
STOCHASTIC DYNAMIC CUTTING PLANE FOR MULTISTAGE STOCHASTIC

CONVEX PROGRAMS

Vincent Guigues
School of Applied Mathematics, FGV

Praia de Botafogo, Rio de Janeiro, Brazil
vincent.guigues@fgv.br

Renato D.C. Monteiro
Georgia Institute of Technology
Atlanta, Georgia 30332, USA,

renato.monteiro@isye.gatech

Abstract. We introduce StoDCuP (Stochastic Dynamic Cutting Plane), an extension of the Stochastic

Dual Dynamic Programming (SDDP) algorithm to solve multistage stochastic convex optimization prob-

lems. At each iteration, the algorithm builds lower bounding affine functions not only for the cost-to-go
functions, as SDDP does, but also for some or all nonlinear cost and constraint functions. We show the

almost sure convergence of StoDCuP. We also introduce an inexact variant of StoDCuP where all subprob-

lems are solved approximately (with bounded errors) and show the almost sure convergence of this variant
for vanishing errors.

Keywords: Stochastic programming, Inexact cuts for value functions, SDDP, Inexact SDDP.

AMS subject classifications: 90C15, 90C90.

1. Introduction

Risk-neutral multistage stochastic programs (MSPs) aim at minimizing the expected value of the total cost
over a given optimization period of T stages while satisfying almost surely for every stage some constraints
depending on an underlying stochastic process. These optimization problems are useful for many real-life
applications but are challenging to solve, see for instance [22] and references therein for a thorough discussion
on MSPs. Popular solution methods for MSPs are based on decomposition techniques such as Approximate
Dynamic Programming [16], Lagrangian relaxation, or Stochastic Dual Dynamic Programming (SDDP) [12].
Recently, several enhancements of SDDP have been proposed, see for instance [21], [8], [13] for risk-averse
variants, [15], [2], [3] for convergence analysis, and [11], [5] to speed up the convergence of the method. In
particular, in [5], Inexact SDDP was proposed, which incorporates inexact cuts in SDDP (for both linear
and nonlinear programs). The idea of Inexact SDDP is to allow us to solve approximately some or all primal
and dual subproblems in the forward and backward passes of SDDP. This extension and the study of Inexact
SDDP was motivated by the following reasons:

(i) solving to a very high accuracy nonlinear programs can take a significant amount of time or may even
be impossible whereas linear programs (of similar sizes) can be solved exactly or to high accuracy
quicker. Therefore one has to study how to extend the SDDP algorithm to still derive valid cuts and
a converging Inexact SDDP or an Inexact SDDP with controlled accuracy when only approximate
primal and dual solutions are computed for nonlinear MSPs.

(ii) As explained in [5], numerical experiments (see for instance [4, 7, 10]) show that for both linear
and nonlinear MSPs, for the first iterations and for the first stages, the cuts computed can be quite
distant from the corresponding recourse function in the neighborhood of the trial point at which
the cut was computed. Therefore, it makes sense, for both nonlinear and linear MSPs, to try and
solve more quickly and less accurately (inexactly) all subproblems of the forward and backward
passes corresponding to the first iterations and the first stages and to increase the precision of
the computed solutions as the algorithm progresses. Using this strategy, it was shown in [5] that
for several instances of a portfolio problem, Inexact SDDP can converge (i.e., satisfy the stopping
criterion) quicker than SDDP.

In this paper, we extend [5] in two ways:

1

• a natural way of taking advantage of observation (i) above in the context of SDDP applied to
nonlinear problems, consists in linearizing all nonlinear objective and constraint functions of the
subproblems solved along the iterations of the method at the optimal solutions of these subproblems.
However, to the best of our knowledge, this variant of SDDP, that we term as StoDCuP (Stochastic
Dynamic Cutting Plane) has not been proposed and studied so far in the literature. In this context,
the goal of this paper is to propose and study StoDCuP.

• As far as (ii) is concerned, it is interesting to notice that it is easy to incorporate inexact cuts
in StoDCuP (i.e., to derive an inexact variant of StoDCuP), control the quality of these cuts (see
Lemma 4.1), and show the convergence of this method (see Theorem 4.3 below). This comes from
the fact that we can easily compute a cut for the value function of a linear program (and in StoDCuP
all subproblems solved are linear programs) from any feasible primal-dual solution since the corre-
sponding dual objective is linear, see Proposition 2.1 in [5]. On the contrary, deriving valid (inexact)
cuts from approximate primal-dual solutions of the original problems solved in SDDP applied to
nonlinear problems and showing the convergence of the corresponding variant of Inexact SDDP is
technical and the computation of inexact cuts may require solving additional subproblems, see [5]
for details.

The outline of the paper is the following. To ease the presentation and analysis of StoDCuP, we start
in Section 2 with its deterministic counterpart, called DCuP (Dynamic Cutting Plane) which solves convex
Dynamic Programming equations linearizing cost-to-go, constraint, and objective functions. Starting with
the deterministic case allows us to focus on the differences between traditional Dual Dynamic Programming
and its convergence analysis with DCuP and its convergence analysis. Two variants, a forward DCuP and a
forward-backward DCuP, together with their convergence analysis, are presented. In Section 3, we introduce
forward StoDCuP and prove the almost sure convergence of the method. Finally, in Section 4, we present
two variants of StoDCuP: forward-backward StoDCuP and Inexact StoDCuP which builds inexact cuts on
the basis of approximate primal-dual solutions of the subproblems solved along the iterations of the method.
We also prove the almost sure convergence of Inexact StoDCuP for vanishing noises.

We will use the following notation:

• For a real-valued convex function f , we denote by `f (·;x0) an arbitrary lower bounding linearization
of f at x0, i.e., `f (·;x0) = f(x0) + sf (x0)>(· − x0) where sf (x0) is an arbitrary subgradient of f at
x0.

• The domain of a point to set operator T : A⇒ B is given by Dom(T)= {a ∈ A : T (a) 6= ∅}.
• For vectors x, y ∈ Rn, 〈x, y〉 = x>y is the usual scalar product between x and y.
• For a ∈ Rn, B̄(a; ε) = {x ∈ Rn : ‖x− a‖2 ≤ ε}.

2. The DCuP (Dynamic Cutting Plane) algorithm

2.1. Problem formulation and assumptions. Given x0 ∈ Rn, consider the optimization problem

(2.1)


inf

x1,...,xT∈Rn

T∑
t=1

ft(xt, xt−1)

gt(xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt, t = 1, . . . , T,
xt ∈ Xt, t = 1, . . . , T,

where At and Bt are matrices of appropriate dimensions, ft : Rn × Rn → (−∞,∞] and gt : Rn × Rn →
(−∞,∞]p. In this problem, for each step t, we have nonlinear and linear coupling constraints, gt(xt, xt−1) ≤ 0
and Atxt + Btxt−1 = bt respectively, and set constraints xt ∈ Xt. Without loss of generality, nonlinear
noncoupling constraints ht(xt) ≤ 0 can be dealt with by incorporating them into the constraint gt(xt, xt−1) ≤
0. For convenience, we use the short notation

(2.2) Xt(xt−1) := {xt ∈ Xt : gt(xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt}

and

(2.3) X0
t (xt−1) = Xt(xt−1) ∩ riXt.

2

With this notation, the dynamic programming equations corresponding to problem (2.1) are

(2.4) Qt(xt−1) =

{
inf

xt∈Rn
Ft(xt, xt−1) := ft(xt, xt−1) +Qt+1(xt)

xt ∈ Xt(xt−1),

for t = 1, . . . , T , and QT+1 ≡ 0. Cost-to-go function Qt+1(xt) represents the optimal total cost for time
steps t + 1, . . . , T , starting from state xt at the beginning of step t + 1. Clearly, it follows from the above
definition that

(2.5) Dom(X0
t) ⊂ Dom(Xt) ∀t = 1, . . . , T.

Setting X0 = {x0}, the following assumptions are made throughout this section.
Assumption (H1):

1) For t = 1, . . . , T :
a) Xt ⊂ Rn is nonempty, convex, and compact;
b) ft is a proper lower-semicontinuous convex function such that Xt×Xt−1 ⊂ int (dom(ft));
c) each of the p components gti, i = 1, . . . , p, of gt is a proper lower-semicontinuous convex function

such that Xt×Xt−1 ⊂ int (dom(gti)).
2) X1(x0) 6= ∅ and Xt−1 ⊂ int

[
Dom(X0

t)
]

for every t = 2, . . . , T .

The following simple lemma states a few consequences of the above assumption.

Lemma 2.1. The following statements hold:

(a) for every t = 1, . . . , T , Qt+1 is a convex function such that

Xt ⊂ int (dom(Qt+1)) ;

(b) for every t = 1, . . . , T , Qt+1 is Lipschitz continuous on Xt;
(c) for every t = 1, . . . , T , i = 1, . . . , p, and (xt, xt−1) ∈ Xt×Xt−1,

∂ft(xt, xt−1) 6= ∅, ∂gti(xt, xt−1) 6= ∅;

(d) for every t = 1, . . . , T , i = 1, . . . , p, the sets

∪{∂ft(xt, xt−1) : (xt, xt−1) ∈ Xt×Xt−1} , ∪{∂gti(xt, xt−1) : (xt, xt−1) ∈ Xt×Xt−1}

are bounded.

Proof: (a) The proof is by backward induction on t. The result clearly holds for t = T since QT+1 ≡ 0.
Assume now that Qt+1 is a convex function such that Xt ⊂ int (dom(Qt+1)) for some 2 ≤ t ≤ T . Then,
condition 1) of Assumption (H1) implies that the function (xt, xt−1) 7→ Ft(xt, xt−1)+δXt(xt−1)(xt) is convex.
This conclusion together with the definition of Qt and the discussion following Theorem 5.7 of [17] then imply
that Qt is a convex function. Moreover, conditions 1)b) and 2) of Assumption (H1) and relation (2.5) imply
that there exists ε > 0 such that for every xt−1 ∈ Xt−1 + B̄(0, ε),

dom(ft(·, xt−1)) ⊃ Xt, Xt(xt−1) 6= ∅.

The induction hypothesis, the latter observation, and relations (2.2) and (2.4), then imply that

Xt(xt−1) ∩ dom(Ft(·, xt−1)) = Xt(xt−1) ∩ dom(ft(·, xt−1)) ∩ dom(Qt+1) ⊃ Xt(xt−1) ∩ Xt = Xt(xt−1) 6= ∅

for every xt−1 ∈ Xt−1 + B̄(0, ε). Since by (2.4),

dom(Qt) = {xt−1 ∈ Rn : Xt(xt−1) ∩ dom(Ft(·, xt−1)) 6= ∅},

we then conclude that Xt−1 + B̄(0, ε) ⊂ dom(Qt), and hence that Xt−1 ⊂ int (dom(Qt)). We have thus
proved that (a) holds.

b) This statement follows from statement a) and Theorem 10.4 of [17].
c-d) These two statements follow from conditions 1)a), 1)b) and 1)c) of Assumption (H1) together with

Theorem 23.4 and 24.7 of [17].

3

2.2. Forward DCuP. Before formally describing DCuP algorithm, we give some motivation for it. At
iteration k ≥ 1 and stage t = 1, . . . , T , the algorithm uses the following approximation to function Qt(·)
defined in (2.4):

(2.6) Qk−1
t (xt−1) = min

{
fk−1
t (xt, xt−1) +Qk−1

t+1 (xt) : xt ∈ Xk−1
t (xt−1)

}
where

(2.7) Xk−1
t (xt−1) = {xt ∈ Xt : gk−1

t (xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt}

and fk−1
t , gk−1

t , and Qk−1
t+1 are polyhedral functions minorizing ft, gt and Qt+1, respectively, i.e.,

(2.8) fk−1
t ≤ ft, gk−1

t ≤ gt, Qk−1
t+1 ≤ Qt+1.

For t = T + 1, we actually assume that Qk−1
T+1 ≡ 0, and hence that QkT+1 = QT+1. Moreover, we also assume

that Qk−1
T+1 ≡ 0, and hence Qk−1

T+1 = QT+1.

Observe that for every k ≥ 0, t = 1, · · · , T , and xt−1 ∈ Xt−1, relations (2.7) and (2.8) imply that

(2.9) Xt(xt−1) ⊂ Xk
t (xt−1) ⊂ Xt

and

fkt (·, xt−1) +Qkt+1(·) ≤ ft(·, xt−1) +Qt+1(·),
and hence that

(2.10) Qkt ≤ Qt, ∀ t = 1, 2, . . . , T, ∀ k ≥ 0.

At iteration k, feasible points xk1 , . . . , x
k
T are computed recursively as follows: for t = 1, . . . , T , xkt is set to be

an optimal solution of subproblem (2.6) with xt−1 = xkt−1 with the convention that xk0 = x0. These points
in turn are used to compute new affine functions minorizing ft, gt and Qt+1 which are then added to the
bundle of affine functions describing fk−1

t , gk−1
t , and Qk−1

t+1 to obtain new lower bounding approximations

fkt , g
k
t , and Qkt+1 for ft, gt and Qt+1, respectively.

The precise description of DCuP algorithm is as follows.

DCuP (Dynamic Cutting Plane) with linearizations computed in a forward pass.

Step 0. Initialization. For every t = 1, . . . , T , let affine functions f0
t and g0

t such that f0
t ≤ ft and

g0
t ≤ gt, and a piecewise linear function Q0

t : Xt−1 → R such that Q0
t ≤ Qt be given. Set Q0

T+1 ≡ 0 and k = 0.

Step 1. Forward pass. Set CkT+1 = QkT+1 ≡ 0 and xk0 = x0. For t = 1, 2, . . . , T , do:

a) find an optimal solution xkt of

(2.11) Qk−1
t (xkt−1) =

{
inf

xt∈Rn
fk−1
t (xt, x

k
t−1) +Qk−1

t+1 (xt)

xt ∈ Xk−1
t (xkt−1),

where Xk
t (·) is as in (2.7);

b) compute function values and subgradients of ft and gti, i = 1, . . . , p, at (xkt , x
k
t−1), and let `ft(·; (xkt , x

k
t−1))

and `gti(·; (xkt , x
k
t−1)) denote the corresponding linearizations;

c) set

fkt = max
(
fk−1
t , `ft

(
(·, ·); (xkt , x

k
t−1)

))
,(2.12)

gkti = max
(
gk−1
ti , `gti

(
(·, ·); (xkt , x

k
t−1)

))
, ∀i = 1, . . . , p,(2.13)

and define gkt := (gkt1, . . . , g
k
tp);

d) if t ≥ 2, then compute βkt ∈ ∂Q
k−1
t (xkt−1) and denote the corresponding linearization of Qk−1

t as

Ckt (·) := Qk−1
t (xkt−1) + 〈βkt , · − xkt−1〉;

4

moreover, set

(2.14) Qkt = max{Qk−1
t , Ckt };

Step 2. Set k ← k + 1 and go to Step 1.

