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Abstract. We introduce the class of multistage stochastic optimization problems with a random

number of stages. For such problems, we show how to write dynamic programming equations and
how to solve these equations using the Stochastic Dual Dynamic Programming algorithm. Finally,

we consider a portfolio selection problem over an optimization period of random duration. For
several instances of this problem, we show the gain obtained using a policy that takes the ran-

domness of the number of stages into account over a policy built taking a fixed number of stages

(namely the maximal possible number of stages).
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1. Introduction

Multistage Stochastic Programs (MSPs) are common in finance and in many areas of engineering,
see for instance [44] and references therein. These models are useful when a sequence of decisions
has to be taken over an optimization period of T stages knowing that these decisions must satisfy
almost surely random constraints and induce some random costs [44, 35, 36, 41, 39]. To the best of
our knowledge all MSPs considered so far in the literature have a known (finite in general) number
of stages. However, for many applications, the number of stages, i.e., the real optimization period,
is not known in advance. It is easy to name a few of these applications:

• A company may want to determine optimal investments over its lifetime [31, 28, 45, 30]. In
this situation, the optimization period ends when the company disappears either because it
goes bankrupt, or because it is bought by another company, or because it decides to stop
its activities [9]. These three stopping times, which determine the number of stages T , are
indeed random.

• A fund manager can decide to stop his investments when the fund reaches a given target.
This stopping time is again random, depending on the random returns of the investments
and of the investment strategy.

• Multistage stochastic portfolio optimization [10, 2, 12]: an individual may invest his money
in financial assets until his death or until he obtains a given amount used for covering some
expense [4]. Again, both stoppping times are random.

• An hedge fund may have to deal with longevity risk [32, 8, 42, 27], with payout ratios for a
given set of individuals spreading over random time windows .
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The examples above are examples in finance but in many other areas, for instance logistics [6], power
management [33, 34, 19, 15], and capacity planning and expansion [5, 11, 25], MSPs with a random
optimization period could be useful, especially for long-term optimization [13] when the optimization
period depends on the lifetime of individuals or companies.

It is therefore natural to consider multistage stochastic programs having a random number of
stages. The study of these problems passes through two successive steps: (i) a modelling step to
define a policy and (ii) an algorithmic step to build a policy, i.e., a solution method allowing us to
compute decisions on any realization of the uncertainty. Guided by the fact that there exist efficient
solution methods for MSPs based on dynamic programming equations (for instance Stochastic Dual
Dynamic Programming (SDDP) [34] and Approximate Dynamic Programming (ADP) [40]), our
goal is to write dynamic programming equations for a multistage stochastic program with a random
number of stages. The paper is organized as follows. In Section 2, we define multistage stochastic
optimization problems with a random number of stages and show how to write dynamic programming
equations for these problems. We show in particular, that compared to the case where the number
of stages is fixed, two new features appear: first we need to add an extra state variable, denoted
by Dt−1 for stage t, allowing us to know if the optimization period is already over or not and
second for each stage instead of just one cost-to-go function we have two cost-to-go functions, one
if the optimization period is already over (this is the null function) and another one when there
remains additional stages for the optimization period. In Section 3, we write dynamic programming
equations for a slightly larger class of MSPs, still having a random number of stages, but where the
cost function for the last (random) stage and the cost functions for the remaining stages are taken
from two sets of functions. We provide a portfolio selection model as an example of such problems.

In the case when the underlying stochastic process ξt neither depends on its past (ξ1, . . . , ξt−1)
nor on Dt and Dt only depends on Dt−1, Section 4 describes a variant of the SDDP algorithm
to solve the dynamic programming equations written in Section 2. This variant of SDDP, called
SDDP-TSto, is very similar to the variants of SDDP presented in [37, 29] where the underlying
stochastic process depends on a Markov Chain (process (Dt) in our case) and a value function is
used for each stage and in each state of the Markov chain. Finally, in Section 5, we consider a
portfolio problem with a random optimization period and the corresponding dynamic programming
equations, given in Section 3. We detail the SDDP algorithm applied to these equations and present
the results of numerical tests which compare for several instances the performance of a policy that
takes the randomness of the number of stages into account with the performance of a policy built
taking a fixed value for the number of stages, namely the maximal possible value.

2. Dynamic programming equations for multistage stochastic programs with a
random number of stages

Consider a risk-neutral multistage stochastic optimization problem with Tmax known stages of
form

(1)
inf Eξ2,...,ξTmax

[Tmax∑
t=1

ft(xt, xt−1, ξt)
]

xt ∈ Xt(xt−1, ξt) a.s., xt Ft-measurable, t = 1, . . . , Tmax,

where x0 is given, ξ1 is deterministic, (ξt)
Tmax
t=2 is a stochastic process, Ft is the sigma-algebra

Ft := σ(ξj , j ≤ t), and Xt(xt−1, ξt) is a subset of Rn. In the objective, the expectation is computed
with respect to the distribution of ξ2, . . . , ξTmax . We assume that the problem above is well defined.
We will come back in Section 4 to the necessary assumptions for problem (1) to be well defined and
to apply SDDP as a solution method.
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Our goal in this section is to define multistage stochastic optimization problems where the number
of stages (Tmax in (1)) is not fixed anymore but is stochastic, and to derive dynamic programming
equations, under several assumptions, for such problems.

We will assume that

(H0) the number of stages T is a discrete random variable taking values in {2, . . . , Tmax}.

Assumption (H0) is necessary to apply our SDDP-TSto algorithm (described in Section 4) which
is a solution method for our Dynamic Programming equations. The number of stages T , or stopping
time, induces the Bernoulli process Dt, t = 1, . . . , Tmax (a “Death” process), where Dt = 1T>t is
the indicator of the event {T > t}:

(2) Dt = 1T>t =

{
0 if the optimization period ended at t or before,
1 otherwise.

Therefore T can be written as the following function of process (Dt):

(3) T = min
{

1 ≤ t ≤ Tmax : Dt = 0
}
.

Clearly, Dt, t = 1, . . . , Tmax, are dependent random variables and the distribution of Dt given Dt−1
is known as long as the distribution of T is known. More precisely, since we have at least 2 stages,
D1 takes value 1 with probability 1. Next, denoting pt = P(T = t) and qt = P(Dt = 0|Dt−1 = 1),
we have q2 = P(T = 2) = p2, and for t ∈ {2, . . . , Tmax} we get

pt = P(T = t) = P(D2 = 1;D3 = 1; . . . ;Dt−1 = 1;Dt = 0) = qt

t−1∏
k=2

(1− qk).

Therefore transition probabilities qt, t = 2, 3, . . . , Tmax, can be computed using the recurrence

(4) qt =
pt

t−1∏
k=2

(1− qk)

, t = 3, . . . , Tmax,

starting from q2 = p2 (note that qTmax = 1).
By definition ofDt, we also have P(Dt = 0|Dt−1 = 0) = 1 or equivalently P(Dt = 1|Dt−1 = 0) = 0.
We represent on the top left plot of Figure 1 the scenario tree of the realizations ofD1, D2, . . .,DTmax

(for an example where Tmax = 5), as well as the transition probabilities between the nodes of this
scenario tree. In this scenario tree, realizations are indicated at the nodes of the tree while transition
probabilities between two nodes are given above the arrow linking these nodes. Observe that for a
node with label 0 all future transition probabilities are 1 and all descendant nodes have label 0. In
the case when the number of stages is stochastic, the decision xt for stage t is not only a function
of the history ξ[t] = (ξ1, ξ2, . . . , ξt) of process (ξt), as in (1), but also depends on the history of
process (Dt). Therefore, we come to the following definition of a risk-neutral multistage stochastic
optimization problem with a random number T of stages:

(5)
inf Eξ2,...,ξTmax ,D2,...,DTmax

[ T∑
t=1

ft(xt, xt−1, ξt)
]

xt ∈ Xt(xt−1, ξt) a.s., xt F t-measurable, t = 1, . . . , Tmax,

where F t is the sigma-algebra

(6) F t = σ(ξj , Dj , j ≤ t)
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Figure 1. Scenario trees (assuming that ξt does not depend on (ξ[t−1], Dt)).

