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Abstract. In [15], an Inexact variant of Stochastic Dual Dynamic Programming (SDDP) called
ISDDP was introduced which uses approximate (instead of exact with SDDP) primal dual solutions
of the problems solved in the forward and backward passes of the method. That variant of SDDP
was studied in [15] for linear and for differentiable nonlinear Multistage Stochastic Programs (MSPs).
In this paper, we extend ISDDP to nondifferentiable MSPs. We first provide formulas for inexact
cuts for value functions of convex nondifferentiable optimization problems. We then combine these
cuts with SDDP to describe ISDDP for nondifferentiable MSPs and analyze the convergence of the
method. More precisely, for a problem with T stages, we show that for errors bounded from above by
ε, the limit superior and limit inferior of sequences of upper and lower bounds on the optimal value of
the problem are at most at distance 3εT to the optimal value and that for asymptotically vanishing
errors ISDDP converges to an optimal policy. Finally, we present the results of encouraging numerical
experiments on a multistage nondifferentiable stochastic convex program solved using exact SDDP
and the proposed inexact variant of SDDP.
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1. Introduction. Multistage stochastic programs (MSPs) offer a framework to
model many real-life applications but are challenging to solve, see [30] for a thorough
review on MSPs.

A possible approach to approximately solve such problems is to restrict the poli-
cies to be decision rules belonging to specific classes of parametric functions, see for
instance [22] and references therein. In this situation, most studies have focused on
classes of problems and of decision rules allowing for a reformulation of the problem
(either tight or with controlled accuracy) as a tractable optimization problem, i.e., a
well structured convex optimization problem. This strategy has also been used in the
context of Robust Optimization where uncertain parameters are assumed to belong
to convex, nonempty, compact sets (see [3] for a thorough presentation of Robust
Optimization) for instance in [4].

Another approach to solve MSPs formulated using Dynamic Programming equa-
tions is to approximate the recourse functions. Two important classes of such methods
are Approximate Dynamic Programming [28] and Stochastic Dual Dynamic Program-
ming (SDDP) [25] which is a sampling-based extension of the Nested Decomposition
method [7], closely related to Stochastic Decomposition [18].

Several variants of SDDP have been proposed such as CUPPS [9], ReSa [19], the
Abridged Nested Decomposition [8], MIDAS [26] for monotonic Bellman functions,
or risk-averse variants [17], [29], [13], [21]. For convergence analysis of the method
and variants see [27],[11],[14], [2]. We also refer to [10] which explains how to take
advantage of the stationarity of the underlying stochastic processes to solve MSPs
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with SDDP and to [15], [23] for variants which can accelerate the convergence of
SDDP. In particular, in [15], an Inexact variant of SDDP called ISDDP was intro-
duced which allows us to solve approximately the optimization subproblems of the
forward and backward passes of SDDP and to increase the accuracy of the solutions
of these subproblems along the iterations of the method. ISDDP can be seen as an
extension to multistage and both linear and nonlinear problems of [33] where inex-
act cuts were combined with Benders Decomposition [6] to solve two-stage stochastic
linear programs. An inexact Stochastic Dynamic Cutting Plane (another variant of
SDDP solving approximately the subproblems along the iterations of the method)
was also introduced in [16] to solve MSPs. For all these inexact variants, convergence
can be shown for vanishing noises and numerical experiments in [33], [15] have shown
that convergence can be achieved quicker with these inexact variants.

The motivation for introducing inexact cuts obtained from the approximate primal-
dual solutions of the convex nonlinear subproblems generated during the course of
SDDP is due to the following reasons:

(i) a convex nonlinear subproblem can take a significant amount of time or may
even be impossible to be solved to high accuracy;

(ii) it is advantageous from a practical point of view to solve the initial subprob-
lems generated by SDDP with much less accuracy than the ones generated
during its late stages; in fact, the implementation presented in [15] shows that
an inexact SDDP variant based on this idea outperforms exact SDDP on sev-
eral instances of a portfolio problem (see also the numerical experiments in
Section 6 below).

In this paper, we extend the results of [15] to the nondifferentiable case, propos-
ing and studying Inexact SDDP for possibly nondifferentiable multistage stochastic
convex programs. More precisely, the contributions of this paper are given below.

Contributions.

A. Deriving formulas for inexact cuts for value functions of possibly
nondifferentiable optimization problems. An important tool in the development
of inexact variants of SDDP is the computation of inexact cuts for value functions of
optimization problems, i.e., affine lower bounding functions for the value function on
the basis of approximate primal-dual solutions. This task can be easily achieved for
value functions of linear programs, see for instance Proposition 2.1 in [15]. For non-
linear differentiable problems, the derivation of inexact cuts is given in Propositions
2.2 and 2.3 in [15] and Proposition 3.8 in [12]. However, this task is more complicated
for nondifferentiable optimization problems.

