
Constant Depth Decision Rules for multistage optimization under

uncertainty

Vincent Guigues ∗ Anatoli Juditsky † Arkadi Nemirovski ‡

Abstract

In this paper, we introduce a new class of decision rules, referred to as Constant Depth

Decision Rules (CDDRs), for multistage optimization under linear constraints with uncertainty-

affected right-hand sides. We consider two uncertainty classes: discrete uncertainties which can

take at each stage at most a fixed number d of different values, and polytopic uncertainties

which, at each stage, are elements of a convex hull of at most d points. Given the depth

µ of the decision rule, the decision at stage t is expressed as the sum of t functions of µ

consecutive values of the underlying uncertain parameters. These functions are arbitrary in the

case of discrete uncertainties and are poly-affine in the case of polytopic uncertainties. For these

uncertainty classes, we show that when the uncertain right-hand sides of the constraints of the

multistage problem are of the same additive structure as the decision rules, these constraints

can be reformulated as a system of linear inequality constraints where the numbers of variables

and constraints is O(1)(n+m)dµN2 with n the maximal dimension of control variables, m the

maximal number of inequality constraints at each stage, and N the number of stages.

As an illustration, we discuss an application of the proposed approach to a Multistage

Stochastic Program arising in the problem of hydro-thermal production planning with interstage

dependent inflows. For problems with a small number of stages, we present the results of a

numerical study in which optimal CDDRs show similar performance, in terms of optimization

objective, to that of Stochastic Dual Dynamic Programming (SDDP) policies, often at much

smaller computational cost.

Keywords: Stochastic Programming; Robust Optimization; Decision rules; Stochastic Dual

Dynamic Programming.

AMS subject classifications: 90C15, 90C90.

∗Corresponding author, School of Applied Mathematics FGV/EMAp, 22 250-900 Rio de Janeiro, Brazil

vincent.guigues@fgv.br
†LJK, Université Grenoble Alpes, 700 Avenue Centrale 38041 Domaine Universitaire de Saint-Martin-d’Hères,

France, anatoli.juditsky@imag.fr
‡Georgia Institute of Technology, Atlanta, Georgia 30332, USA, nemirovs@isye.gatech.edu

1

1 Introduction

Multistage optimization problems under uncertainty arise in many real-life applications in finance

and engineering, see for instance [1, 2] and references therein, but are challenging to solve. Such

problems with stochastic uncertainties — Multistage Stochastic Programs (MSPs) — are typically

replaced with their discretized (scenario) formulations [2]. Because the number of variables in the

deterministic equivalent of such approximations increases very quickly with the number N of stages

these problems are computationally intractable [3] in general. “Practical” solution methods for con-

vex MSPs often use decomposition techniques based on Dynamic Programming with two popular

methods being Approximate Dynamic Programming and Stochastic Dual Dynamic Programming

(SDDP), introduced in [4]. The latter method is a sampling-based extension of the Nested De-

composition method [5] which relies upon computing approximations of the Bellman functions.

Both techniques have been applied to a variety of real-life problems and several enhancements of

these methods have been proposed recently, see, e.g., [6, 7] for an overview of these techniques and

[8, 9, 10, 11, 12] for convergence analysis and some of recent variations. However, to the best of our

knowledge, apart from some asymptotic convergence results, no theoretical performance guaranty

is available for these methods.

Another general approach which has proved successful for various classes of uncertain optimiza-

tion problems relies on restricting the control policies to belong to certain parametric families of

functions of those uncertain parameters which are known at the moment when the decision is to

be applied. This approach often allows for a tractable reformulation of the corresponding opti-

mization problem. The simplest rules of this type are affine rules which were studied for stochastic

and chance-constrained programming [13, 14] and, more recently, in the context of robust opti-

mization [15, 16]. Though affine decision strategies are generally suboptimal [17] they usually

provide a convenient conservativeness/numerical cost tradeoff and have been successfully used in

many real-life applications, such as production management [18], portfolio optimization [19], and

unit commitment problems [20]. Nevertheless, to reduce the conservativeness of affine decisions at

the price of increased computational complexity, other families of parametric decision rules were

recently proposed, e.g., those using liftings as in [21], polynomial decision rules [22], or projected

affine decision rules combined with dynamic chance constraints as in [23], among others.

In this paper, we discuss a new family of decision rules for multistage uncertain problems called

Constant Depth Decision Rules (CDDRs). We consider two classes of problems: problems with

discrete uncertain parameters which, at each stage, take values in a finite set, and problems with

polytopic uncertainties taking values, at each stage, in a convex hull of a finite number of points.

When dealing with discrete uncertainties the corresponding decision xt(·) at stage t is additive with

memory µ, i.e., is a sum of t (arbitrary) functions uts(·), s = 1, ..., t, of µ consecutive observations

of uncertain parameters preceding stage s (here µ is a given depth parameter of the rule). When

uncertainties are polytopic, decision variable xt(·) at stage t is a poly-affine function, i.e. a sum of

functions vts(·), s = 1, ..., t, of µ consecutive observations of uncertainties preceding stage s which are

2

affine in each argument (see the precise definition in Section 3.1). We study a class of optimization

problems under uncertainty with linear constraints and uncertain right-hand sides. Our objective

is to minimize convex deterministic or stochastic objective over the set of Constant Depth Decision

Rules satisfying the constraints. Our principal contributions are the following.

• We provide a tractable equivalent reformulation of the problem to be solved to compute

optimal CDDRs. Specifically, for an N -stage optimization problem with no more than m

linear constraints and n variables at each stage t, and at most d possible values of uncertain

parameters at each stage t, and right-hand side uncertainties of the same additive structure

as our decision rules, we rewrite the system of linear constraints on CDDRs xt(·) as a linear

system of constraints with the total numbers of scalar decision variables and scalar constraints

bounded with O(1)(m+ n)N2dµ.

• We establish similar results for the case when the uncertainty at each stage runs through

a polytope with at most d vertices, and decision rules and uncertain right-hand sides of

the linear constraints are allowed to be poly-affine, with memory depth µ, functions of the

uncertainties.

• Finally, to illustrate an application of the proposed approach, we compare it to that of SDDP

on a toy problem of hydro-thermal production planning using a MATLAB toolbox https://

github.com/vguigues/Constant_Depth_Decision_Rules_Library for computing optimal

CDDRs for multistage linear programs with discrete uncertainties.

The paper is organized as follows. In Section 2 we describe the CDDR approach in the case of

discrete uncertainties. In particular, we show how to reformulate the system of uncertain linear

constraints of the problem of interest, when solved using CDDRs, as a linear system of inequalities

on the coefficients of the CDDRs, with size of the system polynomial, the memory depth µ being

fixed, in the sizes of the problem of interest. In Section 3 we develop CDDRs applied to problems

with uncertainties supported on polytopes. We illustrate the use of the proposed methodology

on an example of hydro-thermal production planning application described in Section 4. Results

of numerical experiments comparing CDDRs to SDDP are reported in Section 4.2 along with a

comparative discussion of these approaches to the application in question.

2 Fixed memory decision making under discrete uncertainty

2.1 The problem

Consider the situation where we control a system S evolving over stages 1, ..., N and affected by our

decisions xt ∈ Rnt and external disturbances (“uncertainties”) ξt, 1 ≤ t ≤ N , where xt is allowed

to be a function of ξt = (ξ1, ..., ξt): xt = xt(ξ
t). We assume that

3

https://github.com/vguigues/Constant_Depth_Decision_Rules_Library
https://github.com/vguigues/Constant_Depth_Decision_Rules_Library

A.1. For every t ≤ N , disturbance ξt takes values in a finite set of cardinality dt, which we identify,

without loss of generality, with Dt = {1, 2, ..., dt}.