Figure 1. Scenario trees (assuming that ξt does not depend on (ξ[t−1], Dt)).

and where T is the function of (Dt) given by (3). Note that in the objective of (5) the expectation
is computed with respect to the distribution of ξ2, . . . , ξTmax

, D2, . . . , DTmax
. Plugging (3) into (5),

problem (5) can be written

(7)
inf Eξ2,...,ξTmax ,D2,...,DTmax

[ ∑
1≤t≤min{1≤τ≤Tmax:Dτ=0}

ft(xt, xt−1, ξt)
]

xt ∈ Xt(xt−1, ξt) a.s., xt F t-measurable, t = 1, . . . , Tmax.

To write dynamic programming equations for (7) we now define the state vectors. The state vector
at stage t is given by xt−1 (decision taken at the previous stage) and the relevant history of processes
(ξt) and (Dt). Though all the history D[t−1] = (D1, . . . , Dt−1) of process (Dt) until stage t− 1 may
be necessary, we argue that it is enough to put in the state vector for stage t past value Dt−1 of
(Dt). Indeed,

• if Dt−1 = 1 then the whole history of (Dt) until t − 1 is known: we know that Dj = 1 for
1 ≤ j ≤ t− 1;

• on the other hand, if Dt−1 = 0 then whatever the history of (Dt) until t− 1, we know that
the cost function is null for stage t because the optimization period ended at t− 1 or before.

Consequently the state vector at stage t is (xt−1, ξ[t−1], Dt−1) and we introduce for each stage
t = 2, . . . , Tmax, two functions:

• Qt(xt−1, ξ[t−1], Dt−1, ξt, Dt) which is the optimal mean cost for the period t, t+ 1, . . . , Tmax,
starting at t from state (xt−1, ξ[t−1], Dt−1) and knowing the values ξt and Dt of processes
(ξt) and (Dt) at t;
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• Qt given by

(8) Qt(xt−1, ξ[t−1], Dt−1) = Eξt,Dt
[
Qt(xt−1, ξ[t−1], Dt−1, ξt, Dt)|Dt−1, ξ[t−1]

]
,

i.e., Qt(xt−1, ξ[t−1], Dt−1) is the optimal mean cost for the period t, t+ 1, . . . , Tmax, starting
at t from state (xt−1, ξ[t−1], Dt−1).

We also set QTmax+1(xTmax
, ξ[Tmax], DTmax

) ≡ 0. With these definitions, clearly for t = 2, . . . , Tmax,
we have

(9) Qt(xt−1, ξ[t−1], 0) = 0.

Next, for t = 2, . . . , Tmax, functions Qt(·, ·, 1) satisfy the recurrence

(10) Qt(xt−1, ξ[t−1], 1) = Eξt,Dt
[
Qt(xt−1, ξ[t−1], 1, ξt, Dt)|Dt−1 = 1, ξ[t−1]

]
where

(11) Qt(xt−1, ξ[t−1], 1, ξt, 0) = inf
xt
{ft(xt, xt−1, ξt) : xt ∈ Xt(xt−1, ξt)},

and

(12) Qt(xt−1, ξ[t−1], 1, ξt, 1) = inf
xt
{ft(xt, xt−1, ξt) +Qt+1(xt, ξ[t−1], ξt, 1) : xt ∈ Xt(xt−1, ξt)}.

The reasons for equations (10)-(12) are clear:

• Qt(xt−1, ξ[t−1], 1, ξt, 0) is the optimal mean cost for the period t, t+1, . . . , Tmax, knowing that
the optimization period ends at t and that ξt is the value of process (ξt) at stage t. Therefore
it is obtained by minimizing the immediate stage t cost while satisfying the constraints for
stage t.
• Qt(xt−1, ξ[t−1], 1, ξt, 1) is the optimal mean cost for the period t, t + 1, . . . , Tmax, knowing

that the optimization period continues after t and that ξt is the value of process (ξt) at stage
t. Therefore it is obtained by minimizing the immediate stage t cost plus the future optimal
mean cost (which is Qt+1(xt, ξ[t], Dt) = Qt+1(xt, ξ[t−1], ξt, 1) since Dt = 1) while satisfying
the constraints for stage t.

We observe that equations (9)-(12) can be written under the following compact form: for t =
2, . . . , Tmax, Qt(xt−1, ξ[t−1], Dt−1) is given by (8) where
(13)
Qt(xt−1, ξ[t−1], Dt−1, ξt, Dt) = inf

xt
{Dt−1ft(xt, xt−1, ξt) +Qt+1(xt, ξ[t], Dt) : xt ∈ Xt(xt−1, ξt)}.

Setting D0 = 1, recalling that D1 = 1 and that F t is given by (6), it is straighforwardly seen that
the optimal value of (7) can be expressed as

(14) inf
x1

{D0f1(x1, x0, ξ1) +Q2(x1, ξ1, D1) : x1 ∈ X1(x0, ξ1)},

and that (8)-(13) are dynamic programming equations for the problem

(15)
inf Eξ2,...,ξTmax,D2,...,DTmax

[Tmax∑
t=1

Dt−1ft(xt, xt−1, ξt)
]

xt ∈ Xt(xt−1, ξt) a.s., xt F t-measurable, t = 1, . . . , Tmax,

which is an equivalent reformulation of (7).
The impact of the randomness of T on the dynamic programming equations is clear from reformu-

lation (15) of problem (7). In this reformulation, the number of stages is fixed and known: it is the
maximal possible number of stages Tmax for T . Therefore, it takes the form of a “usual” multistage
stochastic optimization problem where random variable T was replaced by the interstage dependent
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random process (Dt) and the cost function ft at stage t was replaced by the random cost function
Dt−1ft. Indeed, when the optimization period ended at t− 1 or before, the cost function is null for
stage t or equivalently can be expressed as Dt−1ft since Dt−1 = 0 in this case. On the other hand,
if the optimization period did not end at t− 1 then Dt−1 = 1 and again the cost function for stage
t can be expressed as Dt−1ft (= ft in this case).

Note that in these equations, (ξt, Dt) can depend on ξ[t−1]. Clearly Dt depends on Dt−1 but
(ξt, Dt) can be independent on ξ[t−1]. In this situation, ξ[t−1] is not needed in the state vector at
t and the dynamic programming equations simplify as follows: QTmax+1(xTmax

, DTmax
) ≡ 0 and for

t = 2, . . . , Tmax, we have

(16) Qt(xt−1, Dt−1) = Eξt,Dt
[
Qt(xt−1, Dt−1, ξt, Dt)|Dt−1

]
where

(17) Qt(xt−1, Dt−1, ξt, Dt) = inf
xt
{Dt−1ft(xt, xt−1, ξt) +Qt+1(xt, Dt) : xt ∈ Xt(xt−1, ξt)}.

Finally, let us consider the case when

(H1) ξt does not depend on (ξ[t−1], Dt), has discrete distribution with finite support, and Dt only
depends on Dt−1.

(H1) will be needed for the solution method SDDP-TSto described in Section 4. In this setting,
(Dt) is an inhomogeneous Markov chain with two states: an absorbing state corresponding to the
case when the optimization period is over and a second state where the optimization period is still
not over. We assume that the distribution of ξt is discrete with finite support {ξt1, . . . , ξtMt

} with
ptj = P(ξt = ξtj). The scenario trees for (ξ1, . . . , ξTmax

) and ((D1, ξ1), (D2, ξ2), . . . , (DTmax
, ξTmax

))
(nodes and transition probabilities) are represented in Figure 1 (right and bottom left plots) on an
example where Tmax = 3 and where ξt has two possible realizations for all t = 2, . . . , Tmax.