We now make a few remarks about DCuP. First, Lemma 2.1(c) guarantees the existence of the subgradi-
ents, and hence the linearizations, of the functions ft and gti, i = 1, . . . , p, at any point (xt, xt−1) ∈ Xt×Xt−1,
and hence that the functions fkt and gkt in Step 1 are well-defined. Second, in view of the definition of xkt
in Step a), we have that xkt ∈ Xk−1

t (xkt−1) ⊂ Xt for every t = 1, . . . , T and k ≥ 0. Third, Lemma 2.2(b)

below and the previous remark guarantee the existence of the subgradient βkt in Step d). Fourth, we dicuss
in Subsection 2.4 ways of computing this subgradient.

In the remaining part of this subsection, we provide the convergence analysis of DCuP. The following
result states some basic properties about the functions involved in DCuP.

Lemma 2.2. The following statements hold:

(a) for every k ≥ 1 and t = 1, . . . , T , we have

fkt ≤ fk+1
t ≤ ft, gkt ≤ gk+1

t ≤ gt,(2.15)

Xt(xt−1) ⊂ Xk+1
t (xt−1) ⊂ Xk

t (xt−1) ⊂ Xt−1 ∀xt−1 ∈ Rn,(2.16)

Qkt+1 ≤ Qk+1
t+1 ≤ Qt+1,(2.17)

Qkt ≤ Q
k+1
t ≤ Qt.(2.18)

(b) For every k ≥ 1 and t = 2, . . . , T , function Qkt is convex and int (dom(Qkt)) ⊃ Xt−1; as a consequence,

∂Qkt (xt−1) 6= ∅ for every xt−1 ∈ Xt−1.

Proof: (a) Relations (2.15) and (2.16) follow immediately from the initialization of DCuP described in step
0, the recursive definitions of fkt and gkt in (2.12) and (2.13), respectively, the definition of Xk

t (·) in (2.7),
and the fact that

`ft((·, ·); (xkt , x
k
t−1)) ≤ ft(·, ·), `gti((·.·); (xkt , x

k
t−1)) ≤ gti(·.·).

Next note that the inequalities in (2.18) follow immediately from the respective ones in (2.15), (2.16) and
(2.17), together with relations (2.4) and (2.11). It then remains to show that the inequalities in (2.17) hold.

Indeed, the inequality Qkt+1 ≤ Qk+1
t+1 follows immediately from (2.14) with t = t + 1. We will now show

that inequalities Qkt ≤ Qt for every t = 2, . . . , T + 1 implies that Qk+1
t ≤ Qt for every t = 2, . . . , T + 1,

and hence that the second inequality in (2.17) follows from a simple inductive argument on k. Indeed, first

observe that the inequality Qkt+1 ≤ Qt+1 implies that Qkt ≤ Qt. Next observe that the construction of Ck+1
t

in Step d) of DCuP implies that Ck+1
t ≤ Qkt , and hence that Ck+1

t ≤ Qt. It then follows from (2.14) and

the inequality Qkt ≤ Qt that Qk+1
t ≤ Qt. We have thus shown that Qkt ≤ Qt for every t = 2, . . . , T + 1

implies that Qk+1
t ≤ Qt for every t = 2, . . . , T . Since the latter inequality for t = T + 1 is straightforward

and Q0
t ≤ Qt for t = 2, . . . , T , (2.17) follows.

(b) The assertion that Qkt is a convex function follows from the fact that Qkt+1 is convex and the same

arguments used in Lemma 2.1 to show that Qt is convex. The assertion that dom(Qkt) ⊃ Xt−1 follows from

the fact that by (2.18) we have Qkt ≤ Qt, and hence that

int
(

dom(Qkt)
)
⊃ int (dom(Qt)) ⊃ Xt−1,

where the last inclusion is due to Lemma 2.1(a).
The following technical result is useful to establish uniform Lipschitz continuity of convex functions.

Lemma 2.3. Assume that φ− and φ+ are proper convex functions such that φ− ≤ φ+. Then, for any
nonempty compact set K ⊂ int (dom(φ+)), there exists a scalar L = L(K) ≥ 0 satisfying the following
property: any convex function φ such that φ− ≤ φ ≤ φ+ is L-Lipschitz continuous on K.

Proof: Let φ be a convex function such that φ− ≤ φ ≤ φ+ and let K ⊂ int (dom(φ+)) be a nonempty
compact set. Since φ− and φ+ are proper, it then follows that φ is proper and dom(φ) ⊃ dom(φ+), and

5

hence that int (dom(φ−)) ⊃ int (dom(φ)) ⊃ int (dom(φ+)) ⊃ K. Hence, in view of Theorem 23.4 of [17], we
conclude that ∂φ(x) 6= ∅ for every x ∈ K. We now claim that there exists L such that ‖β‖ ≤ L for every
β ∈ ∂φ(x) and x ∈ K. This claim in turn can be easily seen to imply that the conclusion of the lemma
holds. To show the claim, let x ∈ K and 0 6= β ∈ ∂φ(x) be given. The inclusion K ⊂ int (dom(φ+)) implies
the existence of ε > 0 such that Kε := K + B̄(0; ε) ⊂ int (dom(φ+)). Let

yε := x+ ε
β

‖β‖
, θ+ := max

y∈Kε

φ+(y), θ− := min
y∈K

φ−(y).

Clearly, yε ∈ Kε due to the definition of Kε and the facts that x ∈ K and ‖yε−x‖ ≤ ε. Moreover, using the
fact that every proper convex function is continuous in the interior of its domain, we then conclude that the
proper convex functions φ+ and φ− are continuous on Kε and K, respectively, since these two sets lie in the
interior of their domains, respectively. Hence, it follows from Weierstrass’ theorem that θ+ and θ− are both
finite due to the compactness of K and Kε, respectively. Using the facts that x ∈ K, yε ∈ Kε, β ∈ ∂φ(x)
and φ+ ≥ φ, the definitions of θ+ and θ−, and the definition of subgradient, it then follows that

θ+ ≥ φ+(yε) ≥ φ(yε) ≥ φ(x) + 〈β, yε − x〉 = φ(x) + ε‖β‖ ≥ θ− + ε‖β‖

and hence that the claim holds with L = (θ+ − θ−)/ε.

Lemma 2.4. The following statements hold:

(a) For each t = 2, . . . , T , there exist Lt ≥ 0 such that the functions Qkt and Qkt are Lt-Lipschitz
continuous on Xt−1 for every k ≥ 1;

(b) For each t = 1, . . . , T , there exist L̂t ≥ 0 such that the functions fkt and gkti are L̂t-Lipschitz contin-
uous functions on Xt ×Xt−1 for every k ≥ 1 and i = 1, . . . , p.

Proof: Let t ∈ {2, . . . , T} be given. The existence of Lt satisfying (a) follows from Lemmas 2.1 and 2.2, and
applying Lemma 2.3 twice, the first time with K = Xt−1, φ+ = Qt and φ− = Q0

t , and the second time with

K = Xt−1, φ+ = Qt and φ− = Q0
t . Moreover, the existence of L̂t satisfying (b) follows from Lemma 2.2,

and applying Lemma 2.3 twice, the first time with K = Xt × Xt−1, φ+ = ft and φ− = f0
t , and the second

time with K = Xt ×Xt−1, φ+ = gti and φ− = g0
ti for i = 1, . . . , p.

We now state a result whose proof is given in Lemma 5.2 of [2]. Even though the latter result assumes
convexity of the functions involved in its statement, its proof does not make use of this assumption. For this
reason, we state the result here in a slightly more general way than it is stated in Lemma 5.2 of [2].

Lemma 2.5. Lemma 5.2 in [2]. Assume that Y ⊂ Rn is a compact set, f : Rn → (−∞,∞] is a function
and {fk : Rn → (∞,∞]}∞k=1 is a sequence of functions such that, for some integer k0 > 0 and scalar L > 0,
we have:

(a) fk−k0(y) ≤ fk(y) ≤ f(y) <∞ for every k ≥ k0 + 1 and y ∈ Y ;
(b) fk is L-Lipschitz continuous on Y for every k ≥ 1.

Then, for any infinite sequence {yk}∞k=1 ⊂ Y , we have

lim
k→+∞

[f(yk)− fk(yk)] = 0⇐⇒ lim
k→+∞

[f(yk)− fk−k0(yk)] = 0.

We are now ready to provide the main result of this subsection, i.e., the convergence analysis of DCuP.

Theorem 2.6. Let Assumption (H1) hold. Define

H(t)



(i) lim
k→+∞

gti(x
k
t , x

k
t−1) ≤ 0, i = 1, . . . , p,

(ii) lim
k→+∞

Qt(xkt−1)−Qk−1

t
(xkt−1) = lim

k→+∞
Qt(xkt−1)−Qk

t
(xkt−1) = 0,

(iii) lim
k→+∞

Qt(xkt−1)−
T∑
τ=t

fτ (xkτ , x
k
τ−1) = 0,

(iv) lim
k→+∞

Qt(xkt−1)−Qkt (xkt−1) = 0.

Then H(t)-(i) holds for t = 1, . . . , T , H(t)-(ii),(iii) hold for t = 1, . . . , T + 1, and H(t)-(iv) holds for

t = 2, . . . , T + 1. In particular, the limit of the sequence of upper bounds (
∑T
t=1 ft(x

k
t , x

k
t−1))k≥1 and of

lower bounds Qk−1
1 (x0) is the optimal value Q1(x0) of (2.1) and any accumulation point of the sequence

(xk1 , . . . , x
k
T) is an optimal solution to (2.1).

6

Proof: We first prove H(t)-(i) for t = 1, . . . , T . Let t ∈ {1, . . . , T} be given and define the sequence {ykt } as
ykt = (xkt , x

k
t−1) for every k ≥ 1. In view of Lemma 2.2, we have gti(y

k
t) ≥ gkti(y

k
t) ≥ `gti(y

k
t ; ykt) = gti(y

k
t),

and hence

(2.19) gkt (ykt) = gt(y
k
t), ∀ k ≥ 1.

Due to Lemma 2.4-(b), functions gkti are convex L̂t-Lipschitz continuous on Xt×Xt−1. Therefore, recalling
(2.19), we can apply Lemma 2.5 to f = gti, f

k = gkti, y
k = ykt , Y = Xt×Xt−1 for i = 1, . . . , p, to obtain

(2.20) limk→+∞ gt(x
k
t , x

k
t−1)− gk−1

t (xkt , x
k
t−1) = 0.

The latter conclusion together with the fact that xkt ∈ Xk−1
t (xkt−1), and hence gk−1

t (xkt , x
k
t−1) ≤ 0, for every

k ≥ 1, then implies that H(t)-(i) holds.
Let us now show H(1)-(ii), (iii) and H(t)-(ii)-(iii), (iv) for t = 2, . . . , T + 1 by backward induction

on t. H(T + 1)-(ii), (iii), (iv) trivially holds. Now, fix t ∈ {1, . . . , T} and assume that H(t + 1)-(ii),
(iii), (iv) holds. We will show that H(t)-(ii), (iii) holds and that H(t)-(iv) holds if t ≥ 2. Indeed, since
ft ≥ fkt ≥ `ft(·; ykt) and ft(y

k
t) = `ft(y

k
t ; ykt), we conclude that fkt (ykt) = ft(y

k
t) for every k ≥ 1, and

hence that limk→+∞ ft(y
k
t)− fkt (ykt) = 0. Recalling by Lemma 2.4-(b) that fkt is L̂t-Lipschitz continuous on

Xt×Xt−1 and using Lemma 2.5 with f = ft, f
k = fkt , (yk) = (ykt), and Y = Xt×Xt−1, we conclude that

(2.21) lim
k→+∞

ft(x
k
t , x

k
t−1)− fk−1

t (xkt , x
k
t−1) = 0.

Moreover, by the induction hypothesis H(t+ 1)-(iv), we have limk→+∞Qkt+1(xkt)−Qt+1(xkt) = 0. Recalling

by Lemma 2.4-(a) that functions Qkt are Lt-Lipschitz continuous on Xt−1, we can use Lemma 2.5 with k0 = 1,
f = Qt+1, f

k = Qkt+1, y
k = xkt and Y = Xt, to obtain

(2.22) lim
k→+∞

Qk−1
t+1 (xkt)−Qt+1(xkt) = 0.

Now, using Lemma 2.2, we easily see that the objective function fk−1
t (·, xkt−1) +Qk−1

t+1 (·) and feasible region

Xk−1
t (xkt−1) of (2.11) satisfies fk−1

t (·, xkt−1) +Qk−1
t+1 (·) ≤ Ft(·, xkt−1) and Xk−1

t (xkt−1) ⊇ Xt(x
k
t−1). Since xkt is

an optimal solution of (2.11) and Qt(xkt−1) is the optimal value of min{Ft(xt, xkt−1) : xt ∈ Xt(x
k
t−1)} due to

(2.4), we then conclude that fk−1
t (xkt , x

k
t−1) +Qk−1

t+1 (xkt) ≤ Qt(xkt−1). Hence, we conclude that

0 ≥ lim
k→+∞

fk−1
t (xkt , x

k
t−1) +Qk−1

t+1 (xkt)−Qt(xkt−1) = lim
k→+∞

ft(x
k
t , x

k
t−1) +Qt+1(xkt)−Qt(xkt−1)

where the equality is due to (2.21) and (2.22). We now claim that

(2.23) lim
k→+∞

ft(x
k
t , x

k
t−1) +Qt+1(xkt)−Qt(xkt−1) = 0.

Indeed, assume by contradiction that the above claim does not hold. Then, it follows from the last conclusion
before the claim that

(2.24) limk→+∞ ft(x
k
t , x

k
t−1) +Qt+1(xkt)−Qt(xkt−1) < 0.