A.2. Feasibility of controls xt is expressed by linear constraints

t∑
τ=1

Atτxτ (ξτ) ≤ bt(ξt) ∈ Rmt , t = 1, ..., N (2.1)

which should be satisfied for all trajectories ξN ∈ DN = D1 × ...×DN .

Under these restrictions, we want to minimize a given objective. In order to make the problem

computationally tractable, we further restrict the structure of the decision rules we allow for. We

also consider a specific class of objective functions and a special form of dependence of bt(ξ
t) on ξt,

as explained below.

Preliminaries: additive functions with memory µ. To avoid messy notation, we augment a

sequence ξτ = (ξ1, ξ2, . . . , ξτ) ∈ Dτ := D1× ...×Dτ with terms ξs with nonpositive indices s ≤ 0; all

these terms take values in the singletons Ds = {1}, that is, from now on ξs = 1 when s ≤ 0. Besides

this, for a trajectory of disturbances — a sequence ξN = (ξ1, ..., ξN) ∈ DN — and p ≤ q ≤ N , we

denote by ξp:q the fragment (ξp, ξp+1, . . . , ξq) of ξN , with the already made convention that ξs = 1

for s ≤ 0. Finally, let us agree that notation ξt when used in the same context with ξp or ξp:q,

with q ≤ t, means that ξp is the p-th entry, and ξp:q is the fragment (ξp, ξp+1, ..., ξq) of the sequence

ξt = (ξ1, ..., ξt) ∈ Dt.

Definition 2.1 Given a positive integer µ, let us call a function g(ξ1, ξ2, ..., ξt) : Dt → Rν additive

with memory µ, if

g(ξ1, ..., ξt) =

t∑
τ=1

uτξτ−µ+1:τ ,

where coefficients uτξτ−µ+1:τ of g take values in Rν .

Example 2.1 An additive with memory 1 function g : Dt → Rν is specified by the collection

{uτξ ∈ Rν : 1 ≤ τ ≤ t, 1 ≤ ξ ≤ dτ} of coefficients of g, and the value of g at a ξt ∈ Dt is the sum∑t
τ=1 uτξτ of the coefficients taken “along the trajectory ξt = (ξ1, ..., ξt).”

Structural restrictions. In the sequel, aside of Assumptions A.1-2 we have already made, we

fix a positive integer µ and impose the following restrictions on the structure of problem constraints

and decision rules:

4

A.3. The right-hand sides bt(ξ
t) in design specifications (2.1) are additive with memory µ.

A.4. The decision rules xt(ξ
t) are restricted to be additive with memory µ.

According to A.3, we have

bt(ξ
t) =

t∑
τ=1

βtτξτ−µ+1:τ
(2.2)

for some collection {
βtτξ ∈ Rmt , 1 ≤ τ ≤ t, ξ ∈ Dτ−µ+1:τ

}
,

Dp:q = Dp ×Dp+1 × ...×Dq.

Observe that A.3 encompasses a large class of right-hand sides. For instance, it allows bt which

are affine in ξt with ξt satisfying a linear model, e.g., the autoregressive ξt’s as is the case in the

application considered in Section 4. Furthermore, bt(ξ
t) may be a nonlinear function of ξt; for

example, for µ = 2 one may consider bt(·) of the form
∑t

j=1 ftj(ξj , ξj−1) with arbitrary functions

ftj(·), etc.

Similarly, by A.4, candidate decision rules xN = {xt(·) : 1 ≤ t ≤ N} can be parameterized by

collections

uN =
{
utτξ ∈ Rnt : 1 ≤ τ ≤ t ≤ N, ξ ∈ Dτ−µ+1:τ

}
according to

xt(ξ
t) =

t∑
τ=1

utτξτ−µ+1:τ
. (2.3)

Our final assumption is as follows:

A.5. The objective to be minimized is an efficiently computable convex function f(uN) of the vec-

tor uN of parameters of a candidate decision rule.

Immediate examples of the objectives of the required structure are given by the following con-

struction: we are given a real-valued function F (xN , ξN) which is convex in xN = [x1;x2; ...;xN] ∈
Rn1 × ... × RnN , and a probability distribution P on the set DN of N -element trajectories of

disturbances, and our objective is the expectation f(uN) =EξN∼P
{
F (xN (ξN), ξN)

}
of the “loss”

F (xN , ξN) as evaluated at our controls. When decision rules xt(ξ
t) are additive, with memory µ,

objectives of this type are convex in uN ; whether they are efficiently computable depends on the

structure of P . Computability takes place when P is known and supported on a subset of DN of

moderate cardinality. When this is not the case, but we can efficiently sample from P , we can arrive

at the latter situation when replacing the actual objective by its Sample Average Approximation

(that is, approximating P by the uniform distribution on a reasonably large sample of trajectories

of disturbances drawn from P , see [2]).

5

Another important example of objective satisfying A.5 is the maximum, over all trajectories

ξN ∈ DN , of a linear functional
∑N

t=1 η
T
t xt(ξ

t) of the control trajectory, cf. Section 2.3.

2.2 Processing the problem

Treating uN = {utτξ ∈ Rnt : 1 ≤ τ ≤ t ≤ N, ξ ∈ Dτ−µ+1:τ} as our design variables, the constraints

(2.1) read
t∑

τ=1

Atτxτ (ξτ)− bt(ξt) ≤ 0 ∀(t, 1 ≤ t ≤ N, ξN ∈ DN), (2.4)

or equivalently (see (2.2), (2.3))

t∑
s=1

[
t∑

τ=s

Atτuτsξs−µ+1:s
− βtsξs−µ+1:s

]
≤ 0 ∀(t, 1 ≤ t ≤ N, ξN ∈ DN). (2.5)

The crucial fact for us is that constraints (2.5) can be reduced to an explicit system of linear

inequality constraints on the design variables utτξ and additional “analysis” variables. The con-

struction goes as follows.

1. We introduce variables ytτξ ∈ Rmt , 1 ≤ τ ≤ t ≤ N, ξ ∈ Dτ−µ+1:τ , and link them to our

decision variables utτξ by linear equality constraints

ytsξ =
t∑

τ=s

Atτuτsξ − βtsξ, ∀ξ ∈ Ds−µ+1:s, 1 ≤ s ≤ t ≤ N. (2.6)

In terms of these variables (2.5) reads

t∑
s=1

ytsξs−µ+1:s
≤ 0 ∀ξN ∈ DN . (2.7)

To avoid messy notation, we describe our subsequent actions separately for the case of µ = 1 and

of µ > 1.

2.A: Case of µ = 1. For every t ∈ {1, ..., N}, we introduce variables zts ∈ Rmt , 1 ≤ s ≤ t, and

impose the linear inequalities

zts ≥ ytsξ + zts+1∀ξ ∈ Ds, s = t, t− 1, ..., 1, (2.8a)

zt1 ≤ 0 (2.8b)

where ztt+1 ≡ 0. Clearly, the i-th entry [zts]i in zts is an upper bound on maxξN∈DN
[∑t

r=s y
t
rξr

]
i
,

and constraints (2.8a) allow to make this bound equal to the latter quantity. Consequently, the

system S of constraints (2.6) and (2.8) on variables u, y, z provides a polyhedral representation

6

of the solution set of (2.4). In other words, a collection uN of actual design variables utτξ sat-

isfies constraints (2.4) if and only if uN can be extended, by properly selected values of y- and

z-variables, to a feasible solution of S. On the other hand, (2.8) is entrywise decomposable (it is a

collection of mt systems of linear inequalities, with the i-th system involving only the i-th entries

in y-and z-vectors), and as far as the i-th entries in ytsξ and zts are concerned, (2.8a) is nothing but

the “backward” Dynamic Programming description of an upper bound [zt1]i on max
ξN∈DN

[∑t
s=1 y

t
sξs

]
i

(recall that we are in the case of µ = 1), while (2.8b) says that the resulting bound should be

nonpositive for all i, exactly as required in (2.7).

