Rn

+×Rn
+×Rn

+×Rn
+ :

(4.24a)− (4.24c), i = 1, . . . , n,

xn+1
t = ξn+1

t xn+1
t−1 +

n∑
i=1

(yit − zit − qit), (a)

git = yit + zit, i = 1, . . . , n, (b)

gitm
i
t

√
git ≤ qit, i = 1, . . . , n (c)


.

Constraints (4.31)-(a) define how much cash is held at each period and take into account the market impact
costs. Constraints (4.31)-(b) define the total amount git of security i traded at time t. The nonlinear
constraints (4.31)-(c) follow from (4.30) and permit to define the total market impact costs qit incurred for
security i at time t. Same as in the previous section, we assume that returns (ξt) are interstage independent.

The risk-neutral multistage portfolio optimization problem with market impact costs writes as follows:

for t = T , setting QT+1(xT ) = E[
n+1∑
i=1

ξiT+1x
i
T ] we solve the problem

(4.32) QT (xT−1, ξT ) =

{
Max QT+1(xT )
(xT , yT , zT , qT , gT ) ∈ XMIT (xT−1, ξT ),

while at stage t = T − 1, . . . , 1, we solve

(4.33) Qt (xt−1, ξt) =

{
Max E [Qt+1 (xt)]
(xt, yt, zt, qt, gt) ∈ XMIt (xt−1, ξt),

where for t = 2, . . . , T , Qt(xt−1) = E[Qt (xt−1, ξt)].
It is easy to see that the left-hand side of the constraints (4.31)-(c) are convex functions, which implies

that Assumptions (H2)-3) are satisfied and SDDP-REG can be applied to solve the portfolio problem under
consideration. For implementation purposes, it is convenient to rewrite constraints (4.31)-(c) as a conic
quadratic constraint:

Theorem 4.1. For t = 1, . . . , T , the convex feasible sets

St =

{
(gt, qt) = (g1

t , . . . , g
n
t , q

1
t , . . . , q

n
t ) ∈ Rn+×Rn+ :

gitm
i
t

√
git ≤ qit, i = 1, . . . , n

}
can be equivalently represented with the rotated second-order constraints (4.34a) and the linear constraints
(4.34b)-(4.34d):

(`it)
2 ≤ 2sit

qit
mi
t

, (wit)
2 ≤ 2vitr

i
t, i = 1, . . . , n,(4.34a)

`it = vit, sit = wit, i = 1, . . . , n,(4.34b)

rit = 0.125, sit, v
i
t ≥ 0, i = 1, . . . , n,(4.34c)

− git ≤ `it, git ≤ `it i = 1, . . . , n.(4.34d)

Proof: This representation is proved in [3].

For t = 1, . . . , T , given xt−1 ∈ Rn+1 and ξt, denoting

(4.35) XMIt (xt−1, ξt) =



(xt, yt, zt, qt, gt, `t, st, vt, wt) ∈
Rn+1

+ ×Rn+×Rn+×Rn+×Rn+×Rn+×Rn+×Rn+×Rn+ :
(4.24a)− (4.24c), i = 1, . . . , n,

xn+1
t = ξn+1

t xn+1
t−1 +

n∑
i=1

(yit − zit − qit),

git = yit + zit, i = 1, . . . , n,
(4.34a)− (4.34d), i = 1, . . . , n


and using Theorem 4.1, our portfolio optimization problem with market impact costs (4.32)-(4.33) can be
rewritten substituting in (4.32)-(4.33) for t = 1, . . . , T , the constraints (xt, yt, zt, qt, gt) ∈ XMIt (xt−1, ξt) by

(xt, yt, zt, qt, gt, `t, st, vt, wt) ∈ XMIt (xt−1, ξt).

This formulation of the portfolio problem can be solved using SDDP-REG with all subproblems of the
forward and backward passes being conic quadratic optimization problems.
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Variant name
Prox-center xP,kt
for t < T, k > 1

Penalization λt,k
for t < T, k > 1

DDP-REG-PREV-REG1-ρ or
SDDP-REG-PREV-REG1-ρ

xkt−1 ρk with 0 < ρ < 1

DDP-REG-PREV-REG2 or
SDDP-REG-PREV-REG2

xkt−1
1
k2

DDP-REG-AVG-REG1-ρ or
SDDP-REG-AVG-REG1-ρ

1

k − 1

k−1∑
j=1

xjt ρk with 0 < ρ < 1

DDP-REG-AVG-REG2 or
SDDP-REG-AVG-REG2

1

k − 1

k−1∑
j=1

xjt
1
k2

Table 1. Some variants of DDP-REG and SDDP-REG.