Since {(xkt , xkt−1)} is a sequence lying in the compact set Xt×Xt−1, it has a subsequence {(xkt , xkt−1)}k∈K
converging to some (x∗t , x

∗
t−1) ∈ Xt×Xt−1. Hence, in view of H(t)-(i), (2.24), and the fact that ft and gt

are lower semi-continuous on Xt×Xt−1 and Qt (resp. Qt+1) is lower semi-continuous on Xt−1 (resp. Xt), we
conclude that

gt(x
∗
t , x
∗
t−1) ≤ 0, ft(x

∗
t , x
∗
t−1) +Qt+1(x∗t)−Qt(x∗t−1) < 0

and hence that x∗t ∈ Xt(x
∗
t−1) (recall that Xt is closed) and Ft(x

∗
t , x
∗
t−1) < Qt(x∗t−1) due to the definition

of Xt and Ft in (2.2) and (2.4), respectively. Since this contradicts the definition of Qt in (2.4), the above
claim follows. Combining

0 ≤ Qt(xkt−1)−Qkt (xkt−1) ≤ Qt(xkt−1)−Qk−1
t (xkt−1),

= Qt(xkt−1)− fk−1
t (xkt , x

k
t−1)−Qk−1

t+1 (xkt) [by definition of xkt]

7

with relations (2.21), (2.22), (2.23) we obtain limk→+∞Qt(xkt−1)−Qkt (xkt−1) = 0. Also observe that

lim
k→+∞

Qt(xkt−1)−
T∑
τ=t

fτ (xkτ , x
k
τ−1)

= lim
k→+∞

Qt(xkt−1)− ft(xkt , xkt−1)−Qt+1(xkt)︸ ︷︷ ︸
=0 by (2.23)

+ lim
k→+∞

Qt+1(xkt)−
T∑

τ=t+1

fτ (xkτ , x
k
τ−1)︸ ︷︷ ︸

=0 using H(t+1)−(iii)

,

= 0,

and we have shown H(t)-(ii),(iii).
Finally, if t ≥ 2, H(t)-(iv) follows from

0 ≤ Qt(xkt−1)−Qkt (xkt−1) ≤ Qt(xkt−1)− Ckt (xkt−1) since Qkt ≥ Ckt ,
= Qt(xkt−1)− fk−1

t (xkt , x
k
t−1)−Qk−1

t+1 (xkt) [by definition of xkt]

combined with relations (2.21), (2.22), (2.23).

2.3. Forward-Backward DCuP. It is also possible to have for each iteration both a forward and backward
pass and compute cuts for Qt in the backward passes and cuts for ft, gt in both the forward and backward
passes. The corresponding extension of the algorithm is given below and the convergence of this variant of
DCuP is given in Theorem 2.7.

Forward-Backward DCuP (Dynamic Cutting Plane) with linearizations computed in forward
and backward passes.

Step 0. Initialization. Let Q0
t : Xt−1 → R, t = 2, . . . , T + 1, be affine functions satisfying Q0

t ≤
Qt, t = 2, . . . , T, and Q0

T+1 ≡ 0, and let f0
t , g

0
t : Xt×Xt−1 → R, t = 1, . . . , T , be affine functions such that

f0
t ≤ ft, g0

t ≤ gt. Set k = 1.

Step 1. Forward pass. Setting x2k−1
0 = x0, for t = 1, 2, . . . , T , compute an optimal solution x2k−1

t of

(2.25)

{
min
xt

f2k−2
t (xt, x

2k−1
t−1) +Qk−1

t+1 (xt)

xt ∈ X2k−2
t (x2k−1

t−1),

where X2k−2
t is given by (2.7) with k−1 replaced by 2k−2. Compute ft(x

2k−1
t , x2k−1

t−1), gt(x
2k−1
t , x2k−1

t−1), and

subgradients of ft, gti, i = 1, . . . , p, at (x2k−1
t , x2k−1

t−1) with corresponding linearizations `ft(·; (x2k−1
t , x2k−1

t−1))

and `gti(·; (x2k−1
t , x2k−1

t−1)). Define

f2k−1
t = max

(
f2k−2
t , `ft(·; (x2k−1

t , x2k−1
t−1))

)
,(2.26)

g2k−1
t = (g2k−1

t1 , . . . , g2k−1
tp) where g2k−1

ti = max
(
g2k−2
ti , `gti(·; (x2k−1

t , x2k−1
t−1))

)
, i = 1, . . . , p.(2.27)

Step 2. Backward pass. For t = T, T − 1, . . . , 1, solve the problem

(2.28) Qkt (x2k−1
t−1) :=

{
min
xt

f2k−1
t (xt, x

2k−1
t−1) +Qkt+1(xt)

xt ∈ X2k−1
t (x2k−1

t−1).

Denoting by x2k
t an optimal solution of (2.28), compute ft(x

2k
t , x

2k−1
t−1), gt(x

2k
t , x

2k−1
t−1), and subgra-

dients of ft and gti, i = 1, . . . , p, at (x2k
t , x

2k−1
t−1), with corresponding linearizations `ft(·; (x2k

t , x
2k−1
t−1)),

`gti(·; (x2k
t , x

2k−1
t−1)). Define

f2k
t = max

(
f2k−1
t , `ft(·; (x2k

t , x
2k−1
t−1))

)
,(2.29)

g2k
t = (g2k

t1 , . . . , g
2k
tp) where g2k

ti = max
(
g2k−1
ti , `gti(·; (x2k

t , x
2k−1
t−1))

)
, i = 1, . . . , p.(2.30)

8

If t ≥ 2, take a subgradient βkt of Qkt (·) at x2k−1
t−1 , and store the new cut

Ckt (xt−1) := Qkt (x2k−1
t−1) + 〈βkt , xt−1 − x2k−1

t−1 〉

for Qt, making up the new approximation Qkt = max{Qk−1
t , Ckt }.

Step 4. Do k ← k + 1 and go to Step 1.

Theorem 2.7. Let Assumption (H1) hold. Define

H(t)


(i) limk→+∞max(gt(x

2k−1
t , x2k−1

t−1), 0) = 0, limk→+∞max(gt(x
2k
t , x

2k−1
t−1), 0) = 0,

(ii) limk→+∞Qt(x2k−1
t−1)−Qk

t
(x2k−1
t−1) = 0,

(iii) limk→+∞Qt(x2k−1
t−1)−

∑T
τ=t fτ (x2k−1

τ , x2k−1
τ−1) = 0,

(iv) limk→+∞Qt(x2k−1
t−1)−Qkt (x2k−1

t−1) = 0.

Then H(t)-(i) holds for t = 1, . . . , T , H(t)-(ii),(iii) hold for t = 1, . . . , T + 1, and H(t)-(iv) holds for

t = 2, . . . , T + 1. Moreover, the limit of the sequence (
∑T
t=1 ft(x

2k−1
t , x2k−1

t−1))k≥1 is the optimal value Q1(x0)

of (2.1) and any accumulation point of the sequence (x2k−1
1 , . . . , x2k−1

T) is an optimal solution to (2.1).

Proof: For t = 1, . . . , T , let us define the sequence (ykt)k by y2k
t = (x2k

t , x
2k−1
t−1) and y2k−1

t = (x2k−1
t , x2k−1

t−1)

for all k ≥ 1. Let us first show H(t)-(i), t = 1, . . . , T . Let t ∈ {1, . . . , T}. Since x2k−1
t ∈ X2k−2

t (x2k−1
t−1), we

have g2k−2
t (x2k−1

t , x2k−1
t−1) ≤ 0 and therefore if gt(x

2k−1
t , x2k−1

t−1) ≥ 0 we have

(2.31) max(gt(x
2k−1
t , x2k−1

t−1), 0) = gt(x
2k−1
t , x2k−1

t−1) ≤ gt(x2k−1
t , x2k−1

t−1)− g2k−2
t (x2k−1

t , x2k−1
t−1).

Since g2k−2
t ≤ gt, the above relation also holds when gt(x

2k−1
t , x2k−1

t−1) ≤ 0 and therefore holds for every

k ≥ 1. Similarly, since x2k
t ∈ X2k−1

t (x2k−1
t−1) we have g2k−1

t (x2k
t , x

2k−1
t−1) ≤ 0 which implies

(2.32) max(gt(x
2k
t , x

2k−1
t−1), 0) ≤ gt(x2k

t , x
2k−1
t−1)− g2k−1

t (x2k
t , x

2k−1
t−1)

for all k ≥ 1. Next, gti ≥ gkti ≥ `gti(·; ykt), which implies

(2.33) gkt (ykt) = gt(y
k
t), ∀ k ≥ 1.

Using (2.33) and applying Lemma 2.5 to f = gt, f
k = gkt , yk = ykt (observe that the assumptions of the

lemma are satisfied), we obtain

(2.34)

{
limk→+∞ gt(x

2k−1
t , x2k−1

t−1)− g2k−2
t (x2k−1

t , x2k−1
t−1) = 0,

limk→+∞ gt(x
2k
t , x

2k−1
t−1)− g2k−1

t (x2k
t , x

2k−1
t−1) = 0.

Combining (2.31), (2.32), and (2.34) we get

(2.35) lim
k→+∞

max(gt(x
2k−1
t , x2k−1

t−1), 0) = 0, lim
k→+∞

max(gt(x
2k
t , x

2k−1
t−1), 0) = 0,

which achieves the proof of H(t)-(i).
Let us now show H(1)-(ii), (iii) and H(t)-(ii)-(iii), (iv) for t = 2, . . . , T + 1 by backward induction on t.

Clearly, H(T + 1)-(ii),(iii), (iv) holds. Now, fix t ∈ {1, . . . , T} and assume that H(t+ 1)-(ii), (iii), (iv) holds
We will show that H(t)-(ii), (iii) holds and that H(t)-(iv) holds if t ≥ 2. Since ft ≥ fkt ≥ `ft(·; ykt), we have
ft(y

k
t) ≥ fkt (ykt) ≥ `ft(ykt ; ykt) = ft(y

k
t) and therefore for all k ≥ 1,

(2.36) fkt (ykt) = ft(y
k
t).

From (2.36), limk→+∞ ft(y
k
t) − fkt (ykt) = 0 and applying Lemma 2.5 to f = ft, f

k = fkt , and (yk) = (ykt)
(observe that the assumptions of the lemma are satisfied), we obtain

(2.37)

{
limk→+∞ ft(x

2k−1
t , x2k−1

t−1)− f2k−2
t (x2k−1

t , x2k−1
t−1) = 0,

limk→+∞ ft(x
2k
t , x

2k−1
t−1)− f2k−1

t (x2k
t , x

2k−1
t−1) = 0.

Using the fact that x2k−1
t ∈ X2k−2

t (x2k−1
t−1) ⊇ Xt(x

2k−1
t−1), the relation f2k−2

t (·, x2k−1
t−1)+Qk−1

t+1 (·) ≤ ft(·, x2k−1
t−1)+

Qt+1(·), and recalling defintions of x2k−1
t and Qt, we get

f2k−2
t (x2k−1

t , x2k−1
t−1) +Qk−1

t+1 (x2k−1
t) ≤ Qt(x2k−1

t−1).

9

Since the sequence f2k−2
t (x2k−1

t , x2k−1
t−1)+Qk−1

t+1 (x2k−1
t)−Qt(x2k−1

t−1) is bounded it has a finite limit sup which
satisfies

(2.38) lim
k→+∞

f2k−2
t (x2k−1

t , x2k−1
t−1) +Qk−1

t+1 (x2k−1
t)−Qt(x2k−1

t−1) ≤ 0.

The induction hypothesis gives

lim
k→+∞

Qkt+1(x2k−1
t)−Qt+1(x2k−1

t) = 0.

Applying Lemma 2.5 to f = Qt+1, f
k = Qkt+1, y

k = x2k−1
t (observe that the assumptions of the lemma are

satisfied), we obtain

lim
k→+∞

Qk−1
t+1 (x2k−1

t)−Qt+1(x2k−1
t) = 0.

Together with (2.37), (2.38) this relation, implies

(2.39)
limk→+∞ f2k−2

t (x2k−1
t , x2k−1

t−1) +Qk−1
t+1 (x2k−1

t)−Qt(x2k−1
t−1)

= limk→+∞ f2k−1
t (x2k

t , x
2k−1
t−1) +Qkt+1(x2k−1

t)−Qt(x2k−1
t−1)

= limk→+∞ ft(x
2k−1
t , x2k−1

t−1) +Qt+1(x2k−1
t)−Qt(x2k−1

t−1) ≤ 0.

Let us now show by contradiction that

(2.40) limk→+∞ ft(x
2k−1
t , x2k−1

t−1) +Qt+1(x2k−1
t)−Qt(x2k−1

t−1) ≥ 0.

If (2.40) does not hold, using the fact that (x2k−1
t , x2k−1

t−1) is a sequence from the compact set Xt×Xt−1 and

the lower semicontinuity of ft, gt,Qt+1,Qt, we can find a subsequence (xkt , x
k
t−1)k∈K converging to some

(x∗t , x
∗
t−1) ∈ Xt×Xt−1 such that

ft(x
∗
t , x
∗
t−1) +Qt+1(x∗t) < Qt(x∗t−1),

gt(x
∗
t , x
∗
t−1) ≤ 0, and x∗t ∈ Xt(x

∗
t−1), which is a contradiction. Therefore (2.40) must hold and we have

shown
(2.41)

lim
k→+∞

Qt(x2k−1
t−1)−f2k−2

t (x2k−1
t , x2k−1

t−1)−Qk−1
t+1 (x2k−1

t) = lim
k→+∞

Qt(x2k−1
t−1)−ft(x2k−1

t , x2k−1
t−1)−Qt+1(x2k−1

t) = 0.

As before, note that the optimal value of (2.28) is larger than the optimal value of (2.25), i.e.,

(2.42) Qkt (x2k−1
t−1) ≥ f2k−2

t (x2k−1
t , x2k−1

t−1) +Qk−1
t+1 (x2k−1

t),

implying

0 ≤ Qt(x2k−1
t−1)−Qkt (x2k−1

t−1) ≤ Qt(x2k−1
t−1)− f2k−2

t (x2k−1
t , x2k−1

t−1)−Qk−1
t+1 (x2k−1

t),(2.43)

which, together with (2.41), gives H(t)-(ii). Next,

lim
k→+∞

Qt(x2k−1
t−1)−

T∑
τ=t

fτ (x2k−1
τ , x2k−1

τ−1)

= lim
k→+∞

Qt(x2k−1
t−1)− ft(x2k−1

t , x2k−1
t−1)−Qt+1(x2k−1

t)︸ ︷︷ ︸
=0 by (2.41)

+ lim
k→+∞

Qt+1(x2k−1
t)−

T∑
τ=t+1

fτ (x2k−1
τ , x2k−1

τ−1)︸ ︷︷ ︸
=0 using H(t+1)−(iii)

,

= 0,

and we obtain H(t)-(iii). Finally, for t ≥ 2,

0 ≤ Qt(x2k−1
t−1)−Qkt (x2k−1

t−1) ≤ Qt(x2k−1
t−1)− Ckt (x2k−1

t−1) since Qkt ≥ Ckt ,
= Qt(x2k−1

t−1)−Qkt (x2k−1
t−1) by definition of Ckt

which combines with (2.43) to show H(t)-(iv).

10

2.4. Computation of the subgradient in Step d) of DCuP. This subsection explains how to compute

a subgradient βkt of Qk−1
t (·) at xkt−1 in Step d) of DCuP.

Observe that we can express Qk−1
t as

(2.44) Qk−1
t (xt−1) =



min
xt∈Rn,f,θ∈R

f + θ

xt ∈ Xt,
f ≥ `ft(xt, xt−1, (x

j
t , x

j
t−1)), j = 1, . . . , k − 1,

θ ≥ Qi−1
t+1(xit) + 〈βit+1, xt − xit〉, i = 1, . . . , k − 1,

`gti(xt, xt−1, (x
j
t , x

j
t−1)) ≤ 0, j = 1, . . . , k − 1, i = 1, . . . , p,

Atxt +Btxt−1 = bt.

