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Abstract. We introduce an inexact variant of Stochastic Mirror Descent (SMD), called Inexact Stochastic

Mirror Descent (ISMD), to solve nonlinear two-stage stochastic programs where the second stage problem
has linear and nonlinear coupling constraints and a nonlinear objective function which depends on both

first and second stage decisions. Given a candidate first stage solution and a realization of the second stage

random vector, each iteration of ISMD combines a stochastic subgradient descent using a prox-mapping
with the computation of approximate (instead of exact for SMD) primal and dual second stage solutions.

We provide two convergence analysis of ISMD, under two sets of assumptions. The first convergence analysis

is based on the formulas for inexact cuts of value functions of convex optimization problems shown recently
in [6]. The second convergence analysis provides a convergence rate (the same as SMD) and relies on new

formulas that we derive for inexact cuts of value functions of convex optimization problems assuming that

the dual function of the second stage problem for all fixed first stage solution and realization of the second
stage random vector, is strongly concave. We show that this assumption of strong concavity is satisfied for

some classes of problems and present the results of numerical experiments on two simple two-stage problems
which show that solving approximately the second stage problem for the first iterations of ISMD can help

us obtain a good approximate first stage solution quicker than with SMD.

Keywords: Inexact cuts for value functions and Inexact Stochastic Mirror Descent and Strong Concavity
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1. Introduction

We are interested in inexact solution methods for two-stage nonlinear stochastic programs of form

(1.1)

{
min f(x1) := f1(x1) +Q(x1)
x1 ∈ X1

with X1 ⊂ Rn a convex, nonempty, and compact set, and Q(x1) = Eξ2 [Q(x1, ξ2)] where E is the expectation
operator, ξ2 is a random vector with probability distribution P on Ξ ⊂ Rk, and

(1.2) Q(x1, ξ2) =

{
minx2

f2(x2, x1, ξ2)
x2 ∈ X2(x1, ξ2) := {x2 ∈ X2 : Ax2 +Bx1 = b, g(x2, x1, ξ2) ≤ 0}.

In the problem above vector ξ2 contains in particular the random elements in matrices A,B, and vector b.
Problem (1.1) is the first stage problem while problem (1.2) is the second stage problem which has abstract
constraints (x2 ∈ X2), and linear (Ax2 + Bx1 = b) and nonlinear (g(x2, x1, ξ2) ≤ 0) constraints both of
which couple first stage decision x1 and second stage decision x2. Our solution methods are suited for the
following framework:

a) first stage problem (1.1) is convex;
b) second stage problem (1.2) is convex, i.e., X2 is convex and for every ξ2 ∈ Ξ functions f2(·, ·, ξ2) and

g(·, ·, ξ2) are convex;

c) for every realization ξ̃2 of ξ2, the primal second stage problem obtained replacing ξ2 by ξ̃2 in (1.2)

with optimal value Q(x1, ξ̃2) and its dual (obtained dualizing coupling constraints) are solved ap-
proximately.
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There is a large literature on solution methods for two-stage risk-neutral stochastic programs. Essentially,
these methods can be cast in two categories: (A) decomposition methods based on sampling and cutting
plane approximations of Q (which date back to [3],[8]) and their variants with regularization such as [17]
and (B) Robust Stochastic Approximation [15] and its variants such as stochastic Primal-Dual subgradient
methods [9], Stochastic Mirror Descent (SMD) [13], [10], or Multistep Stochastic Mirror Descent (MSMD)
[5]. These methods have been extended to solve multistage problems, for instance Stochastic Dual Dynamic
Programming [14], belonging to class (A), and recently Dynamic Stochastic Approximation [11], belonging
to class (B).

However, for all these methods, it is assumed that second stage problems are solved exactly. This latter
assumption is not satisfied when the second stage problem is nonlinear since in this setting only approximate
solutions are available. On top of that, for the first iterations, we still have crude approximations of the
first stage solution and it may be useful to solve inexactly, with less accuracy, the second stage problem for
these iterations and to increase the accuracy of the second stage solutions computed when the algorithm
progresses in order to decrease the overall computational bulk.

Therefore the objective of this paper is to fill a gap considering the situation when second stage problems
are nonlinear and solved approximately (both primal and dual, see Assumption c) above). More precisely, to
account for Assumption (c), as an extension of the methods from class (B) we derive an Inexact Stochastic
Mirror Descent (ISMD) algorithm, designed to solve problems of form (1.1). This inexact solution method
is based on an inexact black box for the objective in (1.1). To this end, we compute inexact cuts (affine
lower bounding functions) for value function Q(·, ξ2) in (1.2). For this analysis, we first need formulas for
exact cuts (cuts based on exact primal and dual solutions). We had shown such formulas in [4, Lemma 2.1]
using convex analysis tools, in particular standard calculus on normal and tangeant cones. We derive in
Proposition 3.2 a proof for these formulas based purely on duality. This is an adaptation of the proof of
the formulas we gave in [6, Proposition 2.7] for inexact cuts, considering exact solutions instead of inexact
solutions. To our knowledge, the computation of inexact cuts for value functions has only been discussed
in [6] so far (see Proposition 3.7). We propose in Section 3 new formulas for computing inexact cuts based
in particular on the strong concavity of the dual function. In Section 2, we provide, for several classes of
problems, conditions ensuring that the dual function of an optimization problem is strongly concave and
give formulas for computing the corresponding constant of strong concavity when possible. It turns out that
our results improve Theorem 10 in [19] (the only reference we are aware of on the strong concavity of the
dual function) which proves the strong concavity of the dual function under stronger assumptions. The tools
developped in Sections 2 and 3 allow us to build the inexact black boxes necessary for the Inexact Stochastic
Mirror Descent (ISMD) algorithm and its convergence analysis presented in Section 4. Finally, in Section
5 we report the results of numerical tests comparing the performance of SMD and ISMD on two simple
two-stage nonlinear stochastic programs.

Throughout the paper, we use the following notation:

• The domain dom(f) of a function f : X → R̄ is the set of points in X such that f is finite:
dom(f) = {x ∈ X : −∞ < f(x) < +∞}.

• The largest (resp. smallest) eigenvalue of a matrix Q having real-valued eigenvalues is denoted by
λmax(Q) (resp. λmin(Q)).

• The ‖ · ‖2 of a matrix A is given by ‖A‖2 = maxx 6=0
‖Ax‖2
‖x‖2 .

• Diag(x1, x2, . . . , xn) is the n× n diagonal matrix whose entry (i, i) is xi.
• For a linear application A, Ker(A) is its kernel and Im(A) its image.

• 〈·, ·, 〉 is the usual scalar product in Rn: 〈x, y〉 =
∑n
i=1 xiyi which induces the norm ‖x‖2 =

√∑n
i=1 x

2
i .

• Let f : Rn → R̄ be an extended real-valued function. The Fenchel conjugate f∗ of f is the function
given by f∗(x∗) = supx∈Rn〈x∗, x〉 − f(x).

• For functions f : X → Y and g : Y → Z, the function g ◦ f : X → Z is the composition of functions
g and f given by (g ◦ f)(x) = g(f(x)) for every x ∈ X.
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2. On the strong concavity of the dual function of an optimization problem

The study of the strong concavity of the dual function of an optimization problem on some set has
applications in numerical optimization. For instance, the strong concavity of the dual function and the
knowledge of the associated constant of strong concavity are used by the Drift-Plus-Penalty algorithm in
[19] and by the (convergence proof of) Inexact SMD algorithm presented in Section 4 when inexact cuts are
computed using Proposition 3.8.

The only paper we are aware of providing conditions ensuring this strong concavity property is [19]. In
this section, we prove similar results under weaker assumptions and study an additional class of problems
(quadratic with a quadratic constraint, see Proposition 2.8).

2.1. Preliminaries. In what follows, X ⊂ Rn is a nonempty convex set.

Definition 2.1 (Strongly convex functions). Function f : X → R ∪ {+∞} is strongly convex with constant
of strong convexity α > 0 with respect to norm ‖ · ‖ if for every x, y ∈ dom(f) we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− αt(1− t)
2

‖y − x‖2,

for all 0 ≤ t ≤ 1.

We can deduce the following well known characterizations of strongly convex functions f : Rn → R∪{+∞}
(see for instance [7]):

Proposition 2.2. (i) Function f : X → R ∪ {+∞} is strongly convex with constant of strong convexity
α > 0 with respect to norm ‖ · ‖ if and only if for every x, y ∈ dom(f) we have

f(y) ≥ f(x) + sT (y − x) +
α

2
‖y − x‖2, ∀s ∈ ∂f(x).

(ii) Function f : X → R ∪ {+∞} is strongly convex with constant of strong convexity α > 0 with respect
to norm ‖ · ‖ if and only if for every x, y ∈ dom(f) we have

f(y) ≥ f(x) + f ′(x; y − x) +
α

2
‖y − x‖2,

where f ′(x; y − x) denotes the derivative of f at x in the direction y − x.
(iii) Let f : X → R∪{+∞} be differentiable. Then f is strongly convex with constant of strong convexity

α > 0 with respect to norm ‖ · ‖ if and only if for every x, y ∈ dom(f) we have

(∇f(y)−∇f(x))T (y − x) ≥ α‖y − x‖2.

(iv) Let f : X → R ∪ {+∞} be twice differentiable. Then f is strongly convex on X ⊂ Rn with constant
of strong convexity α > 0 with respect to norm ‖ · ‖ if and only if for every x ∈ dom(f) we have

hT∇2f(x)h ≥ α‖h‖2,∀h ∈ Rn.

Definition 2.3 (Strongly concave functions). f : X → R ∪ {−∞} is strongly concave with constant of
strong concavity α > 0 with respect to norm ‖ · ‖ if and only if −f is strongly convex with constant of strong
convexity α > 0 with respect to norm ‖ · ‖.

The following propositions are immediate and will be used in the sequel:

Proposition 2.4. If f : X → R ∪ {+∞} is strongly convex with constant of strong convexity α > 0 with
respect to norm ‖ · ‖ and ` : Rn → R is linear then f + ` is strongly convex on X with constant of strong
convexity α > 0 with respect to norm ‖ · ‖.

Proposition 2.5. Let X ⊂ Rm, Y ⊂ Rn, be two nonempty convex sets. Let A : X → Y be a linear operator
and let f : Y → R∪{+∞} be a strongly convex function with constant of strong convexity α > 0 with respect
to a norm ‖ · ‖n on Rn induced by scalar product 〈·, ·〉n on Rn. Assume that Ker(A∗ ◦ A) = {0}. Then
g = f ◦ A is strongly convex on X with constant of strong convexity αλmin(A∗ ◦ A) with respect to norm
‖ · ‖m.
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Proof. For every x, y ∈ X, using Proposition 2.2-(ii) we have

f(A(y)) ≥ f(A(x)) + f ′(A(x);A(y − x)) +
α

2
‖A(y − x)‖2n

and since g′(x; y − x) = f ′(A(x);A(y − x)), we get

g(y) ≥ g(x) + g′(x; y − x) +
1

2
αλmin(A∗ ◦ A)‖y − x‖2m

with αλmin(A∗ ◦ A) > 0 (λmin(A∗ ◦ A) is nonnegative because A∗ ◦ A is self-adjoint and it cannot be zero
because A∗ ◦ A is nondegenerate). �

In the rest of this section, we fix ‖ · ‖ = ‖ · ‖2 and provide, under some assumptions, the constant of strong
concavity of the dual function of an optimization problem for this norm.1

2.2. Problems with linear constraints. Consider the optimization problem

(2.3)

{
inf f(x)
Ax ≤ b

where f : Rn → R ∪ {+∞}, b ∈ Rq, and A is a q × n real matrix.
We will use the following known fact, see for instance [16]:

Proposition 2.6. Let f : Rn → R ∪ {+∞} be a proper convex lower semicontinuous function. Then f∗ is
strongly convex with constant of strong convexity α > 0 for norm ‖ · ‖2 if and only if f is differentiable and
∇f is Lipschitz continuous with constant 1/α for norm ‖ · ‖2.

Proposition 2.7. Let θ be the dual function of (2.3) given by

(2.4) θ(λ) = inf
x∈Rn
{f(x) + λT (Ax− b)},

for λ ∈ Rq. Assume that the rows of matrix A are independent, that f is convex, differentiable, and ∇f
is Lipschitz continuous with constant L ≥ 0 with respect to norm ‖ · ‖2. Then dual function θ is strongly

concave on Rq with constant of strong concavity λmin(AAT )
L with respect to norm ‖ · ‖2 on Rq.

Proof. The dual function of (2.3) can be written

(2.5)
θ(λ) = inf

x∈Rn
{f(x) + λT (Ax− b)} = −λT b− sup

x∈Rn
{−xTATλ− f(x)}

= −λT b− f∗(−ATλ) by definition of f∗.

Since the rows of A are independent, matrix AAT is invertible and Ker(AAT ) = {0}. The result follows
from the above representation of θ and Propositions 2.4, 2.5, and 2.6. �

The strong concavity of the dual function of (2.3) was shown in Corollary 5 in [19] assuming that f is
second-order continuously differentiable and strongly convex. Therefore Proposition 2.7 (whose proof is very
short), which only assumes that f is convex, differentiable, and has Lipschitz continuous gradient, improves
existing results (neither second-order differentiability nor strong convexity is required).

2.3. Problems with quadratic objective and a quadratic constraint. We now consider the following
quadratically constrained quadratic optimization problem

(2.6)

{
infx∈Rn f(x) := 1

2x
TQ0x+ aT0 x+ b0

g1(x) := 1
2x

TQ1x+ aT1 x+ b1 ≤ 0,

with Q0 positive definite and Q1, positive semidefinite. The dual function θ of this problem is known in
closed-form: for µ ≥ 0, we have

(2.7) θ(µ) = inf
x∈Rn
{f(x) + µg1(x)} = −1

2
A(µ)TQ(µ)−1A(µ) + B(µ)

where
A(µ) = a0 + µa1, Q(µ) = Q0 + µQ1, and B(µ) = b0 + µib1.