2.B: Case of µ ≥ 2. As in the case µ = 1, what follows is nothing but backward Dynamic

Programming description, expressed by linear inequalities, of vector zt1ξ2−µ:0 with i-th entry, i ≤ mt,

upper-bounding max
ξN∈DN

[∑t
s=1 y

t
sξs−µ+1:s

]
i
. As is immediately seen, to get this description it suffices

to introduce variables ztsη ∈ Rmt , 1 ≤ s ≤ t, η ∈ Ds−µ+1:s−1, and subject them, along with the

y-variables, to linear constraints

zttξt−µ+1:t−1
≥ yttξt−µ+1:t

∀ξt ∈ Dt,

ztsξs−µ+1:s−1
≥ ytsξs−µ+1:s

+ zt(s+1)ξs−µ+2:s
∀ξs−µ+1:s ∈ Ds−µ+1:s, s = t− 1, t− 2, ..., 1,

zt1ξ2−µ:0 ≤ 0.

(2.9)

Similarly to the case of µ = 1, the system of all constraints (2.6) and (2.9) on variables u, y, z gives

a polyhedral representation of the solution set of (2.4).

The bottom line is that under Assumptions A.1-5, the problem of interest can be straight-

forwardly reduced to the problem of minimizing an efficiently computable convex objective f(uN)

over u-, y-, z-variables satisfying an explicit system of linear inequality constraints. Note that for

every fixed µ, the total number of variables and constraints in the resulting problem P is polyno-

mial in the sizes of the problem of interest. Specifically, assuming dt ≤ d, mt ≤ m and nt ≤ n

for all t, the total numbers of scalar decision variables and scalar constraints in P do not exceed

O(1)(m+ n)N2dµ.

Finally, observe that if bt is additive with memory µt then it is also additive with memory µ for

any µ ≥ max1≤i≤N µi and we can apply the proposed methodology utilizing additive with memory

µ decision rules for any µ ≥ max1≤i≤N µi.

2.3 Modifications

In the above exposition, we treated vectors βtτξ as part of the data. It is immediately seen that

when changing the status of some of β’s from being part of the data to being additional decision

variables and adding, say, linear constraints on these variables, we preserve tractability of the

resulting problem: our backward Dynamic Programming still allows us to convert constraints (2.6)

and (2.7) modified in this way into an explicit system of linear inequalities on “variables of interest”

7

(components of uN and new design variables coming from β’s) and additional y- and z-analysis

variables.

An immediate application of this observation is as follows. Suppose that Assumptions A.1-4

hold and assume that our goal is to minimize the worst case (i.e., the largest over ξN ∈ DN) value

of the function

F [{xt(ξt)}Nt=1] = max
`≤L

N∑
t=1

hTt`xt(ξ
t).

To this end it suffices to augment our original design variables uN = {utτξ} parameterizing additive,

with memory µ, candidate decision rules with a new decision variable w and extend the original

system
∑N

τ=1A
Nτxτ (ξτ) ≤ bN (ξN) of the last stage constraints by adding to it constraints

N∑
t=1

hTt`xt(ξ
t) ≤ w, ` = 1, ..., L.

As a result, we get a parametric, the parameter being ξN ∈ DN , system of linear inequalities

on uN and w. Applying backward Dynamic Programming in exactly the same way as above, we

convert this system into an explicit system of linear inequalities on uN , w, and additional y- and

z-variables. Minimizing the worst-case value of the above criterion is thus reduced to an explicit

Linear Programming problem in w and u-, y-, z-variables.

Until now we have assumed that control feasibility is expressed in terms of the system (2.1) of

linear constraints with uncertain right-hand sides. It may be worth mentioning that the proposed

approach can be straightforwardly modified to deal with linear constraints with uncertain matrices

or even specific nonlinear constraints at the price of restricting severely the class of control strategies.

Indeed, let us assume from now on that the control action xt depends solely on ξt−µ+1:t =

(ξt−µ+1, ..., ξt) so that representation (2.3) reduces to

xt(ξ
t) = utξt−µ+1:t

. (2.10)

Now, let us consider an uncertain linear system (2.1) satisfying Assumptions A.1., A.2. and A.3.

with uncertain technology matrices Atτ . More precisely, we assume that matrices Atτ depend on

the fragment ξτ−µ+1:τ = (ξτ−µ+1, ξτ−µ+2, . . . , ξτ) of ξτ , i.e., constraints (2.1) are replaced with the

constraints

∀(t : 1 ≤ t ≤ N) :
t∑

τ=1

Atτ (ξτ−µ+1:τ)uτξτ−µ+1:τ
≤ bt(ξt),

where bt, as before, is additive with memory µ.

As was done in Section 2.2, we can rewrite the constraints replacing y-variables with

ytsξ = Ats(ξ)usξ − βtsξ, ξ ∈ Ds−µ+1:s, 1 ≤ s ≤ t ≤ N,

8

and therefore all the machinery developed in Section 2.2 can be applied.

Given x0 ∈ Rn0 , let us now consider a system of convex nonlinear constraints

t∑
τ=1

Gtτ (xτ , xτ−1, ξτ−µ+1:τ) ≤ 0 ∈ Rmt , t = 1, ..., N, (2.11)

“coupling” control actions at subsequent stages, which should be satisfied for all trajectories ξN ∈
DN = D1× ...×DN with (ξt) satisfying A.1. We suppose that components Gtτi (x, x′, ξτ−µ+1:τ), i =

1, . . . ,mt, of Gtτ are convex in x and x′ for all possible (ξ1, ξ2, . . . , ξN) and all t, τ . As above,

using decision rules (2.10), we derive the following representation of constraints (2.11) in variables

utξt−µ+1:t
, t = 1, . . . , N, ξt−µ+1:t ∈ Dt−µ+1:t, and zts,ξs−µ:s−1

, 2 ≤ s ≤ t ≤ N , ξs−µ:s−1 ∈ Ds−µ:s−1, by

Dynamic Programming:

G11(u1ξ2−µ:1 , x0, ξ2−µ:1) ≤ 0,

∀t, 2 ≤ t ≤ N, ∀ξt−µ:t ∈ Dt−µ:t :

ztt,ξt−µ:t−1
≥ Gtt(utξt−µ+1:t

, ut−1ξt−µ:t−1
, ξt−µ+1:t),

∀s, t, 3 ≤ s ≤ t ≤ N, ∀ξs−µ−1:s−1 ∈ Ds−µ−1:s−1 :

zts−1,ξs−1−µ:s−2
≥ Gt s−1(us−1ξs−µ:s−1

, us−2ξs−µ−1:s−2
, ξs−µ:s−1) + zts,ξs−µ:s−1

,

∀t, 2 ≤ t ≤ N :

zt2,ξ2−µ:1 +Gt1(u1ξ2−µ:1 , x0, ξ2−µ:1) ≤ 0.