Due to Assumption (H1)-2), for every xt−1 ∈ Xt−1, there exists xt ∈ ri(Xt) such that Atxt + Btxt−1 = bt
and gt(xt, xt−1) ≤ 0, which implies that for every i = 1, . . . , p, and j = 1, . . . , k − 1, we have

`gti(xt, xt−1, (x
j
t , x

j
t−1)) ≤ gti(xt, xt−1) ≤ 0

and therefore Slater constraint qualification holds for problem (2.44) for every xt−1 ∈ Xt−1. Next observe
that the feasible set of (2.44) is compact and therefore the objective function is bounded on the feasible set.
It follows that the optimal value of (2.44) is finite and by the Duality Theorem, we can write problem (2.44)

as the optimal value of the corresponding dual problem. To write this dual, it is convenient to rewrite Qk−1
t

on Xt−1 as

(2.45) Qk−1
t (xt−1) =



min
xt∈Rn,f,θ∈R

f + θ

xt ∈ Xt,
fe ≥ Ak−1

t xt +Bk−1
t xt−1 + Ck−1

t ,

θe ≥ θ1:k−1
t+1 + β1:k−1

t+1 xt,

Dk−1
t xt + Ek−1

t xt−1 +Hk−1
t ≤ 0,

Atxt +Btxt−1 = bt,

where e is a vector of ones of dimension k−1 and Ak−1
t , Bk−1

t , Dk−1
t , Ek−1

t , β1:k−1
t+1 (resp. Ck−1

t , Hk−1
t , θ1:k−1

t+1)

are matrices (resp. vectors) of appropriate dimensions. In particular, β1:k−1
t+1 is a matrix with k − 1 rows

with i-th row equal to (βit+1)> and θ1:k−1
t+1 is a vector of size k − 1 with i-th component given by θit+1 =

Qi−1
t+1(xit)− 〈βit+1, x

i
t〉.

We now write the dual of (2.45) as

(2.46) Qk−1
t (xt−1) =

{
max
α,µ,δ,λ

ht,xt−1
(α, λ, µ, δ)

α ≥ 0, µ ≥ 0, δ ≥ 0, λ,

where dual function ht,xt−1
is given by

(2.47) ht,xt−1(α, λ, µ, δ) =

{
min

xt∈Rn,f,θ∈R
Lt,xt−1(xt, f, θ;α, λ, µ, δ)

xt ∈ Xt,

with Lagrangian Lt,xt−1(xt, f, θ;α, λ, µ, δ) given by

Lt,xt−1(xt, f, θ;α, λ, µ, δ) = f + θ + 〈α,Ak−1
t xt +Bk−1

t xt−1 + Ck−1
t − fe〉+ 〈λ,Atxt +Btxt−1 − bt〉

+〈µ,Dk−1
t xt + Ek−1

t xt−1 +Hk−1
t 〉+ 〈δ, θ1:k−1

t+1 + β1:k−1
t+1 xt − θe〉.

Next, let (αkt , λ
k
t , µ

k
t , δ

k
t) be an optimal solution of (2.46) written for xt−1 = xkt−1. With this notation, we

have

(2.48) βkt = (Bk−1
t)>αkt +B>t λ

k
t + (Ek−1

t)>µkt ∈ ∂Q
k−1
t (xkt−1).

When Xt is polyhedral, formula (2.48) follows from Duality for linear programming. For a more general

convex set Xt, formula (2.48) directly follows from applying to value function Qk−1
t Lemma 2.1 in [3] or

Proposition 3.2 in [6] which respectively provide a characterization of the subdifferential and subgradients
for value functions of general convex optimization problems (whose argument is in the objective function and
in linear and nonlinear coupling constraints of the corresponding optimization problem). For the interested

11

reader and for the sake of completeness, we provide in the Appendix a proof of relation (2.48) specializing

to the particular case of value function Qk−1
t the proof of Lemma 2.1 in [3].

3. The StoDCuP (Stochastic Dynamic Cutting Plane) algorithm

3.1. Problem formulation and assumptions. We consider multistage stochastic nonlinear optimization
problems of the form
(3.49)

min
x1∈X1(x0,ξ1)

f1(x1, x0, ξ1) + E
[

min
x2∈X2(x1,ξ2)

f2(x2, x1, ξ2) + E
[
. . .+ E

[
min

xT∈XT (xT−1,ξT)
fT (xT , xT−1, ξT)

]]]
,

where x0 is given, (ξt)
T
t=2 is a stochastic process, ξ1 is deterministic, and

Xt(xt−1, ξt) = {xt ∈ Rn : Atxt +Btxt−1 = bt, gt(xt, xt−1, ξt) ≤ 0, xt ∈ Xt}.

In the constraint set above, Xt is polyhedral and ξt contains in particular the random elements in matrices
At, Bt, and vector bt.

We make the following assumption on (ξt):

(H0) (ξt) is interstage independent and for t = 2, . . . , T , ξt is a random vector taking values in RK with
a discrete distribution and a finite support Θt = {ξt1, . . . , ξtMt

} with pti = P(ξt = ξti), i = 1, . . . ,Mt, while
ξ1 is deterministic.

For this problem, we can write Dynamic Programming equations: the first stage problem is

(3.50) Q1(x0) =

{
minx1∈Rn f1(x1, x0, ξ1) +Q2(x1)
x1 ∈ X1(x0, ξ1)

for x0 given and for t = 2, . . . , T , Qt(xt−1) = Eξt [Qt(xt−1, ξt)] with

(3.51) Qt(xt−1, ξt) =

{
minxt∈Rn ft(xt, xt−1, ξt) +Qt+1(xt)
xt ∈ Xt(xt−1, ξt),

with the convention that QT+1 is null.
We set X0 = {x0} and make the following assumptions (H1)-Sto on the problem data:
(H1)-Sto: for t = 1, . . . , T ,

1) Xt is a nonempty, compact, and polyhedral set.
2) For every j = 1, . . . ,Mt, the function ft(·, ·, ξtj) is convex, proper, lower semicontinuous on Xt×Xt−1

and Xt×Xt−1 ⊂ int (dom(ft(·, ·, ξtj))).
3) For every j = 1, . . . ,Mt, each component gti(·, ·, ξtj), i = 1, . . . , p, of function gt(·, ·, ξtj) is convex,

proper, lower semicontinuous such that Xt×Xt−1 ⊂ int (dom(gti(·, ·, ξtj))).
4) X1(x0, ξ1) 6= ∅ and for every t = 2, . . . , T , for every j = 1, . . . ,Mt, Xt−1 ⊂ int (dom(Xt(·, ξtj))).

Remark 3.1. Nonlinear constraints of form hti(xt, ξt) ≤ 0 or hti(xt) ≤ 0 at stage t can be handled, adding
the corresponding component functions hti in gt, as long as (H1)-Sto is satisfied. In particular, convexity of
hti(·, ξtj) is required for j = 1, . . . ,Mt.

It is easy to show that under Assumption (H1)-Sto, functions Qt are convex and Lipschitz continuous on
Xt−1:

Lemma 3.2. Let Assumption (H1)-Sto hold. Then Qt is convex Lipschitz continuous on Xt−1 for t =
2, . . . , T + 1.

Proof: The proof is analogue to the proof of Lemma 2.1.

3.2. Algorithm. The algorithm to be presented in this section for solving (3.49) is an extension of the
DCuP algorithm to the stochastic case. All inequalities and equalities between random variables in the rest
of the paper hold almost surely.

12

Due to Assumption (H0), the

T∏
t=2

Mt realizations of (ξt)
T
t=1 form a scenario tree of depth T + 1 where the

root node n0 associated to a stage 0 (with decision x0 taken at that node) has one child node n1 associated
to the first stage (with ξ1 deterministic).

We denote by N the set of nodes, by Nodes(t) the set of nodes for stage t and for a node n of the tree,
we define:

• C(n): the set of children nodes (the empty set for the leaves);
• xn: a decision taken at that node;
• pn: the transition probability from the parent node of n to n;
• ξn: the realization of process (ξt) at node n1: for a node n of stage t, this realization ξn contains in

particular the realizations bn of bt, An of At, and Bn of Bt.
• ξ[n]: the history of the realizations of process (ξt) from the first stage node n1 to node n: for a node
n of stage t, the i-th component of ξ[n] is ξPt−i(n) for i = 1, . . . , t, where P : N → N is the function
associating to a node its parent node (the empty set for the root node).

At each iteration of the algorithm, trial points are computed on a sampled scenario and lower bounding
affine functions, called cuts in the sequel, are built for convex functions Qt, t = 2, . . . , T + 1, at these trial
points. More precisely, at iteration k denoting by xkt−1 the trial point for stage t− 1, the cut

(3.52) Ckt (xt−1) = θkt + 〈βkt , xt−1〉

is built for Qt with the convention that CkT+1 is the null function (see below for the computation of θkt ,

βkt). As in SDDP, we end up iteration k with an approximation Qkt of Qt which is a maximum of k affine

functions: Qkt (xt−1) = max0≤j≤k Cjt (xt−1).
Additionally, the variant we propose builds cutting plane approximations of convex functions ft(·, ·, ξtj)

and gti(·, ·, ξtj), t = 1, . . . , T, i = 1, . . . , p, j = 1, . . . ,Mt, computing linearizations of these functions. At
the end of iteration k, these approximations will be denoted by fktj and gktij for ft(·, ·, ξtj) and gti(·, ·, ξtj)
respectively, and take the form of a maximum of k affine functions. We use the notation

fktj(xt, xt−1) = max
`=0,...,k

a`tjxt + b`tjxt−1 + c`tj ,

gktij(xt, xt−1) = max
`=0,...,k

d`tijxt + e`tijxt−1 + h`tij ,

where a`tj , b
`
tj , d

`
tij , and e`tij are n-dimensional row vectors. The trial points of iteration k are computed before

updating these functions, therefore using approximations fk−1
tj , gk−1

tij , and Qk−1
t+1 of ft(·, ·, ξtj), gti(·, ·, ξtj), and

Qt+1 available at the end of iteration k−1. These trial points are decisions computed at nodes (nk1 , n
k
2 , . . . , n

k
T)

using these approximations, knowing that nk1 = n1, and for t ≥ 2, nkt is a node of stage t, child of node nkt−1,

i.e., these nodes correspond to a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T) of (ξ1, ξ2, . . . , ξT). At iteration k, the linearizations

for ft(·, ·, ξtj), gti(·, ·, ξtj) (resp. Qt) are computed at (xkm, x
k
n) (resp. xkn) where n = nkt−1, and m is the child

node of node n such that ξm = ξtj . For convenience, for any node m of stage t, we will denote by jt(m) the
unique index jt(m) such that ξm = ξtjt(m). Before detailing the steps of StoDCuP, we need more notation:

for all k ≥ 1, t = 1, . . . , T, j = 1, . . . ,Mt, let Xk
tj : Xt−1 ⇒ Xt be the multifunction given by

(3.53) Xk
tj(xt−1) = {xt ∈ Xt : gktij(xt, xt−1) ≤ 0, i = 1, . . . , p, Atjxt +Btjxt−1 = btj},

where Atj , Btj , btj are respectively the realizations of At, Bt, and bt in ξtj and let Qk
tj : Xt−1 → R be the

function

(3.54) Qk
tj(xt−1) =

{
min
xt

fktj(xt, xt−1) +Qkt+1(xt)

xt ∈ Xk
tj(xt−1).

1The same notation ξIndex is used to denote the realization of the process at node Index of the scenario tree and the value
of the process (ξt) for stage Index. The context will allow us to know which concept is being referred to. In particular, letters

n and m will only be used to refer to nodes while t will be used to refer to stages.

13

Introducing k × n matrices

Aktj =


a0
tj

a1
tj
...
aktj

 , Bktj =


b0tj
b1tj
...
bktj

 , Dk
tij =


d0
tij

d1
tij
...
dktij

 , Ektij =


e0
tij

e1
tij
...
ektij

 , β0:k
t =


(β0
t)>

(β1
t)>

...
(βkt)>

 ,
k dimensional vectors,

Cktj =


c0tj
c1tj
...
cktj

 , Hk
tij =


h0
tij

h1
tij
...

hktij

 , and θ0:k
t =


θ0
t

θ1
t
...
θkt

 ,
and matrices and vectors

Dk
tj =


Dk
t1j

Dk
t2j
...

Dk
tpj

 , Ektj =


Ekt1j
Ekt2j

...
Ektpj

 , Hk
tj =


Hk
t1j

Hk
t2j
...

Hk
tpj

 ,
if Xt = {xt : Xtxt ≥ x̄t}, we can write problem (3.54) as

(3.55) Qk
tj(xt−1) =



min
xt,f,θ

f + θ

fe ≥ Aktjxt +Bktjxt−1 + Cktj ,
Atjxt +Btjxt−1 = btj ,
Dk
tjxt + Ektjxt−1 +Hk

tj ≤ 0,
θe ≥ θ0:k

t+1 + β0:k
t+1xt, Xtxt ≥ x̄t.

Due to Assumption (H1)-Sto-4), for every xt−1 ∈ Xt−1 and j = 1, . . . ,Mt, there exists xt ∈ Xt such that
Atjxt + Btjxt−1 = btj , and gti(xt, xt−1, ξtj) ≤ 0, i = 1, . . . , p, which implies gktij(xt, xt−1) ≤ 0, i = 1, . . . , p,

Dk
tjxt + Ektjxt−1 + Hk

tj ≤ 0 and therefore the above problem (3.55) is feasible. Recalling (H1)-Sto-1), this
linear program also has a bounded feasible set and therefore its optimal value is the optimal value of the
dual problem and can be expressed as:

Qk
tj(xt−1) =


max

α,µ,δ,ν,λ
α>(Bktjxt−1 + Cktj) + µ>(Ektjxt−1 +Hk

tj) + δ>θ0:k
t+1 + λ>(btj −Btjxt−1) + ν>x̄t

(Aktj)
>α+ (Dk

tj)
>µ+ (β0:k

t+1)>δ − X>t ν − (Atj)
>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0.

The detailed steps of the algorithm are described below.

Forward StoDCuP (Stochastic Dynamic Cutting Plane) with linearizations computed in a
forward pass.

Step 1) Initialization. For t = 1, . . . , T , i = 1, . . . , p, take f0
tj , g

0
tij : Xt×Xt−1 → R affine functions satisfying

f0
tj ≤ ft(·, ·, ξtj), g0

tij ≤ gti(·, ·, ξtj), and for t = 2, . . . , T , Q0
t : Xt−1 → R is an affine function satisfying

Q0
t ≤ Qt. Set xn0

= x0, set the iteration count k to 1, and Q0
T+1 ≡ 0.

Step 2) Generate a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T) of (ξ1, ξ2, . . . , ξT) corresponding to a set of nodes (nk1 , n

k
2 , . . . , n

k
T)

where nk1 = n1, and for t ≥ 2, nkt is a node of stage t, child of node nkt−1. Set nk0 = n0.