5. Numerical experiments

In this section, we evaluate the computational efficiency of the DDP-REG and SDDP-REG algorithms
presented in sections 1 and 2, and benchmark them with standard, non regularized versions of the deter-
ministic and stochastic DDP algorithms. The analysis starts (section 5.2) with the deterministic setting
and the DDP-REG algorithm tested on a portfolio optimization problem with direct transaction costs, and
continues in section 5.3 with the stochastic case and the SDDP-REG algorithm tested on risk-neutral and
risk-averse formulations involving either direct transaction or market impact costs. In practice, portfolio
selection problem parameters (the returns) are not known in advance and stochastic optimization models
are used for these applications. We use such models in section 5.3. However, to compare DDP and DDP-
REG, we assume that the parameters of the portfolio problems, namely the returns, are known over the
optimization period. This allows us to easily generate feasible problem instances that can be solved with
DDP and DDP-REG and to know what would have been the best return for these instances.

5.1. Data and parameter settings. The problem instances and the algorithms are modelled in Python
and the problems are solved with MOSEK 8.0.0.50 solver [31]. The experiments are carried out using a
single thread of an Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz machine.

The following settings are used for the parameters of the portfolio optimization problems described in
section 4. The budget available is $1 billion and can be used to invest in n = 6 risky securities in addition
to cash. The proportional direct transaction costs η = ν are set to 1%. The return data of six securities
were collected from WRDS [39] for the period ranging from July 2005 to May 2016. The monthly fixed cash
return is equal to 0.2%. The largest position in any security is set to ui = 20%. The parameters of the
DDP-REG and SDDP-REG algorithms follow. We consider a number T of stages ranging from 10 to 350.
The sample size per stage, i.e., the cardinality of Θt (using the notation of section 2), is set to M = 60.

As we recall from section 1.4 for DDP-REG and from subsection 2.3 for SDDP-REG, we need to define

sequences xP,kt of prox-centers and λt,k of penalization parameters to define instances of DDP-REG and
SDDP-REG. In our study, we will use the prox-centers and penalization parameters given in Table 1 (we
recall that no penalization is used for t = T and for k = 1, i.e., λT,k = λt,1 = 0 for all t, k). This table
also contains the names used for the corresponding DDP-REG and SDDP-REG variants. We recall that in
[4], only the variant SDDP-REG-PREV-REG1-ρ was tested for linear programs. In this section, we test all
deterministic variants from Table 1 for linear programs and variant SDDP-REG-PREV-REG2 for multistage
stochastic linear and nonlinear programs.

5.2. Deterministic instances. In this section, we consider the deterministic counterpart of the portfolio
optimization problem with direct transaction costs presented in section 4.1 using the parameters given in the
previous section and 8 different values for the number T of time periods: T = 10, 50, 100, 150, 200, 250, 300,
and 350. We solve these problems using DDP and the following 6 variants of DDP-REG (using the notation
of Table 1): DDP-REG-PREV-REG1-0.2 (DDP-REG-PREV-REG1-ρ with ρ = 0.2), DDP-REG-PREV-
REG1-0.9 (DDP-REG-PREV-REG1-ρ with ρ = 0.9), DDP-REG-PREV-REG2, DDP-REG-AVG-REG1-
0.2 (DDP-REG-AVG-REG1-ρ with ρ = 0.2), DDP-REG-AVG-REG1-0.9 (DDP-REG-AVG-REG1-ρ with
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ρ = 0.9), and DDP-REG-AVG-REG2.

Stopping criterion. When studying the convergence of DDP-REG in section 1, we have not discussed
the stopping criterion. At each iteration, this algorithm can compute an approximate lower bound on the
optimal value of the problem which is given at iteration k by Qk1(x0) (using the notation of section 1), the

optimal value of the approximate problem for the first time period. Observe that we can make of Qk1(x0) an
exact lower bound if we take λ1,k = 0 (such strategy was used in our tests). DDP-REG can also compute

at iteration k the upper bound
∑T
t=1 ft(x

k
t−1, x

k
t ) on the optimal value. Given a tolerance ε (taken equal to

10−6 in our experiments), the algorithm stops when the difference between the upper and lower bound is
less than ε (in this case, we have computed an ε-optimal solution to the problem). Note, however, that since
our portfolio problems are maximization problems, the approximate first stage problem provides an upper

bound on the optimal value and
∑T
t=1 ft(x

k
t−1, x

k
t ) provides a lower bound.