1Using the equivalence between norms in Rn, we can derive a valid constant of strong concavity for other norms, for instance
‖ · ‖∞ and ‖ · ‖1.
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We can show, under some assumptions, that dual function θ is strongly concave on some set and compute
analytically the corresponding constant of strong concavity:

Proposition 2.8. Consider optimization problem (2.6). Assume that Q0, Q1, are positive definite, that
there exists x0 such that g1(x0) < 0, and that a0 6= Q0Q

−1
1 a1. Let L be any lower bound on the optimal value

of (2.6) and let µ̄ = (L − f(x0))/g1(x0) ≥ 0. Then the optimal solution of the dual problem

max
µ≥0

θ(µ)

is contained in the interval [0, µ̄] and the dual function θ given by (2.7) is strongly concave on the interval

[0, µ̄] with constant of strong concavity αD = (Q
−1/2
1 (a0 −Q0Q

−1
1 a1))T (Q

−1/2
1 Q0Q

−1/2
1 + µ̄In)−3Q

−1/2
1 (a0 −

Q0Q
−1
1 a1) > 0.

Proof. Making the change of variable x = y −Q−1
1 a1, we can rewrite (2.6) without linear terms in g1 under

the form: {
infx∈Rn

1
2x

TQ0x+ (a0 −Q0Q
−1
1 a1)Tx+ b0 + 1

2a
T
1 Q
−1
1 Q0Q

−1
1 a1 − aT0 Q−1

1 a1
1
2x

TQ1x+ b1 − 1
2a
T
1 Q
−1
1 a1 ≤ 0,

with corresponding dual function given by

θ(µ) = −1

2
āT0 (Q0 + µQ1)−1ā0 + (b1 −

1

2
aT1 Q

−1
1 a1)µ+ b0 − aT0 Q−1

1 a1 +
1

2
aT1 Q

−1
1 Q0Q

−1
1 a1

where we have set ā0 = a0 −Q0Q
−1
1 a1 (see (2.7)).

Using [7, Remark 2.3.3, p.313] we obtain that the optimal dual solutions are contained in the interval

[0, µ̄]. Setting ã0 = Q
−1/2
1 ā0 and A = Q

−1/2
1 Q0Q

−1/2
1 , we compute the first and second derivatives of the

nonlinear term θq(µ) = − 1
2 ā
T
0 (Q0 + µQ1)−1ā0 = − 1

2 ã
T
0 (A+ µIn)−1ã0 of θ on [0, µ̄]:

θ′q(µ) = 1
2 ã
T
0 (A+ µIn)−2ã0 and θ′′q (µ) = −ãT0 (A+ µIn)−3ã0.

For these computations we have used the fact that for F : I → GLn(R) differentiable on I ⊂ R, we have
dF(t)−1

dt = −F(t)−1 dF(t)
dt F(t)−1. Since −θ′′q (µ) is decreasing on [0, µ̄], we get −θ′′q (µ) ≥ αD = −θ′′q (µ̄) on

[0, µ̄]. This computation, together with Proposition 2.2-(iv), shows that θ is strongly concave on [0, µ̄] with
constant of strong concavity αD. �

2.4. General case: problems with linear and nonlinear constraints. Let us add to problem (2.3)
nonlinear constraints. More precisely, given f : Rn → R, a q × n real matrix A, b ∈ Rq, and g : Rn → Rp
with convex component functions gi, i = 1, . . . , p, we consider the optimization problem

(2.8)

{
inf f(x)
x ∈ X,Ax ≤ b, g(x) ≤ 0.

Let v be the value function of this problem given by

(2.9) v(c) = v(c1, c2) =

{
inf f(x)
x ∈ X,Ax− b+ c1 ≤ 0, g(x) + c2 ≤ 0,

for c1 ∈ Rq, c2 ∈ Rp. In the next lemma, we relate the conjugate of v to the dual function

θ(λ, µ) =

{
inf f(x) + λT (Ax− b) + µT g(x)
x ∈ X,

of this problem:

Lemma 2.9. If v∗ is the conjugate of the value function v then v∗(λ, µ) = −θ(λ, µ) for every (λ, µ) ∈
Rq+×R

p
+.
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Proof. For (λ, µ) ∈ Rq+×R
p
+, we have

−v∗(λ, µ) = − sup
(c1,c2)∈Rq×Rp

λT c1 + µT c2 − v(c1, c2)

=

 inf −λT c1 − µT c2 + f(x)
x ∈ X,Ax− b+ c1 ≤ 0, g(x) + c2 ≤ 0,
c1 ∈ Rq, c2 ∈ Rp,

=

{
inf f(x) + λT (Ax− b) + µT g(x)
x ∈ X,

= θ(λ, µ).

�

From Lemma 2.9 and Proposition 2.6, we obtain that dual function θ of problem (2.8) is strongly concave
with constant α with respect to norm ‖ · ‖2 on Rp+q if and only if the value function v given by (2.9)
is differentiable and ∇v is Lipschitz continuous with constant 1/α with respect to norm ‖ · ‖2 on Rp+q.
Using Lemma 2.1 in [4] the subdifferential of the value function is the set of optimal dual solutions of (2.9).
Therefore θ is strongly concave with constant α with respect to norm ‖ · ‖2 on Rp+q if and only if the value
function is differentiable and the dual solution of (2.9) seen as a function of (c1, c2) is Lipschitz continuous
with Lipschitz constant 1/α with respect to norm ‖ · ‖2 on Rp+q.

We now provide conditions ensuring that the dual function is strongly concave in a neighborhood of the
optimal dual solution.

Theorem 2.10. Consider the optimization problem

(2.10) inf
x∈Rn
{f(x) : Ax ≤ b, gi(x) ≤ 0, i = 1, . . . , p}.

We assume that

(A1) f : Rn → R ∪ {+∞} is strongly convex and has Lipschitz continuous gradient;
(A2) gi : Rn → R ∪ {+∞}, i = 1, . . . , p, are convex and have Lipschitz continuous gradients;

(A3) if x∗ is the optimal solution of (2.10) then the rows of matrix

(
A

Jg(x∗)

)
are linearly independent

where Jg(x) denotes the Jacobian matrix of g(x) = (g1(x), . . . , gp(x)) at x;
(A4) there is x0 ∈ ri({g ≤ 0}) such that Ax0 ≤ b.

Let θ be the dual function of this problem:

(2.11) θ(λ, µ) =

{
inf f(x) + λT (Ax− b) + µT g(x)
x ∈ Rn.

Let (λ∗, µ∗) ≥ 0 be an optimal solution of the dual problem

sup
λ≥0,µ≥0

θ(λ, µ).

Then there is some neighborhood N of (λ∗, µ∗) such that θ is strongly concave on N ∩ Rp+q+ .

Proof. Due to (A1) the optimization problem (2.11) has a unique optimal solution that we denote by x(λ, µ).
Assumptions (A2) and (A3) imply that there is some neighborhood Vε(x∗) = {x ∈ Rn : ‖x− x∗‖2 ≤ ε} of

x∗ for some ε > 0 such that the rows of matrix

(
A

Jg(x)

)
are independent for x in Vε(x∗).

We argue that (λ, µ)→ x(λ, µ) is continuous on Rq×Rp. Indeed, let (λ̄, µ̄) ∈ Rq×Rp and take a sequence
(λk, µk) converging to (λ̄, µ̄). We want to show that x(λk, µk) converges to x(λ̄, µ̄). Take an arbitrary
accumulation point x̄ of the sequence x(λk, µk), i.e., x̄ = limk→+∞ x(λσ(k), µσ(k)) for some subsequence
x(λσ(k), µσ(k)) of x(λk, µk). Then by definition of x(λσ(k), µσ(k)), for every x ∈ Rn and every k ≥ 1 we have

f(x(λσ(k), µσ(k))) + λTσ(k)(Ax(λσ(k), µσ(k))− b) + µTσ(k)g(x(λσ(k), µσ(k))) ≤ f(x) + λTσ(k)(Ax− b) + µTσ(k)g(x).

Passing to the limit in the inequality above and using the continuity of f and gi we obtain for all x ∈ Rn:

f(x̄) + λ̄T (Ax̄− b) + µ̄T g(x̄) ≤ f(x) + λ̄T (Ax− b) + µ̄T g(x),
6



which shows that x̄ = x(λ̄, µ̄). Therefore there is only one accumuation point x̄ = x(λ̄, µ̄) for the sequence
x(λk, µk) which shows that this sequence converges to x(λ̄, µ̄). Consequently, we have shown that (λ, µ)→
x(λ, µ) is continuous on Rq×Rp. This implies that there is a neighborhood N (λ∗, µ∗) of (λ∗, µ∗) such that
for (λ, µ) ∈ N (λ∗, µ∗) we have ‖x(λ, µ) − x(λ∗, µ∗)‖2 ≤ ε. Moreover, due to (A4), we have x(λ∗, µ∗) = x∗.
It follows that for (λ, µ) ∈ N (λ∗, µ∗) we have ‖x(λ, µ) − x(λ∗, µ∗)‖2 = ‖x(λ, µ) − x∗‖2 ≤ ε which in turn

implies that the rows of matrix

(
A

Jg(x(λ, µ))

)
are independent. We now show that θ is strongly concave

on N (λ∗, µ∗) ∩ Rp+q+ .

Take (λ1, µ1), (λ2, µ2) in N (λ∗, µ∗)∩Rp+q+ and denote x1 = x(λ1, µ1) and x2 = x(λ2, µ2). The optimality
conditions give

(2.12)
∇f(x1) +ATλ1 + Jg(x1)Tµ1 = 0,
∇f(x2) +ATλ2 + Jg(x2)Tµ2 = 0.

Recall that (2.11) has a unique solution and therefore θ is differentiable. The gradient of θ is given by (see
for instance Lemma 2.1 in [4])

∇θ(λ, µ) =

(
Ax(λ, µ)− b
g(x(λ, µ))

)
and we obtain, using the notation 〈x, y〉 = xT y:

(2.13) −
〈
∇θ(λ2, µ2)−∇θ(λ1, µ1),

(
λ2 − λ1

µ2 − µ1

)〉
= −〈A(x2 − x1), λ2 − λ1〉 − 〈g(x2)− g(x1), µ2 − µ1〉.

By convexity of constraint functions we can write for i = 1, . . . , p:

(2.14)
gi(x2) ≥ gi(x1) + 〈∇gi(x1), x2 − x1〉 (a)
gi(x1) ≥ gi(x2) + 〈∇gi(x2), x1 − x2〉. (b)

Multiplying (2.14)-(a) by µ1(i) ≥ 0 and (2.14)-(b) by µ2(i) ≥ 0 we obtain

(2.15) −〈g(x2)− g(x1), µ2 − µ1〉 ≥ 〈Jg(x1)Tµ1 − Jg(x2)Tµ2, x2 − x1〉.
Recalling (A1), we can find 0 ≤ L(f) < +∞ such that for all x, y ∈ Rn:

(2.16) ‖∇f(y)−∇f(x)‖2 ≤ L(f)‖y − x‖2.
Using (2.13) and (2.15) and denoting by α > 0 the constant of strong convexity of f with respect to norm
‖ · ‖2 we get:
(2.17)

−
〈
∇θ(λ2, µ2)−∇θ(λ1, µ1),

(
λ2 − λ1

µ2 − µ1

)〉
≥ −〈x2 − x1, A

T (λ2 − λ1)〉+ 〈Jg(x1)Tµ1 − Jg(x2)Tµ2, x2 − x1〉,
(2.12)

= 〈x2 − x1,∇f(x2)−∇f(x1)〉
≥ α‖x2 − x1‖22 by strong convexity of f,
≥ α

L(f)2
‖∇f(x2)−∇f(x1)‖22 using (2.16),

(2.12)
= α

L(f)2
‖
(
AT Jg(x2)T

)( λ2 − λ1

µ2 − µ1

)
︸ ︷︷ ︸

a

+ (Jg(x2)− Jg(x1))Tµ1︸ ︷︷ ︸
b

‖22.

Now recall that for every x ∈ Vε(x∗) the rows of the matrix

(
A

Jg(x)

)
are independent and therefore the

matrix

(
A

Jg(x)

)(
A

Jg(x)

)T
is invertible. Moreover, the function x → λmin

((
A

Jg(x)

)(
A

Jg(x)

)T)
is continuous (due to (A2)) and positive on the compact set Vε(x∗). It follows that we can define

λε(x∗) = min
x∈Vε(x∗)

λmin

((
A

Jg(x)

)(
A

Jg(x)

)T)
,

and λε(x∗) > 0. Since x2 ∈ Vε(x∗), we deduce that

(2.18) ‖a‖2 ≥
√
λε(x∗)

∥∥∥∥( λ2 − λ1

µ2 − µ1

)∥∥∥∥
2

.
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Recalling that (λ1, µ1) is in N (λ∗, µ∗), there is η > 0 such that

(2.19) ‖µ1‖1 ≤ Uη(µ∗) := ‖µ∗‖1 + η.

Due to (A2), there is L(g) ≥ 0 such that for every x, y ∈ Rn, we have

‖∇gi(y)−∇gi(x)‖2 ≤ L(g)‖y − x‖2, 1, . . . , p.
Combining this relation with (2.19), we get

(2.20) ‖b‖2 ≤ ‖µ1‖1L(g)‖x2 − x1‖2 ≤ L(g)Uη(µ∗)‖x2 − x1‖2.
Therefore

‖a+ b‖2 ≥ ‖a‖2 − ‖b‖2 ≥
√
λε(x∗)

∥∥∥∥( λ2 − λ1

µ2 − µ1

)∥∥∥∥
2

− L(g)Uη(µ∗)‖x2 − x1‖2

and combining this relation with (2.17) we obtain

‖x2 − x1‖2 ≥
1

L(f)

[√
λε(x∗)

∥∥∥∥( λ2 − λ1

µ2 − µ1

)∥∥∥∥
2

− L(g)Uη(µ∗)‖x2 − x1‖2
]

which gives

(2.21) ‖x2 − x1‖2 ≥
√
λε(x∗)

L(f) + L(g)Uη(µ∗)

∥∥∥∥( λ2 − λ1

µ2 − µ1

)∥∥∥∥
2

.

Plugging (2.21) into (2.17) we get

−
〈
∇θ(λ2, µ2)−∇θ(λ1, µ1),

(
λ2 − λ1

µ2 − µ1

)〉
≥ αλε(x∗)

(L(f)+L(g)Uη(µ∗))2

∥∥∥∥( λ2 − λ1

µ2 − µ1

)∥∥∥∥2

2

.