Do θkT+1 = 0 and βkT+1 = 0.
For t = 1, . . . , T ,

Let n = nkt−1.
For every m ∈ C(n),

14

compute an optimal solution xkm of

(3.56) Qk−1
tjt(m)(x

k
n) =

{
min
xm

fk−1
tjt(m)(xm, x

k
n) +Qk−1

t+1 (xm)

xm ∈ Xk−1
tjt(m)(x

k
n).

Compute an arbitrary subgradient [s1; s2] of convex function ft(·, ·, ξm) at (xkm, x
k
n) where

s1, s2 ∈ Rn and do aktjt(m) = s>1 , bktjt(m) = s>2 . For i = 1, . . . , p, compute an arbitrary

subgradient [s1i; s2i] of convex function gti(·, ·, ξm) at (xkm, x
k
n) where s1i, s2i ∈ Rn and do

dktijt(m) = s>1i, e
k
tijt(m) = s>2i. Compute

cktjt(m) = ft(x
k
m, x

k
n, ξm)− aktjt(m)x

k
m − bktjt(m)x

k
n,

hktijt(m) = gti(x
k
m, x

k
n, ξm)− dktijt(m)x

k
m − ektijt(m)x

k
n.

Compute an optimal solution (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) of the dual problem

max
α,µ,δ,ν,λ

α>(Bk−1
tjt(m)x

k
n + Ck−1

tjt(m)) + µ>(Ek−1
tjt(m)x

k
n +Hk−1

tjt(m)) + δ>θ0:k−1
t+1 + λ>(btjt(m) −Btjt(m)x

k
n) + ν>x̄t

(Ak−1
tjt(m))

>α+ (Dk−1
tjt(m))

>µ+ (β0:k−1
t+1)>δ − X>t ν − (Atjt(m))

>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0.

End For
If t ≥ 2 compute:

(3.57)

βkt =
∑

m∈C(n)

pm

[
(Bk−1

tjt(m))
>αkm + (Ek−1

tjt(m))
>µkm −B>tjt(m)λ

k
m

]
,

θkt =
∑

m∈C(n)

pm

[
〈αkm, Ck−1

tjt(m)〉+ 〈µkm, Hk−1
tjt(m)〉+ 〈δkm, θ0:k−1

t+1 〉+ 〈λkm, btjt(m)〉+ 〈νkm, x̄t〉
]
.

End If
End For

Step 4) Do k ← k + 1 and go to Step 2).

We have for StoDCuP the following analogue of Lemma 2.4 for DCuP (the proof is similar to the proof
of Lemma 2.4):

Lemma 3.3. Let Assumptions (H0) and (H1)-Sto hold. Then, the following statements hold for StoDCuP:

(a) For t = 2, . . . , T , the sequence {βkt }∞k=1 is almost surely bounded.
(b) There exists L ≥ 0 such that for each t = 2, . . . , T , Qkt is L-Lipschitz continuous on Xt−1 for every

k ≥ 1.
(c) There exists L̂ ≥ 0 such that for each t = 1, . . . , T , j = 1, . . . ,Mt, functions fktj and gktij are L̂-

Lipschitz continuous on Xt ×Xt−1 for every k ≥ 1 and i = 1, . . . , p.

Remark 3.4 (On the cuts and linearizations computed). Assumption (H0) is fundamental for StoDCuP,
due to the following claim:

(C) StoDCuP builds a cut for Qt, t = 2, . . . , T , on any sampled scenario and a single cut for each of the
functions ft(·, ·, ξtj), gti(·, ·, ξtj), t = 1, . . . , T, j = 1, . . . ,Mt, i = 1, . . . , p, at each iteration.

The validity of the formulas of the cuts for Qt will be checked in Lemma 3.7. The fact that a single cut is
built for functions ft(·, ·, ξtj), gti(·, ·, ξtj), i = 1, . . . , p, t = 1, . . . , T, j = 1, . . . ,Mt, comes from the fact that
at iteration k and stage t a cut is built for each of functions ft(·, ·, ξm), gti(·, ·, ξm), i = 1, . . . , p, m ∈ C(n),
where n = nkt−1, and due to Assumption (H0), to each m ∈ C(n), corresponds one and only one index
j = jt(m) such that ξm = ξtj = ξtjt(m).

Remark 3.5. The algorithm can be extended to solve risk-averse problems. It was shown in [8] that dy-
namic programming equations can be written and that SDDP can be applied for multistage stochastic linear
optimization problems which minimize some extended polyhedral risk measure of the cost. As a special case,
spectral risk measures are considered in [9] where analytic formulas for some cut coefficients computed by
SDDP are available. Similarly, StoDCuP can be extended to solve multistage nonlinear optimization problems
with objective and constraint functions as in (3.49) if instead of minimizing the expected cost we minimize an

15

extended polyhedral risk measure of the cost, as long as Assumptions (H0) and (H1)-Sto are satisfied. It is
also possible to apply StoDCuP to solve risk-averse dynamic programming equations with nested conditional
risk measures (see [19], [20] for details on conditional risk mappings) and objective and constraint functions
as in (3.49), again, as long as Assumptions (H0) and (H1)-Sto are satisfied. Using SDDP in this risk-averse
setting was proposed in [21].

We can simulate the policy obtained after k − 1 iterations of StoDCuP and define decisions xkn at each
node n of the scenario tree as follows:

Simulation of StoDCuP after k − 1 iterations.

Set xkn0
= x0.

For t = 1, . . . , T ,
For every node n ∈ Nodes(t− 1),

For every m ∈ C(n),
compute an optimal solution xkm of

(3.58) Qk−1
tjt(m)(x

k
n) =

{
min
xm

fk−1
tjt(m)(xm, x

k
n) +Qk−1

t+1 (xm)

xm ∈ Xk−1
tjt(m)(x

k
n).

End For
End For

End For

3.3. Convergence analysis. In what follows, if the stage associated to node n is τ(n), we use the notation

(3.59) Sn = {k ∈ N∗ : nkτ(n) = n}.

In other words, Sn the set of iterations k where the sampled scenario passes through node n.
We show in Lemmas 3.6 and 3.7 below properties of the algorithm useful to prove the convergence of

StoDCuP given in Theorem 3.8. We start providing simple relations involving the linearizations of objective
and constraint functions:

Lemma 3.6. Let Assumption (H1)-Sto hold. For every t = 1, . . . , T , j = 1, . . . ,Mt, i = 1, . . . , p, we have
almost surely

(3.60) ft(xt, xt−1, ξtj) ≥ fktj(xt, xt−1), gti(xt, xt−1, ξtj) ≥ gktij(xt, xt−1), ∀k ≥ 0,∀xt ∈ Xt,∀xt−1 ∈ Xt−1,

and for every k ≥ 1,

(3.61) Xt(xt−1, ξtj) ⊂ Xk
tj(xt−1), ∀ xt−1 ∈ Xt−1.

For all t = 1, . . . , T , i = 1, . . . , p, for all n ∈ Nodes(t− 1), for all k ∈ Sn, we have for all m ∈ C(n):

(3.62) ft(x
k
m, x

k
n, ξm) = fktjt(m)(x

k
m, x

k
n) and gti(x

k
m, x

k
n, ξm) = gktijt(m)(x

k
m, x

k
n), a.s.

For all t = 1, . . . , T , i = 1, . . . , p, for all n ∈ Nodes(t− 1), for all k ≥ 1, for all m ∈ C(n), we have

(3.63) gk−1
tijt(m)(x

k
m, x

k
n) ≤ 0, a.s.,

(3.64) 0 ≤ max(gti(x
k
m, x

k
n, ξm), 0) ≤ gti(xkm, xkn, ξm)− gk−1

tijt(m)(x
k
m, x

k
n), a.s.

Proof: Let us show (3.60). The relation holds for k = 0. Now let us fix t ∈ {1, . . . , T}, j ∈ {1, . . . ,Mt},
k ≥ 1 and ` ∈ {1, . . . , k}. At iteration `, setting n = n`t−1, there exists one and only one node m in the
set C(n) such that ξm = ξtj with j = jt(m) and by the subgradient inequality for every xt ∈ Xt, for every
xt−1 ∈ Xt−1, we have

(3.65)

ft(xt, xt−1, ξtj) = ft(xt, xt−1, ξm) ≥ `ft(·,·,ξm)(xt, xt−1; (x`m, x
`
n))

= ft(x
`
m, x

`
n, ξm) + a`tjt(m)(xt − x

`
m) + b`tjt(m)(xt−1 − x`n),

= a`tjt(m)xt + b`tjt(m)xt−1 + c`tjt(m) = a`tjxt + b`tjxt−1 + c`tj ,

16

(3.66)
gti(xt, xt−1, ξtj) = gti(xt, xt−1, ξm) ≥ `gti(·,·,ξm)(xt, xt−1; (x`m, x

`
n)),

= gti(x
`
m, x

`
n, ξm) + d`tijt(m)(xt − x

`
m) + e`tijt(m)(xt−1 − x`n),

= d`tijt(m)xt + e`tijt(m)xt−1 + h`tijt(m) = d`tijxt + e`tijxt−1 + h`tij .

It follows that ft(·, ·, ξtj) and gti(·, ·, ξtj) are above all linearizations built for these functions by StoDCuP
and therefore also above fktj and gktij which is given by the maximum of the first k linearizations. Relation
(3.60) follows and clearly inclusion (3.61) is a consequence of (3.60).

Take t ∈ {1, . . . , T}, i ∈ {1, . . . , p}, take a node n ∈ Nodes(t− 1) and k ∈ Sn. Then for any m ∈ C(n), a
linearization is built for ft(·, ·, ξm) and gti(·, ·, ξm) at (xkm, x

k
n). Therefore,

ft(x
k
m, x

k
n, ξm)

(3.60)

≥ fktjt(m)(x
k
m, x

k
n)

≥ aktjt(m)x
k
m + bktjt(m)x

k
n + cktjt(m),

(3.65)
= `ft(·,·,ξm)(x

k
m, x

k
n; (xkm, x

k
n)) = ft(x

k
m, x

k
n, ξm) since nkt−1 = n,

gti(x
k
m, x

k
n, ξm)

(3.60)

≥ gktijt(m)(x
k
m, x

k
n)

≥ dktijt(m)x
k
m + ektijt(m)x

k
n + hktijt(m),

(3.66)
= `gti(·,·,ξm)(x

k
m, x

k
n; (xkm, x

k
n)) = gti(x

k
m, x

k
n, ξm), since nkt−1 = n,

and (3.62) follows.

Relation (3.63) comes from the fact that xkm ∈ Xk−1
tjt(m)(x

k
n) by definition of xkm (see the simulation of

StoDCuP).
Finally take a realization ω of StoDCuP. We show that

(3.67) 0 ≤ max(gti(x
k
m(ω), xkn(ω), ξm), 0) ≤ gti(xkm(ω), xkn(ω), ξm)− gk−1

tijt(m)(ω)(xkm(ω), xkn(ω)).

If gti(x
k
m(ω), xkn(ω), ξm) ≤ 0 then (3.67) holds because gti(·, ·, ξm) ≥ gk−1

tijt(m)(ω) and if gti(x
k
m(ω), xkn(ω), ξm) >

0 then (3.67) holds too because of inequality (3.63). Therefore, (3.67) holds.
Lemma 3.7 shows the validity of the cuts computed for Qt:

Lemma 3.7. Let Assumptions (H0) and (H1)-Sto hold. For every t = 2, . . . , T + 1, for every k ≥ 1, we
have almost surely

(3.68) Qt(xt−1) ≥ Ckt (xt−1) and Qt(xt−1) ≥ Qkt (xt−1), ∀xt−1 ∈ Xt−1.

For all t = 1, . . . , T , j = 1, . . . ,Mt, for every k ≥ 1, we have almost surely

(3.69) Qk
tj(xt−1) ≤ Qt(xt−1, ξtj) for all xt−1 ∈ Xt−1.

For all t = 2, . . . , T , for every k ≥ 1, defining Qk−1
t (xkn) =

∑Mt

j=1 ptjQ
k−1
tj (xkn), we have for every n ∈

Nodes(t− 1) and for all k ∈ Sn:

(3.70) Qk−1
t (xkn) = Ckt (xkn), a.s.

Proof: Let us show (3.68)-(3.69) by backward induction on t. Relation (3.68) clearly holds for t = T + 1.
Now assume that for some t ∈ {1, . . . , T}, we have Qt+1(xt) ≥ Qkt+1(xt) for all xt ∈ Xt and all k ≥ 1. Using

Lemma 3.6, we have for all k ≥ 1, for all j = 1, . . . ,Mt, for all xt ∈ Xt, xt−1 ∈ Xt−1, that fktj(xt, xt−1) ≤
ft(xt, xt−1, ξtj) and Xt(xt−1, ξtj) ⊂ Xk

tj(xt−1), which, together with the induction hypothesis Qkt+1 ≤ Qt+1,
implies

(3.71) Qk
tj(xt−1) ≤ Qt(xt−1, ξtj) for all xt−1 ∈ Xt−1,

i.e., (3.69). Now observe that due to Assumption (H1)-Sto, for every xt−1 ∈ Xt−1, the optimization problem

Qk−1
tj (xt−1) =

{
min
xt

fk−1
tj (xt, xt−1) +Qk−1

t+1 (xt)

xt ∈ Xk−1
tj (xt−1),

17

is a linear program with feasible set that is bounded (since Xt is compact) and nonempty (it contains the
nonempty set Xt(xt−1)). Therefore it has a finite optimal value which is also the optimal value of the dual
problem given by

(3.72) Qk−1
tj (xt−1) =


max

α,µ,δ,ν,λ
Dk−1
tj (α, µ, δ, ν, λ;xt−1)

(Ak−1
tj)>α+ (Dk−1

tj)>µ+ (β0:k−1
t+1)>δ − X>t ν − (Atj)

>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0,

where

Dk−1
tj (α, µ, δ, ν, λ;xt−1) = α>(Bk−1

tj xt−1 + Ck−1
tj) + µ>(Ek−1

tj xt−1 +Hk−1
tj) + δ>θ0:k−1

t+1 + λ>(btj −Btjxt−1) + ν>x̄t.

Now assume that t ≥ 2. Let us take m ∈ C(nkt−1). Recall that jt(m) is the unique index j such that ξtj = ξm.

Clearly (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) is feasible for dual problem (3.72) written for j = jt(m) and therefore for any

xt−1 ∈ Xt−1 we have

(3.73) Qk−1
tjt(m)(xt−1) ≥ Dk−1

tjt(m)(α
k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xt−1),

which gives

Qt(xt−1) =

Mt∑
j=1

ptjQt(xt−1, ξtj)

(H0)
=

∑
m∈C(nk

t−1)

pmQt(xt−1, ξm)

=
∑

m∈C(nk
t−1)

pmQt(xt−1, ξtjt(m))

(3.71)

≥
∑

m∈C(nk
t−1)

pmQk−1
tjt(m)(xt−1)

(3.73)

≥
∑

m∈C(nk
t−1)

pmDk−1
tjt(m)(α

k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xt−1)

= Ckt (xt−1),

for every xt−1 ∈ Xt−1, where for the last equality, we have used (3.52) and (3.57). Therefore we have shown
(3.68).