We have checked that on all instances, all algorithms correctly compute the same optimal value and that
the upper and lower bounds were converging to this optimal value. For illustration, Figure 1 displays the
evolution of the upper and lower bounds and of the optimality gap across the iterative process with DDP
for the instance with T = 300.

Figure 1. DDP method: DDP lower and upper bounds (left plot) and gap (right plot) in
% of the upper bound for T = 300.

The CPU time needed to solve the different instances with DDP and our 6 variants of DDP-REG is given
in Table 2 and the corresponding reduction factor in CPU time for these DDP-REG variants is given in Table
3. The number of iterations of the algorithms is given in Table 4. We observe that on all instances DDP-
REG variants are much faster and need many fewer iterations than DDP. Most importantly, the benefits
of regularization increase as the problem gets larger and the number of stages raises. When T is large
there is a drastic improvement in CPU time with DDP-REG variants. For instance, for T = 250, 300, and
350, the reduction factor in CPU time varies (among the 6 DDP-REG variants) respectively in the interval
[80.0, 114.3], [71.5, 171.6], and [95.5, 184.4]. Remarkably, the solution time with the regularized algorithm
DDP-REG is not monotonically increasing with the number of stages, which points out to the scalability of
the algorithm and the possibility to use it for even larger problems. As an illustration, the difference in time
and number of iterations between DDP and DDP-REG-PREV-REG2 is shown in Figure 2, which highlights
that the time and iteration differential increase with the number of stages.

5.3. Stochastic instances. In this section, we evaluate the computational efficiency of the SDDP-REG
algorithm presented in section 2, and benchmark it with the standard, non regularized version of the SDDP
algorithm. We have implemented the regularization scheme SDDP-REG-PREV-REG2 given that penal-
ization scheme REG2 performed best for the deterministic instances (see section 5.2). The algorithms are
tested on three types of problem instances with T = 12, 20, 24 periods: risk-neutral portfolio models of
subsection 4.1, risk-averse portfolio models of subsection 4.1, and risk-neutral porfolio model with market
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T 10 50 100 150 200 250 300 350

DDP 3 69 268 780 1304 2400 4289 5348
DDP-REG-PREV-REG2 1 4 8 13 17 30 25 29

DDP-REG-PREV-REG1-0.2 1 4 12 21 28 23 60 56
DDP-REG-PREV-REG1-0.9 1 4 8 12 17 21 25 29

DDP-REG-AVG-REG2 1 4 8 13 17 30 25 29
DDP-REG-AVG-REG1-0.2 1 5 8 12 17 21 47 55
DDP-REG-AVG-REG1-0.9 1 4 9 13 17 22 26 30

Table 2. CPU time (in seconds) to solve instances of a portfolio problem of form (1.1),
namely the deterministic counterpart of the porfolio models from section 4.1, using DDP
and various variants of DDP-REG.

T 10 50 100 150 200 250 300 350

DDP-REG-PREV-REG2 3.0 17.3 33.5 60.0 76.7 80.0 171.6 184.4
DDP-REG-PREV-REG1-0.2 3.0 17.3 22.3 37.1 46.6 104.4 71.5 95.5
DDP-REG-PREV-REG1-0.9 3.0 17.3 33.5 65.0 76.7 114.3 171.6 184.4

DDP-REG-AVG-REG2 3.0 17.3 33.5 60.0 76.7 80.0 171.6 184.4
DDP-REG-AVG-REG1-0.2 3.0 13.8 33.5 65.0 76.7 114.3 91.3 97.2
DDP-REG-AVG-REG1-0.9 3.0 17.3 29.8 60.0 76.7 109.1 165.0 178.3

Table 3. CPU time reduction factor for different DDP-REG variants.