Using Proposition 2.2-(iii), the relation above shows that θ is strongly concave on N (λ∗, µ∗) ∩ Rp+q+ with

constant of strong concavity
αλε(x∗)

(L(f)+L(g)Uη(µ∗))2 with respect to norm ‖ · ‖2. �

The local strong concavity of the dual function of (2.10) was shown recently in Theorem 10 in [19] assum-
ing (A3), assuming instead of (A1) that f is strongly convex and second-order continuously differentiable
(which is stronger than (A1)), and assuming instead of (A2) that gi, i = 1, . . . , p, are convex second-order
continuously differentiable, which is stronger than (A2).2 Therefore Theorem 2.10 gives a new proof of the
local strong concavity of the dual function and improves existing results.

3. Computing inexact cuts for value functions of convex optimization problems

3.1. Preliminaries. Let Q : X → R ∪ {+∞} be the value function given by

(3.22) Q(x) =

{
infy∈Rn f(y, x)
y ∈ S(x) := {y ∈ Y : Ay +Bx = b, g(y, x) ≤ 0}.

Here, and in all this section, X ⊆ Rm and Y ⊆ Rn are nonempty, compact, and convex sets, and A and B
are respectively q×n and q×m real matrices. We will make the following assumptions:3

(H1) f : Rn×Rm → R ∪ {+∞} is lower semicontinuous, proper, and convex.
(H2) For i = 1, . . . , p, the i-th component of function g(y, x) is a convex lower semicontinuous function

gi : Rn×Rm → R ∪ {+∞}.
In what follows, we say that C is a cut for Q on X if C is an affine function of x such that Q(x) ≥ C(x) for

all x ∈ X. We say that the cut is exact at x̄ if Q(x̄) = C(x̄). Otherwise, the cut is said to be inexact at x̄.
In this section, our basic goal is, given x̄ ∈ X and ε-optimal primal and dual solutions of (3.22) written

for x = x̄, to derive an inexact cut C(x) for Q at x̄, i.e., an affine lower bounding function for Q such that
the distance Q(x̄) − C(x̄) between the values of Q and of the cut at x̄ is bounded from above by a known
function of the problem parameters. Of course, when ε = 0, we will check that Q(x̄) = C(x̄).

2Note that we used (A4) to ensure that x(λ∗, µ∗) = x∗, which is also used in the proof of Theorem 10 in [19].
3Note that (H1) and (H2) imply the convexity of Q given by (3.22). Indeed, let x1, x2 ∈ X, 0 ≤ t ≤ 1, and y1 ∈ S(x1), y2 ∈

S(x2), such that Q(x1) = f(y1, x1) and Q(x2) = f(y2, x2). By convexity of g and Y , we have that have ty1 +(1−t)y2 ∈ S(tx1 +
(1−t)x2) and thereforeQ(tx1+(1−t)x2) ≤ f(ty1+(1−t)y2, tx1+(1−t)x2) ≤ tf(y1, x1)+(1−t)f(y2, x2) = tQ(x1)+(1−t)Q(x2)

where for the last inequality we have used the convexity of f .
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We first provide in Proposition 3.2 below a characterization of the subdifferential of value function Q at
x̄ ∈ X when optimal primal and dual solutions for (3.22) written for x = x̄ are available (computation of
exact cuts).

Consider for problem (3.22) the Lagrangian dual problem

(3.23) sup
(λ,µ)∈Rq×Rp+

θx(λ, µ)

for the dual function

(3.24) θx(λ, µ) = inf
y∈Y

Lx(y, λ, µ)

where

Lx(y, λ, µ) = f(y, x) + λT (Ay +Bx− b) + µT g(y, x).

We denote by Λ(x) the set of optimal solutions of the dual problem (3.23) and we use the notation

Sol(x) := {y ∈ S(x) : f(y, x) = Q(x)}
to indicate the solution set to (3.22).

Lemma 3.1 (Lemma 2.1 in [4]). Consider the value function Q given by (3.22) and take x̄ ∈ X such that
S(x̄) 6= ∅. Let Assumptions (H1) and (H2) hold and assume the Slater-type constraint qualification condition:

there exists (x∗, y∗) ∈ X×ri(Y ) such that Ay∗ +Bx∗ = b and (y∗, x∗) ∈ ri({g ≤ 0}).
Then s ∈ ∂Q(x̄) if and only if

(3.25)

(0, s) ∈ ∂f(ȳ, x̄) +
{

[AT ;BT ]λ : λ ∈ Rq
}

+
{ ∑
i∈I(ȳ,x̄)

µi∂gi(ȳ, x̄) : µi ≥ 0
}

+NY (ȳ)×{0},

where ȳ is any element in the solution set Sol(x̄) and with

I(ȳ, x̄) =
{
i ∈ {1, . . . , p} : gi(ȳ, x̄) = 0

}
.

In particular, if f and g are differentiable, then

(3.26) ∂Q(x̄) =
{
∇xf(ȳ, x̄) +BTλ+

∑
i∈I(ȳ,x̄)

µi∇xgi(ȳ, x̄) : (λ, µ) ∈ Λ(x̄)
}
.

The proof of Lemma 3.1 is given in [4] using calculus on normal and tangeant cones. In Proposition
3.2 below, we show how to obtain an exact cut for Q at x̄ ∈ X using convex duality when f and g are
differentiable.

Proposition 3.2. Consider the value function Q given by (3.22) and take x̄ ∈ X such that S(x̄) 6= ∅. Let
Assumptions (H1) and (H2) hold and assume the following constraint qualification condition: there exists
y0 ∈ ri(Y ) ∩ ri({g(·, x̄) ≤ 0}) such that Ay0 + Bx̄ = b. Assume that f and g are differentiable on Y × X.
Let (λ̄, µ̄) be an optimal solution of dual problem (3.23) written with x = x̄ and let

(3.27) s(x̄) = ∇xf(ȳ, x̄) +BT λ̄+
∑

i∈I(ȳ,x̄)

µ̄i∇xgi(ȳ, x̄),

where ȳ is any element in the solution set Sol(x̄) and with

I(ȳ, x̄) =
{
i ∈ {1, . . . , p} : gi(ȳ, x̄) = 0

}
.

Then s(x̄) ∈ ∂Q(x̄) .

Proof. The constraint qualification condition implies that there is no duality gap and therefore

(3.28) f(ȳ, x̄) = Q(x̄) = θx̄(λ̄, µ̄).

Moreover, ȳ is an optimal solution of inf{Lx̄(y, λ̄, µ̄) : y ∈ Y } which gives

〈∇yLx̄(ȳ, λ̄, µ̄), y − ȳ〉 ≥ 0 ∀y ∈ Y,
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and therefore

(3.29) min
y∈Y
〈∇yLx̄(ȳ, λ̄, µ̄), y − ȳ〉 = 0.

Using the convexity of the function which associates to (x, y) the value Lx(y, λ̄, µ̄) we obtain for every x ∈ X
and y ∈ Y that

(3.30) Lx(y, λ̄, µ̄) ≥ Lx̄(ȳ, λ̄, µ̄) + 〈∇xLx̄(ȳ, λ̄, µ̄), x− x̄〉+ 〈∇yLx̄(ȳ, λ̄, µ̄), y − ȳ〉.
By definition of θx, for any x ∈ X we get

Q(x) ≥ θx(λ̄, µ̄)

which combined with (3.30) gives

Q(x) ≥ Lx̄(ȳ, λ̄, µ̄) + 〈∇xLx̄(ȳ, λ̄, µ̄), x− x̄〉+ miny∈Y 〈∇yLx̄(ȳ, λ̄, µ̄), y − ȳ〉
(3.29)

= Lx̄(ȳ, λ̄, µ̄) + 〈∇xf(ȳ, x̄) +BT λ̄+

p∑
i=1

µ̄i∇xgi(ȳ, x̄), x− x̄〉,

= Q(x̄) + 〈s(x̄), x− x̄〉
where the last equality follows from (3.28), Aȳ + Bx̄ = b (feasibility of ȳ), 〈µ̄, g(ȳ, x̄)〉 = 0, and µ̄i = 0 if
i /∈ I(ȳ, x̄)(complementary slackness for ȳ). �

3.2. Inexact cuts with fixed feasible set. As a special case of (3.22), we first consider value functions
where the argument only appears in the objective of optimization problem (3.22):

(3.31) Q(x) =

{
infy∈Rn f(y, x)
y ∈ Y.

We fix x̄ ∈ X and denote by ȳ ∈ Y an optimal solution of (3.31) written for x = x̄:

(3.32) Q(x̄) = f(ȳ, x̄).

If f is differentiable, using Proposition 3.2, we have that ∇xf(ȳ, x̄) ∈ ∂Q(x̄) and

C(x) := Q(x̄) + 〈∇xf(ȳ, x̄), x− x̄〉
is an exact cut for Q at x̄. If instead of an optimal solution ȳ of (3.31), we only have at hand an approximate
ε-optimal solution ŷ(ε), Proposition 3.3 below gives an inexact cut for Q at x̄:

Proposition 3.3 (Proposition 2.2 in [6]). Let x̄ ∈ X and let ŷ(ε) ∈ Y be an ε-optimal solution for problem
(3.31) written for x = x̄ with optimal value Q(x̄), i.e., Q(x̄) ≥ f(ŷ(ε), x̄)− ε. Assume that f is convex and
differentiable on Y×X. Then setting η(ε, x̄) = `1(ŷ(ε), x̄) where `1 : Y×X → R+ is the function given by

(3.33) `1(ŷ, x̄) = −min
y∈Y
〈∇yf(ŷ, x̄), y − ŷ〉 = max

y∈Y
〈∇yf(ŷ, x̄), ŷ − y〉,

the affine function

(3.34) C(x) := f(ŷ(ε), x̄)− η(ε, x̄) + 〈∇xf(ŷ(ε), x̄), x− x̄〉
is a cut for Q at x̄, i.e., for every x ∈ X we have Q(x) ≥ C(x) and the quantity η(ε, x̄) is an upper bound
for the distance Q(x̄)− C(x̄) between the values of Q and of the cut at x̄.

Remark 3.4. If ε = 0 then ŷ(ε) is an optimal solution of problem (3.31) written for x = x̄, η(ε, x̄) =
`1(ŷ(ε), x̄) = 0 and the cut given by Proposition 3.3 is exact. Otherwise it is inexact.

In Proposition 3.5 below, we derive inexact cuts with an additional assumption of strong convexity on f :

(H3) f is convex and differentiable on Y×X and for every x ∈ X there exists α(x) > 0 such that the
function f(·, x) is strongly convex on Y with constant of strong convexity α(x) > 0 for ‖ · ‖2:

f(y2, x) ≥ f(y1, x) + (y2 − y1)T∇yf(y1, x) +
α(x)

2
‖y2 − y1‖22, ∀x ∈ X, ∀ y1, y2 ∈ Y.

We will also need the following assumption, used to control the error on the gradients of f :

(H4) For every y ∈ Y the function f(y, ·) is differentiable on X and for every x ∈ X there exists 0 ≤
M1(x) < +∞ such that for every y1, y2 ∈ Y , we have

‖∇xf(y2, x)−∇xf(y1, x)‖2 ≤M1(x)‖y2 − y1‖2.
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Proposition 3.5. Let x̄ ∈ X and let ŷ(ε) ∈ Y be an ε-optimal solution for problem (3.31) written for x = x̄
with optimal value Q(x̄), i.e., Q(x̄) ≥ f(ŷ(ε), x̄)− ε. Let Assumptions (H3) and (H4) hold. Then setting

(3.35) η(ε, x̄) = ε+M1(x̄)Diam(X)

√
2ε

α(x̄)
,

the affine function

(3.36) C(x) := f(ŷ(ε), x̄)− η(ε, x̄) + 〈∇xf(ŷ(ε), x̄), x− x̄〉

is a cut for Q at x̄, i.e., for every x ∈ X we have Q(x) ≥ C(x) and the distance Q(x̄) − C(x̄) between the
values of Q and of the cut at x̄ is at most η(ε, x̄), or, equivalently, ∇xf(ŷ, x̄) ∈ ∂η(ε,x̄)Q(x̄).

Proof. For short, we use the notation ŷ instead of ŷ(ε). Using the fact that ŷ ∈ Y , the first order optimality
conditions for ȳ imply (ŷ − ȳ)T∇yf(ȳ, x̄) ≥ 0, which combined with Assumption (H3), gives

f(ŷ, x̄) ≥ f(ȳ, x̄) + (ŷ − ȳ)T∇yf(ȳ, x̄) + α(x̄)
2 ‖ŷ − ȳ‖

2
2

≥ Q(x̄) + α(x̄)
2 ‖ŷ − ȳ‖

2
2,

yielding

(3.37) ‖ȳ − ŷ‖2 ≤

√
2

α(x̄)

(
f(ŷ, x̄)−Q(x̄)

)
≤

√
2ε

α(x̄)
.

Now recalling that ∇xf(ȳ, x̄) ∈ ∂Q(x̄), we have for every x ∈ X,

(3.38)

Q(x) ≥ Q(x̄) + (x− x̄)T∇xf(ȳ, x̄)
≥ f(ŷ, x̄)− ε+ (x− x̄)T∇xf(ȳ, x̄)

= f(ŷ, x̄)− ε+ (x− x̄)T∇xf(ŷ, x̄) + (x− x̄)T
(
∇xf(ȳ, x̄)−∇xf(ŷ, x̄)

)
≥ f(ŷ, x̄)− ε+ (x− x̄)T∇xf(ŷ, x̄)−M1(x̄)‖ŷ − ȳ‖2‖x− x̄‖2

(3.37)

≥ f(ŷ, x̄)− ε−M1(x̄)Diam(X)
√

2ε
α(x̄) + (x− x̄)T∇xf(ŷ, x̄),

where for the third inequality we have used Cauchy-Schwartz inequality and Assumption (H4). Finally,
observe that C(x̄) = f(ŷ, x̄)− η(ε, x̄) ≥ Q(x̄)− η(ε, x̄). �

Remark 3.6. As expected, if ε = 0 then η(ε, x̄) = 0 and the cut given by Proposition 3.5 is exact. Otherwise
it is inexact. The error term η(ε, x̄) is the sum of the upper bound ε on the error on the optimal value and

of the error term M1(x̄)Diam(X)
√

2ε
α(x̄) which accounts for the error on the subgradients of Q.