Now take n ∈ Nodes(t− 1) and k ∈ Sn. Then by definition of (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) and of Ckt , we get for

any m ∈ C(n):

(3.74) Qk−1
tjt(m)(x

k
n) = Dk−1

tjt(m)(α
k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn)

and

(3.75) Ckt (xkn) =
∑

m∈C(n)

pmDk−1
tjt(m)(α

k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn) =

∑
m∈C(n)

pmQk−1
tjt(m)(x

k
n) = Qk−1

t (xkn).

To prove the convergence of StoDCuP, we need the following assumption:

(H2) The samples of (ξt) generated in StoDCuP are independent: (ξ̃k2 , . . . , ξ̃
k
T) is a realization of ξk =

(ξk2 , . . . , ξ
k
T) ∼ (ξ2, . . . , ξT) and ξk, k ≥ 1, are independent.

Theorem 3.8 (Convergence of StoDCuP). Let Assumption (H0), (H1)-Sto, and (H2) hold. Then
(i) for every t = 1, . . . , T ,i = 1, . . . , p, almost surely

(3.76) lim
k→+∞

max(gti(x
k
m, x

k
n, ξm), 0) = 0, ∀m ∈ Nodes(t), n = P(m).

For all t = 2, . . . , T + 1, for all node n ∈ Nodes(t− 1), we have almost surely

(3.77) H(t) : lim
k→+∞

Qt(xkn)−Qkt (xkn) = 0.

18

(ii) The limit of the sequence of first stage problems optimal values (fk−1
11 (xkn1

, x0) +Qk−1
2 (xkn1

))k≥1 is the

optimal value Q1(x0) of (3.50) and any accumulation point of the sequence (xkn1
) is an optimal solution to

the first stage problem (3.50).

Proof: We first show (3.76). Let us fix t ∈ {1, . . . , T}, i ∈ {1, . . . , p}, m ∈ Nodes(t), n = P(m). Recall from
Lemma 3.6 that

(3.78) 0 ≤ max(gti(x
k
m, x

k
n, ξm), 0) ≤ gti(xkm, xkn, ξm)− gk−1

tijt(m)(x
k
m, x

k
n).

We now show that

(3.79) lim
k→+∞

gti(x
k
m, x

k
n, ξm)− gk−1

tijt(m)(x
k
m, x

k
n) = 0,

which will show (3.76) due to relation (3.78).
Let k(1), k(2), . . . , be the iterations in Sn with k(i) < k(i + 1): Sn = {k(1), k(2), k(3), . . .}. Let us first

show that we have

(3.80) lim
k→+∞,k∈Sn

max(gti(x
k
m, x

k
n, ξm), 0) = 0.

For all ` ≥ 1, relation (3.62) gives

(3.81) gti(x
k(`)
m , xk(`)

n , ξm) = g
k(`)
tijt(m)(x

k(`)
m , xk(`)

n).

Let us now apply Lemma 2.5 to y` = (x
k(`)
m , x

k(`)
n), sequence f ` = g

k(`)
tijt(m), and f = gti(·, ·, ξm) (observe that

the assumptions of the lemma are satisfied with k0 = 1). Since

lim
`→+∞

f(y`)− f `(y`) = 0,

we deduce that

(3.82) lim
`→+∞

f(y`)− f `−1(y`) = lim
`→+∞

gti(x
k(`)
m , xk(`)

n , ξm)− gk(`−1)
tijt(m)(x

k(`)
m , xk(`)

n) = 0.

Since k(`) ≥ 1 + k(` − 1), we have 0 ≤ gti(·, ·, ξm) − gk(`)−1
tijt(m)(·, ·) ≤ gti(·, ·, ξm) − gk(`−1)

tijt(m)(·, ·) and therefore

(3.82) implies

(3.83) lim
`→+∞

gti(x
k(`)
m , xk(`)

n , ξm)− gk(`)−1
tijt(m)(x

k(`)
m , xk(`)

n) = lim
k→+∞,k∈Sn

gti(x
k
m, x

k
n, ξm)− gk−1

tijt(m)(x
k
m, x

k
n) = 0.

Finally, we show in the Appendix that

(3.84) lim
k→+∞,k/∈Sn

gti(x
k
m, x

k
n)− gk−1

tijt(m)(x
k
m, x

k
n) = 0,

which achieves the proof of (3.79) and therefore of (3.76).
Let us now show H(t) by backward induction on t. H(T +1) holds since QT+1 = QkT+1. Assume now that

H(t+ 1) holds for some t ∈ {2, . . . , T} and let us show that H(t) holds. Take a node n ∈ Nodes(t− 1) and
let us denote again by k(1), k(2), . . . , the iterations in Sn with k(i) < k(i + 1): Sn = {k(1), k(2), k(3), . . .}.
Let us first show that

(3.85) lim
k→+∞,k∈Sn

Qt(xkn)−Qkt (xkn) = lim
`→+∞

Qt(xk(`)
n)−Qk(`)

t (xk(`)
n) = 0.

By definition of Qk(`)
t , we have Qk(`)

t (x
k(`)
n) ≥ Ck(`)

t (x
k(`)
n) and therefore for all ` ≥ 1 we get:

(3.86)

0 ≤ Qt(xk(`)
n)−Qk(`)

t (x
k(`)
n) ≤ Qt(xk(`)

n)− Ck(`)
t (x

k(`)
n)

= Qt(xk(`)
n)−Qk(`)−1

t (x
k(`)
n),

=
∑

m∈C(n
k(`)
t−1)

pm

[
Qt(x

k(`)
n , ξm)−Q

k(`)−1
tjt(m) (xk(`)

n)
]
.

By definiton of xkm, we have

(3.87) Q
k(`)−1
tjt(m) (xk(`)

n) = f
k(`)−1
tjt(m) (xk(`)

m , xk(`)
n) +Qk(`)−1

t+1 (xk(`)
m),

19

which, plugged into (3.86), gives

(3.88) 0 ≤ Qt(xk(`)
n)−Qk(`)

t (xk(`)
n) ≤

∑
m∈C(n

k(`)
t−1)

pm

[
Qt(x

k(`)
n , ξm)− fk(`)−1

tjt(m) (xk(`)
m , xk(`)

n)−Qk(`)−1
t+1 (xk(`)

m)
]
.

Let us apply Lemma 2.5 to y` = (x
k(`)
m , x

k(`)
n), sequence f ` = f

k(`)
tjt(m), and f = ft(·, ·, ξm) (observe that the

assumptions of the lemma are satisfied). Due to (3.62), we have

lim
`→+∞

f(y`)− f `(y`) = 0

and therefore

(3.89) lim
`→+∞

f(y`)− f `−1(y`) = lim
`→+∞

ft(x
k(`)
m , xk(`)

n , ξm)− fk(`−1)
tjt(m) (xk(`)

m , xk(`)
n) = 0.

Since k(`) ≥ k(` − 1) + 1, we have 0 ≤ ft(x
k(`)
m , x

k(`)
n , ξm) − f

k(`)−1
tjt(m) (x

k(`)
m , x

k(`)
n) ≤ ft(x

k(`)
m , x

k(`)
n , ξm) −

f
k(`−1)
tjt(m) (x

k(`)
m , x

k(`)
n) which combined with (3.89) gives

(3.90) lim
`→+∞

ft(x
k(`)
m , xk(`)

n , ξm)− fk(`)−1
tjt(m) (xk(`)

m , xk(`)
n) = 0.

Using (3.87) and (3.69), we get

f
k(`)−1
tjt(m) (xk(`)

m , xk(`)
n) +Qk(`)−1

t+1 (xk(`)
m) = Q

k(`)−1
tjt(m) (xk(`)

n) ≤ Qt(x
k(`)
n , ξm).

Therefore the sequence (f
k(`)−1
tjt(m) (x

k(`)
m , x

k(`)
n) +Qk(`)−1

t+1 (x
k(`)
m)−Qt(x

k(`)
n , ξm))`≥1 is bounded and has a finite

limit sup which satisfies

(3.91) lim
`→+∞

f
k(`)−1
tjt(m) (xk(`)

m , xk(`)
n) +Qk(`)−1

t+1 (xk(`)
m)−Qt(x

k(`)
n , ξm) ≤ 0.

Applying Lemma 2.5 to y` = x
k(`)
m , sequence f ` = Qk(`)

t+1 , and f = Qt+1 (observe that the assumptions of the
lemma are satisfied), since from the induction hypothesis we know that

lim
`→+∞

f(y`)− f `(y`) = 0

we deduce that

(3.92) lim
`→+∞

f(y`)− f `−1(y`) = lim
`→+∞

Qt+1(xk(`)
m)−Qk(`−1)

t+1 (xk(`)
m) = 0.

Since k(`) ≥ k(` − 1) + 1, we have 0 ≤ Qt+1(x
k(`)
m) − Qk(`)−1

t+1 (x
k(`)
m) ≤ Qt+1(x

k(`)
m) − Qk(`−1)

t+1 (x
k(`)
m), which

combines with (3.92) to give

(3.93) lim
`→+∞

Qt+1(xk(`)
m)−Qk(`)−1

t+1 (xk(`)
m) = 0.

Combining (3.90), (3.91), and (3.93), we obtain

(3.94) lim
`→+∞

ft(x
k(`)
m , xk(`)

n , ξm) +Qt+1(xk(`)
m)−Qt(x

k(`)
n , ξm) ≤ 0.

Let us now show by contradiction that

(3.95) lim
k→+∞

ft(x
k(`)
m , xk(`)

n , ξm) +Qt+1(xk(`)
n)−Qt(x

k(`)
n , ξm) ≥ 0.

Assume that (3.95) does not hold. Using the fact that sequence (xkm, x
k
n)k∈Sn belongs to the compact

set Xt×Xt−1, and the lower semicontinuity of ft(·, ·, ξm), gt(·, ·, ξm), Qt, Qt(·, ξm), there is a subsequence
(xkm, x

k
n)k∈K with K ⊂ Sn converging to some (x̄m, x̄n) ∈ Xt×Xt−1 such that

ft(x̄m, x̄n, ξm) +Qt+1(x̄n)−Qt(x̄n, ξm) < 0

and x̄m ∈ Xt(x̄n, ξm). This is in contradiction with the definition of Qt. Therefore we must have

0 = lim`→+∞ ft(x
k(`)
m , x

k(`)
n , ξm) +Qt+1(x

k(`)
m)−Qt(x

k(`)
n , ξm)

= lim`→+∞ f
k(`)−1
tjt(m) (x

k(`)
m , x

k(`)
n) +Qk(`)−1

t+1 (x
k(`)
m)−Qt(x

k(`)
n , ξm)

20

which, plugged into (3.88) gives

(3.96) lim
k→+∞,k∈Sn

Qt(xkn)−Qkt (xkn) = 0.

Finally, we show in the Appendix that

(3.97) lim
k→+∞,k/∈Sn

Qt(xkn)−Qkt (xkn) = 0,

which achieves the proof of H(t).
(ii) The proof of (ii) can easily be obtained from (i), see Theorem 4.1-(ii) in [3] for details.

Remark 3.9 (Stopping criterion). The stopping criterion is similar to SDDP. We can stop the algorithm
when the gap Ub−Lb

Ub is less than a threshold, for instance 5%, where Ub and Lb are upper and lower bounds,
respectively, defined as follows. Due to Lemma 3.7, we can take as a lower bound on the optimal value of
problem (3.49) the value Lb = Qk−1

11 (x0). The upper bound Ub corresponds to the upper end of a 100(1-
α)%-one-sided confidence interval (with for instance α = 0.05) on the optimal value for N policy realizations
(using the costs of decisions taken on N independent sampled scenarios).

4. Variants of StoDCuP

4.1. Forward-backward StoDCuP. Similarly to DCuP, we can extend forward StoDCuP presented in the
previous section to forward-backward StoDCuP. In this variant, at iteration k, we still compute in a forward
pass trial points xkn for nodes n ∈ {n1, n

k
2 , . . . , n

k
T } with nkt a child node of node nkt−1. For each t = 1, . . . , T ,

and j = 1, . . . ,Mt, i = 1, . . . , p, a linearization is also computed in the forward pass for ft(·, ·, ξtj) and
gti(·, ·, ξtj) at these trial points. However, cuts for Qt are computed in a backward pass and in this backward
pass an additional linearization is also built for ft(·, ·, ξtj) and gti(·, ·, ξtj) using points computed in both the
backward and forward pass. For the cut computed at iteration k for Qt, we will still use the notation:

Ckt (xt−1) = θkt + 〈βkt , xt−1〉

with the convention that CkT+1 is the null function (see below for the computation of θkt , βkt). We end up

iteration k with approximation Qkt (xt−1) = max0≤j≤k Cjt (xt−1) of Qt.
Therefore, at iteration k, two approximations of functions ft(·, ·, ξtj) and gti(·, ·, ξtj) are computed which

will be denoted by f2k−1
tj and g2k−1

tij , respectively, in the end of the forward pass, and by f2k
tj and g2k

tj ,
respectively, in the end of the backward pass.

The detailed steps of forward-backward StoDCuP are described below.

Forward-Backward StoDCuP (Stochastic Dynamic Cutting Plane) with linearizations com-
puted in forward and backward passes.

Step 1) Initialization. For t = 1, . . . , T , take f0
tj , g

0
tij : Xt×Xt−1 → R affine functions satisfying f0

tj ≤
ft(·, ·, ξtj), g0

tij ≤ gti(·, ·, ξtj), and for t = 2, . . . , T , Q0
t : Xt−1 → R is an affine function satisfying

Q0
t ≤ Qt. Set the iteration count k to 1 and Q0

T+1 ≡ 0.
Step 2) Forward pass.

Generate a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T) of (ξ1, ξ2, . . . , ξT).

For t = 1, . . . , T ,
For j = 1, . . . ,Mt,

If ξtj = ξ̃kt then compute an optimal solution xkt of

(4.98) Q2k−2
tj (xkt−1) =

{
inf
xt

f2k−2
tj (xt, x

k
t−1) +Qk−1

t+1 (xt)

xt ∈ X2k−2
tj (xkt−1),

where xk0 = x0 and where for all k ≥ 1,

(4.99) X2k−2
tj (xkt−1) = {xt ∈ Xt : g2k−2

tij (xt, x
k
t−1) ≤ 0, i = 1, . . . , p, Atjxt +Btjx

k
t−1 = btj}.