3 Fixed memory decision making under polytopic uncertainty

3.1 The problem

So far, we have considered multi-stage decision making under discrete uncertainty, where the exter-

nal disturbance acting at the controlled system at time t takes one of dt values known in advance.

Let us now consider the case of polytopic uncertainty, where the disturbance at time t is a vector

ζt taking values in a given polytope ∆t ⊂ Rνt−1. As before, we allow for our decision at time t,

xt ∈ Rnt , to depend on the sequence ζt = (ζ1, ..., ζt). From now on we make the following assump-

tions (cf. Assumptions A.1-2):

B.1. For every t ≤ N , disturbance ζt takes values in polytope ∆t ⊂ Rνt−1 given by the list of dt

scenarios χts:

∆t = Conv{χts, 1 ≤ s ≤ dt} ⊂ Rνt−1. (3.12)

We also assume that the scenarios affinely span Rνt−1 (this is w.l.o.g., since we can always

replace the embedding space Rνt−1 of ∆t by the affine span of ∆t). Thus, νt ≤ dt for all t.

9

B.2. Feasibility of controls xt is expressed by linear constraints

t∑
τ=1

Atτxτ (ζτ) ≤ bt(ζt) ∈ Rmt , t = 1, ..., N (3.13)

which should be satisfied for all trajectories ζN ∈ ∆N = ∆1 × ...×∆N .

Under these restrictions, we want to minimize a given objective. To ensure computational

tractability, as in the case of discrete disturbances, we impose structural restrictions on the allowed

xt(·)’s, bt(·)’s, and on the objective. Our main restriction is that the policies xt(·) and the right-

hand sides bt(·) are poly-affine with memory µ.

Poly-affine functions with memory µ. For notational convenience, we augment a sequence

ζτ = (ζ1, ζ2, ..., ζτ) ∈ ∆τ := ∆1 × ... ×∆τ with terms ζs with nonpositive indices s ≤ 0; all these

terms take values in the singletons ∆s = {0} = R0, that is, from now on ζs = 0 ∈ R when s ≤ 0.

Definition 3.1 Given a positive integer µ, let us call function g(ζ1, ζ2, ..., ζt) : ∆t → Rν poly-affine

with memory µ, if

g(ζ1, ..., ζt) =

t∑
τ=1

gτ (ζτ−µ+1, ..., ζτ),

where every component gτ (ζτ−µ+1, ..., ζτ) of g takes values in Rν and is affine in each of its argu-

ments ζτ−µ+1, ..., ζτ .

Example 3.1 • An affine vector-valued function g(ζt) =
∑t

τ=1 [pτ + Pτζτ] of ζ1, ..., ζt is poly-

affine with memory µ = 1; its components are gτ (ζτ) = pτ + Pτζτ .

• A general poly-affine vector-valued function g(ζt) of ζτ ∈ Rντ , 1 ≤ τ ≤ t, with memory µ = 2

is a function representable in the form

g(ζt) =
t∑

τ=1

gτ (ζτ−1, ζτ), gτ (ζτ−1, ζτ) = pτ + Pτζτ +
∑

1≤r≤ντ−1,

1≤s≤ντ

[ζτ−1]r[ζτ]sfτ,r,s,

where pτ , fτ,r,s, Pτ are vectors and matrix of appropriate sizes, and [a]i stands for i-th entry

of a vector.

Given t ≤ N , we denote by λ(ζt) ∈ Rνt the coordinates of ζt ∈ Rνt−1 in an affine basis of Rνt−1.

For instance, if the affine basis is made of the standard basis vectors and the origin, we get

λi(ζt) = [ζt]i, 1 ≤ i < νt, λνt(ζt) = 1−
νt−1∑
i=1

[ζt]i.

10

We also set λ1(ζt) ≡ 1 when t ≤ 0 (and, according to our convention, ζt = 0 ∈ ∆0 = Ŕ0 = {0}).
From affinity of gτ (ζτ−µ+1, ..., ζτ) in each argument it follows that

gτ (ζτ−µ+1, ..., ζτ) =
∑

κ∈Iτ

[
µ∏
s=1

λκs(ζτ−µ+s)

]
gτκ,

Iτ = {κ = (κ1, ...,κµ) : 1 ≤ κs ≤ ντ−µ+s, 1 ≤ s ≤ µ}.

As a result, a poly-affine function of ζt taking values in Rν is fully specified by the collection

of its coefficients

gt = {gτκ ∈ Rν : 1 ≤ τ ≤ t,κ ∈ Iτ}

according to

g(ζt) =
∑t

τ=1

∑
κ∈Iτ

[
µ∏
s=1

λκs(ζτ−µ+s)

]
gτκ. (3.14)

Note that every collection {gτκ ∈ Rν : 1 ≤ τ ≤ t,κ ∈ Iτ} is a collection of coefficients of a

poly-affine with memory µ function g(ζt) taking values in Rν .

Structural restrictions imposed in the sequel on the decision rules and right-hand sides in the

constraints (3.13) are as follows (cf. A.3-4):

B.3. The right-hand sides bt(ζ
t) in design specifications (3.13) are poly-affine with memory µ.

B.4. The decision rules xt(ζ
t) are restricted to be poly-affine with memory µ.

By B.4, candidate decision rules xN = {xt(·) : 1 ≤ t ≤ N} in question can be parameterized by

finite-dimensional collections

vN = {vtτκ ∈ Rnt : 1 ≤ τ ≤ t ≤ N,κ ∈ Iτ} (3.15)

according to

xt(ζ
t) =

t∑
τ=1

∑
κ∈Iτ

[
µ∏
s=1

λκs(ζτ−µ+s)

]
vtτκ. (3.16)

For any selection of vectors vtτκ ∈ Rnt in (3.15), the resulting collection specifies candidate decision

rules xt(·), t ≤ N , satisfying B.4.

Finally, we make the following assumption (cf. A.5):

11

B.5. The objective to be minimized is an efficiently computable convex function f(vN) of the vec-

tor vN of parameters of a candidate decision rule.

3.2 Processing the problem

Let Dt = {1, ..., dt} be the set of indices of scenarios χts specifying ∆t according to (3.12). Our

objective in this section is to reduce the “continuous” problem posed in Section 3.1 to a linear

optimization problem (with, as for the discrete case, a total number of scalar decision variables and

scalar constraints not exceeding O(1)(m + n)N2dµ when mt ≤ m, nt ≤ n, dt ≤ d). To this end,

we show that poly-affine decisions xt(ζ
t) of the form (3.16) satisfy the constraints (3.13) on every

trajectory ζN ∈ ∆N of the “continuous” uncertainty if and only if they satisfy the constraints for

all scenario trajectories ζt, those which are sequences of scenarios χtξt , ξt ∈ Dt, 1 ≤ t ≤ N . As we

shall see, this simple observation allows us to reduce the continuous problem to slightly modified

discrete problem from Section 2. An informal outline of the reduction is as follows: there is a

natural way to restrict the continuous problem onto the scenario trajectories of uncertainty, thus

arriving at a discrete problem from Section 2, with uncertainties ξt ∈ Dt stemming from the indices

of scenarios χtξt . With this reduction, the restrictions of poly-affine, with memory depth µ, control

policies {xt(ζt)}t≤N of continuous problem onto the scenario trajectories are exactly policies of

the form (2.3) for the discrete problem, with vectors utτξτ−µ+1:τ
being linear images, under known

linear mappings, of the collections of coefficients of poly-affine functions {xt(ξt}t≤N . Because, as

we have mentioned, a poly-affine control policy for the continuous problem is feasible if and only

if its restriction on the scenario trajectories is feasible for the discrete problem, these observations

reduce the continuous problem to the discrete one.