3.3. Inexact cuts with variable feasible set. For x ∈ X, recall that for problem (3.22) the Lagrangian
function is

Lx(y, λ, µ) = f(y, x) + λT (Bx+Ay − b) + µT g(y, x),

and the dual function is given by

(3.39) θx(λ, µ) = inf
y∈Y

Lx(y, λ, µ).

Define `2 : Y×X×Rq×Rp+ → R+ by

(3.40) `2(ŷ, x̄, λ̂, µ̂) = −min
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), y − ŷ〉 = max

y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉.

We make the following assumption which ensures no duality gap for (3.22) for any x ∈ X:

(H5) if Y is polyhedral then for every x ∈ X there exists yx ∈ Y such that Bx+Ayx = b and g(yx, x) < 0
and if Y is not polyhedral then for every x ∈ X there exists yx ∈ ri(Y ) such that Bx+Ayx = b and
g(yx, x) < 0.

The following proposition, proved in [6], provides an inexact cut for Q given by (3.22):
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Proposition 3.7. [Proposition 2.7 in [6]] Let x̄ ∈ X, let ŷ(ε) be an ε-optimal feasible primal solution for

problem (3.22) written for x = x̄ and let (λ̂(ε), µ̂(ε)) be an ε-optimal feasible solution of the corresponding
dual problem, i.e., of problem (3.23) written for x = x̄. Let Assumptions (H1), (H2), and (H5) hold.

If additionally f and g are differentiable on Y×X then setting η(ε, x̄) = `2(ŷ(ε), x̄, λ̂(ε), µ̂(ε)), the affine
function

(3.41) C(x) := Lx̄(ŷ(ε), λ̂(ε), µ̂(ε))− η(ε, x̄) + 〈∇xLx̄(ŷ(ε), λ̂(ε), µ̂(ε)), x− x̄〉

with

∇xLx̄(ŷ(ε), λ̂(ε), µ̂(ε)) = ∇xf(ŷ(ε), x̄) +BT λ̂(ε) +

p∑
i=1

µ̂i(ε)∇xgi(ŷ(ε), x̄),

is a cut for Q at x̄ and the distance Q(x̄) − C(x̄) between the values of Q and of the cut at x̄ is at most

ε+ `2(ŷ(ε), x̄, λ̂(ε), µ̂(ε)).

In Proposition 3.8 below, we derive another formula for inexact cuts with an additional assumption of
strong convexity:

(H6) Strong concavity of the dual function: for every x ∈ X there exists αD(x) > 0 and a set Dx containing
the set of optimal solutions of dual problem (3.23) such that the dual function θx is strongly concave
on Dx with constant of strong concavity αD(x) with respect to ‖ · ‖2.

We refer to Section 2 for conditions on the problem data ensuring Assumption (H6).
If the constants α(x̄) and αD(x̄) in Assumptions (H3) and (H6) are sufficiently large and n is small then

the cuts given by Proposition 3.8 are better than the cuts given by Proposition 3.7, i.e., Q(x̄) − C(x̄) is
smaller. We refer to Section 3.4 for numerical tests comparing the cuts given by Propositions 3.7 and 3.8 on
quadratic programs.

To proceed, take an optimal primal solution ȳ of problem (3.22) written for x = x̄ and an optimal dual
solution (λ̄, µ̄) of the corresponding dual problem, i.e., problem (3.23) written for x = x̄.

With this notation, using Proposition 3.2, we have that ∇xLx̄(ȳ, λ̄, µ̄) ∈ ∂Q(x̄). Since we only have

approximate primal and dual solutions, ŷ(ε) and (λ̂(ε), µ̂(ε)) respectively, we will use the approximate sub-

gradient ∇xLx̄(ŷ(ε), λ̂(ε), µ̂(ε)) instead of ∇xLx̄(ȳ, λ̄, µ̄). To control the error on this subgradient, we assume
differentiability of the constraint functions and that the gradients of these functions are Lipschitz continuous.
More precisely, we assume:

(H7) g is differentiable on Y×X and for every x ∈ X there exists 0 ≤ M2(x) < +∞ such that for all
y1, y2 ∈ Y , we have

‖∇xgi(y1, x)−∇xgi(y2, x)‖2 ≤M2(x)‖y1 − y2‖2, i = 1, . . . , p.

If Assumptions (H1)-(H7) hold, the following proposition provides an inexact cut for Q at x̄:

Proposition 3.8. Let x̄ ∈ X, let ŷ(ε) be an ε-optimal feasible primal solution for problem (3.22) written for

x = x̄ and let (λ̂(ε), µ̂(ε)) be an ε-optimal feasible solution of the corresponding dual problem, i.e., of problem
(3.23) written for x = x̄. Let Assumptions (H1), (H2), (H3), (H4), (H5), (H6), and (H7) hold. Assume

that (λ̂(ε), µ̂(ε)) ∈ Dx̄ where Dx̄ is defined in (H6) and let

(3.42) U = max
i=1,...,p

‖∇xgi(ŷ(ε), x̄)‖2.

Let also Lx̄ be any lower bound on Q(x̄). Define

(3.43) Ux̄ =
f(yx̄, x̄)− Lx̄

min(−gi(yx̄, x̄), i = 1, . . . , p)

and

η(ε, x̄) = ε+
(

(M1(x̄) +M2(x̄)Ux̄)

√
2

α(x̄)
+

2 max(‖BT ‖,√pU)√
αD(x̄)

)
Diam(X)

√
ε.

Then

C(x) := f(ŷ(ε), x̄)− η(ε, x̄) + 〈∇xLx̄(ŷ(ε), λ̂(ε), µ̂(ε)), x− x̄〉
12



where

∇xLx̄(ŷ(ε), λ̂(ε), µ̂(ε)) = ∇xf(ŷ(ε), x̄) +BT λ̂(ε) +

p∑
i=1

µ̂i(ε)∇xgi(ŷ(ε), x̄),

is a cut for Q at x̄ and the distance Q(x̄) − C(x̄) between the values of Q and of the cut at x̄ is at most
η(ε, x̄).

Proof. For short, we use the notation ŷ, λ̂, µ̂ instead of ŷ(ε), λ̂(ε), µ̂(ε). Since ∇xLx̄(ȳ, λ̄, µ̄) ∈ ∂Q(x̄), we
have

(3.44) Q(x) ≥ Q(x̄) + 〈∇xLx̄(ȳ, λ̄, µ̄), x− x̄〉 ≥ f(ŷ, x̄)− ε+ 〈∇xLx̄(ȳ, λ̄, µ̄), x− x̄〉.

Next observe that

‖∇xLx̄(ȳ, λ̄, µ̄)−∇xLx̄(ŷ, λ̂, µ̂)‖ ≤ M1(x̄)‖ȳ − ŷ‖+ ‖BT ‖‖λ̄− λ̂‖

+‖
p∑
i=1

µ̄(i)
(
∇xgi(ȳ, x̄)−∇xgi(ŷ, x̄)

)
‖

+‖
p∑
i=1

(
µ̄(i)− µ̂(i)

)
∇xgi(ŷ, x̄)‖

≤ M1(x̄)‖ȳ − ŷ‖+ ‖BT ‖‖λ̄− λ̂‖+M2(x̄)‖µ̄‖1‖ȳ − ŷ‖+ U
√
p‖µ̄− µ̂‖

≤ (M1(x̄) +M2(x̄)‖µ̄‖1)‖ȳ − ŷ‖+
√

2 max(‖BT ‖, U√p)
√
‖λ̂− λ̄‖2 + ‖µ̂− µ̄‖2.(3.45)

Using Remark 2.3.3, p.313 in [7] and Assumption (H5) we have for ‖µ̄‖1 the upper bound

(3.46) ‖µ̄‖1 ≤
f(yx̄, x̄)−Q(x̄)

min(−gi(yx̄, x̄), i = 1, . . . , p)
≤ Ux̄.

Using Assumptions (H3) and (H6), we also get

(3.47) ‖ŷ − ȳ‖2 ≤ 2ε

α(x̄)
and ‖λ̂− λ̄‖2 + ‖µ̂− µ̄‖2 ≤ 2ε

αD(x̄)
.

Combining (3.45), (3.46), and (3.47), we get

‖∇xLx̄(ȳ, λ̄, µ̄)−∇xLx̄(ŷ, λ̂, µ̂)‖ ≤ η(ε, x̄)− ε
Diam(X)

.(3.48)

Plugging the above relation into (3.44) and using Cauchy-Schwartz inequality, we get

(3.49)

Q(x) ≥ f(ŷ, x̄)− ε+ 〈∇xLx̄(ŷ, λ̂, µ̂), x− x̄〉+ 〈∇xLx̄(ȳ, λ̄, µ̄)−∇xLx̄(ŷ, λ̂, µ̂), x− x̄〉
≥ f(ŷ, x̄)− ε− ‖∇xLx̄(ŷ, λ̂, µ̂)−∇xLx̄(ȳ, λ̄, µ̄)‖Diam(X) + 〈∇xLx̄(ŷ, λ̂, µ̂), x− x̄〉
≥ f(ŷ, x̄)− η(ε, x̄) + 〈∇xLx̄(ŷ, λ̂, µ̂), x− x̄〉.

Finally, since ŷ ∈ S(x̄) we check that Q(x̄) − C(x̄) = Q(x̄) − f(ŷ, x̄) + η(ε, x̄) ≤ η(ε, x̄), which achieves the
proof of the proposition. �

Observe that the “slope” ∇xLx̄(ŷ(ε), λ̂(ε), µ̂(ε)) of the cut given by Proposition 3.7 is the same as the
“slope” of the cut given by Proposition 3.8.

Remark 3.9. If ŷ(ε) and (λ̂(ε), µ̂(ε)) are respectively optimal primal and dual solutions, i.e., ε = 0, then
Proposition 3.8 gives, as expected, an exact cut for Q at x̄.

As shown in Corollary 3.10, the formula for the inexact cuts given in Proposition 3.8 can be simplified
depending if there are nonlinear coupling constraints or not, if f is separable (sum of a function of x and of
a function of y) or not, and if g is separable.
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Corollary 3.10. Consider the value functions Q : X → R where Q(x) is given by the optimal value of the
following optimization problems:

(3.50)

(a)


miny f(y, x)
Ay +Bx = b,
h(y) + k(x) ≤ 0,
y ∈ Y,

(b)


miny f0(y) + f1(x)
Ay +Bx = b,
g(y, x) ≤ 0,
y ∈ Y,

(c)


miny f0(y) + f1(x)
Ay +Bx = b,
h(y) + k(x) ≤ 0,
y ∈ Y,

(d)

 miny f(y, x)
g(y, x) ≤ 0,
y ∈ Y,

(e)

 miny f(y, x)
h(y) + k(x) ≤ 0,
y ∈ Y,

(f)

 miny f0(y) + f1(x)
g(y, x) ≤ 0,
y ∈ Y,

(g)

 miny f0(y) + f1(x)
h(y) + k(x) ≤ 0,
y ∈ Y,

(h)

 miny f(y, x)
Ay +Bx = b,
y ∈ Y,

(i)

 miny f0(y) + f1(x)
Ay +Bx = b,
y ∈ Y.

For problems (b),(c),(f),(g), (i) above define f(y, x) = f0(y)+f1(x) and for problems (a), (c), (e), (g) define
g(y, x) = h(y) + k(x). With this notation, assume that (H1), (H2), (H3), (H4), (H5), (H6), and (H7) hold
for these problems. If g is defined, let Lx(y, λ, µ) = f(y, x) +λT (Bx+Ay− b) +µT g(y, x) be the Lagrangian
and define

U = max
i=1,...,p

‖∇xgi(ŷ(ε), x̄)‖ and Ux̄ =
f(yx̄, x̄)− Lx̄

min(−gi(yx̄, x̄), i = 1, . . . , p)

where Lx̄ is any lower bound on Q(x̄). If g is not defined, define Lx(y, λ) = f(y, x) + λT (Bx+Ay − b).
Let x̄ ∈ X, let ŷ be an ε-optimal feasible primal solution for problem (3.22) written for x = x̄ and let

(λ̂, µ̂) be an ε-optimal feasible solution of the corresponding dual problem, i.e., of problem (3.23) written for
x = x̄.

Then C(x) = f(ŷ, x̄) − η(ε, x̄) + 〈s(x̄), x − x̄〉 is an inexact cut for Q at x̄ where the formulas for η(ε, x̄)
and s(x̄) in each of cases (a)-(i) above are the following:

(3.51)

(a)

{
η(ε, x̄) = ε+

(
M1(x̄) 1√

α(x̄)
+
√

2 max(‖BT ‖,√pU) 1√
αD(x̄)

)
Diam(X)

√
2ε,

s(x̄) = ∇xf(ŷ, x̄) +BT λ̂+
∑p
i=1 µ̂i∇xki(x̄),

(b)

{
η(ε, x̄) = ε+

(
M2(x̄)Ux̄ 1√

α(x̄)
+
√

2 max(‖BT ‖,√pU) 1√
αD(x̄)

)
Diam(X)

√
2ε,

s(x̄) = ∇xf1(x̄) +BT λ̂+
∑p
i=1 µ̂i∇xgi(ŷ, x̄),

(c)

{
η(ε, x̄) = ε+ 2 max(‖BT ‖,√pU)Diam(X)

√
ε

αD(x̄) ,

s(x̄) = ∇xf1(x̄) +BT λ̂+
∑p
i=1 µ̂i∇xki(x̄),

(d)

{
η(ε, x̄) = ε+

(
(M1(x̄) +M2(x̄)Ux̄) 1√

α(x̄)
+ U

√
p

αD(x̄)

)
Diam(X)

√
2ε,

s(x̄) = ∇xf(ŷ, x̄) +
∑p
i=1 µ̂i∇xgi(ŷ, x̄),

(e)

{
η(ε, x̄) = ε+

(
M1(x̄)√
α(x̄)

+
√

p
αD(x̄)U

)
Diam(X)

√
2ε,

s(x̄) = ∇xf(ŷ, x̄) +
∑p
i=1 µ̂i∇xki(x̄),

(f)

{
η(ε, x̄) = ε+

(
M2(x̄)√
α(x̄)
Ux̄ + U

√
p

αD(x̄)

)
Diam(X)

√
2ε,

s(x̄) = ∇xf1(x̄) +
∑p
i=1 µ̂i∇xgi(ŷ, x̄),

(g)

{
η(ε, x̄) = ε+ Diam(X)

√
2εp
αD(x̄)U,

s(x̄) = ∇xf1(x̄) +
∑p
i=1 µ̂i∇xki(x̄),

(h)

{
η(ε, x̄) = ε+

(
M1(x̄)√
α(x̄)

+ ‖BT ‖√
αD(x̄)

)
Diam(X)

√
2ε,

s(x̄) = ∇xf(ŷ, x̄) +BT λ̂,

(i)

{
η(ε, x̄) = ε+ ‖BT ‖

√
2ε

αD(x̄)Diam(X),

s(x̄) = ∇xf1(x̄) +BT λ̂.
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Proof. It suffices to follow the proof of Proposition 3.8, specialized to cases (a)-(i). For instance, let us check
the formulas in case (g). For (g), s(x̄) = ∇xLx̄(ŷ, µ̂) = ∇xf1(x̄) +

∑p
i=1 µ̂i∇xki(x̄) and

(3.52)
‖∇xLx̄(ŷ, µ̂)−∇xLx̄(ȳ, µ̄)‖ = ‖

∑p
i=1(µ̂i − µ̄i)∇xki(x̄)‖ ≤ U‖µ̂− µ̄‖1

≤ U
√
p‖µ̂− µ̄‖ ≤ U√p

√
2ε

αD(x̄) .