We extend these results developping tools to compute inexact cuts for value func-
tions of nondifferentiable optimization problems. Mathematically, the problem can
be stated as follows. Let Q : X → R be the value function given by

(1.1) Q(x) =

{
miny∈Rm f(y, x)
y ∈ Y,Ay +Bx = b, gi(y, x) ≤ 0, i = 1, . . . , p,

where X ⊆ Rn, Y ⊆ Rm and where

(H0) X and Y are convex, closed, and nonempty sets and f, gi : Y×X →
]−∞,+∞] are proper, lower semicontinuous, convex, and possibly nondifferentiable.
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Due to (H0) value function Q is convex and if x̄ ∈ ri(dom(Q)) then Q is subdiffer-
entiable at x̄ and there exists a cut (a lower bounding affine function) for Q at x̄ which
coincides with Q at x̄. More generally, under some assumptions, the characterization
of the subdifferential of Q at x̄ ∈ X was given in [14, Lemma 2.1] and formulas for
affine lower bounding functions for Q were derived in [12, Proposition 3.2] on the
basis of optimal primal-dual solutions to (1.1). When only approximate primal-dual
solutions are available, we can only compute inexact cuts which are still lower bound-
ing functions for the value function but which do not coincide with this function at
the point x̄ used to compute the cut. Formulas for computing inexact cuts on the
basis of approximate primal-dual solutions to (1.1) were derived in [15, 12] when func-
tions f, gi are differentiable. In this paper, we extend in Sections 2, 3 this analysis
considering possibly nondifferentiable functions f, gi.

A.1). More precisely, in Section 2 we derive inexact cuts using a reformulation
of the problem that adds some variables and constraints. Such copies of (state)
variables have been used to derive cuts in several publications, for instance [20]. The
novelty of the cuts we derive comes from the fact that they are built on the basis
of approximate primal-dual solutions and we provide the level of inexactness of the
cuts, see Proposition 2.3 and Corollary 2.4. In particular, Corollary 2.4 provides cuts
easier to compute than the inexact cuts from [15] and easy to interpret. Indeed, while
the computation of the cuts from [15] requires solving an additional optimization
problem, Corollary 2.4 provides an analytic formula for the inexact cuts with the
slope being simply an approximate dual solution, the intercept being the dual problem
approximate optimal value, and the level of inexactness being the difference between
the approximate primal and dual optimal values. For convex problems, such copy of
state variables is not needed to compute exact cuts (on the basis of exact primal-dual
solutions), see [14, Lemma 2.1], but it offers a simple way to derive cuts in the inexact
case.

A.2). Section 3 provides formulas for inexact cuts when the objective f has
a saddle point representation. The advantage of these cuts, compared to the cuts
derived in Section 2, is that they are computed without adding additional variables
and constraints.

B. Comparison with the cuts from [15] in the differentiable case. In
the case when f and gi are differentiable, we compare in Section 4 the formulas for
inexact cuts from [15] and the formulas from Section 2. In particular, on the basis of
characterizations of approximate ε-optimal primal-dual solutions, we provide upper
bounds on the level of inexactness of the cuts.

C. Inexact cuts in SDDP for nondifferentiable problems. In Section 5,
we describe ISDDP for possibly nondifferentiable MSPs combining the framework of
SDDP with the inexact cuts derived in Sections 2 and 3.

D. Convergence of Inexact SDDP for nondifferentiable problems. In
Section 5, we also study the convergence of ISDDP. A useful tool for the convergence
analysis of SDDP and ISDDP is Lemma 5.2 in [11] for vanishing errors and Lemma
4.1 in [15] for bounded errors. We provide different proofs of these lemmas with
slightly different assumptions (see the corresponding Lemmas 5.1 and 5.2) and derive a
stronger conclusion. More precisely, one of our assumptions is stronger (the continuity
of f [which is satisfied when the lemmas are applied to study the convergence of
ISDDP]) and two are weaker. We show the almost sure uniform convergence of the
approximate Bellman functions generated by ISDDP to a continuous function which
coincides with the true Bellman functions at all accumulation points of the sequences
of trial points. Interestingly, as for ISDDP applied to linear programs studied in
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[15], we show that for a problem with T stages and errors bounded from above by
ε, the limit superior and limit inferior of sequences of upper and lower bounds on
the optimal value of the problem are at most at distance 3εT to the optimal value.
Finally, similarly to ISDDP for nonlinear differentiable programs developped in [15],
we show the convergence of ISDDP to an optimal policy for vanishing noises.

E. Numerical experiments. We consider 2 instances of a nondifferentiable
multistage stochastic program and solve them using both exact and inexact variants
of SDDP (the one proposed in [15] and Inexact SDDP given in this paper). We
also consider a solution method called MSDDP mixing StoDCuP from [16] and Inexact
SDDP. On these experiments, the inexact variants of MSDDP and of SDDP developped
in this paper converge quicker than (exact) SDDP.

2. Inexact cuts for value functions of convex optimization problems.
In the sequel, the usual scalar product in Rn is denoted by 〈x, y〉 = x>y for x, y ∈ Rn.
The corresponding norm is ‖x‖ = ‖x‖2 =

√
〈x, x〉.

The objective of this section is to compute inexact cuts with controlled accuracy
ε for value functions Q of form (1.1) on the basis of approximate primal-dual solutions
to (1.1) solved for a given x = x̄. We will call these cuts ε-inexact cuts at x̄:

Definition 2.1 (ε-inexact cut.). Let Q : X → R be a convex function with X
convex, X ⊂ ri(dom(Q)), and let ε ≥ 0. We say that C : X → R is an ε-inexact cut
for Q at x̄ ∈ X if C is an affine function satisfying Q(x) ≥ C(x) for all x ∈ X and
Q(x̄)− C(x̄) ≤ ε.