T 10 50 100 150 200 250 300 350

DDP 10 26 39 58 66 83 100 104
DDP-REG-PREV-REG2 3 3 3 3 3 4 3 3

DDP-REG-PREV-REG1-0.2 3 3 3 3 3 3 6 5
DDP-REG-PREV-REG1-0.9 3 3 3 3 3 3 3 3

DDP-REG-AVG-REG2 3 3 3 3 3 4 3 3
DDP-REG-AVG-REG1-0.2 3 3 3 3 3 3 5 5
DDP-REG-AVG-REG1-0.9 3 3 3 3 3 3 3 3

Table 4. Number of iterations to solve instances of a portfolio problem of form (1.1),
namely the deterministic counterpart of the porfolio models from section 4.1, using DDP
and various variants of DDP-REG.

Figure 2. Difference in solution time and iteration number between DDP-REG-PREV-
REG2 and DDP algorithms.
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T Variant CPU time (s) Number of iterations

12 SDDP 14 4
12 SDDP-REG-PREV-REG2 6 2
20 SDDP 29 5
20 SDDP-REG-PREV-REG2 21 4
24 SDDP 40 6
24 SDDP-REG-PREV-REG2 18 3

Table 5. CPU time and number of iterations to solve an instance of a portfolio problem
of form (4.25)-(4.26) using SDDP and SDDP-REG-PREV-REG2.

impact costs from subsection 4.2.

Stopping criterion. For risk-neutral SDDP, we used the following stopping criterion. The algorithm
stops if the gap is < 3%. The gap is defined as Ub−Lb

Ub where Ub and Lb correspond to upper and lower
bounds, respectively. The upper bound Ub corresponds to the optimal value of the first stage problem (recall
that we have a maximization problem), obtained taking, as for DDP-REG, λ1,k = 0 (if λ1,k 6= 0, we get a
sequence of approximate upper bounds, which, as we have seen, converges almost surely to the optimal value
of the problem). The lower bound Lb corresponds to the lower end of a 95%-one-sided confidence interval on
the optimal value for N = 500 policy realizations, see [40] for a detailed discussion on this stopping criterion.
Risk averse SDDP was terminated after a fixed number of iterations (= 50).

5.3.1. Risk-neutral multistage linear problem with direct transaction costs (4.25)-(4.26). We report in Table 5
the computational time and number of iterations required for SDDP and SDDP-REG-PREV-REG2 to solve
the instance of portfolio problem (4.27)-(4.28) obtained taking T = 12, 20, 24 and the problem parameters
given in subsection 5.1. We observe that as in the deterministic case, the regularized decomposition method
converges much faster (it is about twice as fast for T = 24) and requires many fewer iterations. We also
refer to Figure 3 where the evolution of the upper and lower bounds and the gap (in % of the upper bound)
are represented for SDDP and SDDP-REG-PREV-REG2 for T = 24. We see that the gap decreases much
faster with SDDP-REG-PREV-REG2.

Figure 3. Risk-neutral upper and lower bounds (left plot) and gap (right plot) in % of the
upper bound for T = 24

5.3.2. Risk-averse multistage linear problem with direct transaction costs (4.27)-(4.28). We implemented
risk-averse models (4.27)-(4.28) taking κt = 0.1 and αt = 0.1, running the algorithms for 50 iterations. The
CPU time is reported in Table 6. Since both problems are run for the same number of iterations and since
the regularized variant requires solving quadratic problems instead of just linear programs in the forward
passes, it was expected to have a larger computational time with the regularized variant. However, the
difference is small. We also report in Figure 4 the evolution of the upper bounds for SDDP and SDDP-REG-
PREV-REG2. We see again that the upper bound decreases much faster with SDDP-REG-PREV-REG2.
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Variant CPU time (s) Number of iterations

SDDP 3895 50
SDDP-REG-PREV-REG2 3921 50

Table 6. CPU time and number of iterations to solve an instance of a portfolio problem
of form (4.27)-(4.28) with T = 48 using SDDP and SDDP-REG-PREV-REG2.

Figure 4. Risk-averse upper bounds, κt = 0.1, αt = 0.1.

T mi Variant CPU time (s) Number of iterations

12 3bp SDDP 20 8
12 3bp SDDP-REG-PREV-REG2 7 3
12 3% SDDP 6 3
12 3% SDDP-REG-PREV-REG2 7 3
20 3bp SDDP 43 10
20 3bp SDDP-REG-PREV-REG2 19 5
20 3% SDDP 11 3
20 3% SDDP-REG-PREV-REG2 11 3
24 3bp SDDP 55 10
24 3bp SDDP-REG-PREV-REG2 13 3
24 3% SDDP 57 11
24 3% SDDP-REG-PREV-REG2 13 3

Table 7. CPU time and number of iterations to solve an instance of a portfolio problem
with market costs (model from section 4.2) using SDDP and SDDP-REG-PREV-REG2.