It then suffices to combine (3.44) and (3.52). �

3.4. Numerical results.

3.4.1. Argument of the value function in the objective only. Let S =

(
S1 S2

ST2 S3

)
be a positive definite

matrix, let c1 ∈ Rm, c2 ∈ Rn be vectors of ones, and let Q be the value function given by

(3.53)
Q(x) =

 miny∈Rn f(y, x) = 1
2

(
x
y

)T
S

(
x
y

)
+

(
c1
c2

)T (
x
y

)
y ∈ Y := {y ∈ Rn : y ≥ 0,

∑n
i=1 yi = 1},

=

{
miny∈Rn cT1 x+ cT2 y + 1

2x
TS1x+ xTS2y + 1

2y
TS3y

y ≥ 0,
∑n
i=1 yi = 1.

Clearly, Assumption (H3) is satisfied with α(x) = λmin(S3), and

‖∇xf(y2, x)−∇xf(y1, x)‖ = ‖S2(y2 − y1)‖2 ≤ ‖S2‖2‖y2 − y1‖2

implying that Assumption (H4) is satisfied with M1(x̄) = ‖S2‖2 = σ(S2) where σ(S2) is the largest singular

value of S2. We take X = Y with Diam(X) = maxx1,x2∈X ‖x2 − x1‖2 ≤
√

2. With this notation, if ŷ
is an ε-optimal solution of (3.53) written for x = x̄, we compute at x̄ the cut C(x) = f(ŷ, x̄) − η(ε, x̄) +
〈∇xf(ŷ, x̄), x− x̄〉 = f(ŷ, x̄)− η(ε, x̄) + 〈c1 + S1x̄+ S2ŷ, x− x̄〉 where

• η(ε, x̄) = η1(ε, x̄) = ε+ 2M1(x̄)
√

ε
α(x̄) using Proposition 3.5;

• η(ε, x̄) is given by

η(ε, x̄) = η2(ε, x̄) =

{
max 〈∇yf(ŷ, x̄), ŷ − y〉
y ≥ 0,

∑n
i=1 yi = 1,

=

{
max 〈c2 + ST2 x̄+ S3ŷ, ŷ − y〉
y ≥ 0,

∑n
i=1 yi = 1,

using Proposition 3.3.

We compare in Table 1 the values of η1(ε, x̄) and η2(ε, x̄) for several values of m = n, ε, and α(x̄). In
these experiments S is of the form AAT + λI2n for some λ > 0 and A has random entries in [−20, 20].

Optimization problems were solved using Mosek optimization toolbox [1], setting Mosek parameter MSK
DPAR INTPNT QO TOL REL GAP which corresponds to the relative error εr on the optimal value to 0.1,
0.5, and 1. In each run, ε was estimated computing the duality gap (the difference between the approximate
optimal values of the dual and the primal). Though η1(ε, x̄) does not depend on x̄ (because on this example
α and M1 do not depend on x̄), the absolute error ε depends on the run (for a fixed εr, different runs corre-
sponding to different x̄ yield different errors ε, η1(ε, x̄) and η2(ε, x̄)). Therefore, for each fixed (εr, α(x̄), n),
the values ε, η1(ε, x̄), and η2(ε, x̄) reported in the table correspond to the mean values of ε, η1(ε, x̄), and
η2(ε, x̄) obtained taking randomly 50 points in X. We see that the cuts computed by Proposition 3.5 are
much more conservative on nearly all combinations of parameters, except on three of these combinations
when n = 10 and α(x̄) = 106 is very large.

3.4.2. Argument of the value function in the objective and constraints. We close this section comparing the
error terms in the cuts given by Propositions 3.7 and 3.8 on a very simple problem with a quadratic objective
and a quadratic constraint.

Let S =

(
S1 S2

ST2 S3

)
be a positive definite matrix, let c1, c2 ∈ Rn, and let Q : X → R be the value

function given by

(3.54) Q(x) = min
y∈Rn

{f(y, x) : g1(y, x) ≤ 0},
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ε α(x̄) n η1 η2 ε α(x̄) n η1 η2

0.0024 102.9 10 1.76 0.025 0.0061 190.2 10 2.73 0.026
0.0080 10 087 10 0.86 0.054 0.0024 106 10 0.076 0.354
0.016 129.0 10 9.81 0.047 0.0084 174.5 10 4.85 0.037
0.029 10054 10 2.49 0.128 0.002 106 10 0.09 0.342
0.008 112.3 10 8.07 0.043 0.008 150.0 10 6.36 0.022
0.018 10 090 10 1.29 0.078 0.0019 106 10 0.06 0.442

0.15 531.9 100 175.6 0.3 0.18 665.3 100 183.5 0.3
0.23 10 687 100 44.5 0.2 0.03 106 100 2.1 0.9
0.17 676.2 100 185.7 0.2 0.09 734.3 100 106.5 0.2
0.11 10 638 100 37.9 0.2 0.02 106 100 1.7 0.3
0.05 660 100 106.7 0.2 0.40 777 100 253.8 0.4
0.07 10 585 100 32.6 0.2 0.02 106 100 1.3 0.4

6.78 6017.9 1000 4177.8 9.5 2.69 5991.4 1000 2778.8 6.8
8.12 15 722 1000 3059.5 11.1 0.99 106 1000 132.1 3.2
7.40 5799 1000 4160.2 9.8 7.83 6020 1000 4590.7 9.3
12.5 15860 1000 4001.6 14.6 1.3 106 1000 153.6 3.47
9.9 6065 1000 4996.4 11.8 8.3 5955 1000 4034.9 8.3
7.2 15 895 1000 2564.3 3.4 9.7 106 1000 117.2 1.8

Table 1. Values of η(ε, x̄) = η1(ε, x̄) (resp. η(ε, x̄) = η2(ε, x̄)) for the inexact cuts given
by Proposition 3.5 (resp. Proposition 3.3) for value function (3.53) for various values of n
(problem dimension), α(x̄) = λmin(S3), and ε.

where

(3.55)

f(y, x) = 1
2

(
x
y

)T
S

(
x
y

)
+

(
c1
c2

)T (
x
y

)
= cT1 x+ cT2 y + 1

2x
TS1x+ xTS2y + 1

2y
TS3y,

g1(y, x) = 1
2‖y − y0‖22 + 1

2‖x− x0‖22 − R2

2 ,
X = {x ∈ Rn : ‖x− x0‖2 ≤ 1}.

In what follows, we take R = 5 and x0, y0 ∈ Rn given by x0(i) = y0(i) = 10, i = 1, . . . , n. Clearly, for fixed
x̄ ∈ X and any feasible y for (3.54), (3.55) written for x = x̄, we have∥∥∥∥( x0

y0

)∥∥∥∥+R ≥
∥∥∥∥( x̄

y

)∥∥∥∥ ≥ ∥∥∥∥( x0

y0

)∥∥∥∥−R.
Knowing that with our problem data

∥∥∥∥( x0

y0

)∥∥∥∥−R > 0, we obtain the bound Q(x̄) ≥ Lx̄ where

Lx̄ =
1

2
λmin(S)

(∥∥∥∥( x0

y0

)∥∥∥∥−R)2

−
(∥∥∥∥( x0

y0

)∥∥∥∥+R
)∥∥∥∥( c1

c2

)∥∥∥∥
2

.

Next, for every x̄ ∈ X we have g1(y0, x̄) < 0 which gives the upper bound

(3.56) Ux̄ =
Lx̄ − f(y0, x̄)

g1(y0, x̄)

for any optimal dual solution µ̄ ≥ 0 of the dual of (3.54), (3.55) written for x = x̄. Making the change of
variable z = y − y0, we can express (3.54) under the form (2.6) where

(3.57)
Q0 = S3, a0 = a0(x) = c2 + ST2 x+ S3y0, b0 = b0(x) = 1

2x
TS1x+ cT1 x+ yT0 (c2 + ST2 x) + 1

2y
T
0 S3y0,

Q1 = In, a1 = 0, b1 = b1(x) = 1
2 (‖x− x0‖22 −R2).

Therefore, using Proposition 2.8, we have that dual function θx̄ for (3.54) is given by

(3.58) θx̄(µ) = −1

2
a0(x̄)T (S3 + µIn)−1a0(x̄) + b0(x̄) + µb1(x̄)
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with a0, b0, b1 given by (3.57) and setting

αD(x̄) = a0(x̄)T (S3 + Ux̄In)−3a0(x̄),

if a0(x̄) 6= 0 then θx̄ is strongly concave on the interval [0,Ux̄] with constant of strong concavity αD(x̄) where
Ux̄ is given by (3.56). Let ŷ be an ε-optimal primal solution of (3.54) written for x = x̄ and let µ̂ be an
ε-optimal solution of its dual. If a0(x̄) 6= 0, we obtain for Q the cut
(3.59)
C1(x) = f(ŷ, x̄)− η1(ε, x̄) + 〈∇xLx̄(ŷ, µ̂), x− x̄〉 where

η1(ε, x̄) = ε+D(X)
√

2ε
(
M1(x̄)√
α(x̄)

+ ‖x̄−x0‖√
αD(x̄)

)
with D(X) = 2,M1(x̄) = ‖S2‖2, α(x̄) = λmin(S3),

∇xLx̄(ŷ, µ̂) = S1x̄+ c1 + S2ŷ + µ̂(x̄− x0).

We now apply Proposition 3.7 to obtain another inexact cut for Q at x̄ ∈ X rewriting (3.54) under the
form (3.22) with Y the compact set Y = {y ∈ Rn : ‖y − y0‖2 ≤ R}:
(3.60) Q(x) = min

y∈Rn
{f(y, x) : g1(y, x) ≤ 0, ‖y − y0‖2 ≤ R} .

Applying Proposition 3.7 to reformulation (3.60) of (3.54), we obtain for Q the inexact cut C2 at x̄ where

(3.61)


C2(x) = f(ŷ, x̄)− η2(ε, x̄) + 〈∇xLx̄(ŷ, µ̂), x− x̄〉 with
η2(ε, x̄) = −min{〈∇yLx̄(ŷ, µ̂), y − ŷ〉 : ‖y − y0‖2 ≤ R},

= 〈∇yLx̄(ŷ, µ̂), ŷ − y0〉+R‖∇yLx̄(ŷ, µ̂)‖2,
∇xLx̄(ŷ, µ̂) = S1x̄+ c1 + S2ŷ + µ̂(x̄− x0),
∇yLx̄(ŷ, µ̂) = S3ŷ + ST2 x̄+ c2 + µ̂(ŷ − y0).

As in the previous example, we take S of form S = AAT+λI2n where the entries of A are randomly selected
in the range [−20, 20]. We also take c1(i) = c2(i) = 1, i = 1, . . . , n. For 8 values of the pair (n, λ), namely
(n, λ) ∈ {(1, 1), (10, 1), (100, 1), (1000, 1), (1, 100), (10, 100), (100, 100), (1000, 100)}, we generate a matrix S
of form AAT + λI2n where the entries of A are realizations of independent random variables with uniform
distribution in [−20, 20]. In each case, we select randomly x̄ ∈ X and solve (3.54), (3.55) and its dual written
for x = x̄ using Mosek interior point solver. The value of α(x̄) = λmin(S3), the dual function θx̄(·), and the
dual iterates computed along the iterations are reported in Figure 6 in the Appendix. Figure 7 shows the
plots of η1(εk, x̄) and η2(εk, x̄) as a function of iteration k where εk is the duality gap at iteration k.

The cuts computed by Proposition 3.8 are more conservative than cuts given by Proposition 3.7 on nearly
all instances and iterations. We also see that, as expected, the error terms η1(εk, x̄) and η2(εk, x̄) go to zero
when εk goes to zero (see the proof of Theorem 4.2 for a proof of this statement).

4. Inexact Stochastic Mirror Descent for two-stage nonlinear stochastic programs

The algorithm to be described in this section is an inexact extension of SMD [13] to solve

(4.62)

{
min f(x1) := f1(x1) +Q(x1)
x1 ∈ X1

with X1 ⊂ Rn a convex, nonempty, and compact set, and Q(x1) = Eξ2 [Q(x1, ξ2)], ξ2 is a random vector
with probability distribution P on Ξ ⊂ Rk, and

(4.63) Q(x1, ξ2) =

{
minx2

f2(x2, x1, ξ2)
x2 ∈ X2(x1, ξ2) := {x2 ∈ X2 : Ax2 +Bx1 = b, g(x2, x1, ξ2) ≤ 0}.

Recall that ξ2 contains the random variables in (A,B, b) and eventually other sources of randomness. Let
‖ · ‖ be a norm on Rn and let ω : X1 → R be a distance-generating function. This function should

• be convex and continuous on X1,
• admit on Xo

1 = {x ∈ X1 : ∂ω(x) 6= ∅} a selection ω′(x) of subgradients, and
• be compatible with ‖ · ‖, meaning that ω(·) is strongly convex with constant of strong convexity
µ(ω) > 0 with respect to the norm ‖ · ‖:

(ω′(x)− ω′(y))T (x− y) ≥ µ(ω)‖x− y‖2 ∀x, y ∈ Xo
1 .