With these assumptions dynamic programming equations (16)-(17) can be written as follows:
QTmax+1(xTmax

, DTmax
) ≡ 0,

(18) Qt(xt−1, 0) = 0, t = 2, . . . , Tmax,

and

(19) Qt(xt−1, 1) = (1− qt)
Mt∑
j=1

ptjQt(xt−1, 1, ξtj , 1) + qt

Mt∑
j=1

ptjQt(xt−1, 1, ξtj , 0),

where qt is given by (4),

(20) Qt(xt−1, 1, ξtj , 1) = inf
xt
{ft(xt, xt−1, ξtj) +Qt+1(xt, 1) : xt ∈ Xt(xt−1, ξtj)},

and

(21) Qt(xt−1, 1, ξtj , 0) = inf
xt
{ft(xt, xt−1, ξtj) : xt ∈ Xt(xt−1, ξtj)}.

Remark 2.1. Observe that the dynamic programming equations above correspond to a model that
minimizes the expected cost with respect to the distribution of (ξ1, ξ2, . . . , ξTmax , D1, D2, . . . , DTmax).
From the Law of Large Numbers, this model is useful when the corresponding policy is repeatedly
applied by individuals sharing the same distribution of the number of stages T . An example would
be a group of companies sharing the same distribution for their lifetime, see [9] and Section 5.2.
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3. Dynamic programming equations for more general models

3.1. Dynamic programming equations. In the previous section, we considered models where
the cost functions for stages t ≤ T are taken from the collection of functions (ft), namely ft for
stage t as long as t ≤ T . It is possible to write dynamic programming equations for more general
risk-neutral stochastic programming models having a random number T of stages where the cost
function for stage t = 1, . . . , T − 1, is taken from collection of functions ft(xt, xt−1, ξt) and for t = T
the cost function is f t(xt, xt−1, ξt). In this situation, recalling definition (2) of Dt, the cost function
for stage t can be written

(22) Dtft(xt, xt−1, ξt) + (Dt−1 −Dt)f t(xt, xt−1, ξt).

Indeed,

• if t < T we have Dt−1 = Dt = 1 and Dtft(xt, xt−1, ξt) + (Dt−1 − Dt)f t(xt, xt−1, ξt) =
ft(xt, xt−1, ξt);

• if t = T we have Dt−1 = 1, Dt = 0, and Dtft(xt, xt−1, ξt) + (Dt−1 − Dt)f t(xt, xt−1, ξt) =
f t(xt, xt−1, ξt);

• if t > T no costs are incurred, we have Dt−1 = Dt = 0 and Dtft(xt, xt−1, ξt) + (Dt−1 −
Dt)f t(xt, xt−1, ξt) = 0;

as required. In the next section we present a simple portfolio problem modelled by a MSP of this
type. Therefore, for the class of problems we are dealing with now, with cost function (22) for stage
t, we obtain the multistage stochastic program

(23)
inf Eξ2,...,ξTmax ,D2,...,DTmax

[Tmax∑
t=1

Dtft(xt, xt−1, ξt) + (Dt−1 −Dt)f t(xt, xt−1, ξt)
]

xt ∈ Xt(xt−1, ξt) a.s., xt F t-measurable, t = 1, . . . , Tmax,

where F t is the sigma-algebra given by (6). Observe that when

f t(xt, xt−1, ξt) = ft(xt, xt−1, ξt),

we are back to the stochastic programs considered in the previous section, i.e., problem (23) becomes
problem (15). We obtain for (23) the following dynamic programming equations:

QTmax+1(xTmax
, ξ[Tmax], DTmax

) ≡ 0

and for t = 2, . . . , Tmax,

(24) Qt(xt−1, ξ[t−1], Dt−1) = Eξt,Dt
[
Qt(xt−1, ξ[t−1], Dt−1, ξt, Dt)|Dt−1, ξ[t−1]

]
where Qt(xt−1, ξ[t−1], Dt−1, ξt, Dt) is given by

(25)
infxt Dtft(xt, xt−1, ξt) + (Dt−1 −Dt)f t(xt, xt−1, ξt) +Qt+1(xt, ξ[t], Dt)
xt ∈ Xt(xt−1, ξt).

3.2. Example: a simple portfolio problem. We consider the portfolio selection problem with
direct transaction costs given in [22]. When the number of stages is random we obtain a problem
from the class of problems introduced in the previous Section 3.1. We first recall the dynamic
programming equations for this model when the number of stages Tmax is fixed and known. We
refer to Table 1 for the list of corresponding parameters and decision variables. Let xt(i) be the
dollar value of asset i = 1, . . . , n+ 1, at the end of stage t = 1, . . . , Tmax, where asset n+ 1 is cash;
let ξt(i) be the return of asset i at t; let yt(i) be the amount of asset i sold at the end of t; let
zt(i) be the amount of asset i bought at the end of t with ηt(i) > 0 and νt(i) > 0 the respective
proportional selling and buying transaction costs at t. Each component x0(i), i = 1, . . . , n+ 1, of x0
is known. The budget available at the beginning of the investment period is

∑n+1
i=1 ξ1(i)x0(i) and
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Decision variables

xt(i) Dollar value of risky asset i at end of t
yt(i) Amount (in dollars) of risky asset i sold at end of t
zt(i) Amount (in dollars) of risky asset i bought at end of t

xt(n+ 1) Amount (in dollars) held in cash at end of t
Stochastic parameters ξt(i) Return of risky asset i for stage t

Deterministic parameters

ξt(n+ 1) Cash return for stage t
u(i) Maximal proportion of capital invested in risky asset i
ηt(i) Selling transaction cost for risky asset i stage t
νt(i) Buying transaction cost for risky asset i stage t
x0 Initial portfolio

Table 1. Parameters and decision variables for the portfolio problem.

u(i) represents the maximal proportion of capital that can be invested in asset i. For t = 1, . . . , Tmax,
given a portfolio xt−1 = (xt−1(1), . . . , xt−1(n), xt−1(n+ 1)) and ξt, we define the set Xt(xt−1, ξt) as
the set of portfolios (xt, yt, zt) ∈ Rn+1×Rn×Rn satisfying

xt(n+ 1) = ξt(n+ 1)xt−1(n+ 1) +
n∑
i=1

(
(1− ηt(i))yt(i)− (1 + νt(i))zt(i)

)
,

xt(i) = ξt(i)xt−1(i)− yt(i) + zt(i), i = 1, . . . , n,

xt(i) ≤ u(i)
n+1∑
j=1

ξt(j)xt−1(j), yt(i) ≤ ξt(i)xt−1(i), i = 1, . . . , n,

xt(i) ≥ 0, yt(i) ≥ 0, zt(i) ≥ 0, i = 1, . . . , n.

With this notation, the following dynamic programming equations of a risk-neutral portfolio model
can be written: for t = Tmax, we solve the problem
(26)

QTmax
(xTmax−1, ξTmax

) =

 inf fTmax
(xTmax

, xTmax−1, ξTmax
) := −E

[ n+1∑
i=1

ξTmax+1(i)xTmax
(i)
]

XTmax
∈ XTmax

(xTmax−1, ξTmax
),

while at stage t = Tmax − 1, . . . , 1, we solve

(27) Qt (xt−1, ξt) = inf{Qt+1 (xt) : xt ∈ Xt(xt−1, ξt)},
where

(28) Qt(xt−1) = Eξt [Qt (xt−1, ξt)], t = 2, . . . , Tmax.