5.3.3. Conic risk-neutral multistage stochastic problem with market impact costs from section 4.2. We con-
sider two variants of the portfolio problem with market impact costs given in section 4.2 in which we set
the market impact unit cost mi,= 1, . . . , n, to respectively 3 basis points (we recall that a basis point is
0.01% = 10−4) for the first model and 3% = 0.03 for the second. The CPU time and number of iterations
to solve these problems with SDDP and SDDP-REG-PREV-REG2 are given in Table 7. The evolution of
the upper and lower bounds and of the gap along the iterations of the algorithms are reported in Figures 5
and 6 for T = 24. We observe that when mi are small the regularized variant is much quicker and the gap
decreases much faster. When mi increases, in particular for the value 3%, more money is invested in cash
and the computational time and gap evolution with the non-regularized and regularized variants of SDDP
are similar.

6. Conclusion

We presented and studied regularized variants of DDP and SDDP which are extensions of [4] to nonlinear
problems and tested several prox-centers. On the one hand, for deterministic problems, the important
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Figure 5. Upper and lower bounds (left plot) and gap (right plot) in % of the upper bound
for the risk-neutral model with market costs, mi = 3bp for T = 24.

Figure 6. Upper and lower bounds (left plot) and gap (right plot) in % of the upper bound
for the risk-neutral model with market costs, mi = 3% for T = 24.

reduction in CPU time when passing from DDP to DDP-REG, in the vein of [24], was expected. In the
stochastic case, we would a priori need different prox-centers for all nodes of the scenario tree (see also [38]).
However, such regularized variant is not computationally tractable. Therefore, the proposed SDDP-REG
offers a tractable regularized variant of SDDP whose convergence can be shown for vanishing penalties and
which can converge quicker than SDDP on some problem instances and for some choices of prox-centers
as shown in our experiments. We also observe that it is possible, as in [4], to partition the decision xt for
stage t into state st and control ut variables and to take as prox-centers for stage t and iteration k the state
component skt of xkt . The convergence of both this variant of SDDP-REG as well as the variant that uses
prox-centers attached to nodes of the scenario tree mentioned above can be shown following the steps of the
convergence proof of SDDP-REG given in section 3.

An interesting topic on the regularization of SDDP is to define a regularization that can be proved to
have better complexity than standard SDDP.
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Appendix

Proof of Theorem 3.2. In this proof, all equalities and inequalities hold almost surely. We show H(2),
. . ., H(T + 1), by induction backwards in time. H(T + 1) follows from the fact that QT+1 = QkT+1 = 0.
Now assume that H(t + 1) holds for some t ∈ {2, . . . , T}. We want to show that H(t) holds. Take a node
n ∈ Nodes(t−1). Let Sn = {k ≥ 1 : nkt−1 = n} be the set of iterations such that the sampled scenario passes
through node n. Due to Assumption (H3), the set Sn is infinite. We first show that

(6.36) lim
k→+∞, k∈Sn

Qt(xkn)−Qkt (xkn) = 0.

Take k ∈ Sn. We have nkt−1 = n, xk
nk
t−1

= xkn and recalling (2.15), we have Ckt (xkn) = θkt . Using definition

(2.20) of θkt , it follows that

(6.37) Qkt (xkn) ≥ Ckt (xkn) = θkt =
∑

m∈C(n)

pmQk
t (xkn, ξm).

Now let x̄km such that F k−1
t (xkn, x̄

k
m, ξm) = Qk−1

t (xkn, ξm) where Qk−1
t is defined by (2.16) with k replaced by

k − 1. Using (6.37) and the definition of Qt, we get

(6.38)

0 ≤ Qt(x
k
n)−Qk

t (xkn) ≤
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)−Qk

t (xkn, ξm)
]

≤
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)−Qk−1

t (xkn, ξm)
]

since Qk
t ≥ Qk−1

t

=
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)− F k−1

t (xkn, x̄
k
m, ξm)

]
=

∑
m∈C(n)

pm
[
Qt(x

k
n, ξm)− F k−1

t (xkn, x
k
m, ξm)

]
+

∑
m∈C(n)

pm
[
F k−1
t (xkn, x

k
m, ξm)− F k−1

t (xkn, x̄
k
m, ξm)

]
.