Remark 2.1. A 0-inexact cut for Q at x̄, i.e., an ε-inexact cut at x̄ with ε = 0
will be called an exact cut for Q at x̄.

2.1. Affine functions of the argument in the constraints. We start com-
puting inexact cuts for particular value functions Q where the argument of this func-
tion only appears in the constraints through affine functions of this argument. The
study of this case will help us discuss the general case of a value function of form (1.1)
considered in the next Section 2.2.

More precisely, we consider value functions Q of form:

(2.2) Q(x) =


min
y∈Rm

f(y)

g(y) ≤ Cx,
Ay +Bx = b,
y ∈ Y,

along with the corresponding dual problem given by

(2.3)

{
max
λ,µ

θx(λ, µ)

µ ≥ 0, λ,

where dual function θx(λ, µ) is given by

(2.4) θx(λ, µ) = min{Lx(y, λ, µ) : y ∈ Y }

for the Lagrangian

Lx(y, λ, µ) = f(y) + 〈λ,Ay +Bx− b〉+ 〈µ, g(y)− Cx〉.

Proposition 2.2 provides a formula for computing inexact cuts for value function Q
given by (2.2):
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Proposition 2.2. Assume that f : Rm →] −∞,+∞] and component functions
gi : Rm →]−∞,+∞], i = 1, . . . , p, of g are proper, convex, and lower semicontinuous.
Assume that ŷ is an εP -optimal feasible solution of problem (2.2) for x = x̄ and that

(λ̂, µ̂) is an εD-optimal feasible solution of the corresponding dual problem (2.3) for
x = x̄. Assume that f is finite on {y ∈ Y : Ay +Bx̄ = b, g(y) ≤ Cx̄} and that Slater
constraint qualification holds for (2.2) written for x = x̄, i.e., there is yx̄ ∈ ri(Y ),
such that Ayx̄ +Bx̄ = b, g(yx̄) < Cx̄. Then

C(x) = f(ŷ)− (εP + εD) + 〈B>λ̂− C>µ̂, x− x̄〉

is an (εP + εD)-inexact cut for Q at x̄.

Proof. By definition of ŷ, we get

(2.5) f(ŷ) ≤ Q(x̄) + εP .

The assumptions of the Convex Duality theorem are satisfied for problem (2.2) and
its dual (2.3), both written for x = x̄. Therefore the optimal value of dual problem
(2.3) written for x = x̄ is the optimal value Q(x̄) of the corresponding primal problem.

Using the definition of λ̂, µ̂, it follows that

(2.6) θx̄(λ̂, µ̂) ≥ Q(x̄)− εD.

Next,

Q(x) ≥ θx(λ̂, µ̂) by weak duality and feasibility of µ̂, λ̂,

= min{Lx(y, λ̂, µ̂) : y ∈ Y },
= 〈λ̂, B(x− x̄)〉+ 〈µ̂,−C(x− x̄)〉+ min{Lx̄(y, λ̂, µ̂) : y ∈ Y },
= 〈B>λ̂− C>µ̂, x− x̄〉+ θx̄(λ̂, µ̂),

(2.6)

≥ 〈B>λ̂− C>µ̂, x− x̄〉+Q(x̄)− εD,
(2.5)

≥ C(x) := 〈B>λ̂− C>µ̂, x− x̄〉+ f(ŷ)− εP − εD.

Moreover, since f(ŷ) ≥ Q(x̄), we get

Q(x̄)− C(x̄) = εP + εD +Q(x̄)− f(ŷ) ≤ εP + εD,

and we have shown that C is an (εP + εD)-inexact cut for Q at x̄.

Remark 2.2. The proof of Proposition 2.2 also shows that if θx̄(λ̂, µ̂) can be com-

puted exactly (i.e., if optimization problem (2.4) written for x = x̄, λ = λ̂, µ = µ̂ is

solved to optimality) then C(x) = θx̄(λ̂, µ̂) + 〈B>λ̂−C>µ̂, x− x̄〉 is an εD-inexact cut
for Q at x̄.

2.2. General value functions. We now consider general value functions of
form

(2.7) Q(x) =


min
y∈Rm

f(y, x)

g(y, x) ≤ 0,
Ay +Bx = b,
y ∈ Y.

Analyzing the proof of Proposition 2.2 dedicated to the special case of value func-
tions of form (2.2), we observe that the linearity in x of Lagrangian function L was
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crucial to derive our formula for inexact cuts. The Lagrangian obtained dualizing
coupling constraints in problem (2.7) does not satisfy this property anymore. How-
ever, we can reformulate equivalently the problem in such a way that the Lagrangian
of the reformulated problem satisfies this property. This reformulation is obtained
adding variable z ∈ Rn together with the constraint z = x. We obtain the equivalent
representation of problem (2.7) under the form

(2.8) Q(x) =



min
y∈Rm,z∈Rn

f(y, z)

g(y, z) ≤ 0,
Ay +Bz = b,
y ∈ Y,
z = x.