Now for t = 1, . . . , Tmax, define

(29) ft(xt, xt−1, ξt) ≡ 0 and f t(xt, xt−1, ξt) = −E
[ n+1∑
i=1

ξt+1(i)xt(i)
]
.

Since the number of stages is fixed to Tmax then Dt = 1, t = 1, . . . , Tmax − 1, DTmax
= 0 almost

surely, and the porfolio problem we have just described is of form (23) with ft, f t as in (29) and
Dt = 1, t = 1, . . . , Tmax − 1, DTmax

= 0 almost surely, i.e., we obtain the portfolio problem

(30)
inf Eξ2,...,ξTmax

[
fTmax

(xTmax , xTmax−1, ξTmax)
]

xt ∈ Xt(xt−1, ξt) a.s., xt Ft-measurable, t = 1, . . . , Tmax.

With this model, we minimize the expected loss of the portfolio (or equivalently maximize the mean
income) taking into account the transaction costs, non-negativity constraints, and bounds imposed
on the different securities.
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Now assume that the number of stages is random with discrete distribution on {2, . . . , Tmax}
and define Dt by (2). We obtain the portfolio problem (23) with ft, f t as in (29). If ξt does not
depend on (ξ[t−1], Dt), Dt only depends on Dt−1, and the distribution of ξt is discrete with finite
support {ξt1 . . . , ξtMt}, denoting ptj = P(ξt = ξtj), we can write the following dynamic programming
equations for the corresponding portfolio problem: QTmax+1(xTmax

, 0) = QTmax+1(xTmax
, 1) ≡ 0, for

t = 2, . . . , Tmax, Qt(xt−1, 0) ≡ 0 and for t = 2, . . . , Tmax, we have

(31) Qt(xt−1, 1) = (1− qt)
Mt∑
j=1

ptjQt(xt−1, 1, ξtj , 1) + qt

Mt∑
j=1

ptjQt(xt−1, 1, ξtj , 0),

where qt is given by (4),

(32) Qt(xt−1, 1, ξtj , 1) = inf
xt
{Qt+1(xt, 1) : xt ∈ Xt(xt−1, ξtj)},

and

(33) Qt(xt−1, 1, ξtj , 0) = inf
xt
{−E[ξTt+1xt] : xt ∈ Xt(xt−1, ξtj)}.

In the case when the number of stages is Tmax (deterministic) then qt = 0 for t = 2, . . . , Tmax − 1,
qTmax

= 1 and dynamic programming equations (31), (32), (33) become, as expected, (26), (27),
(28) (with the notation Qt(xt−1) instead of Qt(xt−1, 1), Qt(xt−1, ξtj) instead of Qt(xt−1, 1, ξtj , 1),
and QTmax

(xTmax−1, ξTmax
) instead of QTmax

(xTmax−1, 1, ξTmax
, 0)).

4. SDDP for multistage stochastic risk-neutral programs with a random number
of stages

4.1. Assumptions. Consider optimization problem (15) and let assumptions (H0), (H1) hold. Re-
call that (H0) and (H1) mean that ξt does not depend on (ξ[t−1], Dt), Dt only depends on Dt−1,
and the distributions of T and ξt are discrete: the support of T is {2, . . . , Tmax} and the support of
ξt is Θt = {ξt1, . . . , ξtMt

} with pti = P(ξt = ξti) > 0, i = 1, . . . ,Mt. In this context, equations (18),
(19), (20), (21) are the dynamic programming equations for (15). We can now apply Stochastic
Dual Dynamic Programming (SDDP, [34]), to solve these dynamic programming equations as long
as recourse functions Qt(·, 1) are convex. SDDP has been used to solve many real-life problems
and several extensions of the method have been considered such as DOASA [38], CUPPS [7], ReSA
[23], AND [3], risk-averse ([20, 21, 26, 37, 43, 44]) or inexact ([18]) variants; see also [16, 24] for
adaptations to interstage dependent processes and [46] for extensions for integer stochastic programs.

SDDP builds approximations for the cost-to-go functions which take the form of a maximum of
affine functions.

To ensure convexity of functions Qt(·, 1), we need convexity of functions ft(·, ·, ξt) and of mul-
tifunctions Xt(·, ξt) for almost every ξt. We will consider two settings: linear and nonlinear programs.

Linear problems. In this setting, ft(xt, xt−1, ξt) = cTt xt is linear,

(34) Xt(xt−1, ξt) := {xt ∈ Rn : Atxt +Btxt−1 = bt, xt ≥ 0},

and random vector ξt corresponds to the concatenation of the elements in random matrices At, Bt
which have a known finite number of rows and random vectors bt, ct. We assume:

(H2-L) for every stage t = 1, . . . , Tmax, the set Xt(xt−1, ξtj) is nonempty and bounded whatever be
the feasible decision xt−1 for the previous stage and the realization ξtj of ξt.
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Nonlinear problems. In this case, ft(·, ·, ξtj) is nonlinear convex for all j,

(35) Xt(xt−1, ξt) = {xt ∈ Rn : xt ∈ Xt, gt(xt, xt−1, ξt) ≤ 0, Atxt +Btxt−1 = bt},
and ξt contains in particular the random elements in matrices At, Bt, and vector bt. Of course, as
a special case (and as is often the case in applications), the nonlinear problems we are interested in
can have nonlinear cost and constraint functions for stage t that do not depend on xt−1, namely of
form ft(xt, ξt) and gt(xt, ξt).

We assume that for t = 1, . . . , Tmax, there exists εt > 0 such that:

(H2-NL)-(a) Xt is nonempty, convex, and compact.
(H2-NL)-(b) For every j = 1, . . . ,Mt, the function ft(·, ·, ξtj) is convex, lower semicontinuous,

and finite on Xt×X εtt−1 where X εtt−1 = Xt−1 + {x ∈ Rn : ‖x‖2 ≤ εt}.
(H2-NL)-(c) for every j = 1, . . . ,Mt, each component gt,i(·, ·, ξtj), i = 1, . . . , p, of the function
gt(·, ·, ξtj) is convex, lower semicontinuous, and finite on Xt×X εtt−1.
(H2-NL)-(d) For every j = 1, . . . ,Mt, for every xt−1 ∈ X εtt−1, the set Xt(xt−1, ξtj) is nonempty.
(H2-NL)-(e) If t ≥ 2, for every j = 1, . . . ,Mt, there exists

x̄t,j = (x̄t,j,t, x̄t,j,t−1) ∈ ri(Xt)×Xt−1 ∩ ri({gt(·, ·, ξtj) ≤ 0})
such that x̄t,j,t ∈ Xt(x̄t,j,t−1, ξtj).

Assumptions (H2-NL)-(a),(b),(c) in the nonlinear case imply the convexity of cost-to-go functions
Qt(·, 1). The assumptions above also ensure (both in the linear and nonlinear cases) that SDDP
applied to dynamic programming equations (19), (20), (21) will converge, as long as samples in the
forward passes are independent, see [38, 17, 14] for details.

4.2. Algorithm. We now describe the steps of SDDP applied to dynamic programming equations
(18), (19), (20), (21). We denote by SDDP-TSto this SDDP method for solving (15)1. For linear
problems, SDDP-TSto is similar to the variant of SDDP presented in [37, 29] where the underlying
stochastic process depends on a Markov Chain and builds on [17] in the nonlinear case. Similarities
and differences between SDDP-TSto and the variants of SDDP from [37, 29, 17] are given below:

• Similarities: As in [37, 29] SDDP-TSto applies an SDDP type method to solve a stochastic
program whose underlying stochastic process is a Markov chain. For nonlinear problems,
the cuts for the recourse functions are based on Lemma 2.1 in [17].