We also define

(1) the ω-center of X1 given by x1ω = argmin x1∈X1
ω(x1) ∈ Xo

1 ;
17



(2) the Bregman distance or prox-function

(4.64) Vx(y) = ω(y)− ω(x)− (y − x)Tω′(x),

for x ∈ Xo
1 , y ∈ X1;

(3) the ω-radius of X1 defined as

(4.65) Dω,X1
=

√
2
[

max
x∈X1

ω(x)− min
x∈X1

ω(x)
]
.

(4) The proximal mapping

(4.66) Proxx(ζ) = argmin y∈X1
{ω(y) + yT (ζ − ω′(x))} [x ∈ Xo

1 , ζ ∈ Rn],

taking values in Xo
1 .

We describe below ISMD, an inexact variant of SMD for solving problem (4.62) in which primal and dual
second stage problems are solved approximately.

For x1 ∈ X1, ξ2 ∈ Ξ, and ε ≥ 0, we denote by x2(x1, ξ2, ε) an ε-optimal feasible primal solution of (4.63),
i.e., x2(x1, ξ2, ε) ∈ X2(x1, ξ2) and

Q(x1, ξ2) ≤ f2(x2, x1, ξ2) ≤ Q(x1, ξ2) + ε.

We now define ε-optimal dual second stage solutions. For x1 ∈ X1 and ξ2 ∈ Ξ let

Lx1,ξ2(x2, λ, µ) = f2(x2, x1, ξ2) + 〈λ,Ax2 +Bx1 − b〉+ 〈µ, g(x2, x1, ξ2)〉,

and let θx1,ξ2 be the dual function given by

(4.67) θx1,ξ2(λ, µ) =

{
min Lx1,ξ2(x2, λ, µ)
x2 ∈ X2.

For x1 ∈ X1, ξ2 ∈ Ξ, and ε ≥ 0, we denote by (λ(x1, ξ2, ε), µ(x1, ξ2, ε)) an ε-optimal feasible solution of the
dual problem

(4.68)

{
max θx1,ξ2(λ, µ)
µ ≥ 0, λ = Ax2 +Bx1 − b, x2 ∈ Aff(X2).

Under Slater-type constraint qualification conditions to be specified in Theorems 4.2 and 4.4, the opti-
mal values of primal second stage problem (4.63) and dual second stage problem (4.68) are the same and
(λ(x1, ξ2, ε), µ(x1, ξ2, ε)) satisfies:

µ(x1, ξ2, ε) ≥ 0, λ(x1, ξ2, ε) = Ax2 +Bx1 − b,

for some x2 ∈ Aff(X2) and

Q(x1, ξ2)− ε ≤ θx1,ξ2(λ(x1, ξ2, ε), µ(x1, ξ2, ε)) ≤ Q(x1, ξ2).

We also denote by DX1
= maxx,y∈X1

‖y − x‖ the diameter of X1, by sf1(x1) a subgradient of f1 at x1, and
we define
(4.69)
H(x1, ξ2, ε) = ∇x1

f2(x2(x1, ξ2, ε), x1, ξ2) +BTλ(x1, ξ2, ε) +
∑p
i=1 µi(x1, ξ2, ε)∇x1

gi(x2(x1, ξ2, ε), x1, ξ2),
G(x1, ξ2, ε) = sf1(x1) +H(x1, ξ2, ε).

Inexact Stochastic Mirror Descent (ISMD) for risk-neutral two-stage nonlinear stochastic
problems.

Parameters: Sequence (εt) and θ > 0.

For N = 2, 3, . . . ,

Take xN,11 = x1ω.
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For t = 1, . . . , N −1, sample a realization ξN,t2 of ξ2 (with corresponding realizations AN,t of A, BN,t

of B, and bN,t of b), compute an εt-optimal solution xN,t2 of the problem

(4.70) Q(xN,t1 , ξN,t2 ) =


minx2 f2(x2, x

N,t
1 , ξN,t2 )

AN,tx2 +BN,txN,t1 = bN,t,

g(x2, x
N,t
1 , ξN,t2 ) ≤ 0,

x2 ∈ X2,

and an εt-optimal solution (λN,t, µN,t) = (λ(xN,t1 , ξN,t2 , εt), µ(xN,t1 , ξN,t2 , εt)) of the dual problem

(4.71)

{
max θxN,t1 ,ξN,t2

(λ, µ)

µ ≥ 0, λ = AN,tx2 +BN,txN,t1 − bN,t, x2 ∈ Aff(X2)

used to compute G(xN,t1 , ξN,t2 , εt) given by (4.69) replacing (x1, ξ2, ε) by (xt1, ξ
t
2, εt).

4

Compute γt(N) = θ√
N

and

(4.72) xN,t+1
1 = ProxxN,t1

(γt(N)G(xN,t1 , ξN,t2 , εt)).

Compute

(4.73)

x1(N) =
1

ΓN

N∑
τ=1

γτ (N)xN,τ1 and

f̂N =
1

ΓN

[
N∑
τ=1

γτ (N)
(
f1(xN,τ1 ) + f2(xN,τ2 , xN,τ1 , ξN,τ2 )

)]
with ΓN =

N∑
τ=1

γτ (N).

End For
End For

Remark 4.1. In practise ISMD is run fixing the number N of inner iterations, i.e., we fix N and compute

x1(N) and f̂N .

Convergence of Inexact Stochastic Mirror Descent for solving (4.62) can be shown when error terms (εt)
asymptotically vanish:

Theorem 4.2 (Convergence of ISMD). Consider problem (4.62) and assume that (i) X1 and X2 are
nonempty, convex, and compact, (ii) f1 is convex, finite-valued, and has bounded subgradients on X1, (iii)
for every x1 ∈ X1 and x2 ∈ X2, f2(x2, x1, ·) and gi(x2, x1, ·), i = 1, . . . , p, are measurable, (iv) for every
ξ2 ∈ Ξ the functions f2(·, ·, ξ2) and gi(·, ·, ξ2), i = 1, . . . , p, are convex and continuously differentiable on

X2 × X1, (v) ∃κ > 0 and r > 0 such that for all x1 ∈ X1, for all ξ̃2 ∈ Ξ, there exists x2 ∈ X2 such that

B(x2, r) ∩Aff(X2) 6= ∅, Ãx2 + B̃x1 = b̃, and g(x2, x1, ξ̃2) < −κe where e is a vector of ones. If γt = θ√
N

for

some θ > 0, if the support Ξ of ξ2 is compact, and if limt→∞ εt = 0, then

lim
N→+∞

E[f(x1(N))] = lim
N→+∞

E[f̂N ] = f1∗

where f1∗ is the optimal value of (4.62).

Proof. For fixed N , to alleviate notation, we denote vectors xN,t1 , xN,t2 , ξN,t2 , AN,t, BN,t, bN,t, γt(N), λN,t, µN,t

used to compute x1(N) and f̂N by xt1, x
t
2, ξ

t
2, A

t, Bt, bt, γt, λ
t, µt, respectively. Let x∗1 be an optimal solution

of (4.62). Standard computations on the proximal mapping give

(4.74)

N∑
τ=1

γτG(xτ1 , ξ
τ
2 , ετ )T (xτ1 − x∗1) ≤ 1

2
D2
ω,X1

+
1

2µ(ω)

N∑
τ=1

γ2
τ‖G(xτ1 , ξ

τ
2 , ετ )‖2∗.

Next using Proposition 3.7 we have

(4.75) Q(x∗1, ξ
τ
2 ) ≥ Q(xτ1 , ξ

τ
2 )− ηξτ2 (ετ , x

τ
1) + 〈H(xτ1 , ξ

τ
2 , ετ ), x∗1 − xτ1〉

4Any optimization solver for convex nonlinear programs able to provide εt-optimal solutions can be used (for instance an
interior point solver).
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where

(4.76)
ηξτ2 (ετ , x

τ
1) =

{
max 〈∇x2Lxτ1 ,ξτ2 (xτ2 , λ

τ , µτ ), xτ2 − x2〉
x2 ∈ X2

=

{
max 〈∇x2

f2(xτ2 , x
τ
1 , ξ

τ
2 ) + (Aτ )Tλτ +

∑p
i=1 µ

τ
i∇x2

gi(x
τ
2 , x

τ
1 , ξ

τ
2 ), xτ2 − x2〉

x2 ∈ X2.

Setting ξ1:τ−1
2 = (ξ1

2 , . . . , ξ
τ−1
2 ) and taking the conditional expectation Eξτ2 [·|ξ1:τ−1

2 ] on each side of (4.75) we
obtain almost surely

(4.77) Q(x∗1) ≥ Q(xτ1)− Eξτ2 [ηξτ2 (ετ , x
τ
1)|ξ1:τ−1

2 ] + (Eξτ2 [H(xτ1 , ξ
τ
2 , ετ )|ξ1:τ−1

2 ])T (x∗1 − xτ1).

Combining (4.74), (4.77), and using the convexity of f we get

(4.78)

0 ≤ E[f(x1(N))− f(x∗1)] ≤ 1

ΓN

N∑
τ=1

γτE[f(xτ1)− f(x∗1)]

≤ 1

ΓN

N∑
τ=1

γτE[ηξτ2 (ετ , x
τ
1)] +

1

2ΓN

[
D2
ω,X1

+
1

µ(ω)

N∑
τ=1

γ2
τE[‖G(xτ1 , ξ

τ
2 , ετ )‖2∗]

]
.

We now show by contradiction that5

(4.79) lim
τ→+∞

ηξτ2 (ετ , x
τ
1) = 0 almost surely.

Take an arbitrary realization of ISMD. We want to show that

(4.80) lim
τ→+∞

ηξτ2 (ετ , x
τ
1) = 0

for that realization. Assume that (4.80) does not hold. Let xt2∗ (resp. x̃τ2) be an optimal solution of (4.70)
(resp. (4.76)). Then there is ε0 > 0 and σ1 : N→ N increasing such that for every τ ∈ N, we have
(4.81)

〈∇x2f2(x
σ1(τ)
2 , x

σ1(τ)
1 , ξ

σ1(τ)
2 ) + (Aσ1(τ))Tλσ1(τ) +

p∑
i=1

µ
σ1(τ)
i ∇x2gi(x

σ1(τ)
2 , x

σ1(τ)
1 , ξ

σ1(τ)
2 ), x

σ1(τ)
2 − x̃σ1(τ)

2 〉 ≥ ε0.

By εt-optimality of xt2 we obtain

(4.82) f2(xt2∗, x
t
1, ξ

t
2) ≤ f2(xt2, x

t
1, ξ

t
2) ≤ f2(xt2∗, x

t
1, ξ

t
2) + εt.

Using Assumptions (i), (iii), (iv), and Proposition 3.1 in [6] we get that the sequence (λτ , µτ )τ is almost surely
bounded. Let D be a compact set to which this sequence belongs. By compacity, we can find σ2 : N → N
increasing such that setting σ = σ1 ◦ σ2 the sequence (x

σ(τ)
2 , x

σ(τ)
1 , λσ(τ), µσ(τ), ξ

σ(τ)
2 ) converges to some

(x̄2, x1∗, λ∗, µ∗, ξ2∗) ∈ X2 ×X1 × D × Ξ. We will denote by A∗, B∗, b∗ the values of A,B, and b in ξ2∗. By
continuity arguments there is τ0 ∈ N such that for every τ ≥ τ0:

(4.83)

∣∣∣〈∇x2
f2(x

σ(τ)
2 , x

σ(τ)
1 , ξ

σ(τ)
2 ) + (Aσ(τ))Tλσ(τ) +

∑p
i=1 µ

σ(τ)
i ∇x2

gi(x
σ(τ)
2 , x

σ(τ)
1 , ξ

σ(τ)
2 ), x

σ(τ)
2 − x̃σ(τ)

2 〉

− 〈∇x2
f2(x̄2, x1∗, ξ2∗) +AT∗ λ∗ +

∑p
i=1 µ∗(i)∇x2

gi(x̄2, x1∗, ξ2∗), x̄2 − x̃σ(τ)
2 〉

∣∣∣ ≤ ε0/2.

We deduce from (4.81) and (4.83) that for all τ ≥ τ0

(4.84)

〈
∇x2

f2(x̄2, x1∗, ξ2∗) +AT∗ λ∗ +

p∑
i=1

µ∗(i)∇x2
gi(x̄2, x1∗, ξ2∗), x̄2 − x̃σ(τ)

2

〉
≥ ε0/2 > 0.

Assumptions (i)-(iv) imply that primal problem (4.70) and dual problem (4.71) have the same optimal value
and for every x2 ∈ X2 and τ ≥ τ0 we have:

f2(x
σ(τ)
2 , x

σ(τ)
1 , ξ

σ(τ)
2 ) + 〈Aσ(τ)x

σ(τ)
2 +Bσ(τ)x

σ(τ)
1 − bσ(τ), λσ(τ)〉+ 〈µσ(τ), g(x

σ(τ)
2 , x

σ(τ)
1 , ξ

σ(τ)
2 )〉

≤ f2(x
σ(τ)
2∗ , x

σ(τ)
1 , ξ

σ(τ)
2 ) + εσ(τ) by definition of x

σ(τ)
2∗ , x

σ(τ)
2 and since µσ(τ) ≥ 0, x

σ(τ)
2 ∈ X2(x

σ(τ)
1 , ξ

σ(τ)
2 ),

≤ θ
x
σ(τ)
1 ,ξ

σ(τ)
2

(λσ(τ), µσ(τ)) + 2εσ(τ), [(λ
σ(τ), µσ(τ)) is an εσ(τ)-optimal dual solution and there is no duality gap],

≤ f2(x2, x
σ(τ)
1 , ξ

σ(τ)
2 ) + 〈Aσ(τ)x2 +Bσ(τ)x

σ(τ)
1 − bσ(τ), λσ(τ)〉+ 〈µσ(τ), g(x2, x

σ(τ)
1 , ξ

σ(τ)
2 )〉+ 2εσ(τ)

5The proof is similar to the proof of Proposition 4.6 in [6].
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where in the last relation we have used the definition of θ
x
σ(τ)
1 ,ξ

σ(τ)
2

. Taking the limit in the above relation

as τ → +∞, we get for every x2 ∈ X2:

f2(x̄2, x1∗, ξ2∗) + 〈A∗x̄2 +B∗x1∗ − b∗, λ∗〉+ 〈µ∗, g(x̄2, x1∗, ξ2∗)〉
≤ f2(x2, x1∗, ξ2∗) + 〈A∗x2 +B∗x1∗ − b∗, λ∗〉+ 〈µ∗, g(x2, x1∗, ξ2∗)〉.