To construct the discrete problem it is convenient to associate to every “trajectory of indices”

ξt ∈ Dt := D1 × ...×Dt, a trajectory of disturbances

ζt[ξt] = {ζτ [ξτ] := χτξτ : 1 ≤ τ ≤ t} ∈ ∆t := ∆1 × ...×∆t.

Clearly, when ξτ ∈ Dτ is the initial fragment of ξt ∈ Dt, then ζτ [ξτ] is the initial fragment of ζt[ξt].

Let us make two immediate observations:

Proposition 3.1 Let g(ζt) be a poly-affine, with memory µ, function taking values in Rν :

g(ζt) =
∑t

τ=1

∑
κ∈Iτ

[
µ∏
s=1

λκs(ζτ−µ+s)

]
gτκ. (3.17)

Then the mapping

g(ξt) := g(ζt[ξt]) : Dt → Rν

is additive with memory µ.

12

Proof. Setting, as in Section 2, Dp:q = Dp ×Dp+1 × ...×Dq and given t, τ, ξ with 1 ≤ τ ≤ t ≤ N
and ξ = (ξτ−µ+1, ξτ−µ+2, ..., ξτ) ∈ Dτ−µ+1:τ , let us put

ḡτξ =
∑
κ∈Iτ

[
µ∏
s=1

λκs(χτ−µ+s,ξτ−µ+s)

]
gτκ

(the right-hand side indeed depends only on τ and (ξτ−µ+1, ξτ−µ+2, ..., ξτ) ∈ Dτ−µ+1:τ). It remains

to note that by (3.17) we have

g(ξt) = g(χ1ξ1 , χ2ξ2 , ..., χtξt) =
t∑

τ=1

ḡτξτ−µ+1:τ ∀ξt ∈ Dt = D1 × ...×Dt,

as it should be for an additive with memory µ function. �

Our second observation is as follows:

Proposition 3.2 Let f(ζN) be a real-valued affine in every component ζt of ζN function (e.g., a

poly-affine real-valued function with memory µ). Then among maximizers of f(ζN) over ζN ∈ ∆N

there are those of the form ζ[ξN] with properly selected ξN ∈ DN .

Proof. Let ζ̄N be a maximizer of f(ζN) on ∆N with the largest possible number, let it be M , of

scenario components ζ̄t (i.e., those belonging to {χts, 1 ≤ s ≤ dt}). All we need to prove is that

M = N . This is evident: assuming that M < N , i.e., that for some t the component ζ̄t of ζ̄N

is not in the set {χts, 1 ≤ s ≤ dt}, let us “freeze” in f(ζN) all arguments ζs with s 6= t at the

values ζ̄s and vary the t-th argument. Since f is affine in every ζs, among the maximizers of the

resulting function of ζt over ζt ∈ ∆t there will be an extreme point of ∆t, that is, a point from the

set of scenarios of stage t. Replacing in ζ̄N the component ζ̄t with this scenario, we get another

maximizer of f on ∆N with more than M scenario components, which is impossible. �

Now we are ready to explain how to process the problem of interest numerically. Let us associate

with our problem (call it continuous) a discrete problem as follows. The structure of the discrete

problem is as considered in Section 2, with inherited from the continuous problem number of stages

N , matrices Atτ , and cardinalities dt of the sets Dt of values of disturbance ξt at stage t. As about

the right-hand sides bt(ξ
t) in the constraints of the discrete problem, we specify them as

bt(ξ
t) = bt(ζ

t[ξt]).

Now, candidate decision rules xt(ζ
t), t ≤ N , in the continuous problem induce candidate decision

rules

xt(ξ
t) := xt(ζ

t[ξt])

in the discrete problem. By Proposition 3.1, restrictions B.3-4 on the structure of bt(·)’s and xt(·)’s
ensure the validity of A.3-4 for bt(·)’s and xt(·)’s. Besides this, Proposition 3.2 says that under

restrictions B.3-4 decision rules xt(·) are feasible for the continuous problem if and only if the

13

decision rules xt(·) are feasible for the discrete problem. As we remember, the latter is equivalent

to the fact that the collection

uN = {utτξ : 1 ≤ τ ≤ t ≤ N, ξ ∈ Dτ−µ+1:τ}

of parameters of the additive, with memory µ, decision rules xN can be augmented by properly

selected y- and z-variables to yield a feasible solution to certain system S of linear constraints. For

µ fixed, the number of constraints and variables in S, as well as the computational effort to build

this system, is polynomial in all sizes of the problem (for details, see Section 2). We are in the

situation where uN is obtained from the “primitive” design variables, specifically, the collection vN

of parameters specifying the decision rules xt(·) by known to us linear transformation:

utτξ =
∑

κ∈Iτ

[
µ∏
s=1

λκs(χτ−µ+s,ξτ−µ+s)

]
vtτκ,

for 1 ≤ τ ≤ t, ξ = (ξτ−µ+1, ξτ−µ+2, ..., ξτ) ∈ Dτ−µ+1:τ .

(3.18)

Extending S to the system of linear constraints by adding variables vN and constraints (3.18)

linking the v- and the u-variables, we get a system S+ of linear constraints in “actual” design

variables vN and additional analysis variables (specifically, uN and y- and z-variables inherited

from S). The bottom line is that under Assumption B.5, for µ fixed, the problem of interest can

be reduced to the problem of minimizing an efficiently computable convex function of v-variables

under a system S+ of linear constraints on v, u, y, z-variables, with the total number of variables

and constraints in S+ and the computational effort of building this system which are polynomial

in the sizes of the problem of interest.

Note that, similarly to the case of discrete uncertainty, an objective which is the worst-case

value over all trajectories ζN of a linear functional
∑N

t=1 η
T
t xt(ξ

t) of the control trajectory satisfies

B.5, cf. the beginning of Section 2.3. Furthermore, in the case of random disturbances, an objective

of the form

f(vN) = EζN∼P
{
F (xN (ζN), ζN)

}
with function F (xN , ζN) which is convex in decision variables xN = [x1;x2; ...;xN] and efficiently

computable, can be replaced by its Sample Average Approximation, see, e.g. [2].

f̂N (vN) =
1

L

L∑
`=1

F (xN (ζN`), ζN`)

over a large number L of scenarios — realizations of disturbance trajectories ζN` = (ζ`1, ζ
`
2, . . . , ζ

`
N), ` =

1, . . . , L. In this case, Assumption B.5 holds for the approximate objective f̂N (vN) with decision

14

xt(ζ
t`) at stage t of scenario ` linked to vN -variables by the explicit linear relation

xt(ζ
t`) =

t∑
τ=1

∑
κ∈Iτ

[
µ∏
s=1

λκs(ζ
`
τ−µ+s)

]
vtτκ,

see (3.16).

4 An application to hydro-thermal production planning

In this section, we illustrate the application of our methodology on a toy example of a hydro-

thermal production planning problem formulated as a Multistage Stochastic Linear Program with

linear constraints.

4.1 Problem description

Our problem modeling is as follows. Consider a set of thermal electricity production plants and

hydroelectric plants distributed in K regions which have to produce electricity to satisfy the demand

in each region and each stage t = 1, . . . , N of a given planning horizon. We will assume that in

each region, all thermal facilities are aggregated into a single thermal plant, and similarly, all

hydroelectric plants and reservoirs are aggregated into a single hydroelectric plant and a single

reservoir. The objective is to minimize the expected production cost which is a sum of the cost

of thermal generation and the penalties paid for the unsatisfied demand over the planning horizon

under constraints of demand satisfaction, minimal and maximal levels of the hydroelectric reservoirs

and capacity constraints of the production units.