• Differences and peculiarities: In [37, 29] SDDP is applied to linear problems which have
a fixed number of stages whereas SDDP-TSto applies to DP equations written for linear and
nonlinear problems having a random number of stages. For SDDP-TSto, for every stage t,
the underlying Markov chain has only two states and in one of them , which is an absorbing
state (when Dt−1 = 0), the recourse function is known (it is the null function). Therefore,
the goal of SDDP-TSto is to approximate the cost-to-go function in the other state (when
Dt−1 = 1) for all stages, i.e., cost-to-go functions Qt(·, 1), t = 2, . . . , Tmax. Moreover, in
the forward passes of SDDP-TSto, when we enter the absorbing state we only need to find
feasible points until Tmax instead of solving optimization problems.

In the end of iteration k, the algorithm has computed for cost-to-go functionsQt(·, 1), t = 2, . . . , Tmax,
the approximations Qkt (·, 1), t = 2, . . . , Tmax, which are maximum of k+1 affine functions called cuts:

(36) Qkt (xt−1, 1) = max
0≤j≤k

θjt + 〈βjt , xt−1〉.

1TSto in acronym SDDP-TSto refers to the fact that this SDDP method solves stochastic programs with T

stochastic, T being the number of stages.
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At iteration k, a realization of the number of stages and a sample for (ξt)1≤t≤Tmax
, are generated.

Decisions xkt , t = 1, . . . , Tmax, are computed on this sample in a forward pass replacing (unknown)

function Qt(xt−1, 1) by Qk−1t (xt−1, 1). In the backward pass of iteration k, decisions xkt are then
used to compute coefficients θkt , β

k
t , t = 2, . . . , Tmax.

SDDP-TSto, Step 1: Initialization. Fix an integer N > 1. For t = 2, . . . , Tmax, take for
Q0
t (·, 1) a known lower bounding affine function θ0t + 〈β0

t , ·〉 for Qt(·, 1). Set the iteration count k to
1 and Q0

Tmax+1(·, 1) = Q0
Tmax+1(·, 0) ≡ 0, Q0

t (·, 0) ≡ 0, t = 2, . . . , Tmax. Fix a parameter 0 < Tol < 1
(for the stopping criterion). Compute qt, t = 2, . . . , Tmax using (4) starting from q2 = P(T = 2).

SDDP-TSto, Step 2: Forward pass. We generate a sample

((ξ̃k1 , D̃
k
1 ), (ξ̃k2 , D̃

k
2 ), . . . , (ξ̃kTmax

, D̃k
Tmax

)),

from the distribution of

γk = ((ξk1 , D
k
1 ), (ξk2 , D

k
2 ), . . . , (ξkTmax

, Dk
Tmax

)) ∼ ((ξ1, D1), (ξ2, D2), . . . , (ξTmax
, DTmax

)),

with the convention that ξ̃k1 = ξ1, D̃k
1 = 1.

Costk = 0. t← 1.
While D̃k

t = 1, we compute an optimal solution xkt of

(37) inf
xt∈Rn

{ft(xt, xkt−1, ξ̃kt ) +Qk−1t+1 (xt, 1) : xt ∈ Xt(x
k
t−1, ξ̃

k
t )}

where xk0 = x0.

Costk ← Costk + ft(x
k
t , x

k
t−1, ξ̃

k
t ).

t← t+ 1.
End While
We compute an optimal solution xkt of

(38) inf
xt∈Rn

{ft(xt, xkt−1, ξ̃kt ) : xt ∈ Xt(x
k
t−1, ξ̃

k
t )}.

Costk ← Costk + ft(x
k
t , x

k
t−1, ξ̃

k
t ).

t← t+ 1.
While (t ≤ Tmax − 1), we compute a feasible point xkt in Xt(x

k
t−1, ξ̃

k
t ).2

t← t+ 1.
End While

Upper bound computation: If k ≥ N compute

Costk =
1

N

k∑
j=k−N+1

Costj , σ̂2
N,k =

1

N

k∑
j=k−N+1

[Costj − Costk]2

and the upper bound

Uk = Costk +
σ̂N,k√
N
tN−1,1−α

where tN−1,1−α is the (1− α)-quantile of the Student distribution with N − 1 degrees of freedom.

SDDP-TSto, Step 3: Backward pass. Let Qk
t (xt−1, Dt−1, ξt, Dt) be the function given by

(39) Qk
t (xt−1, Dt−1, ξt, Dt) = inf

xt
{Dt−1ft(xt, xt−1, ξt) +Qkt+1(xt, Dt) : xt ∈ Xt(xt−1, ξt)}.

2For instance minimizing the null function while satisfying the constraints xt ∈ Xt(xkt−1, ξ̃
k
t )
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Set QkTmax+1(·, 1) = QkTmax+1(·, 0) ≡ 0.
For t = Tmax down to t = 2,

Set Qkt (·, 0) ≡ 0.
For j = 1, . . . ,Mt,

Compute Qk
t (xkt−1, 1, ξtj , 1) using representation (39) of Qk

t , compute

Qt(x
k
t−1, 1, ξtj , 0) = inf

xt
{ft(xt, xkt−1, ξtj) : xt ∈ Xt(x

k
t−1, ξtj)},

compute a subgradient βktj of Qk
t (·, 1, ξtj , 1) at xkt−1 and a subgradient γktj of

Qt(·, 1, ξtj , 0) at xkt−1.
End For
Compute

(40)

θkt = (1− qt)
Mt∑
j=1

ptj

(
Qk
t (xkt−1, 1, ξtj , 1)− 〈βktj , xkt−1〉

)
+qt

Mt∑
j=1

ptj

(
Qt(x

k
t−1, 1, ξtj , 0)− 〈γktj , xkt−1〉

)
,

βkt = (1− qt)
Mt∑
j=1

ptjβ
k
tj + qt

Mt∑
j=1

ptjγ
k
tj .

End For

Lower bound computation: compute the lower bound Lk on the optimal value of (15) given
by

Lk = inf
x1

{f1(x1, x0, ξ1) +Qk2(x1, 1) : x1 ∈ X1(x0, ξ1)}.

SDDP-TSto, Step 4: If k ≥ N and
Uk−Lk
Uk

≤ Tol then stop otherwise do k ← k + 1 and go to

Step 2.

We now show that the cuts computed by SDDP-TSto are valid, that Lk is a lower bound on the
optimal value of the problem and that the sequence of approximate first stage problems optimal
values converges almost surely to the optimal value of (15).

Theorem 4.1. Consider optimization problem (15) and assume that (H0) and (H1) hold. In the case
of linear problems (Xt as in (34)) assume that (H2-L) holds and in the case of nonlinear problems
(Xt as in (35)) assume that (H2-NL)-(a)-(e) holds. Consider the sequences (xkt )k≥1, t = 1, . . . , Tmax

and (Qkt (·, 1))k≥0, t = 2, . . . , Tmax, generated by SDDP-TSto to solve the corresponding dynamic
programming equations (18), (19), (20), (21).

Assume that samples in the forward passes are independent: the sample

((ξ̃k1 , D̃
k
1 ), (ξ̃k2 , D̃

k
2 ), . . . , (ξ̃kTmax

, D̃k
Tmax

))

in the forward pass of iteration k is a realization of random vector

γk = ((ξk1 , D
k
1 ), (ξk2 , D

k
2 ), . . . , (ξkTmax

, Dk
Tmax

))

which has the distribution of ((ξ1, D1), (ξ2, D2), . . . , (ξTmax
, DTmax

)) and γ1, γ2, . . . are independent.
Then

(i) for t = 2, . . . , Tmax + 1, for all k ≥ 0, Qkt (·, 1) is a lower bounding function for Qt(·, 1): for
all xt−1 we have Qt(xt−1, 1) ≥ Qkt (xt−1, 1) almost surely.

(ii) Lk computed in Step 3 of SDDP-TSto is a lower bound on the optimal value of (15).