21

Compute ft(x
k
t , x

k
t−1, ξtj), gti(x

k
t , x

k
t−1, ξtj), and subgradients of ft(·, ·, ξtj),

gti(·, ·, ξtj) at (xkt , x
k
t−1) with corresponding linearizations `ft(·,·,ξtj)(·, ·; (xkt , x

k
t−1))

and `gti(·,·,ξtj)(·, ·; (xkt , x
k
t−1)). Compute

f2k−1
tj (·, ·)← max

(
f2k−2
tj (·, ·), `ft(·,·,ξtj)(·, ·; (xkt , x

k
t−1))

)
,

g2k−1
tij (·, ·)← max

(
g2k−2
tij (·, ·), `gti(·,·,ξtj)(·, ·; (xkt , x

k
t−1))

)
.

Else

f2k−1
tj = f2k−2

tj , g2k−1
tij = g2k−2

tij .

End If
End For

End For
Step 3) Backward pass.

Set θkT+1 = 0 and βkT+1 = 0.
For t = T, . . . , 2,

For j = 1, . . . ,Mt,
Compute an optimal solution xBktj of

(4.100) Q2k−1
tj (xkt−1) =

{
inf
xt

f2k−1
tj (xt, x

k
t−1) +Qkt+1(xt)

xt ∈ X2k−1
tj (xkt−1).

Compute ft(x
Bk
tj , x

k
t−1, ξtj), gti(x

Bk
tj , x

k
t−1, ξtj) and subgradients of ft(·, ·, ξtj) and

gti(·, ·, ξtj) at (xBktj , x
k
t−1) with corresponding linearizations

`ft(·,·,ξtj)(·, ·; (xBktj , x
k
t−1)) and `gti(·,·,ξtj)(·, ·; (xBktj , x

k
t−1)).

Compute

f2k
tj (·, ·)← max

(
f2k−1
tj (·, ·), `ft(·,·,ξtj)(·, ·; (xBktj , x

k
t−1))

)
,

g2k
tij(·, ·)← max

(
g2k−1
tij (·, ·), `gti(·,·,ξtj)(·, ·; (xBktj , x

k
t−1))

)
.

Compute (for instance using Lemma 2.1 in [3]) a subgradient βkjt of Q2k−1
tj at xkt−1 and

the cut coefficients:

θkt =
∑Mt

j=1 ptj(Q
2k−1
tj (xkt−1)− 〈βkjt , xkt−1〉) and βkt =

∑Mt

j=1 ptjβ
kj
t .

End For
End For
Compute an optimal solution xBk1 of

(4.101)

{
inf
x1

f2k−1
11 (x1, x0) +Qk2(x1)

x1 ∈ X2k−1
11 (x0).

Compute f1(xBk1 , x0, ξ1), g1i(x
Bk
1 , x0, ξ1), and subgradients of f1(·, ·, ξ1), g1i(·, ·, ξ1) at (xBk1 , x0) with

corresponding linearizations `f1(·,·,ξ1)(·, ·; (xBk1 , x0)) and `g1i(·,·,ξ1)(·, ·; (xBk1 , x0)).
Compute

f2k
11 (·, ·)← max

(
f2k−1

11 (·, ·), `f1(·,·,ξ1)(·, ·; (xBk1 , x0))
)
,

g2k
1i1(·, ·)← max

(
g2k−1

1i1 (·, ·), `g1i(·,·,ξ1)(·, ·; (xBk1 , x0))
)
.

Step 4) Do k ← k + 1 and go to Step 2).

22

4.2. Inexact cuts in StoDCuP. In this section, we present an extension of StoDCuP to solve problem
(3.49). Since all subproblems of forward StoDCuP presented in Section 3 are linear programs, it is easy
to derive an inexact variant of StoDCuP that computes εkt -optimal solutions (instead of optimal solutions
in StoDCuP) of the subproblems solved for iteration k and stage t. We show in Lemma 4.1 below that

the cuts computed by this variant are still valid and that the distance between the cuts and Qk−1
t (·) =∑Mt

j=1 ptjQ
k−1
tj (·) at the trial point xkn for stage t and iteration k is at most εkt . This variant of StoDCuP,

called inexact StoDCuP, is given below and the convergence of the method is proved in Theorem 4.3:

Inexact StoDCuP.

Step 1) Initialization. For t = 1, . . . , T , take f0
tj , g

0
tij : Xt×Xt−1 → R affine functions satisfying f0

tj ≤
ft(·, ·, ξtj), g0

tij ≤ gti(·, ·, ξtj), and for t = 2, . . . , T , Q0
t : Xt−1 → R is an affine function satisfying

Q0
t ≤ Qt. Set xn0

= x0, set the iteration count k to 1, and Q0
T+1 ≡ 0.

Step 2) Generate a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T) of (ξ1, ξ2, . . . , ξT) corresponding to a set of nodes (nk1 , n

k
2 , . . . , n

k
T)

where nk1 = n1, and for t ≥ 2, nkt is a node of stage t, child of node nkt−1. Set nk0 = n0.

Do θkT+1 = 0 and βkT+1 = 0.
For t = 1, . . . , T ,

Let n = nkt−1.
For every m ∈ C(n),

compute an εkt -optimal feasible solution xkm of

(4.102) Qk−1
tjt(m)(x

k
n) =

{
min
xm

fk−1
tjt(m)(xm, x

k
n) +Qk−1

t+1 (xm)

xm ∈ Xk−1
tjt(m)(x

k
n).

Compute an arbitrary subgradient [s1; s2] of convex function ft(·, ·, ξm) at (xkm, x
k
n) where

s1, s2 ∈ Rn and do aktjt(m) = s>1 , bktjt(m) = s>2 . For i = 1, . . . , p, compute an arbitrary

subgradient [s1i; s2i] of convex function gti(·, ·, ξm) at (xkm, x
k
n) where s1i, s2i ∈ Rn and do

dktijt(m) = s>1i, e
k
tijt(m) = s>2i. Compute

cktjt(m) = ft(x
k
m, x

k
n, ξm)− aktjt(m)x

k
m − bktjt(m)x

k
n,

hktijt(m) = gti(x
k
m, x

k
n, ξm)− dktijt(m)x

k
m − ektijt(m)x

k
n.

Compute an εkt -optimal feasible solution (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) of the dual problem

max
α,µ,δ,ν,λ

α>(Bk−1
tjt(m)x

k
n + Ck−1

tjt(m)) + µ>(Ek−1
tjt(m)x

k
n +Hk−1

tjt(m)) + δ>θ0:k−1
t+1 + λ>(btjt(m) −Btjt(m)x

k
n) + ν>x̄t

(Ak−1
tjt(m))

>α+ (Dk−1
tjt(m))

>µ+ (β0:k−1
t+1)>δ − X>t ν − (Atjt(m))

>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0.

End For
If t ≥ 2 compute:

(4.103)

βkt =
∑

m∈C(n)

pm

[
(Bktjt(m))

>αk−1
m + (Ek−1

tjt(m))
>µkm −B>tjt(m)λ

k
m

]
,

θkt =
∑

m∈C(n)

pm

[
〈αkm, Ck−1

tjt(m)〉+ 〈µkm, Hk−1
tjt(m)〉+ 〈δkm, θ0:k−1

t+1 〉+ 〈λkm, btjt(m)〉+ 〈νkm, x̄t〉
]
.

End If
End For

Step 4) Do k ← k + 1 and go to Step 2).

Clearly Lemma 3.6 still holds for Inexact StoDCuP. The quality of the cuts computed for Qt by Inexact
StoDCuP is given in Lemma 4.1:

23

Lemma 4.1 (Validity and quality of cuts computed by Inexact StoDCuP). Let Assumptions (H0) and
(H1)-Sto hold. For every t = 2, . . . , T + 1, for every k ≥ 1, we have

(4.104) Qt(xt−1) ≥ Ckt (xt−1) and Qt(xt−1) ≥ Qkt (xt−1), ∀xt−1 ∈ Xt−1.

For all t = 1, . . . , T , j = 1, . . . ,Mt, for every k ≥ 1, we have

(4.105) Qk
tj(xt−1) ≤ Qt(xt−1, ξtj) for all xt−1 ∈ Xt−1.

For all t = 2, . . . , T , for every k ≥ 1, defining Qk−1
t (xkn) =

∑Mt

j=1 ptjQ
k−1
tj (xkn), we have for every n ∈

Nodes(t− 1) and for all k ∈ Sn:

(4.106) 0 ≤ Qk−1
t (xkn)− Ckt (xkn) ≤ εkt .

Proof: The proofs of (3.68) and (3.69) in Lemma 3.7 can be used to prove (4.104) and (4.105) for Inexact
StoDCuP, observing that only feasibility and not optimality of the primal and dual solutions computed as
well as Lemma 3.6 (which, as we have already observed, holds) are needed in these proofs.

Now take n ∈ Nodes(t− 1) and k ∈ Sn. Then recalling that

Dk−1
tj (α, µ, δ, ν, λ;xt−1) = α>(Bk−1

tj xt−1 + Ck−1
tj) + µ>(Ek−1

tj xt−1 +Hk−1
tj) + δ>θ0:k−1

t+1 + λ>(btj −Btjxt−1) + ν>x̄t,

by definition of (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) and of Ckt , we get

(4.107) Qk−1
tjt(m)(x

k
n)− εkt ≤ Dk−1

tjt(m)(α
k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn) ≤ Qk−1

tjt(m)(x
k
n)

and

(4.108) Ckt (xkn) =
∑

m∈C(n)

pmDk−1
tjt(m)(α

k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn).

Since Qk−1
t (xkn) =

∑
m∈C(nk

t−1) pmQk−1
tjt(m)(x

k
n), pm ≥ 0, and

∑
m∈C(n) pm = 1, relations (4.107) and (4.108)

imply (4.106).
Lemma 4.2 below is the analogue of Lemma 3.3:

Lemma 4.2. Let Assumptions (H0) and (H1)-Sto hold and assume that sequences εkt are bounded: |εkt | ≤ ε̂
for all t, k, for some 0 ≤ ε̂ < +∞. Then, the following statements hold for Inexact StoDCuP:

(a) For t = 2, . . . , T , the sequences {θkt }∞k=1 and {βkt }∞k=1 are almost surely bounded.
(b) There exists L ≥ 0 such that for each t = 2, . . . , T , Qkt is L-Lipschitz continuous on Xt−1 for every

k ≥ 1.
(c) There exists L̂ ≥ 0 such that for each t = 1, . . . , T , j = 1, . . . ,Mt, functions fktj and gktij are L̂-

Lipschitz continuous on Xt ×Xt−1 for every k ≥ 1 and i = 1, . . . , p.

Proof: (a) Using (H1)-Sto, there is ε > 0 such that for every t ∈ {2, . . . , T}, every xt−1 ∈ Xt−1 + B̄(0; ε),
and every j = 1, . . . ,Mt, the set X0

tj(xt−1) is nonempty and f0
tj(·, xt−1) +Q0

t+1(·) is continuous on this set.

Therefore Q0
tj is convex and finite on Xt−1 + B̄(0; ε), implying that Q0

tj is Lipschitz continuous on Xt−1. It

follows that Q0
t is also Lipschitz continuous on Xt−1 and we can define min

xt−1∈Xt−1

Q0
t (xt−1) ∈ R. Similarly

to DCuP, due to (H1)-Sto, we can also choose ε > 0 in such a way that Qt is Lipschitz continuous on
Xt−1 + B̄(0; ε), implying that we can define maxxt−1∈Xt−1+B̄(0;ε)Qt(xt−1) < +∞. We can now easily extend

the proof of Lemma 3.3: for every xt−1 ∈ Xt−1 + B̄(0; ε), denoting n = nkt−1, we have for k ≥ 2:

max
xt−1∈Xt−1+B̄(0;ε)

Qt(xt−1) ≥ Qt(xt−1)
(4.104)

≥ Ckt (xt−1)

= Ckt (xkn) + 〈βkt , xt−1 − xkn〉 [Ckt is affine],
(4.106)

≥ Qk−1
t (xkn)− εkt + 〈βkt , xt−1 − xkn〉,

≥ min
xt−1∈Xt−1

Q0
t (xt−1)− ε̂+ 〈βkt , xt−1 − xkn〉.

For βkt 6= 0, take xt−1 = xkn + ε
2
βk
t

‖βk
t ‖

to obtain

‖βkt ‖ ≤ L :=
2

ε

(
ε̂+ max

xt−1∈Xt−1+B̄(0;ε)
Qt(xt−1)− min

xt−1∈Xt−1

Q0
t (xt−1)

)
.

24

Using (4.106), we also have for n = nkt−1:

−ε̂+ min
xt−1∈Xt−1

Q0
t (xt−1) ≤ θkt = Ckt (xkn) ≤ max

xt−1∈Xt−1

Qt(xt−1).

(b) immediately follows from (a) and (c) from (H1)-Sto.

Theorem 4.3 (Convergence of Inexact StoDCuP). Let Assumptions (H0), (H1)-Sto, and (H2) hold and
assume that limk→+∞ εkt = 0 for t = 1, . . . , T . Then the conclusions of Theorem 3.8 hold: for every
t = 1, . . . , T ,i = 1, . . . , p, almost surely (3.76) and (3.77) hold and the limit of the sequence of first stage

problems optimal values (fk−1
11 (xkn1

, x0) + Qk−1
2 (xkn1

))k≥1 is the optimal value Q1(x0) of (3.50) and any

accumulation point of the sequence (xkn1
) is an optimal solution to the first stage problem (3.50).

Proof: The proof is an adaptation of the proof of Theorem 3.8 and uses Lemmas 3.6, 4.1, and 4.2. We
highlight these adaptations below.

Using Lemma 4.1, for Inexact StoDCuP relation (3.86) becomes

(4.109)

0 ≤ Qt(xk(`)
n)−Qk(`)

t (x
k(`)
n) ≤ Qt(xk(`)

n)− Ck(`)
t (x

k(`)
n)

(3.70)

≤ ε
k(`)
t +Qt(xk(`)

n)−Qk(`)−1
t (x

k(`)
n),

= ε
k(`)
t +

∑
m∈C(n

k(`)
t−1)

pm

[
Qt(x

k(`)
n , ξm)−Q

k(`)−1
tjt(m) (xk(`)

n)
]
.

Also, by definiton of xkm, we now have

(4.110) Q
k(`)−1
tjt(m) (xk(`)

n) ≤ fk(`)−1
tjt(m) (xk(`)

m , xk(`)
n) +Qk(`)−1

t+1 (xk(`)
m) ≤ Q

k(`)−1
tjt(m) (xk(`)

n) + ε
k(`)
t ,

which, plugged into (4.109) gives
(4.111)

0 ≤ Qt(xk(`)
n)−Qk(`)

t (xk(`)
n) ≤ 2ε

k(`)
t +

∑
m∈C(n

k(`)
t−1)

pm

[
Qt(x

k(`)
n , ξm)− fk(`)−1

tjt(m) (xk(`)
m , xk(`)

n)−Qk(`)−1
t+1 (xk(`)

m)
]
.

The remaining relations and arguments used in the convergence proof of StoDCuP apply to prove the
theorem.