Now using the definitions of F k−1
t and Ft we obtain

(6.39)
Qt(x

k
n, ξm)− F k−1

t (xkn, x
k
m, ξm) = Qt(x

k
n, ξm)− ft(xkn, xkm, ξm)−Qk−1

t+1 (xkm)
= Qt(x

k
n, ξm)− Ft(xkn, xkm, ξm)

+Qt+1(xkm)−Qk−1
t+1 (xkm).

Observing that for every m ∈ C(n) the decision xkm ∈ Xt(x
k
n, ξm), we obtain, using definition (2.13) of Qt,

that

Ft(x
k
n, x

k
m, ξm) ≥ Qt(x

k
n, ξm).

Combining this relation with (6.39) gives for k ∈ Sn
(6.40) Qt(x

k
n, ξm)− F k−1

t (xkn, x
k
m, ξm) ≤ Qt+1(xkm)−Qk−1

t+1 (xkm).

Next,

(6.41)

F k−1
t (xkn, x

k
m, ξm)− F k−1

t (xkn, x̄
k
m, ξm)

= F k−1
t (xkn, x

k
m, ξm)− F̄ k−1

t (xkn, x
k
m, x

P,k
t , ξm) + F̄ k−1

t (xkn, x
k
m, x

P,k
t , ξm)

−F̄ k−1
t (xkn, x̄

k
m, x

P,k
t , ξm) + F̄ k−1

t (xkn, x̄
k
m, x

P,k
t , ξm)− F k−1

t (xkn, x̄
k
m, ξm)

≤ F k−1
t (xkn, x

k
m, ξm)− F̄ k−1

t (xkn, x
k
m, x

P,k
t , ξm) + F̄ k−1

t (xkn, x̄
k
m, x

P,k
t , ξm)

−F k−1
t (xkn, x̄

k
m, ξm),
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where the above inequality comes from the fact x̄km ∈ Xt(x
k
n, ξm), i.e., x̄km is feasible for optimization problem

(3.21) with objective function F̄ k−1
t (xkn, ·, x

P,k
t , ξm) and optimal solution xkm. We get

(6.42)
0 ≤ F k−1

t (xkn, x
k
m, ξm)− F k−1

t (xkn, x̄
k
m, ξm) ≤ λt,k(‖x̄km − xP,k

t ‖2 − ‖xkm − x
P,k
t ‖2)

≤ λt,k‖x̄km − xP,k
t ‖2 ≤ λt,kD(Xt)

2,

where D(Xt) is the diameter of Xt (finite, since Xt is compact). Plugging (6.42) and (6.40) into (6.38) yields
for any k ∈ Sn

(6.43) 0 ≤ Qt(xkn)−Qkt (xkn) ≤ λt,kD(Xt)2 +
∑

m∈C(n)

pm

(
Qt+1(xkm)−Qk−1

t+1 (xkm)
)
.

Using the induction hypothesis H(t+ 1), we have for every child node m of node n:

(6.44) lim
k→+∞

Qt+1(xkm)−Qkt+1(xkm) = 0.

Now recall that Qt+1 is convex on the compact set Xt (Proposition 2.1), xkm ∈ Xt for every child node m of

node n, and the functions Qkt+1, k ≥ 1, are Lipschitz continuous with Qt+1 ≥ Qkt+1 ≥ Qk−1
t+1 on Xt (Lemma

3.1). It follows that we can use Lemma A.1 in [13] to deduce from (6.44) that for every m ∈ C(n)

lim
k→+∞

Qt+1(xkm)−Qk−1
t+1 (xkm) = 0.

Combining this relation with (6.43) and using the fact that limk→+∞ λt,k = 0, we obtain

(6.45) lim
k→+∞,k∈Sn

Qt(xkn)−Qkt (xkn) = 0.

To show H(t), it remains to show that

(6.46) lim
k→+∞,k/∈Sn

Qt(xkn)−Qkt (xkn) = 0.