13

(iii) Almost surely the limit of the sequence (f1(xk1 , x0, ξ1) + Qk2(xk1 , 1))k≥1 is the optimal value
of (15).

Proof. (i) The proof is by induction on k and t. For k = 0, we have Qt(·, 1) ≥ Q0
t (·, 1), t =

2, . . . , Tmax + 1. Now assume that

(41) Qt(·, 1) ≥ Qk−1t (·, 1), t = 2, . . . , Tmax + 1,

for some k ≥ 1. We show by backward induction on t that Qt(·, 1) ≥ Qkt (·, 1), t = 2, . . . , Tmax+1. For
t = Tmax+1 we haveQt(·, 1) = Qkt (both functions are null). Now assume thatQt+1(·, 1) ≥ Qkt+1(·, 1)
for some t ∈ {2, . . . , Tmax} (induction hypothesis). We want to show that

(42) Qt(·, 1) ≥ Qkt (·, 1).

The induction hypothesis, together with the definitions of Qt and Qk
t imply that for all j = 1, . . . ,Mt:

(43) Qt(·, 1, ξtj , 1) ≥ Qk
t (·, 1, ξtj , 1).

Therefore, we get

(44)

Qt(·, 1)
(19)
= (1− qt)

Mt∑
j=1

ptjQt(·, 1, ξtj , 1) + qt

Mt∑
j=1

ptjQt(·, 1, ξtj , 0),

(43)

≥ (1− qt)
Mt∑
j=1

ptjQ
k
t (·, 1, ξtj , 1) + qt

Mt∑
j=1

ptjQt(·, 1, ξtj , 0),

≥ (1− qt)
Mt∑
j=1

ptj

[
Qk
t (xkt−1, 1, ξtj , 1) + 〈βktj , · − xkt−1〉

]
+qt

Mt∑
j=1

ptj

[
Qt(x

k
t−1, 1, ξtj , 0) + 〈γktj , · − xkt−1〉

]
,

= θkt + 〈βkt , ·〉 by definition of θkt , β
k
t ,

where for the second inequality we have used the subgradient inequality and the definition of βktj , γ
k
tj .

Combining (41), (44), and the relation Qkt (·, 1) = max(Qk−1t (·, 1), θkt +〈βkt , ·〉), we obtain (42), which
achieves the induction step and the proof of (i).

(ii) It suffices to observe that the optimal value of (15) is the optimal value of (14) and that, due
to (i), Q2(x1, 1) ≥ Qk2(x1, 1) (recall that under our assumptions Q2 does not depend on ξ1).

(iii) can be proved following the convergence proofs of SDDP from [38] in the linear case and from
[17] in the nonlinear case which apply under our assumptions. �

In the steps of SDDP-TSto above, we have not detailed the computation of βktj and γktj . In the
linear and nonlinear settings mentioned above, the formulas for these coefficients are given below.
When ξt = ξtj , we will denote by Atj , Btj , and btj , ctj the realizations of At, Bt, and bt, ct, respec-
tively.

Computation of βktj and γktj in the nonlinear case. Formulas for cuts computed by SDDP
when Xt is of form (35) are based on Lemma 2.1 in [17]. We recall these formulas below. For the
optimization problem

Qk
t (xkt−1, 1, ξtj , 1) =


infxt ft(xt, x

k
t−1, ξtj) +Qkt+1(xt, 1)

Atjxt +Btjx
k
t−1 = btj , [λk1tj ]

gt(xt, x
k
t−1, ξtj) ≤ 0, [µk1tj ]

xt ∈ Xt,
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denote by xk1tj an optimal solution, consider the Lagrangian

L(xt, λ, µ;xkt−1, ξtj) = ft(xt, x
k
t−1, ξtj)+Qkt+1(xt, 1)+λT (btj−Atjxt−Btjxkt−1)+µT gt(xt, x

k
t−1, ξtj),

and optimal Lagrange multipliers (λk1tj , µ
k1
tj ). Similarly, for the optimization problem

Qt(x
k
t−1, 1, ξtj , 0) =


infxt ft(xt, x

k
t−1, ξtj)

Atjxt +Btjx
k
t−1 = btj , [λk2tj ]

gt(xt, x
k
t−1, ξtj) ≤ 0, [µk2tj ]

xt ∈ Xt,

denote by xk2tj an optimal solution, consider the Lagrangian

L(xt, λ, µ;xkt−1, ξtj) = ft(xt, x
k
t−1, ξtj) + λT (btj −Atjxt −Btjxkt−1) + µT gt(xt, x

k
t−1, ξtj),

and optimal Lagrange multipliers (λk2tj , µ
k2
tj ).

Let f ′t,xt−1
(xk1tj , x

k
t−1, ξtj) (resp. f ′t,xt−1

(xk2tj , x
k
t−1, ξtj)) be a subgradient of convex function

ft(x
k1
tj , ·, ξtj) (resp. ft(x

k2
tj , ·, ξtj)) at xkt−1. Let g′t,i,xt−1

(xk1tj , x
k
t−1, ξtj) (resp. g′t,i,xt−1

(xk2tj , x
k
t−1, ξtj))

be a subgradient of convex function gt,i(x
k1
tj , ·, ξtj) (resp. gt,i(x

k2
tj , ·, ξtj)) at xkt−1. With this notation,

setting

(45)

βktj = f ′t,xt−1
(xk1tj , x

k
t−1, ξtj)−BTtjλk1tj +

p∑
i=1

µk1tj (i)g′t,i,xt−1
(xk1tj , x

k
t−1, ξtj),

γktj = f ′t,xt−1
(xk2tj , x

k
t−1, ξtj)−BTtjλk2tj +

p∑
i=1

µk2tj (i)g′t,i,xt−1
(xk2tj , x

k
t−1, ξtj),

then βktj is a subgradient of Qk
t (·, 1, ξtj , 1) at xkt−1 and γktj is a subgradient of Qt(·, 1, ξtj , 0) at xkt−1.

Computation of βktj and γktj in the linear case. Formulas for the cuts in the linear case are
well known and they can be seen as a special case of formulas (45). Indeed, in the linear case, we
have no functions gt, functions ft(xt, xt−1, ξtj) = cTtjxt do not depend on xt−1, and due to (H2-L)
there is no duality gap for the primal and dual subbproblems solved along the iterations of SDDP-
TSto. Therefore, we can still apply Lemma 2.1 in [17] on which formulas (45) are based and using
the notation of the previous paragraph we see that in the linear case, formulas (45) specialize to

(46) βktj = −BTtjλk1tj and γktj = −BTtjλk2tj ,

which means that in the linear case, for βktj and γktj given by (46), we have that βktj is a subgradient

of Qk
t (·, 1, ξtj , 1) at xkt−1 and γktj is a subgradient of Qt(·, 1, ξtj , 0) at xkt−1.

Simulation of SDDP-TSto policy. After running SDDP-TSto algorithm, we obtain approx-

imations Q̂t(·) of functions Qt(·, 1) which define a policy which can be used to compute feasible

decisions on any trajectory (ξ̃t) of (ξt) and realization of T as follows. Recall that a realization of

random variable T induces a realization (D̃t) of stochastic process (Dt) given by (2) with distribu-

tion given by (4). Starting from stage t = 1 and while realization D̃t of Dt is not null, given decision
xt−1 computed for the previous stage, we compute decision xt for stage t solving (recall (20)):

inf
xt
{ft(xt, xt−1, ξ̃t) + Q̂t+1(xt) : xt ∈ Xt(xt−1, ξ̃t)}.