The use of the copy z = x of state variables to derive cuts in the context of SDDP has
been used in several publications, for instance [20, 31]. This copy of state variables
adds variables and constraints and is not necessary for convex problems, even for
general value functions (1.1) having nonlinear coupling constraints, see Lemma 2.1 in
[14] for an analytic formula for the corresponding exact cuts. However, the use of copy
of state variables offers a simple way to derive inexact cuts in the convex case, see
the corresponding Proposition 2.3 and Corollary 2.4 as well as the more complicated
computations of Section 3 that do not use these copies of variables but use a saddle
point representation of the objective. Denoting by S the set

(2.9) S = {(y, z) ∈ Rm×Rn : g(y, z) ≤ 0, Ay +Bz = b, y ∈ Y },

and dualizing the coupling constraint z = x in problem (2.8), we obtain the dual
problem given by

(2.10)

{
max
λ

θx(λ)

λ ∈ Rn,

where dual function θx(λ) is given by

(2.11) θx(λ) = min{Lx(y, z, λ) : (y, z) ∈ S}

now for the Lagrangian

Lx(y, z, λ) = f(y, z) + 〈λ, x− z〉,

which, as in the special case considered in the previous section, is a linear function of
x. Therefore, for every x, x̄ ∈ X, for every (y, z) ∈ S, and λ, we have

Lx(y, z, λ) = 〈λ, x− x̄〉+ Lx̄(y, z, λ)

and the optimal value θx(λ) of problem (2.11) is the sum of 〈λ, x − x̄〉 and of θx̄(λ).
Observing that from Weak Duality θx(λ) is a lower bound on Q(x), this sum is an
affine function of x which is a lower bounding function for Q. It can be bounded from
below in terms of a computable affine function (which therefore is an inexact cut for
Q at x̄) using an approximate primal-dual solution if problem (2.7) and its dual (2.10)
written for x = x̄ satisfy the Slater assumption.

The details of these computations are given in the proof of Proposition 2.3 below
which provides formulas for inexact cuts for value function (2.7). The proof of the
proposition is given for completeness but, due to our previous observations, it is similar
to the proof of Proposition 2.2.
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Proposition 2.3. Let Assumption (H0) hold. Assume that ŷ is an εP -optimal

feasible solution of problem (2.7) for x = x̄ and that λ̂ is an εD-optimal feasible
solution of dual problem (2.10) written for x = x̄. Assume that f(·, x̄) is finite on
{y ∈ Y : Ay+bx̄ = b, g(y, x̄) ≤ 0} and that the following Slater constraint qualification
holds for (2.7) written for x = x̄:

(2.12) ∃yx̄ such that (yx̄, x̄) ∈ ri(S)

where S is given by (2.9). Then

C(x) = f(ŷ, x̄)− (εP + εD) + 〈λ̂, x− x̄〉

is an (εP + εD)-inexact cut for Q at x̄.

Proof. By definition of ŷ, we get

f(ŷ, x̄) ≤ Q(x̄) + εP .

The assumptions of the Convex Duality theorem for dual problem (2.10) and primal
problem (2.7) written for x = x̄ are satisfied and therefore the optimal value of dual
problem (2.10) written for x = x̄ is the optimal value Q(x̄) of the corresponding

primal problem. Therefore, using the definition of λ̂, we get

θx̄(λ̂) ≥ Q(x̄)− εD.

Next,

Q(x) ≥ θx(λ̂) by weak duality and feasibility of λ̂,

= min{Lx(y, z, λ̂) : (y, z) ∈ S},
= 〈λ̂, x− x̄〉+ min{Lx̄(y, z, λ̂) : (y, z) ∈ S},
= 〈λ̂, x− x̄〉+ θx̄(λ̂),

≥ 〈λ̂, x− x̄〉+Q(x̄)− εD,
≥ C(x) := 〈λ̂, x− x̄〉+ f(ŷ, x̄)− εP − εD.

Moreover, since f(ŷ, x̄) ≥ Q(x̄), we get

Q(x̄)− C(x̄) = εP + εD +Q(x̄)− f(ŷ, x̄) ≤ εP + εD,

which achieves the proof.

As before, observe that if θx̄(λ̂) is available, i.e., if optimization problem (2.11)

written for x = x̄ and λ = λ̂ is solved to optimality then 〈λ̂, x − x̄〉 + θx̄(λ̂) is an
εD-inexact cut for Q at x̄.

We also have the following corollary of Proposition 2.3 that will be used in the
numerical simulations of Section 6, offering an inexact cut easy to implement as long
as we have access to approximate primal-dual solutions:

Corollary 2.4. Under the assumptions of Proposition 2.3, let ŷ be any approx-
imate optimal and feasible solution of primal problem (2.7) for x = x̄ and let λ̂ be any
approximate optimal feasible solution of dual problem (2.10) written for x = x̄. Then

C(x) = θx̄(λ̂) + 〈λ̂, x− x̄〉

is an (f(ŷ, x̄) − θx̄(λ̂))-inexact cut for Q at x̄. When ŷ and λ̂ are optimal solutions

then we get, as expected, an exact cut since f(ŷ, x̄) = θx̄(λ̂) = Q(x̄).
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Proof. It suffices to observe that ŷ is an εP optimal primal solution with εP =
f(ŷ, x̄)−Q(x̄), that λ̂ is an εD optimal dual solution with εD = Q(x̄)− θx̄(λ̂) and to
apply Proposition 2.3.