We use the following notation for time t = 1, . . . , N :

• vt ∈ RK for reservoir levels at the end of stage t;

• wt ∈ RK for thermal generation at stage t;

• ht ∈ RK for hydroelectric generation;

• rt ∈ RK for unsatisfied demand;

• It ∈ RK for inflows;

• Gt ∈ RK×K is a diagonal matrix; GtIt is the vector of actual inflows to the reservoirs and

(I −Gt)It is the part of inflows automatically converted into energy by run-of-river plants;

• δt ∈ RK is the deterministic vector of energy demands;

• ct ∈ RK is the vector of thermal generation unit costs, and pt ∈ RK is the vector of penalties

for the unsatisfied demand at time t.

15

In this notation, water inventories, releases, and inflows are expressed in energy units. The hy-

drothermal production planning problem consists in minimizing the expected cost

EIN
[N∑
t=1

cTt wt +
N∑
t=1

pTt rt

]
,

under the following system of constraints to be satisfied almost surely:

ht ≤ vt−1 − vt +GtIt, [water balance]

ht + wt + rt ≥ δt − (I −Gt)It, [demand satisfaction]

vt ≤ vt ≤ vt, [bounds on reservoir levels]

0 ≤ ht ≤ ht, [hydroelectric generation capacity]

0 ≤ wt ≤ wt, [thermal generation capacity]

rt ≥ 0. [nonnegativity of unsatisfied demand]

(4.19)

We assume that inflows It, t ≤ 1 are deterministic (i.e., ..., I0, I1 are known at t = 1 when

production plan is computed for stages t = 1, . . . , N) and for t ≥ 2 inflows satisfy the periodic

autoregressive model:

It = θt + ηt,

ηt =
∑`t

j=1B
j
t ηt−j + Ctζt

(4.20)

where θt ∈ RK are given along with K ×K matrices Bj
t , Ct, while disturbances ζt, , t = 2, ..., N,

are independent with known distributions Pt supported on the sets {χt1, . . . , χtdt}.
Note that inflows It satisfying recursive equations (4.20) can be straightforwardly rewritten in

the form

It = νt +

t∑
s=2

Rtsζs, (4.21)

with deterministic νt ∈ RK and Rts ∈ RK×K , implying that It for t ≥ 2 is an affine function of

ζ1, ..., ζt given by (4.21); we denote it It(ζt). Observe that even if for this application the reservoirs

are not connected, the inflows exhibit time and possibly space (between regions) dependencies

and therefore the relevant history of the inflow process in all regions needs to be stored in the

state vector implying that the problem cannot be solved directly by Dynamic Programming. We

allow decisions vt, wt, ht, and rt to depend on It := (I1, . . . , It). Therefore, decision vector x̄t =

[ht; vt; rt;wt] ∈ RK ×RK ×RK ×RK at stage t is a function x̄t(ζ
t) of disturbances (ζt) up to time

t, so that system (4.19) of problem constraints can be written as:

t∑
τ=t−1

Atτ x̄τ (ζτ) ≤ b̄t(ζt) ∈ Rmt , t = 1, ..., N, (4.22)

16

where At,t and At,t−1 are given matrices and the right-hand side b̄t(ζ
t) is a linear function of ζt.

Now, to apply the methodology of Section 2 it suffices to reformulate the problem in terms of

disturbances ξt taking values in finite sets of integers Dt = {1, 2, . . . , dt} of cardinality dt with dis-

turbances ζt[ξt] = (χ1ξ1 , χ2ξ2 , . . . , χtξt) and controls xt(ξ
t) := x̄t(χ1ξ1 , χ2ξ2 , . . . , χtξt) thus replacing

constraints (4.22) with

t∑
τ=t−1

Atτxτ (ξτ) ≤ bt(ξt) := b̄t(ζ
t[ξt]) ∈ Rmt , t = 1, ..., N, ∀ξt ∈ D1 × . . . , Dt, (4.23)

which is clearly of form (2.1). Observe that Assumptions A.1. and A.2 clearly hold for the

reformulated system. It is also easily seen that Assumption A.3. holds true for the right-hand side

bt in (4.23) which is an additive with memory µ = 1 function bt(ξ
t) = b̄t(ζ

t[ξt]) with b̄t(·) linear in

ζt. Finally, let us assume that Assumption A.4. holds for the decision rules xt which are restricted

to be additive with memory µ functions of ξt, and let us denote

uN =
{
utτξ ∈ Rnt : 1 ≤ τ ≤ t ≤ N, ξ ∈ Dτ−µ+1:τ

}
parameter collections in the representation

xt(ξ
t) =

t∑
τ=1

utτξτ−µ+1:τ

of candidate decision rules. Note that because the problem objective is linear in xN Assumption

A.5. obviously holds. Moreover, when the discrete distribution Pt of ζt (and thus distribution

of ξt) is known the objective f(uN) to be minimized in order to compute optimal constant depth

decision rules is known in closed-form. Specifically, denoting fTt xt(ξ
t) the cost per stage t we have

f(uN) =

N∑
t=1

fTt

t∑
s=1

∑
ξs−µ+1:s∈Ds−µ+1:s

 s∏
r=s−µ+1

Pr(ζr = χrξr)

utsξs−µ+1:s
.

4.2 Numerical experiments: comparing CDDRs and SDDP

Numerical simulations described in this section utilize a MATLAB library for computing optimal

Constant Depth Decision Rules for Multistage Stochastic Linear Programs with constraints of the

form (2.1) satisfying the conditions in Section 2 with known distribution of perturbations ξN .1

We compare CDDR and Stochastic Dual Dynamic Programming (SDDP, see, e.g., [4, 7, 25]

and references therein) solutions on an instance of the hydro-thermal production planning problem

1The functions in the library allow to load the linear program whose solutions are
optimal CDDRs and solves it using Mosek [24] solver. The library is available at
https://github.com/vguigues/Constant Depth Decision Rules Library. A function to run the simulations
of this section is also provided, together with the implementation of SDDP for the considered hydro-thermal
application.

17

https://github.com/vguigues/Constant_Depth_Decision_Rules_Library

with interstage dependent inflows described in the previous section. Parameters of the problem

are initialized to mimic the mid-term Brazilian hydro-thermal problem with K = 4 equivalent

subsystems for the country considered for instance in [26] and [25]. For the sake of simplicity we

considered only one equivalent thermal plant per subsystem (as described in the previous section).

The parameters of the inflow models are calibrated using the current history of inflows and the

demand and production capacities correspond to those currently used for the mid-term Brazilian

hydro-thermal problem. In particular, lags (`t)t≥1 vary between 4 and 10 months (recall that we

have a monthly discretization and that they are periodic with period 12). Hence, the state vector

will store not only the reservoir levels at the end of the stage but also the relevant history of inflows

whose size depends on time.