4.3. Other variants. It is also easy to incorporate in StoDCuP regularization as in [10], to apply multicut
variants as in [7], [1], and cut selection strategies for the bundles of cuts of Qt, for instance along the lines
of [14], [4], [7]. Observe, however, that all linearizations for ft(·, ·, ξtj) and gti(·, ·, ξtj) are tight and therefore
no cut selection is needed for these linearizations.

5. Conclusion

We introduced the exact and inexact StoDCuP (Stochastic Dynamic Cutting Plane) methods which are
extensions of the SDDP method to solve MSPs. As a future work, it would be interesting to compare for
several MSPs, for instance on real-life applications modelled by MSPs, the performances of SDDP, Inexact
SDDP from [5], and StoDCuP and its variants presented in this paper.

Acknowledgments

The research of the first author was partially supported by an FGV grant, CNPq grants 401371/2014-0,
311289/2016-9, 204872/2018-9, and FAPERJ grant E-26/201.599/2014. Research of the second author was
partially supported by CNPq grant 401371/2014-0.

References

[1] J.R. Birge. Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res., 33:989–1007,
1985.

[2] P. Girardeau, V. Leclere, and A.B. Philpott. On the convergence of decomposition methods for multistage stochastic convex
programs. Mathematics of Operations Research, 40:130–145, 2015.

[3] V. Guigues. Convergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex

programs. SIAM Journal on Optimization, 26:2468–2494, 2016.

25

[4] V. Guigues. Dual dynamic programing with cut selection: Convergence proof and numerical experiments. European Journal

of Operational Research, 258:47–57, 2017.

[5] V. Guigues. Inexact cuts in Stochastic Dual Dynamic Programming. Siam Journal on Optimization, to appear, 2018.
[6] V. Guigues. Inexact Stochastic Mirror Descent for two-stage nonlinear stochastic programs. arXiv, 2018. https://arxiv.

org/pdf/1805.11732.pdf.

[7] V. Guigues and M. Bandarra. Single cut and multicut SDDP with cut selection for multistage stochastic linear programs:
convergence proof and numerical experiments. arXiv, 2019. https://arxiv.org/abs/1902.06757.

[8] V. Guigues and W. Römisch. Sampling-based decomposition methods for multistage stochastic programs based on extended
polyhedral risk measures. SIAM J. Optim., 22:286–312, 2012.

[9] V. Guigues and W. Römisch. SDDP for multistage stochastic linear programs based on spectral risk measures. Operations

Research Letters, 40:313–318, 2012.
[10] V. Guigues, W. Tekaya, and M. Lejeune. Regularized decomposition methods for deterministic and stochastic convex

optimization and application to portfolio selection with direct transaction and market impact costs. Optimization OnLine,

2017.
[11] R. P. Liu and A. Shapiro. Risk neutral reformulation approach to risk averse stochastc programming. arXiv, 2018. https:

//arxiv.org/abs/1901.01302.

[12] M.V.F. Pereira and L.M.V.G Pinto. Multi-stage stochastic optimization applied to energy planning. Math. Program.,
52:359–375, 1991.

[13] A. Philpott and V. de Matos. Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. European

Journal of Operational Research, 218:470–483, 2012.
[14] A. Philpott, V. de Matos, and E. Finardi. Improving the performance of stochastic dual dynamic programming. Journal

of Computational and Applied Mathematics, 290:196–208, 2012.
[15] A. B. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming and related methods. Oper.

Res. Lett., 36:450–455, 2008.

[16] W.P. Powell. Approximate Dynamic Programming. John Wiley and Sons, 2nd edition, 2011.
[17] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[18] T. Rockafellar. Conjugate Duality and Optimization. No 16 in Conference Board of Math. Sciences Series, SIAM Publi-

cations, pages 1–79, 1974.
[19] A. Ruszczyński and A. Shapiro. Conditional risk mappings. Mathematics of Operations Research, 31:544–561, 2006.

[20] A. Ruszczyński and A. Shapiro. Optimization of convex risk functions. Mathematics of Operations Research, 31:433–452,

2006.
[21] A. Shapiro. Analysis of stochastic dual dynamic programming method. European Journal of Operational Research, 209:63–

72, 2011.

[22] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling and Theory. SIAM,
Philadelphia, 2009.

Appendix

Proof of formula (2.48). We prove (2.48) adapting the proof of Lemma 2.1 in [6] to the special case of

value function Qk−1
t . Defining

Sk = Xt×R×R×Rn ∩ Ck ∩D,
where

Ck =

(xt, f, θ, xt−1) :


Ak−1
t xt +Bk−1

t xt−1 + Ck−1
t ≤ fe,

θ0:k−1
t+1 + β0:k−1

t+1 xt ≤ θe,
Dk−1
t xt + Ek−1

t xt−1 +Hk−1
t ≤ 0


D = {(xt, f, θ, xt−1) : Atxt +Btxt−1 = bt},

we have

(5.112) Qkt (xkt−1) =

{
inf f + θ + ISk(xt, f, θ, x

k
t−1)

xt ∈ Rn, f, θ ∈ R.

Using Theorem 24(a) in Rockafellar [18], we have

(5.113)
βkt ∈ ∂Q

k
t (xkt−1) ⇔ (0, 0, 0, βkt) ∈ ∂(f + θ + ISk)(xkt , ftk, θtk, x

k
t−1)

⇔ (0, 0, 0, βkt) ∈ [0; 1; 1; 0] +NSk(xkt , ftk, θtk, x
k
t−1), (a)

where ftk and θtk are the optimal values of respectively f and θ in (2.45). For equivalence (5.113)-(a), we
have used the fact that (xt, f, θ, xt−1) → f + θ and ISk are proper, finite at (xkt , ftk, θtk, x

k
t−1), and the

intersection of the relative interior of the domain of these functions, i.e., set ri(Sk), is nonempty. Next,
(5.114)
NSk(xkt , ftk, θtk, x

k
t−1) = NCk

(xkt , ftk, θtk, x
k
t−1) +ND(xkt , ftk, θtk, x

k
t−1) +NXt×R×R×Rn(xkt , ftk, θtk, x

k
t−1),

26

and standard calculus on normal cones gives

(5.115)
NXt×R×R×Rn(xkt , ftk, θtk, x

k
t−1) = NXt(x

k
t)×{0}×{0}×{0},

ND(xkt , ftk, θtk, x
k
t−1) =

{
[A>t ; 0; 0;B>t]λ : λ ∈ Rq

}
,

and NCk
(xkt , ftk, θtk, x

k
t−1) is the set of points of form

(5.116)


(Ak−1

t)>α+ (β0:k−1
t+1)>δ + (Dk−1

t)>µ
−e>α
−e>δ

(Bk−1
t)>α+ (Ek−1

t)>µ


where α, δ, µ satisfy

(5.117)

α, δ, µ ≥ 0, α
δ
µ

> Ak−1
t xkt +Bk−1

t xkt−1 + Ck−1
t − ftke

θ0:k−1
t+1 + β0:k−1

t+1 xkt − θtke
Dk−1
t xkt + Ek−1

t xkt−1 +Hk−1
t

 = 0.

Combining (5.113), (5.114), (5.115), (5.116), we see that βkt ∈ ∂Q
k
t (xkt−1) if and only if βkt is of form

(5.118) B>t λ+ (Bk−1
t)>α+ (Ek−1

t)>µ

where α, λ, µ satisfies (5.117) and

(5.119)
0 ∈ NXt(x

k
t) +A>t λ+ (Ak−1

t)>α+ (β0:k−1
t+1)δ + (Dk−1

t)>µ,
0 = 1− e>α,
0 = 1− e>δ.

Finally, it suffices to observe that α, λ, µ satisfies (5.117) and (5.119) if and only if α, λ, µ, δ is an optimal

solution of dual problem (2.46). Therefore ∂Qkt (xkt−1) is the set of points of form (5.118) where α, λ, µ, δ is
an optimal solution of dual problem (2.46). �

To prove (3.84) and (3.97), we will need the following lemma (the proof of (ii) of this lemma was given in
[2] for a more general sampling scheme and the proof of (i), that we detail, is similar to the proof of (ii)):

Lemma 5.1. Assume that Assumptions (H0), (H1)-Sto, and (H2) hold for StoDCuP. Define random vari-
ables ykn = 1(k ∈ Sn).

(i) Let ε > 0, t ∈ {1, . . . , T}, n ∈ Nodes(t− 1), m ∈ C(n), i ∈ {1, . . . , p} and set

Kε,m,i =
{
k ≥ 1 : gti(x

k
m, x

k
n, ξm)− gk−1

tijt(m)(x
k
m, x

k
n) ≥ ε

}
.

Let
Ω0(ε) = {ω ∈ Ω : |Kε,m,i(ω)| is infinite}

and assume that Ω0(ε) 6= ∅. Define on the sample space Ω0(ε) the random variables Iε,m,i(j), j ≥ 1, where
Iε,m,i(1) = min{k ≥ 1 : k ∈ Kε,m,i(ω)} and for j ≥ 2

Iε,m,i(j) = min{k > Iε,m,i(j − 1) : k ∈ Kε,m,i(ω)},

i.e., Iε,m,i(j)(ω) is the index of jth iteration k such that gti(x
k
m, x

k
n, ξm) − gk−1

tijt(m)(x
k
m, x

k
n) ≥ ε. Then

random variables (y
Iε,m,i(j)
n)j≥1 defined on sample space Ω0(ε) are independent, have the distribution of y1

n

and therefore by the Strong Law of Large numbers we have

(5.120) P

 lim
N→+∞

1

N

N∑
j=1

yIε,m,i(j)
n = E[y1

n]

 = 1.

(ii) Let ε > 0, t ∈ {1, . . . , T}, n ∈ Nodes(t− 1), and set

Kε,n =
{
k ≥ 1 : Qt(xkn)−Qkt (xkn) ≥ ε

}
.

Let
Ω1(ε) = {ω ∈ Ω : |Kε,n(ω)| is infinite}

27

and assume that Ω1(ε) 6= ∅. Define on the sample space Ω1(ε) the random variables Iε,n(j), j ≥ 1, where
Iε,n(1) = min{k ≥ 1 : k ∈ Kε,n(ω)} and for j ≥ 2

Iε,n(j) = min{k > Iε,n(j − 1) : k ∈ Kε,n(ω)},

i.e., Iε,n(j)(ω) is the index of jth iteration k such that Qt(xkn) − Qkt (xkn) ≥ ε. Then random variables

(y
Iε,n(j)
n)j≥1 defined on sample space Ω1(ε) are independent, have the distribution of y1

n and therefore by the
Strong Law of Large numbers we have

(5.121) P

 lim
N→+∞

1

N

N∑
j=1

yIε,n(j)
n = E[y1

n]

 = 1.

Proof: (i) Define on the sample space Ω0(ε) the random variables (wkε,m,i)k by

wkε,m,i(ω) =

{
1 if k ∈ Kε,m,i(ω)
0 otherwise.

To alleviate notation (ε,m, n, i being fixed), let us put wk := wkε,m,i, I(j) := Iε,m,i(j), For yj ∈ {0, 1}, we
have

(5.122) P
(
yI(j)
n = yj

)
=

∞∑
Ij=1

P
(
yIjn = yj ; I(j) = Ij

)
.

Observe that the event I(j) = Ij can be written as the union
⋃

1≤I1<I2<...<Ij E(I1, . . . , Ij) of events

E(I1, . . . , Ij) :=

{
wI1 = . . . = wIj = 1,
w` = 0, 1 ≤ ` < Ij , ` /∈ {I1, . . . , Ij}

}
.

Due to Assumption (H2) observe that random variable y
Ij
n is independent of random variables wi, i =

1, . . . , Ij , and therefore events {yIjn = yj} and {I(j) = Ij} are independent which gives
(5.123)

P
(
y
I(j)
n = yj

)
=

∞∑
Ij=1

P
(
yIjn = yj ; I(j) = Ij

)
=

∞∑
Ij=1

P
(
yIjn = yj

)
P
(
I(j) = Ij

)
= P

(
y1
n = yj

) ∞∑
Ij=1

P
(
I(j) = Ij

)
= P

(
y1
n = yj

)

where we have used the fact that y1
n and y

Ij
n have the same distribution (from (H2)).

Next for y1, . . . , yp ∈ {0, 1}, we have

P
(
y
I(1)
n = y1, . . . , y

I(p)
n = yp

)
=

∞∑
1≤I1<I2<...<Ip

P
(
yI1n = y1; . . . ; yIpn = yp; I(1) = I1; . . . ; I(p) = Ip

)
.

By the same reasoning as above, the event{
yI1n = y1; . . . ; yIp−1

n = yp−1; I(1) = I1; . . . ; I(p) = Ip
}

28

can be expressed in terms of random variables yI1n , . . . , y
Ip−1
n , wI1n , . . . , w

Ip
n , and is therefore independent of

event {yIpn = yp}. It follows that
(5.124)

P
(
y
I(j)
n = yj , 1 ≤ j ≤ p

)
=

∞∑
1≤I1<I2<...<Ip

P
(
yIpn = yp

)
P
(
yIjn = yj , 1 ≤ j ≤ p− 1; I(j) = Ij , 1 ≤ j ≤ p

)
= P

(
y1
n = yp

) ∞∑
1≤I1<I2<...<Ip

P
(
yIjn = yj , 1 ≤ j ≤ p− 1; I(j) = Ij , 1 ≤ j ≤ p

)
= P

(
y1
n = yp

) ∞∑
1≤I1<I2<...<Ip−1

P
(
yIjn = yj , 1 ≤ j ≤ p− 1; I(j) = Ij , 1 ≤ j ≤ p− 1

)
= P

(
y1
n = yp

)
P
(
y
I(j)
n = yj , 1 ≤ j ≤ p− 1

)
.

By induction this implies

(5.125) P
(
y
I(j)
n = yj , 1 ≤ j ≤ p

)
=

p∏
j=1

P
(
y1
n = yj

)
(5.123)

=

p∏
j=1

P
(
yI(j)
n = yj

)
which shows that random variables (y

I(j)
n)j≥1 are independent.

The proof of (ii) is similar to the proof of (i).
Proof of (3.84) and (3.97). As in [2], we can now use the previous lemma to prove (3.84) and (3.97).

Let us prove (3.84). By contradiction, assume that (3.84) does not hold. Then there is ε > 0 such that the
set Ω0(ε) defined in Lemma 5.1 is nonempty. By Lemma 5.1, this implies that (5.120) holds. But due to

(3.83), only a finite number of indices Iε,m,i(j) can be in Sn (with corresponding variable y
Iε,m,i(j)
n being

one) and therefore P
(

limN→+∞
1
N

∑N
j=1 y

Iε,m,i(j)
n = 0

)
= 1, which is a contradiction with (5.120).

The proof of (3.97) is similar to the proof of (3.84), by contradiction and using (3.96) and Lemma 5.1-(ii)
(see also [2], [3]). �

29