It is also worth mentioning that if we have access to an optimal primal-dual
solution to (2.7) then we can obtain an exact cut for Q at x̄ directly solving (2.7) and
its dual, without adding constraint z = x. More precisely, a characterization of the
subdifferentiable of Q and formulas for exact cuts for Q given by (2.7) can be found
in Lemma 2.1 in [14] and Proposition 3.2 in [12].

3. Inexact cuts for value functions with saddle point representation of
the objective. The inexact cuts proposed in this section are based on the observation
that many convex functions have saddle point representations, see for instance [24]
and Section 5.6.1.1 in [5]. More precisely, we assume that the objective function f
has a saddle point representation: if p = (y, x), function f is given by

(3.13) f(p) = pTa+ max
w∈W

[pTC0w − φ0(w)]

for some known convex, proper, lower semicontinuous function φ0, some known con-
vex, compact, nonempty set W, vector a, and matrix C0. In this situation, we will
derive inexact cuts for Q without additional variables z ∈ Rn and constraints z = x
introduced in the previous section.

”Well structured” convex functions have saddle point representations, see for
instance [24] and Section 5.6.1.1 in [5] for details.

Example 3.1. Function f(p) = f(y, x) = ‖y−x‖1 has the saddle point represen-
tation f(p) = f(y, x) = ‖y − x‖1 = max‖w‖∞≤1[wT y − wTx] which is of form (3.13)
with W = {w : ‖w‖∞ ≤ 1}, C0 = [I;−I], and φ0 the null function.

We start considering value functions of form

(3.14) Q(x) =

{
min
y∈Rm

f(y, x)

y ∈ Y

with Y compact, convex, and nonempty. Let a = [a2; a1] and let us write matrix
C0 = [A0;B0] where A0 contains the first m rows and B0 the last n rows of C0.
Representation (3.13) can then be written

(3.15) f(y, x) = xTa1 + yTa2 + max
w∈W

yTA0w + xTB0w − φ0(w)

and problem (3.14) becomes the saddle point problem

(3.16) Q(x) = min
y∈Y

max
w∈W

xTa1 + yTa2 + yTA0w + xTB0w − φ0(w).

Since Y and W are convex, compact and nonempty, this saddle point problem can be
equivalently written as the convex problem

(3.17) Q(x) = xTa1 +

{
max
w

θx(w)

w ∈ W

where concave function θx is given by

(3.18) θx(w) =

{
min
y

Lx(y, w)

y ∈ Y,
8



where

(3.19) Lx(y, w) = yT (a2 +A0w) + xTB0w − φ0(w).

Once again, the linearity in x of this new Lagrangian function Lx(y, w) will allow
us to derive inexact cuts. However, contrary to the previous section, this linearity was
achieved using a saddle point representation of f . The following proposition provides
inexact cuts for Q given by (3.14) with f of the form (3.15).

Proposition 3.2. Consider problem (3.14) with f having a saddle point repre-
sentation of form (3.15). Assume that Y and W are compact, convex, and nonempty.
Let ŵ ∈ W be an ε-optimal solution of problem (3.17) written with x = x̄ and let
ŷ ∈ Y be a τ -optimal solution of problem (3.18) written with x = x̄, w = ŵ. Then the
affine function

(3.20) C(x) := x>
(
a1 +B0ŵ

)
+ ŷ>

(
a2 +A0ŵ

)
− φ0(ŵ)− τ

is a (ε+ τ)-inexact cut for Q at x̄.

Proof. Let (ȳ, w̄) be an optimal solution of saddle point problem (3.16) with
x = x̄. By definition of ŵ and ŷ, we have

(3.21) θx̄(w̄)− ε ≤ θx̄(ŵ) and θx̄(ŵ) + τ ≥ Lx̄(ŷ, ŵ) ≥ θx̄(ŵ).

By linearity of L·(y, w) we get for every y ∈ Y,w ∈ W, that

(3.22) Lx(y, w) = Lx̄(y, w) + (x− x̄)TB0w.

Next, using representation (3.17) of Q and the fact that ŵ ∈ W we have

Q(x) ≥ xTa1 + θx(ŵ)

= xTa1 +

{
min Lx(y, ŵ)
y ∈ Y,

(3.22)
= xTa1 + (x− x̄)TB0ŵ +

{
min Lx̄(y, ŵ)
y ∈ Y,

= xTa1 + (x− x̄)TB0ŵ + θx̄(ŵ)
(3.21)

≥ xTa1 + (x− x̄)TB0ŵ + Lx̄(ŷ, ŵ)− τ
(3.20)

= C(x).

Moreover,

0 ≤ Q(x̄)− C(x̄) = τ + θx̄(w̄)− Lx̄(ŷ, ŵ)
(3.18)

≤ τ + θx̄(w̄)− θx̄(ŵ) ≤ τ + ε,

which achieves the proof of the proposition.