Relation (6.46) can be shown following the end of the proof of Theorem 4.1 in [17], by contradiction and
using the Strong Law of Large Numbers (the same arguments were first used in a similar context in Theorem
3.1 of [13] but for a different problem formulation and sampling scheme). The key to the proof being the
fact that the sampled nodes for iteration k are independent on the decisions computed at the nodes of the
scenario tree for that iteration and on recourse functions Qk−1

t+1 . This achieves the proof of (i).
(ii) Recalling that the root node n0 with decision x0 taken at that node has a single child node n1 with

corresponding decision xkn1
at iteration k, the computations in (i) show that for every k ≥ 15, we have

(6.47)
0 ≤ Q1(x0, ξ1)−Qk

1(x0, ξ1) ≤ Q1(x0, ξ1)− F k−1
1 (x0, x

k
n1
, ξ1) + λ1,kD(X1)2,

≤ Q2(xkn1
)−Qk−1

2 (xkn1
) + λ1,kD(X1)2.

We have shown in (i) that limk→+∞Q2(xkn1
)−Qk−1

2 (xkn1
) = 0. Plugging this relation into (6.47) shows that

lim
k→+∞

Qk
1(x0, ξ1) = lim

k→+∞
F k−1
1 (x0, x

k
n1
, ξ1) = lim

k→+∞
F̄ k−1
1 (x0, x

k
n1
, xP,k

1 , ξ1) = Q1(x0, ξ1).

Now take an accumulation point (x∗n)n∈N of the sequence ((xkn)n∈N )k≥1 and let K be an infinite set of
iterations such that for every n ∈ N , limk→+∞,k∈K x

k
n = x∗n.6 Using once again computations from (i), we

get for any k ≥ 1, t = 1, . . . , T , n ∈ Nodes(t− 1), m ∈ C(n),

0 ≤ Qt(x
k
n, ξm)−Qk−1

t (xkn, ξm) ≤ Qt(x
k
n, ξm)− F k−1

t (xkn, x
k
m, ξm) + λt,kD(Xt)

2,

≤ Qt+1(xkm)−Qk−1
t+1 (xkm) + λt,kD(Xt)

2,

which can be written

−λt,kD(Xt)2 ≤ Qt(x
k
n, ξm)− F k−1

t (xkn, x
k
m, ξm) ≤ Qt+1(xkm)−Qk−1

t+1 (xkm).

Since limk→+∞Qt+1(xkm)−Qk−1
t+1 (xkm) = 0 (due to (i)), the above relation shows that

(6.48) lim
k→+∞

Qt(x
k
n, ξm)− F k−1

t (xkn, x
k
m, ξm) = 0.

5Though when deriving these relations in (i) we had fixed k ∈ Sn, the inequalities we now re-use for (ii) are valid for any
k ≥ 1.

6The existence of an accumulation point comes from the fact that the decisions belong almost surely to a compact set.
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We will now use the continuity of Qt(·, ξm) which follows from (H2) (see Lemma 3.2 in [17] for a proof). We
have

(6.49)

Qt(x
∗
n, ξm) = lim

k→+∞,k∈K
Qt(x

k
n, ξm) using the continuity of Qt(·, ξm),

= lim
k→+∞,k∈K

F k−1
t (xkn, x

k
m, ξm) using (6.48),

= lim
k→+∞,k∈K

ft(x
k
n, x

k
m, ξm) +Qk−1

t+1 (xkm),

≥ ft(x
∗
n, x
∗
m, ξm) + lim

k→+∞,k∈K
Qt+1(xkm) using (i) and lsc of ft,

≥ ft(x
∗
n, x
∗
m, ξm) +Qt+1(x∗m) = Ft(x

∗
n, x
∗
m, ξm)

where for the last inequality we have used the continuity of Qt+1. To prove (ii) it suffices to observe that
the sequence (xkn, x

k
m)k∈K belongs to the set

X̄t,m = {(xt−1, xt) ∈ Xt−1×Xt : gt(xt−1, xt, ξm) ≤ 0, Amxt +Bmxt−1 = bm}
and this set is closed since gt is lower semicontinuous and Xt is closed. Thus, x∗m ∈ Xt(x

∗
n, ξm), which,

together with (6.49), shows that x∗m is an optimal solution of Qt(x
∗
n, ξm) = inf{Ft(x∗n, xm, ξm) : xm ∈

Xt(x
∗
n, ξm)} and achieves the proof of (ii).