When we reach the first stage t where realization D̃t of Dt is null, we are at the final stage and
compute xt solving

inf
xt
{ft(xt, xt−1, ξ̃t) : xt ∈ Xt(xt−1, ξ̃t)}.
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5. Numerical experiments: portfolio selection with a random investment period

5.1. SDDP-TSto for the portfolio problem. We consider the portfolio problem given in Section
3.2 and the corresponding dynamic programming equations (31), (32), (33) when the number of
stages is stochastic. We now specialize the SDDP-TSto algorithm applied to these DP equations.
In particular, we explain how to compute coefficients γktj and βktj for this problem.

In the forward pass of SDDP-TSto, problem (37) becomes

(47) inf
xt∈Rn

{Qk−1t+1 (xt, 1) : xt ∈ Xt(x
k
t−1, ξ̃

k
t )}

while problem (38) specializes to

(48) inf
xt∈Rn

{−E[

n+1∑
i=1

ξt+1(i)xt(i)] : xt ∈ Xt(x
k
t−1, ξ̃

k
t )}.

The backward pass is given below.

Backward pass of SDDP-TSto for the portfolio problem. Set QkTmax+1(·, 1) ≡ 0.
For t = Tmax down to t = 2,

For j = 1, . . . ,Mt,
Solve the optimization problem

inf{−E[

n+1∑
i=1

ξt+1(i)xt(i)] : xt ∈ Xt(x
k
t−1, ξtj)},

with Lagrangian L(xt, yt, zt, λ1, µ1, δ1) given by

−E[
n+1∑
i=1

ξt+1(i)xt(i)] +

〈
λ1, ξtj ◦ xt−1 − xt +

[
−yt + zt

(e− ηt)T yt − (e + νt)
T zt

]〉
+ 〈µ1, yt − ξtj(1 : n) ◦ xt−1(1;n)〉+

〈
δ1, xt(1 : n)− (ξTtjxt−1)u

〉
where e is a vector in Rn of ones, λ1 ∈ Rn+1, µ1, δ1 ∈ Rn, and for vectors x, y,
the vector x ◦ y has components (x ◦ y)(i) = x(i)y(i) and 〈x, y〉 = xT y.
For this Lagrangian, let (λk1tj , µ

k
1tj , δ

k
1tj) be optimal Lagrange multipliers.

Solve the optimization problem

inf{Qkt+1(xt, 1) : xt ∈ Xt(x
k
t−1, ξtj)},

with Lagrangian L(xt, yt, zt, λ2, µ2, δ2) given by

Qkt+1(xt, 1) +

〈
λ2, ξtj ◦ xt−1 − xt +

[
−yt + zt

(e− ηt)T yt − (e + νt)
T zt

]〉
+ 〈µ2, yt − ξtj(1 : n) ◦ xt−1(1;n)〉+

〈
δ2, xt(1 : n)− (ξTtjxt−1)u

〉
where e is a vector in Rn of ones, λ2 ∈ Rn+1, µ2, δ2 ∈ Rn.
For this Lagrangian, let (λk2tj , µ

k
2tj , δ

k
2tj) be optimal Lagrange multipliers.
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Compute3

γktj =
(
λk1tj − (uT δk1tj)e−

[
µk1tj

0

])
◦ ξtj ,

βktj =
(
λk2tj − (uT δk2tj)e−

[
µk2tj

0

])
◦ ξtj ,

where e is a vector in Rn+1 of ones.
End For
Compute4

θkt = 0 and βkt = (1− qt)
Mt∑
j=1

ptjβ
k
tj + qt

Mt∑
j=1

ptjγ
k
tj .

End For

5.2. Numerical results. Our goal in this section is to compare SDDP run on an optimization
period of Tmax stages (i.e., where we assume that the number of stages is known and fixed to Tmax)
and SDDP-TSto on the risk-neutral portfolio problem with direct transaction costs given in Section
3.2. All subproblems in the forward and backward passes of SDDP and SDDP-TSto were solved
numerically using the interior point solver of the Mosek Optimization Toolbox [1] and the Matlab
code was run on a Xeon E5-2670 processor with 384 GB of RAM. The following parameters are
chosen for our experiments.

Distributions of T and of returns (ξt). We consider two distributions for random variable
T : a uniform distribution over the set {2, 3, . . . , Tmax} and a truncated exponential discretized
distribution. The reason for choosing this latter distribution for a portfolio problem is motivated by
reference [9], where the lifetime of more than 25 000 publicly traded North American companies, from
1950 to 2009, was analyzed. It was shown that mortality rates are independent of the company’s age,
the typical half-life of a publicly traded company is about a decade, and the exponential distribution
is a good fit for the lifetime of these companies on this period. Therefore, for such companies,
the exponential distribution makes sense for the duration of an optimization period of a portfolio
problem. However, since the number of stages is almost surely in the set {2, . . . , Tmax}, instead of an
exponential distribution, we take for T a translation of a discretization of an exponential distribution
conditioned on the event that this exponential distribution belongs to [ 12 , Tmax− 1

2 ]. In what follows,

we call that distribution truncated exponential discretized.5 More precisely, let X ∼ E(λ) be the
exponential distribution with parameter λ = 0.15 with expectation E[X] = 1

λ ≈ 6.67. Setting

Y = X|A where A is the event A = {ω : 1
2 ≤ X(ω) ≤ Tmax − 1

2} and defining the random variable

T by T = t+ 1 if and only if t− 1
2 ≤ Y < t+ 1

2 for t = 1, . . . , Tmax − 1, then the distribution of the

3In the notation of the previous section, −Btj =
(
Diag(ξtj); [Diag(ξtj(1 : n)), 0];−uξTtj

)
and therefore using (46),

we get

γktj = Diag(ξtj)λk1tj − (uT δk1tj)ξtj −
[

Diag(ξtj(1 : n))µk1tj
0

]
=

(
λk1tj − (uT δk1tj)e−

[
µk1tj

0

])
◦ ξtj ,

and similarly for βk
tj .

4Observe that the intercept for the cuts is zero for that application.
5Considering the values chosen for the realizations of the returns and today’s “usual” asset returns, we can consider

that a stage corresponds to a few years and that the maximal duration of the optimization period Tmax = 10 is a few

decades.
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Figure 2. Histogram of the distribution of T with support {2, . . . , Tmax} =
{2, . . . , 10} and density of 2 + E(λ) (in dotted line) on the interval [2, 10] with
λ = 0.15.

number of stages T is given by

P(T = t+ 1) = P
(
t− 1

2
≤ Y < t+

1

2

)
=

P(t− 1
2 ≤ X < t+ 1

2 )

P(A)
=
e−λ(t−

1
2 ) − e−λ(t+ 1

2 )

e−λ/2 − e−λ(Tmax− 1
2 )
,

for t = 1, . . . , Tmax − 1. The histogram of the distribution of T when Tmax = 10 is represented in
Figure 2 together with the graph of the density of 2 +X over the interval [2, 10].

The return of the risk-free asset n + 1 is 1.01 for every stage. Returns ξt, t = 2, . . . , Tmax,
have discrete distributions with Mt = M realizations, each having probability 1

M and realizations
ξ1(1 : n), ξt1(1 : n), . . . , ξtM (1 : n) obtained sampling from a normal distribution with mean and
standard deviation chosen randomly in respectively the intervals [0.9, 1.4] and [0.1, 0.2].

Remaining parameters of the portfolio problem. The initial portfolio x0 has components
x0(i), i = 1, . . . , n + 1, uniformly distributed in [0, 1000] (vector of initial wealth in each asset).
Transaction costs are known with νt(i) = µt(i) obtained sampling from the distribution of the ran-
dom variable 0.08 + 0.06 cos( 2π

T UTmax
) where UTmax

is a random variable with a discrete distribution
over the set of integers {1, 2, . . . , Tmax}. The largest position in any security is set to 80%, i.e.,
u(i) = 0.8 for i = 1, . . . , n.