Now consider value function Q given by

(3.23) Q(x) =

{
min f(y, x)
y ∈ Y, Ay +Bx = b,

with Y convex, nonempty, and compact. If f has a saddle point representation of
form (3.15) with W convex, nonempty, and compact, value function (3.23) can be
written

(3.24) Q(x) = xTa1 +

{
max θx(w)
w ∈ W

9



where

(3.25) θx(w) =

{
min yT (a2 +A0w) + xTB0w − φ0(w)
y ∈ Y,Ay +Bx = b.

For problem (3.25) define the Lagrangian

(3.26)
Lx,w(y, λ) = yT (a2 +A0w) + xTB0w − φ0(w) + λT (Ay +Bx− b)

= Lx(y, w) + λT (Ay +Bx− b),

where Lx(y, w) is given by (3.19). Let us fix x̄ ∈ Rn and assume that there is
y0 ∈ ri(Y ) such that Ay0 + Bx̄ = b. Then by the Convex Duality theorem, we can
express θx̄(w) as the optimal value of the dual of (3.25):

(3.27) θx̄(w) = max
λ

hx̄,w(λ)

for the dual function

(3.28) hx̄,w(λ) =

{
min Lx̄,w(y, λ)
y ∈ Y.

Proposition 3.3. Consider problem (3.23) with f having a saddle point repre-
sentation of form (3.15). Assume that sets Y and W are nonempty, convex, and com-
pact. Let us fix x̄ ∈ Rn and assume that there is y0 ∈ ri(Y ) such that Ay0 +Bx̄ = b.
Let (ȳ, w̄) be an optimal solution of saddle point problem (3.24) with x = x̄ and let
ŵ ∈ W be an ε-optimal solution of problem (3.24) written with x = x̄:

(3.29) θx̄(ŵ) ≥ θx̄(w̄)− ε,

and let λ̂ ∈ Y be a δ-optimal solution of problem

θx̄(ŵ) = max
λ

hx̄,ŵ(λ)

i.e.,

(3.30) hx̄,ŵ(λ̂) ≥ θx̄(ŵ)− δ.

Let ŷ be a τ -optimal feasible solution of

θx̄(ŵ) =

{
min yT (a2 +A0ŵ) + x̄TB0ŵ − φ0(ŵ)
y ∈ Y,Ay +Bx̄ = b,

i.e.,

(3.31) ŷ ∈ Y, Aŷ +Bx̄ = b, Lx̄(ŷ, ŵ) ≤ θx̄(ŵ) + τ.

Then the affine function

(3.32) C(x) = xT
(
a1 +B0ŵ +BT λ̂

)
+ ŷT

(
a2 +A0ŵ

)
− x̄TBT λ̂− φ0(ŵ)− τ − δ

is a (ε+ τ + δ)-inexact cut for Q at x̄.
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Proof. By linearity of L·,w(y, λ) we get for every y ∈ Y,w ∈ W, that

(3.33) Lx,w(y, λ) = Lx̄,w(y, λ) + (x− x̄)T (B0w +BTλ).

Next, using representation (3.24) of Q and the fact that ŵ ∈ W we have

Q(x) ≥ xTa1 + θx(ŵ)

≥ xTa1 + hx,ŵ(λ̂),
(3.28)

= xTa1 +

{
min Lx,ŵ(y, λ̂)
y ∈ Y,

(3.33)
= xTa1 + (x− x̄)T (B0ŵ +BT λ̂) +

{
min Lx̄,ŵ(y, λ̂)
y ∈ Y,

(3.28)
= xTa1 + (x− x̄)T (B0ŵ +BT λ̂) + hx̄,ŵ(λ̂)

(3.30)

≥ xTa1 + (x− x̄)T (B0ŵ +BT λ̂) + θx̄(ŵ)− δ
(3.31)

≥ xTa1 + (x− x̄)T (B0ŵ +BT λ̂) + Lx̄(ŷ, ŵ)− τ − δ
(3.32)

= C(x).

Moreover, if w̄ is an optimal solution of (3.24) written for x = x̄, i.e., Q(x̄) = x̄Ta1 +
θx̄(w̄) we obtain

0 ≤ Q(x̄)−C(x̄) = τ + δ+ θx̄(w̄)−Lx̄(ŷ, ŵ)
(3.25)

≤ τ + δ+ θx̄(w̄)− θx̄(ŵ)
(3.29)

≤ τ + δ+ ε,

which achieves the proof of the proposition.

4. Particular case of differentiable problems and comparison with the
inexact cuts from [15]. The following proposition, taken from [15], provides an
inexact cut for Q given by (2.7) when functions f, gi are differentiable.

Proposition 4.1. Consider value function Q given by (2.7). Let Assumption
(H0) hold, take x̄ ∈ X, and assume that

(4.34) there exists yx̄ ∈ ri(Y ) such that Ayx̄ +Bx̄ = b with g(yx̄, x̄) < 0.

Assume that f and g are differentiable on Y×X. Let ε ≥ 0, let ŷ be an ε-optimal
feasible primal solution for problem (2.7) written for x = x̄ and let (λ̂, µ̂) be an ε-
optimal feasible solution of the corresponding dual problem given by

max
µ≥0,λ

θx(λ, µ)

where the dual function θx(λ, µ) is given by

(4.35) θx(λ, µ) = min
y∈Y

Lx(y, λ, µ)

for the Lagrangian

Lx(y, λ, µ) = f(y, x) + 〈λ,Bx+Ay − b〉+ 〈µ, g(y, x)〉.