4.3 Problem without Relatively Complete Recourse

We consider an instance of the hydro-thermal production planning problem with N = 12 stages

(each stage representing a month) and dt = 10 realizations per stage. In each region i, the initial

reservoir level v0(i) is set to half the sum of the demands for that region over the optimization period

(recall that demand is deterministic) and we require the final reservoir level vN to be at least 0.8v0

at the end of the optimization period. Furthermore, the inflow levels are chosen in such a way that

the Relatively Complete Recourse (RCR) assumption does not hold. Note that RCR is a necessary

condition for application of the standard SDDP algorithm. Observe, however, that feasibility of

CDDR policies is only ensured for the SAA problem on the discrete and finite set of scenarios

given by Assumption A.1., which, in the case of the hydro-thermal application corresponds to a

discretization of the process of inflows. Therefore, feasibility of CDDR policies is not ensured for

the original hydro-thermal problem with continuous inflows. For a statistical analysis relating the

original problem and the corresponding SAA, see for instance [7]. In order to apply SDDP, we

modify the problem as follows. We introduce slack variables αt, replace constraints vt ≥ vt of

(4.19) with relaxed constraint vt + αt ≥ vt, αt ≥ 0, and add a penalty penTt αt for violation of the

lower bound constraint on reservoir levels with nonnegative pent. Now, we can apply SDDP to the

reformulated problem which satisfies RCR.

We compute CDDR policies with µ = 1, 2 and 3, along with SDDP policies for four values

of time-invariant penalty parameters pent = 1, 102, 103, and 104, and then simulate these poli-

cies on 1000 scenarios of inflows. On all simulated scenarios, CDDR policies were feasible while

no SDDP policy was feasible on all scenarios. In Table 1, for each reservoir i we report the av-

erage over 1000 simulations relative violations of the lower reservoir level constraint at stage N

as max
(

0,
vN (i)−vN (i)

vN (i)

)
. Unsurprisingly, constraint violations decrease when the penalties increase

and are very small but do not completely vanish for large values of the penalty.

For the sake of completeness we display in Table 2 (without paying attention to infeasibility of

the corresponding SDDP policies) simulated production costs. CPU times necessary to compute

the CDDR policies and the SDDP policy corresponding to the 5% relative suboptimality are given

18

Unit penalty pent Reservoir 1 Reservoir 2 Reservoir 3 Reservoir 4
1 0 0.227 3.8e-3 0

102 0 0.236 4e-3 0
103 0 2.4e-2 0 2e-4
104 4e-4 0 3e-4 0

Table 1: Mean relative reservoir constraint violation max
(

0,
vN (i)−vN (i)

vN (i)

)
at stage N for reservoir

i.

CDDR
µ = 1

CDDR
µ = 2

CDDR
µ = 3

SDDP
pen=1

SDDP
pent=102

SDDP
pent=103

SDDP
pent=104

7.81e6 6.37e6 5.87e6 1.01e4 1.00e4 5.2e6 5.5e6

Table 2: Simulated production costs of the CDDR and SDDP policies.

in Table 3.

4.3.1 Problem instances with Relatively Complete Recourse

In this section we focus on the hydroelectric unit commitment problem with RCR similar to that

considered in [25]. When compared to the original setting of [25], we consider slightly increased

demands, allow less water in reservoirs at the first stage and fix the standard deviation of compo-

nents of perturbations ζt to be 0.2 (for detailed description of the set of parameters used in the

simulation, see the library description).

We consider 8 instances with N ∈ {6, 12} and dt = d ∈ {6, 10, 20, 40} (the number of realizations

d is the same for every stage).

For each instance, we compute optimal CDDR policies with µ = 1, 2, 3, and 4, and run SDDP

until the gap between the upper and lower bounds becomes less than 5%. The results of this

experiment are collected in Table 4: we report the optimal expected costs obtained using CDDRs

along with lower bound SDDP LB and upper bound SDDP UB at the last iteration of SDDP (results

are presented for the instances in which Mosek was able to solve the corresponding LP). For all

instances, we provide in Table 5 the CPU times along with the values of tµ=k—time required for

SDDP to attain the optimal cost of the CDDR policy with µ = k.

Our experiments highlight some strengths and drawbacks of Constant Depth Decision Rules

when applied to a Multistage Stochastic Program. Compared to affine decision rules which are

suboptimal in this application (their cost cannot be less than the cost of an optimal CDDR with

µ = 1), CDDRs are more flexible and allow for a larger class of policies. Notice that the optimal

cost of CDDRs decreases with µ and becomes close to the lower and upper bounds computed at

CDDR
µ = 1

CDDR
µ = 2

CDDR
µ = 3

SDDP
pen=1

SDDP
pent=102

SDDP
pent=103

SDDP
pent=104

4.16 37.8 3.1e3 1.34e4 4.7e4 1.03e4 4.2e3

Table 3: CPU time (in seconds) to compute CDDR and SDDP policies.

19

N dt SDDP LB SDDP UB CDDR µ = 1 CDDR µ = 2 CDDR µ = 3 CDDR µ = 4
6 6 2.02 2.10 2.70 2.30 2.17 2.07
6 10 2.31 2.43 2.91 2.91 2.43 2.37
6 20 2.04 2.15 2.71 2.29 2.17 -
6 40 1.69 1.77 2.30 1.94 - -
12 6 4.92 5.12 7.01 5.90 5.41 -
12 10 4.52 4.74 7.41 5.90 5.41 -
12 20 5.22 5.48 8.17 6.38 - -
12 40 4.18 4.40 7.34 5.71 - -

Table 4: Hydro-thermal production planning example: optimal expected cost using CDDR policies
and lower and upper bound at the last iteration of SDDP. All costs have been divided by 106 to
improve readability.

N dt SDDP
CDDR

µ = 1
SDDP

tµ=1

CDDR

µ = 2
SDDP

tµ=2

CDDR

µ = 3
SDDP

tµ=3

CDDR

µ = 4
SDDP

tµ=4

6 6 26.1 0.14 4.4 1.1 5.5 4.8 18.4 14.0 32.7
6 10 37.8 0.6 1.8 3.1 1.8 22.7 42.1 111.2 156.4
6 20 970 0.58 144.2 14.2 458.7 349.8 942.3 - -
6 40 3 384 1.07 1254 65.5 2876 - - - -
12 6 1877 1.1 343 10.3 1115 144.3 1523 - -
12 10 1920 2.1 465 27.8 992 2 821.2 1421 - -
12 20 5448 3.45 1704 268.9 2358 - - - -
12 40 15 147 7.5 2314 948.5 7836 - - - -

Table 5: Hydro-thermal production planning example: CPU times (in seconds) to compute SDDP
and CDDR policies. Columns SDDP tµ=k display the SDDP runtimes to attain the upper bound
which is equal to the optimal cost of the CDDR policy computed with µ = k.

1 2 3 4

104

105

106

Nb. vars & cons. d=6
Nb. vars & cons. d=10
Nb. vars & cons. d=20
Nb. vars & cons. d=40

Figure 1: Number of constraints (solid lines) and variables (dashed lines) of the LPs solved to
compute CDDRs for the hydro-thermal production planning application for d = 6, 10, 20, 40, as
function of the depth µ for N = 6.

20

Number of stages 10 20 30 40 50 60
CDDR, µ = 1 1.6 7.5 21.4 60.4 92.1 157.1

SDDP 351 987 1 246 1 764 2 266 2 875

Table 6: CPU time (in seconds) for CDDR with µ = 1 along with SDDP runtimes needed to attain
the optimal cost of the corresponding CDDR policy.

the last iteration of SDDP when µ is large enough.