Parameters of SDDP and SDDP-TSto methods. Using the notation of the previous sec-
tion, SDDP and SDDP-TSto are run with parameters N = 400, α = 0.05, and Tol=0.05.

Comparing SDDP and SDDP-TSto policies on Monte-Carlo simulations.

We consider 6 instances of the portfolio problem with random number of stages T that we have
just presented where the distribution of T is either the truncated exponential discretized distribution
given above or the uniform distribution on the set {2 . . . , Tmax}. For each distribution of T , we take 3
values for (Tmax, n,M) given in Table 2. This defines 6 instances for which we compute two policies.

The first policy, denoted by SDDP, is obtained running SDDP on the portfolio problem assuming,
as has usually been the case so far in applications of stochastic programming, that the number of
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stages is fixed. Since we need a policy defined for all possible stages from t = 1 to t = Tmax, this
SDDP policy is obtained running SDDP on a portfolio problem with a deterministic number of
stages fixed to Tmax.

The second policy is obtained running the SDDP-Tsto algorithm from Section 4.2 on the portfolio
problem with random number of stages T . With a slight abuse of notation, we call the corresponding
policy SDDP-TSto.

For each instance, we then simulate SDDP and SDDP-TSto policies on 5 000 scenarios for
((D1, ξ1), (D2, ξ2),. . .,(DTmax

, ξTmax
)). For each instance, the empirical mean income with both

policies on these 5 000 scenarios is given in Table 2. We see that, as expected, the mean income is
larger (sometimes much larger) with SDDP-TSto. We also report in this table the p-value of the
paired Student t-test

(49) H0 : E[ISDDP] ≥ E[ISDDP-TSto] against H1 : E[ISDDP] < E[ISDDP-TSto],

computed using the 5 000 realizations of income of SDDP-TSto and SDDP policies. In this test,
ISDDP and ISDDP-TSto are the income with respectively SDDP and SDDP-TSto policies. We
observe that for the three instances the p-value is small. More precisely, on four instances the p-
value is less than 5% meaning that at the significance level 5%, we accept for these instances the
hypothesis H1, i.e., the hypothesis that the mean income with SDDP-TSto is greater than the mean
income with SDDP policy. For the remaining two instances, the p-values are 6.8% and 7.2%, i.e., we
accept for these 2 instances the hypothesis that SDDP-TSto income is higher than SDPP income at
any significance level above 7.2%.

Remark 5.1. We performed the same Monte Carlo simulations on several other instances with
larger values of n and M . For all our experiments, the empirical mean income with SDDP-TSto was
higher than the empirical mean income with SDDP but the p-value of paired t-test (49) could be as
high as 0.4. From these experiments, it seems that the larger the size of the deterministic equivalent
(in particular the larger n and M), the larger the standard deviation of the income and therefore
the less paired t-test (49) will accept (at the significance level 5%) the hypothesis that SDDP-TSto
income is higher.

Comparing the empirical distribution of the solution time for SDDP and SDDP-TSto.

When we face a multistage stochastic program with a random number of stages T with support
the set of integers {2, 3, . . . , Tmax}, we also expect SDDP-TSto policy to be computed quicker than
SDDP policy, recalling that the latter is obtained running SDDP assuming the number of stages is
fixed and equal to Tmax. Indeed, in the forward pass of iteration k of SDDP-TSto, once we reach the
first stage t0 such that D̃k

t0 = 0, for subproblems of subsequent stages t > t0, the objective function
is null, i.e., all that the trial points have to satisfy is to be feasible. In the case of our portfolio
problem, we can even obtain a drastic reduction in the time needed to compute SDDP-TSto policy
as can be seen on Figure 3 which reports the empirical distribution of the computational time needed
to solve instances of the portfolio problem (with truncated exponential discretized distribution for
T ) 10 times with SDDP and SDDP-TSto. Accross the 10 runs, the time needed to compute a given
policy does not vary much and the computational bulk with SDDP-TSto is around 10 times inferior
to the computational bulk with SDDP.

Summary of the advantages of the proposed methodology and solution method.

So far, to our knowledge, stochastic programs with a random number of stages had not been
considered in the stochastic programming community. Therefore, in the presence of a multistage
stochastic program with a random number T of stages upper bounded by Tmax, the traditional
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Distribution of T Tmax n M
Empirical mean

income
SDDP-TSto

Empirical mean
income
SDDP

p-value

Uniform
on 2, . . . , Tmax

10 10 50 14 973 14 563 0.035

Truncated
exponential discretized

10 10 50 12 466 12 138 0.002

Uniform
on 2, . . . , Tmax

10 20 50 34 410 33 875 0.072

Truncated
exponential discretized

10 20 50 32 783 31 121 6.5×10−8

Uniform
on 2, . . . , Tmax

10 10 100 12 977 12 797 0.068

Truncated
exponential discretized

20 10 20 24 181 23 700 0.040

Table 2. Empirical mean income for SDDP-TSto and SDDP policies on 6 instances
of the portfolio problem with a random number of stages and p-values of the test
H0 : E[ISDDP] ≥ E[ISDDP-TSto] against H1 : E[ISDDP] < E[ISDDP-TSto] for
these instances, on the basis of samples of size 5 000 of the income of SDDP-TSto
and SDDP policies. In H0 and H1, ISDDP and ISDDP-TSto are the income with
respectively SDDP and SDDP-TSto policies.

approach would be in fact to ignore the stochasticity of T , to assume that the number of stages
is fixed to Tmax so that a policy can be defined for all possible stages t = 1, 2, . . . , Tmax, and, as
long as the problem is convex, a popular approach to solve such a problem would be to use SDDP.
Compared to this approach, the tools proposed in this article offer the following advantages:

• The Dynamic Programming equations written in Section 2 define the appropriate Bellman
functions for the problem under consideration, which, obviously, yield an optimal cost lower
than the one obtained using Bellman functions defined by Dynamic Programming equations
for a problem with Tmax fixed stages. Observe also that the model and Dynamic Program-
ming equations of Section 2 do not require any assumption of convexity.

• If the stochastic program is convex and as long as SDDP-TSto algorithm given in Section
4 and SDDP (run on the Dynamic Programming equations with Tmax fixed stages) are run
for a sufficient amount of iterations to satisfy a stopping criterion with small values of α and
Tol, SDDP-TSto policy will be better (and can be much better) than SDDP policy, see the
experiments reported in this section on the portfolio problem.

• We expect SDDP-TSto policy to be computed quicker than SDDP policy (the latter being
run on a problem with Tmax stages). For our portfolio problem with a random number of
stages, SDDP-TSto was computed up to 10 times faster than SDDP, see Figure 3.

6. Conclusion

We introduced the class of multistage stochastic programs with a random number of stages. We
explained how to write dynamic programming equations for such problems and detailed the SDDP
algorithm to solve these dynamic programming equations. We have shown the applicability and
interest of the proposed models and methodology for portfolio selection.

As a future work, it would be interesting to consider more general “hybrid” stochastic programs
with transition probabilities between objective and cost functions, meaning that at each stage not



20

M = 50, n = 10, Tmax = 10 M = 50, n = 20, Tmax = 10

M = 100, n = 10, Tmax = 10

Figure 3. Empirical distribution of the computational time needed to solve in-
stances of the portfolio problem with truncated exponential discretized distribution
for T (for each instance, SDDP and SDDP-TSto are run 10 times). For time t, we
report the empirical probability to solve an instance in at most t seconds

only parameters but also cost and constraint functions are random, possibly depending on past
values of parameters and cost and constraint functions. Other possible extensions could consider
stages of random durations or problems where decisions are only taken at random times driven by
an exogenous stochastic process. The random times at which these decisions would be taken could
also depend on previous decisions. Finally, it would be interesting to use the proposed models and
methodology for other applications, for instance Asset Liability Management or the applications
mentioned in the introduction.
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