Assume that f(·, x̄) is finite on

(4.36) S(x̄) = {y ∈ Y : Ay +Bx̄ = b, g(y, x̄) ≤ 0}
11



and that η(ε) = `(ŷ, x̄, λ̂, µ̂) is finite where

`(ŷ, x̄, λ̂, µ̂) = max{〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉 : y ∈ Y }.

Then the affine function

(4.37) C(x) := Lx̄(ŷ, λ̂, µ̂)− η(ε) + 〈∇xLx̄(ŷ, λ̂, µ̂), x− x̄〉

is an (ε+ `(ŷ, x̄, λ̂, µ̂))-inexact cut for Q at x̄.

We want to compare the inexact cuts given by Propositions 2.3 and 4.1 obtained
taking εD = εP = ε in Proposition 2.3. For the cut given by Proposition 4.1 to be
valid, we assume that the assumptions of this proposition are satisfied. In particular,
(4.34) holds. Let us show that if in addition Y ×X ⊂ dom(gi) for all i = 1, . . . , p, this
implies that (2.12) holds which will imply that the assumptions of Proposition 2.3 are
also satisfied and the inexact cut given by that proposition is valid. Indeed, write set
S given by (2.9) as S = S1∩S2∩(Y ×Rn) where S1 = {(y, z) ∈ Rm×Rn : g(y, z) ≤ 0}
and S2 = {(y, z) ∈ Rm×Rn : Ay +Bz = b}. We have that ri(S2) = S2 and

(4.38) ri({gi ≤ 0}) = {(y, z) ∈ Rm×Rn : (y, z) ∈ ri(dom(gi)), gi(y, z) < 0, i = 1, . . . , p}.

Since Y ×{x̄} ⊂ dom(gi), i = 1, . . . , p, we have ri(Y )×{x̄} ⊂ ri(dom(gi)), i = 1, . . . , p,
implying that set ∩pi=1ri({gi ≤ 0}) is nonempty since it contains the nonempty set
ri(Y )×{x̄} (this set contains (yx̄, x̄)). Therefore ri(S1) = ∩pi=1ri({gi ≤ 0}) = {(y, z) ∈
Rm×Rn : (y, z) ∈ ri(dom(gi)), gi(y, z) < 0, i = 1, . . . , p}. It follows that convex sets
S1, S2, and Y × Rn are convex and satisfy ri(S1) ∩ ri(S2) ∩ (ri(Y ) × Rn) 6= ∅ (they
contain the point (yx̄, x̄)) which implies that ri(S) = ri(S1)∩ ri(S2)∩ (ri(Y )×Rn) and
recalling the representations of ri(S1) and ri(S2), we see that (yx̄, x̄) which satisfies
(4.34) also belongs to ri(S), i.e., Slater condition (2.12) holds. Therefore, Proposition
2.3 provides a valid 2ε-inexact cut for Q.

Let us use the notation C1(x) = θ1 + 〈β1, x− x̄〉 and C2(x) = θ2 + 〈β2, x− x̄〉 for
respectively the inexact cuts given by Propositions 2.3 and 4.1. In Proposition 4.2
below, we derive upper and lower bounds on θ1 − θ2 = C1(x̄) − C2(x̄) (observe that
in the exact case, i.e., when ε = 0, clearly θ1 = θ2 and β1 = β2). This will be done
using characterizations of ε-optimal feasible primal-dual solutions to obtain bounds
for the terms 〈µ̂, g(ŷ, x̄)〉 and max

y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ−y〉 (which are clearly null if ŷ and

(λ̂, µ̂) are optimal primal-dual solutions). In particular, we will show that 〈µ̂, g(ŷ, x̄)〉
is between −2ε and 0. To derive these bounds, we will assume that

(A0) the gradient of objective function f(·, x̄) (resp. of constraint function gi(·, x̄))
is L0 (resp. Li)-co-coercive with Li >, i = 0, . . . , p.

Recall that F : Dom(F ) ⊆ Rm → Rm is L-co-coercive on Ω ⊆ Dom(F ) if

L〈y − x, F (y)− F (x)〉 ≥ ‖F (y)− F (x)‖2, ∀x, y ∈ Ω.

Proposition 4.2. Let the assumptions of Proposition 4.1 hold and assume that
Y ×X ⊂ dom(gi) for all i = 1, . . . , p. Take x̄ ∈ X and let Lx̄ be any lower bound on
Q(x̄). Let C1(x) = θ1 + 〈β1, x − x̄〉 and C2(x) = θ2 + 〈β2, x − x̄〉 be respectively the
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inexact cuts given by Propositions 2.3 and 4.1 taking εD = εP = ε. Assume that f
and gi, i = 1, . . . , p, satisfy (A0), that Y is compact, and set

Ux̄ =
f(yx̄, x̄)− Lx̄ + ε

min(−gi(yx̄, x̄), i = 1, . . . , p)
, L = L0 + Ux̄ max

i=1,...,p
Li.