Recalling that x̄2 ∈ X2 this shows that x̄2 is an optimal solution of

(4.85)

{
min f2(x2, x1∗, ξ2∗) + 〈A∗x2 +B∗x1∗ − b∗, λ∗〉+ 〈µ∗, g(x2, x1∗, ξ2∗)〉
x2 ∈ X2.

The first order optimality conditions for x̄2 can be written

(4.86)

〈
∇x2f2(x̄2, x1∗, ξ2∗) +AT∗ λ∗ +

p∑
i=1

µ∗(i)∇x2gi(x̄2, x1∗, ξ2∗), x2 − x̄2

〉
≥ 0

for all x2 ∈ X2. Specializing the above relation for x2 = x̃
σ(τ0)
2 ∈ X2, we get〈

∇x2
f2(x̄2, x1∗, ξ2∗) +AT∗ λ∗ +

p∑
i=1

µ∗(i)∇x2
gi(x̄2, x1∗, ξ2∗), x̃

σ(τ0)
2 − x̄2

〉
≥ 0,

but the left-hand side of the above inequality is ≤ −ε0/2 < 0 due to (4.84) which yields the desired con-
tradiction. Therefore we have shown (4.79) and since the sequence ηξτ2 (ετ , x

τ
1) is almost surely bounded,

this implies limτ→+∞ E[ηξτ2 (ετ , x
τ
1)] = 0 and consequently limN→+∞

1
ΓN

∑N
τ=1 γτE[ηξτ2 (ετ , x

τ
1)] = 0. Us-

ing the boundedness of the sequence (λt, µt) and Assumption (ii) we get that ‖G(xτ1 , ξ
τ
2 , ετ )‖2∗ is almost

surely bounded. Combining these observations with relation (4.78) and using the definition of γt we have

limN→+∞ E[f(x1(N))] = f1∗. Finally, recalling relation (4.78), to show limN→+∞ E[f̂N ] = f1∗ all we have
to show is

(4.87) lim
N→+∞

1

ΓN

N∑
τ=1

γτE[Q(xτ1)− f2(xτ2 , x
τ
1 , ξ

τ
2 )] = 0.

The above relation immediately follows from

(4.88) E[Q(xτ1)] = Eξ1:τ−1
2

[Q(xτ1)] = Eξ1:τ−1
2

[Eξτ2 [Q(xτ1 , ξ
τ
2 )|ξ1:τ−1

2 ]] ≤ Eξ1:τ2
[f2(xτ2 , x

τ
1 , ξ

τ
2 )] ≤ E[Q(xτ1)] + ετ

which holds since Q(xτ1 , ξ
τ
2 ) ≤ f2(xτ2 , x

τ
1 , ξ

τ
2 ) ≤ Q(xτ1 , ξ

τ
2 ) + ετ by definition of xτ2 . �

Remark 4.3. Output f̂N of ISMD is a computable approximation of the optimal value f1∗ of optimization
problem (4.62).

Theorem 4.4. [Convergence rate for ISMD] Consider problem (4.62) and assume that Assumptions (i)-(iv)
of Theorem 4.2 are satisfied. We alse make the following assumptions:

(a) ∃α > 0 such that for every ξ2 ∈ Ξ, for every x1 ∈ X1, for every y1, y2 ∈ X2 we have

f2(y2, x1, ξ2) ≥ f2(y1, x1, ξ2) + (y2 − y1)T∇x2
f2(y1, x1, ξ2) +

α

2
‖y2 − y1‖22;

(b) there is 0 < M1 < +∞ such that for every ξ2 ∈ Ξ, for every x1 ∈ X1, for every y1, y2 ∈ X2 we have

‖∇x1f2(y2, x1, ξ2)−∇x1f2(y1, x1, ξ2)‖2 ≤M1‖y2 − y1‖2;

(c) there is 0 < M2 < +∞ such that for every ξ2 ∈ Ξ, for every x1 ∈ X1, for every i = 1, . . . , p, for
every y1, y2 ∈ X2, we have

‖∇x1
gi(y2, x1, ξ2)−∇x1

gi(y1, x1, ξ2)‖2 ≤M2‖y2 − y1‖2;

(d) ∃αD > 0 such that for every x1 ∈ X1, for every ξ2 ∈ Ξ, dual function θx1,ξ2 given by (4.67) is
strongly concave on Dx1,ξ2 with constant of strong concavity αD where Dx1,ξ2 is a set containing the
set of solutions of second stage dual problem (4.68) such that (λt, µt) ∈ Dxt1,ξ

t
2
.

(e) There are functions G0,M0 such that for every x1 ∈ X1, for every x2 ∈ X2 we have

max(‖BT ‖,√pmaxi=1,...,p ‖∇x1
gi(x2, x1, ξ2)‖2) ≤ G0(ξ2) and ‖∇x1

f2(x2, x1, ξ2)‖2 ≤M0(ξ2)

with E[G0(ξ2)] and E[M0(ξ2)] finite;
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(f) There are functions f2, f2
such that for all x1 ∈ X1, x2 ∈ X2 we have

f
2
(ξ2) ≤ f2(x2, x1, ξ2) ≤ f2(ξ2)

with E[f2(ξ2)] and E[f
2
(ξ2)] finite.

(g) There exists 0 < L(f2) < +∞ such that for every ξ2 ∈ Ξ, for every x1 ∈ X1, function f2(·, x1, ξ2) is
Lipschitz continuous with Lipschitz constant L(f2).

Let A be a compact set such that matrix A in ξ2 almost surely belongs to A and let M3 < +∞ such that
‖sf1(x1)‖2 ≤ M3 for all x1 ∈ X1. Let VX2

be the vector space VX2
= {x − y : x, y ∈ Aff(X2)}. Define the

functions ρ and ρ∗ by

ρ(A, z) =

{
max t‖z‖
t ≥ 0, tz ∈ A(B(0, r) ∩ VX2

),
ρ∗(A) =

{
min ρ(A, z)
‖z‖ = 1, z ∈ AVX2

.

Assume that γt = θ1√
N

and εt = θ2
t2 for some θ1, θ2 > 0. Let

U1 = (E[f2(ξ2)]− E[f
2
(ξ2)])/κ,

U2(r, ξ2) =
f2(ξ2)−f

2
(ξ2)+θ2+L(f2)r

min(ρ∗,κ/2) with ρ∗ = min
A∈A

ρ∗(A),

U =
(

(M1 +M2U1)
√

2
α + 2E[G0(ξ2)]√

αD

)
Diam(X2),

M∗(r) =
√
E(M3 +M0(ξ2) +

√
2U2(r, ξ2)G0(ξ2))2.

Let f̂N computed by ISMD. Then there is r0 > 0 such that

(4.89) f1∗ ≤ E[f̂N ] ≤ f1∗ +
2θ2 + U

√
θ2

N
+
U
√
θ2 ln(N)

N
+

D2
ω,X1

θ1
+

θ1M
2
∗ (r0)

µ(ω)

2
√
N

where f1∗ is the optimal value of (4.62).

Proof. Let x∗1 be an optimal solution of (4.62). Under our assumptions, we can apply Proposition 3.8 to
value function Q(·, ξt2) and x̄ = xt1, which gives

(4.90) Q(x∗1, ξ
t
2) ≥ f2(xt2, x

t
1, ξ

t
2) + 〈H(xt1, ξ

t
2, εt), x

∗
1 − xt1〉 − ηξt2(εt, x

t
1),

where

ηξt2(εt, x
t
1) = εt +

(
M1 + M2

κ (f2(x̄t2, x
t
1, ξ

t
2)− f

2
(ξt2))

)√
2εt
α Diam(X2),

+2 max
(
‖(Bt)T ‖,√p maxi=1,...,p ‖∇x1gi(x

t
2, x

t
1, ξ

t
2)‖2

)
Diam(X2)

√
εt
αD
,

for some x̄t2 ∈ X2 depending on ξ1:t
2 . Taking the conditional expectation Eξt2 [·|ξ1:t−1

2 ] in (4.90) and using

(e)-(f), we get

(4.91) Q(x∗1) ≥ Eξt2 [f2(xt2, x
t
1, ξ

t
2)|ξ1:t−1

2 ] + Eξt2 [〈H(xt1, ξ
t
2, εt), x

∗
1 − xt1〉|ξ1:t−1

2 ]− (εt + U
√
εt).

Summing (4.91) with the relation

f1(x∗1) ≥ f1(xt1) + 〈sf1(xt1), x∗1 − xt1〉

and taking the expectation operator Eξ1:t−1
2

[·] on each side of the resulting inequality gives

(4.92) f(x∗1) ≥ E[f2(xt2, x
t
1, ξ

t
2) + f1(xt1)] + E[〈G(xt1, ξ

t
2, εt), x

∗
1 − xt1〉]− (εt + U

√
εt).

From (4.92), we deduce

(4.93) E[f̂N − f1∗] ≤
1

ΓN

N∑
t=1

γt(εt + U
√
εt) +

1

ΓN

N∑
t=1

γtE[〈G(xt1, ξ
t
2, εt), x

t
1 − x∗1〉].
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Using Proposition 3.1 in [6] and our assumptions, we can find r0 > 0 such that M2
∗ (r0) is an upper bound

for E[‖G(xt1, ξ
t
2, εt)‖2∗]. Using this observation, (4.93), and (4.90) (which still holds), we get

(4.94)
E[f̂N − f1∗] ≤ 1

N

(
θ2

(
1 +

∫ N

1

dx

x2

)
+ U

√
θ2

(
1 +

∫ N

1

dx

x

))
+

1

2θ1

√
N

(
D2
ω,X1

+
M2
∗ (r0)θ2

1

µ(ω)

)
≤ 2θ2+U

√
θ2

N + U
√
θ2 ln(N)
N +

D2
ω,X1
θ1

+
θ1M

2
∗(r0)

µ(ω)

2
√
N

.

Finally

(4.95)

0
(4.78)

≤ 1

ΓN

N∑
τ=1

γτE[f(xτ1)]− f1∗

=
1

ΓN

N∑
τ=1

γτE[f1(xτ1) +Q(xτ1)]− f1∗

(4.88)

≤ 1

ΓN

N∑
τ=1

γτE[f1(xτ1) + f2(xτ2 , x
τ
1 , ξ

τ
2 )]− f1∗ = E[f̂N − f1∗].

Combining (4.94) and (4.95) we obtain (4.89). �

5. Numerical experiments

We compare the performances of SMD, ISMD, SAA (Sample Average Approximation, see [18]), and the L-
shaped method (see [2]) on two simple two-stage quadratic stochastic programs which satisfy the assumptions
of Theorems 4.2 and 4.4.

The first two-stage program is

(5.96)

{
min cTx1 + E[Q(x1, ξ2)]
x1 ∈ {x1 ∈ Rn : x1 ≥ 0,

∑n
i=1 x1(i) = 1}

where the second stage recourse function is given by

(5.97) Q(x1, ξ2) =


min
x2∈Rn

1

2

(
x1

x2

)T (
ξ2ξ

T
2 + λI2n

)( x1

x2

)
+ ξT2

(
x1

x2

)
x2 ≥ 0,

n∑
i=1

x2(i) = 1.

The second two-stage program is

(5.98)

{
min cTx1 + E[Q(x1, ξ2)]
x1 ∈ {x1 ∈ Rn : ‖x1 − x0‖2 ≤ 1}

where cost-to-go function Q(x1, ξ2) has nonlinear objective and constraint coupling functions and is given
by

(5.99) Q(x1, ξ2) =

 min
x2∈Rn

1

2

(
x1

x2

)T (
ξ2ξ

T
2 + λI2n

)( x1

x2

)
+ ξT2

(
x1

x2

)
1
2‖x2 − y0‖22 + 1

2‖x1 − x0‖22 − R2

2 ≤ 0.

For both problems, ξ2 is a Gaussian random vector in R2n and λ > 0. We consider several instances of these
problem with n = 5, 10, 200, 400, and n = 600. For each instance, the components of ξ2 are independent
with means and standard deviations randomly generated in respectively intervals [5, 25] and [5, 15]. We fix
λ = 2 while the components of c are generated randomly in interval [1, 3]. For problem (5.98)-(5.99) we also
take R = 5 and x0(i) = y0(i) = 10, i = 1, . . . , n.

In SMD and ISMD, we take ω(x) =
∑n
i=1 xi ln(xi) for problem (5.96)-(5.97). For this distance generating

function, x+ =Proxx(ζ) can be computed analytically for x ∈ Rn with x > 0 (see [13, 5] for details): defining
z ∈ Rn by z(i) = ln(x(i)) we have x+(i) = exp(z+(i)) where

z+ = w − ln

(
n∑
i=1

ew(i)

)
1 with w = z − ζ −max

i
[z(i)− ζ(i)],
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n N Problem L-shaped SAA SMD

5 20 000 (5.96) 57.3 3 698.7 18.5
5 20 000 (5.98) 53.1 3 943.8 22.7
10 20 000 (5.96) 278.1 3.32×105 28.2
10 20 000 (5.98) 70.5 4 126.5 33.4

Table 2. CPU time in seconds required to solve instances of problems (5.96)-(5.97) and
(5.98)-(5.99) (for n = 5, 10 and N = 20 000) obtained with the L-shaped method, SAA, and
SMD.

and with 1 a vector in Rn of ones.
For problem (5.98)-(5.99), SMD and ISMD are run taking distance generating function ω(x) = 1

2‖x‖
2
2 (in

this case, SMD is just the Robust Stochastic Approximation). For this choice of ω, if x+ = Proxx(ζ) we
have

x+ =

{
x− ζ if ‖x− ζ − x0‖2 ≤ 1,

x0 + x−ζ−x0

‖x−ζ−x0‖2 otherwise.