Stochastic Dual Dynamic Programming is now considered as tool of choice for solving Multistage

Stochastic Programs. However, SDDP does not provide any guaranty of feasibility of computed

policies unless Relatively Complete Recourse condition is satisfied. Utilizing CDDRs (as well as

affine decision rules) does not require this assumption and can be efficiently used to compute feasible

policies in the situation where RCR is not available. Furthermore, the problem to be solved to

compute CDDRs can be written for any discrete interstage dependent underlying stochastic process

(as long as we allow the depth µ to be as large as N − 1). CDDR also allows using continuous

modeling of disturbances with distributions supported on polytopes.

When SDDP can be applied, we can list the following advantages of CDDRs over SDDP.

When applied to a problem with linear constraints with random right-hand side noises satisfying

autoregressive equation the time to solve the problem increasing quickly with the size of the state

vector of the SDDP which is proportional to the maximal lag of the autoregression . On the contrary,

by construction, the size of the problem to solve to compute optimal CDDRs is independent on

the value of the lag. Furthermore, the numerical cost of computing SDDP policies depends on

the variance of random disturbances; in general the larger the variance, the higher the cost . For

CDDRs, by construction, given d, µ, and the number of variables and natural constraints for each

stage, the size of the optimization problem to solve to compute CDDRs is independent on the

variances of entries ζt(i) of ζt (when distributions are available).

Although “short memory” CDDRs (with µ = 1 on µ = 2) are suboptimal in this application,

they are computed much faster than the corresponding SDDP policies, and can be used to initiate

SDDP cuts. As an illustration, we have computed, in the setting of this section, the CDDR policies

with depth µ = 1 for problem instances with N = 10, 20, 30, 40, 50, and 60 stages, and dt = 10

for all stages, and ran SDDP on these instances, stopping SDDP when the upper bound computed

by SDDP attained the optimal cost by CDDR; the results are reported in Table 6.

As a rule of thumb, it is recommended to use CDDRs with moderate depth µ (say between

1 and 4) when the maximal number d of possible realizations of the uncertainty for each stage is

also a moderate integer and one of the above conditions applies (for instance, for problems with

interstage dependent disturbances with large lags).

The principal drawback of CDDRs is that the size of the linear optimization problem to be

solved to compute the optimal rules grows exponentially with µ becoming prohibitive already for

some toy problems considered in this section. For instance for N = 12 and dt = 40 the costs of all

computable CDDR policies are quite far from SDDP cost (at least 36% above).

21

As a future work, decomposition techniques could be investigated to allow using CDDRs for

problems with larger values of memory depth.

Acknowledgments

Research of Vincent Guigues was supported by an FGV grant, CNPq grants 204872/2018-9 and

401371/2014-0, FAPERJ grant E-26/201.599/2014. Research of Anatoli Juditsky was supported

by MIAI Grenoble Alpes (ANR-19-P3IA-0003), CNPq grant 401371/2014-0 and NSF grant CCF-

1523768. Research of Arkadi Nemirovski was supported by NSF grants CCF-1523768, CCF-

1415498, and CNPq grant 401371/2014-0.

References

[1] J. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York,

1997.

[2] A. Shapiro, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic Programming: Modeling

and Theory, SIAM, Philadelphia, 2009.

[3] A. Shapiro, A. Nemirovski, On complexity of Stochastic Programming problems, in Continuous

Optimization: Current Trends and Applications, V. Jeyakumar and A.M. Rubinov (Eds.),

Springer (2005) 111–144.

[4] M. Pereira, L. Pinto, Multi-stage Stochastic Optimization applied to energy planning, Math.

Program. 52 (1991) 359–375.

[5] J. Birge, Decomposition and partitioning methods for Multistage Stochastic Linear Programs,

Oper. Res. 33 (1985) 989–1007.

[6] W. Powell, Approximate Dynamic Programming, John Wiley and Sons, 2nd edition, 2011.

[7] A. Shapiro, Analysis of Stochastic Dual Dynamic Programming method, European Journal of

Operational Research 209 (2011) 63–72.

[8] A. B. Philpott, Z. Guan, On the convergence of Stochastic Dual Dynamic Programming and

related methods, Operations Research Letters 36 (2008) 450–455.

[9] P. Girardeau, V. Leclere, A. Philpott, On the convergence of decomposition methods for

multistage stochastic convex programs, Mathematics of Operations Research 40 (2015) 130–

145.

[10] V. Guigues, Convergence analysis of sampling-based decomposition methods for risk-averse

multistage stochastic convex programs, SIAM Journal on Optimization 26 (2016) 2468–2494.

22

[11] V. Guigues, Inexact cuts in Stochastic Dual Dynamic Programming, SIAM Journal on Opti-

mization 30 (2020) 407–438.

[12] V. Guigues, M. Bandarra, Single cut and multicut SDDP with cut selection for multistage

stochastic linear programs: convergence proof and numerical experiments, Available at https:

//arxiv.org/abs/1902.06757, Computational Management Science (to appear).

[13] A. Charnes, W. W. Cooper, G. H. Symonds, Cost horizons and certainty equivalents: an

approach to stochastic programming of heating oil, Management science 4 (3) (1958) 235–263.

[14] A. Charnes, W. W. Cooper, Deterministic equivalents for optimizing and satisficing under

chance constraints, Operations research 11 (1) (1963) 18–39.

[15] A. Ben-Tal, A. Goryashko, E. Guslitzer, A. Nemirovski, Adjustable robust counterpart of

uncertain linear programs, Mathematical Programming 99 (2003) 351–376.

[16] A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Princeton University Press,

2009.

[17] S. Garstka, R. J. Wets, On decision rules in Stochastic Programming, Mathematical Program-

ming 7 (1974) 117–143.

[18] V. Guigues, Robust production management, Optimization and Engineering 10 (2009) 505–

532.

[19] P. Rocha, D. Kuhn, Multistage stochastic portfolio optimisation in deregulated electricity

markets using linear decision rules, European Journal of Operational Research 216 (2012)

397–408.

[20] A. Lorca, X. Sun, E. Litvinov, T. Zheng, Multistage adaptive robust optimization for the unit

commitment problem, Operations Research 64 (2016) 32–51.

[21] A. Georghiou, W. Wiesemann, D. Kuhn, Generalized decision rule approximations for Stochas-

tic Programming via liftings, Mathematical Programming 152 (2015) 301–338.

[22] D. Bampou, D. Kuhn, Scenario-free stochastic programming with polynomial decision rules,

IEEE Conference on Decision and Control and European Control Conference (2011) 351–376.

[23] V. Guigues, R. Henrion, Joint dynamic probabilistic constraints with projected linear decision

rules, Optimization Methods & Software 32 (2017) 1006–1032.

[24] E. D. Andersen, K. Andersen, The MOSEK optimization toolbox for MATLAB manual. Ver-

sion 9.2, https://www.mosek.com/documentation/ (2019).

[25] V. Guigues, SDDP for some interstage dependent risk-averse problems and application to

hydro-thermal planning, Computational Optimization and Applications 57 (2014) 167–203.

23

https://arxiv.org/abs/1902.06757
https://arxiv.org/abs/1902.06757
https://www.mosek.com/documentation/

[26] L. Ding, S. Ahmed, A. Shapiro, Python package for Multi-stage Stochastic Programming,

Optimization Online (2019).

24

	Introduction
	Fixed memory decision making under discrete uncertainty
	The problem
	Processing the problem
	Modifications

	Fixed memory decision making under polytopic uncertainty
	The problem
	Processing the problem

	An application to hydro-thermal production planning
	Problem description
	Numerical experiments: comparing CDDRs and SDDP
	Problem without Relatively Complete Recourse
	Problem instances with Relatively Complete Recourse

	References