In SMD and ISMD, the interior point solver of the Mosek Optimization Toolbox [1] is used at each
iteration to solve the quadratic second stage problem (given first stage decision xt1 and realization ξt2 of ξ2
at iteration t) and constant steps are used: if there are N iterations, the step γt for iteration t is γt = 1√

N
.

For ISMD, we limit the number of iterations of Mosek solver used to solve subproblems.6 More precisely, we
consider four strategies for the limitation of these numbers of iterations given in Table 5 in the Appendix,
which define four variants of ISMD denoted by ISMD 1, ISMD 2, ISMD 3, and ISMD 4. The variants that
most limit the number of iterations are ISMD 1 and ISMD 2. All methods were implemented in Matlab and
run on an Intel Core i7, 1.8GHz, processor with 12,0 Go of RAM.

To check the implementations and compare the accuracy and CPU time of all methods, we first consider
problems (5.96)-(5.97) and (5.98)-(5.99) with n = 5, 10, and a large sample of size N = 20 000 of ξ2.7 In
these experiments, the L-shaped method terminates when the relative error is at most 5%. The CPU time
needed to solve these instances with the L-shaped method, SAA, and SMD are given in Table 2. For these
instances, we also report in Table 3 the approximate optimal values given by all methods knowing that for the
L-shaped method we report the value of the last upper bound computed. For SMD, the approximate optimal

value after N iterations is given by f̂N . On the four experiments, all methods give very close approximations
of the optimal value, which is a good indication that the methods were well implemented. SMD is by far
the quickest and SAA by far the slowest. For the instance of Problem (5.96)-(5.97) with n = 10, we report
in the left plot of Figure 1 the evolution of the approximate optimal value along the iterations of SMD.8

We also report on the right plot of this figure the evolution of the upper and lower bounds computed along
the iterations of the L-shaped method for the instance of Problem (5.96)-(5.97) with n = 10. For problem
(5.98)-(5.99), the evolution of the approximate optimal value along the iterations of SMD is represented in
Figure 2. Observe that with SMD the approximate optimal value is not the value of the objective function at
a feasible point and therefore some of these approximations can be below the optimal value of the problem.

We now consider larger instances taking n = 200, 400, and 600. For these simulations we do not use
SAA and L-shaped method anymore which were not as efficient as SMD on previous simulations and require
prohibitive computational time for n = 200, 400, 600, and we compare the performance of SMD and the four
variants ISMD 1, ISMD 2, ISMD 3, and ISMD 4 of ISMD defined above.

6According to current Mosek documentation, it is not possible to use absolute errors. Therefore, early termination of the
solver can either be obtained limiting the number of iterations or defining relative errors.

7The deterministic equivalents of these instances are already large size quadratic programs. For instance, for n = 10, the

deterministic equivalent of Problem (5.98)-(5.99) is a quadratically constrained quadratic program with 200 010 variables and
20 0001 quadratic constraints.

8Naturally, after running t − 1 of the N − 1 total iterations, the approximate optimal value computed by SMD is

1∑t
τ=1 γτ (N)

t∑
τ=1

γτ (N)
(
f1(xN,τ1 ) + f2(xN,τ2 , xN,τ1 , ξN,τ2 )

)
obtained on the basis of sample ξN,12 , . . . , ξN,t2 of ξ2.
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n N Problem L-shaped SAA SMD

5 20 000 (5.96) 210.9 210.7 210.6
5 20 000 (5.98) 1.122×106 1.121×106 1.120×106

10 20 000 (5.96) 78.8 78.9 78.6
10 20 000 (5.98) 3.020×106 3.016×106 3.015×106

Table 3. Approximate optimal value of instances of problems (5.96)-(5.97) and (5.98)-
(5.99) (for n = 5, 10 and N = 20 000) obtained with the L-shaped method, SAA, and
SMD.
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Figure 1. Left plot: optimal value of our instance of Problem (5.96)-(5.97) with n = 10
estimated using SAA as well as evolution of the approximate optimal value computed along
the iterations of SMD. Right plot: for the same instance, evolution of the lower and upper
bounds computed along the iterations of the L-shaped method.
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Figure 2. Left plot: optimal value of our instance of Problem (5.98)-(5.99) with n = 5
estimated using SAA as well as evolution of the approximate optimal value computed along
the iterations of SMD. Right plot: same outputs for Problem (5.98)-(5.99) and n = 10.
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Instance SMD ISMD 1 ISMD 2 ISMD 3 ISMD 4
n = 200, Problem (5.96) 1.2 3.2 1.7 1.2 1.2
n = 400, Problem (5.96) 0.86 3.14 1.27 0.86 0.86
n = 600, Problem (5.96) 0.81 6.59 3,33 0.81 0.81
n = 200, Problem (5.98) 1.7523×109 1.3335×109 1.5762×109 1.7472×109 1.7508×109

n = 400, Problem (5.98) 6.9978×109 6.2402×109 6.7624×109 6.9943×109 6.9972×109

n = 600, Problem (5.98) 1.5524×1010 1.1339×1010 1.3838×1010 1.5481×1010 1.5512×1010

Table 4. Approximate optimal values of instances of Problems (5.96) and (5.98) estimated
with SMD, ISMD 1, ISMD 2, ISMD 3, and ISMD 4.

For n = 200 and n = 400, we run all methods 10 times taking samples of ξ2 of size N = 2000 for n = 200,
of size N = 1000 for Problem (5.96)-(5.97) and n = 400, and of size N = 500 for Problem (5.98)-(5.99) and
n = 400. For n = 600, it takes much more time to load and solve subproblems and we only run SMD and
ISMD once taking a sample of size N = 500 for Problem (5.96)-(5.97) and of size N = 300 for Problem
(5.98)-(5.99).9

In Figure 3, we report for our instances of Problem (5.96)-(5.97) the mean (computed over the 10 runs
of the methods for n = 200, 400) approximate optimal values along the iterations of SMD and our variants
of ISMD.10 We also report on this figure the empirical distribution (over the 10 runs of the methods for
n = 200, 400) of the total time required to solve the problem instances with SMD and our variants of ISMD.

As expected, ISMD 1 and ISMD 2 complete the N iterations quicker (since they run Mosek for less
iterations) but start with worse approximations of the optimal values. ISMD 3 and ISMD 4 also complete
the N iterations quicker than SMD but provide approximations of the optimal values very close to SMD
along the iterations of the method and in particular at termination, see also Table 4 which gives the mean
approximate optimal value at the last iteration N for all methods. We should also note that most of
the computational time for these methods is spent in loading the data for Mosek solver through a series
of loops and this step requires the same computational time for all methods. Therefore, the difference in
computational time only comes from the time spent by Mosek to solve subproblems. With a C++ or Fortran
implementation, this time would remain similar but the loops for loading the data would be much quicker
and the total solution time would decrease by a much more important factor. However, even with our Matlab
implementation, the total time decreases significantly.

For our instances of Problem (5.97)-(5.99), we report in Figure 4 the mean (over the 10 runs for n = 200
and n = 400) approximate optimal values computed along the iterations of SMD and our variants of ISMD.
For the instances n = 200 and n = 400, we also report in Figure 5 the empirical distribution of the total
solution time and of the time required for Mosek to solve subproblems for SMD and all variants of ISMD.
The remarks made for Problem (5.96) still apply for these simulations performed on Problem (5.98). We also
refer to Table 4 which provides the mean approximate optimal value at the last iteration N for all methods.
As for Problem (5.96), ISMD 3 and ISMD 4 provide after our N − 1 iterations a good approximation of the
optimal value, very close to the approximation obtained with SMD but require less computational time.

6. Conclusion

We introduced an inexact variant of SMD called ISMD to solve (general) nonlinear two-stage stochastic
programs. We have shown on two examples of two-stage nonlinear problems that ISMD can allow us to
obtain quicker than SMD a good solution and a good approximation of the optimal value.

The method and convergence analysis was based on two studies of convex analysis:

9Due to the increase in computational time when N increases, we do not take the largest sample size N = 2000 for all
instances. However, for all instances and values of N chosen, we observe a stabilization of the approximate optimal value before

stopping the algorithm, which indicates a good solution has been found at termination.
10When SMD (and similarly for ISMD) is run on samples of ξ2 of size N , we have seen how to compute at iteration t− 1 an

estimation
1∑t

τ=1 γτ (N)

t∑
τ=1

γτ (N)
(
f1(xN,τ1 )+f2(xN,τ2 , xN,τ1 , ξN,τ2 )

)
of the optimal value on the basis of sample ξN,12 , . . . , ξN,t2

of ξ2. The mean approximate optimal value after t− 1 iterations is obtained running SMD on 10 independent samples of ξ2 of
size N and computing the mean of these values on these samples.
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Figure 3. Top left plot: approximate optimal values of our instance of Problem (5.96) with
n = 200 along the iterations of SMD and our variants of ISMD. Top right plot: empirical
distribution of the solution time in seconds on this instance and for these methods. Middle
plots: same as the top plot replacing n = 200 by n = 400. Bottom plot: same as the top
left plot replacing n = 200 by n = 600.
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Figure 4. Top left plot: approximate optimal values of our instance of Problem (5.98) with
n = 200 along the iterations of SMD and our variants of ISMD. Top right and bottom plots
provide the same graphs for respectively n = 400 and n = 600.

(a) the computation of inexact cuts for value functions of a large class of convex optimization problems
having nonlinear objective and constraints which couple the argument of the value function and the
decision variable;

(b) the study of the strong concavity of the dual function of an optimization problem (used to derive
one of our formulas for inexact cuts).

It is worth mentioning that the formulas we derived for inexact cuts could also be used to propose inexact
level methods [12] to solve nonlinear two-stage stochastic programs (4.62)-(4.63), when primal and dual
second stage problems are solved approximately (inexactly).

It would also be interesting to test ISMD and the aforementioned inexact level methods on several relevant
instances of nonlinear two-stage stochastic programs.
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plot: empirical distribution of the time required for Mosek to solve all subproblems for that
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[12] C. Lemaréchal, A. Nemirovski, and Y. Nesterov. New variants of bundle methods. Mathematical Programming, 69:111–148,

1995.

[13] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming.
SIAM J. Optim., 19:1574–1609, 2009.

[14] M.V.F. Pereira and L.M.V.G Pinto. Multi-stage stochastic optimization applied to energy planning. Math. Program.,

52:359–375, 1991.
[15] B.T. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J. Contr. and Optim., 30:838–

855, 1992.

[16] R. T. Rockafellar and R. J-B Wets. Variational Analysis. Grundlehren der Mathematischen Wissenschaften, Springer-
Verlag, 1997.
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Figure 6. Dual function θx̄ of problem (3.54) for some x̄ randomly drawn in ball {x ∈
Rn : ‖x − x0‖2 ≤ 1}, S = AAT + λI2n for some random matrix A with random entries in
[−20, 20], and several values of the pair (n, λ). The dual iterates are represented by red
diamonds.
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Figure 7. Plots of η1(εk, x̄) and η2(εk, x̄) as a function of iteration k where εk is the
duality gap at iteration k for problem (3.54) for some x̄ randomly drawn in ball {x ∈ Rn :
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and several values of the pair (n, λ).
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ISMD 1

Iteration number [1, d0.1Ne] [d0.1Ne+ 1, d0.2Ne] [d0.2Ne+ 1, d0.3Ne] [d0.3Ne+ 1, d0.4Ne]
IP solver maximal
number of iterations

d0.1Imaxe d0.2Imaxe d0.3Imaxe d0.4Imaxe

Iteration number [d0.4Ne+ 1, d0.5Ne] [d0.5Ne+ 1, d0.6Ne] [d0.6Ne+ 1, d0.7Ne]
IP solver maximal
number of iterations

d0.5Imaxe d0.6Imaxe d0.7Imaxe

Iteration number [d0.7Ne+ 1, d0.8Ne] [d0.8Ne+ 1, d0.9Ne] [d0.9Ne+ 1, N ]

IP solver maximal
number of iterations

d0.8Imaxe d0.9Imaxe Imax

ISMD 2

Iteration number [1, d0.1Ne] [d0.1Ne+ 1, d0.2Ne] [d0.2Ne+ 1, d0.3Ne]
IP solver maximal
number of iterations

d0.2Imaxe d0.4Imaxe d0.6Imaxe

Iteration number [d0.3Ne+ 1, d0.4Ne] [d0.4Ne+ 1, d0.5Ne] [d0.5Ne+ 1, N ]

IP solver maximal
number of iterations

d0.8Imaxe d0.9Imaxe Imax

ISMD 3

Iteration number [1, d0.02Ne] [d0.02Ne+ 1, d0.04Ne] [d0.04Ne+ 1, d0.06Ne]
IP solver maximal
number of iterations

d0.5Imaxe d0.6Imaxe d0.7Imaxe

Iteration number [d0.06Ne+ 1, d0.08Ne] [d0.08Ne+ 1, d0.1Ne] [d0.1Ne+ 1, N ]

IP solver maximal
number of iterations

d0.8Imaxe d0.9Imaxe Imax

ISMD 4

Iteration number [1, d0.1Ne] [d0.1Ne+ 1, d0.2Ne] [d0.2Ne+ 1, d0.3Ne] [d0.3Ne+ 1, N ]

IP solver maximal
number of iterations

d0.7Imaxe d0.8Imaxe d0.9Imaxe Imax

Table 5. Maximal number of iterations for Mosek interior point solver used to solve second
stage problems as a function of the iteration number i = 1, . . . , N , of ISMD and the maximal
number of iterations Imax allowed for Mosek solver to solve subproblems with SMD. In this
table, dxe is the smallest integer larger than or equal to x. For problem (5.96)-(5.97) and
n = 200, 400, 600 and problem (5.98)-(5.99) and n = 200, we take Imax = 15, for problem
(5.98)-(5.99) and n = 400 we take Imax = 25, and for problem (5.98)-(5.99) and n = 600 we
take Imax = 28. For instance for ISMD 1, N = 2000, and problem (5.96)-(5.97), for iterations
[d0.4Ne+1, d0.5Ne], i.e., for iterations 0.4×2000+1, . . . , 0.5×2000 = 801, . . . , 1000, Mosek
interior point solver is run to solve second stage problems limiting the maximal number of
iterations to d0.5Imaxe = 8.
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