Then we have
−2ε ≤ C1(x̄)− C2(x̄) ≤ 2ε+ 2DY

√
Lε,

where DY is the diameter of Y .

Proof. Recall that

C1(x̄) = f(ŷ, x̄)− 2ε,

C2(x̄) = f(ŷ, x̄) + 〈µ̂, g(ŷ, x̄)〉 −max
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉,

and that (ŷ, λ̂, µ̂) satisfy

(4.39) ŷ ∈ S(x̄), µ̂ ≥ 0, f(ŷ, x̄) ≤ Q(x̄) + ε, θx̄(λ̂, µ̂) ≥ Q(x̄)− ε,

where S(x) is defined in (4.36) and θx̄ is the dual function given by (4.35).
By the subgradient inequality, if Lx is the Lagrangian given in Proposition 4.1,

we get
(4.40)

θx̄(λ̂, µ̂) = miny∈Y Lx̄(y, λ̂, µ̂) ≥ Lx̄(ŷ, λ̂, µ̂) + miny∈Y 〈∇yLx̄(ŷ, λ̂, µ̂), y − ŷ〉
= f(ŷ, x̄) + 〈µ̂, g(ŷ, x̄)〉+ miny∈Y 〈∇yLx̄(ŷ, λ̂, µ̂), y − ŷ〉 = C2(x̄).

Therefore,

(4.41)

C1(x̄) = f(ŷ, x̄)− 2ε

≥ θx̄(λ̂, µ̂)− 2ε by weak duality,
(4.40)

≥ C2(x̄)− 2ε.

We next provide an upper bound for C1(x̄)− C2(x̄). Indeed, (4.39) implies that

f(ŷ, x̄) ≤ θx̄(λ̂, µ̂) + 2ε = min
y∈Y
{Lx̄(y, λ̂, µ̂) : y ∈ Y }+ 2ε

and hence that

Lx̄(ŷ, λ̂, µ̂) = f(ŷ, x̄) + 〈µ̂, g(ŷ, x̄)〉 ≤ min
y∈Y
{Lx̄(y, λ̂, µ̂) : y ∈ Y }+ 〈µ̂, g(ŷ, x̄)〉+ 2ε

where the first equality is due to ŷ ∈ S(x̄). The last inequality in turn is equivalent
to ε̃ := 2ε+ 〈µ̂, g(ŷ, x̄)〉 satisfying

(4.42) 2ε ≥ 2ε+ 〈µ̂, g(ŷ, x̄)〉 = ε̃ ≥ 0, 0 ∈ ∂ε̃
(
Lx̄(·, λ̂, µ̂) + δY (·)

)
(ŷ)

where δY (·) is the indicator function of set Y given by

δY (y) =

{
0 if y ∈ Y,
+∞ otherwise.

It is easy to check that ‖µ̂‖ ≤ Ux̄ (see for instance the proof of Proposition 2.3 in

[15]) which easily implies that Lx̄(·, λ̂, µ̂) is L-co-coercive (for the interested reader,
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we provide in Lemma 8.1 in the appendix the proof that a sum of Li-co-coercive
mappings fi is (

∑n
i=1 Li)-co-coercive). Combining this observation with (4.42) and

Lemma 3.2 in [32], we obtain that there exists v satisfying:

(4.43) v ∈ ∇yLx̄(ŷ, λ̂, µ̂) + ∂ε̃δY (ŷ), ‖v‖ ≤
√

2Lε̃
(4.42)

≤ 2
√
Lε.

It is well known that set ∂ε̃δY (ŷ) is the ε̃-normal set to Y at ŷ given by

∂ε̃δY (ŷ) = {z ∈ Rm : 〈z, y − ŷ〉 ≤ ε̃ ∀y ∈ Y }

and therefore v which satisfies (4.43) also satisfies

(4.44) 〈∇yLx̄(ŷ, λ̂, µ̂)− v, ŷ − y〉 ≤ ε̃, ∀y ∈ Y ⇔ max
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂)− v, ŷ − y〉 ≤ ε̃.

We then obtain the following upper bound for C1(x̄)− C2(x̄):

C2(x̄) = f(ŷ, x̄) + 〈µ̂, g(ŷ, x̄)〉 −max
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉

= C1(x̄) + 2ε+ 〈µ̂, g(ŷ, x̄)〉 −max
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉

(4.42)

≥ C1(x̄)−max
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉

≥ C1(x̄)−max
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂)− v, ŷ − y〉 −max

y∈Y
〈v, ŷ − y〉

(4.44)

≥ C1(x̄)− ε̃− ‖v‖DY

(4.43)

≥ C1(x̄)− 2ε− 2DY

√
Lε,

which achieves the proof of the proposition.

The upper and lower bounds on C1(x̄) − C2(x̄) given in Proposition 4.2 are con-
tinuous functions of ε which go to 0 as ε goes to 0. Also these bounds are respectively
positive and negative for positive ε. This shows that they are both of good quality
for small values of ε and this analysis does not ensure that one of these two is always
better (i.e., has a larger intercept at x̄) than the other.

The analysis above (the proof of Proposition 4.2) is also interesting per-se since it
offers ways of characterizing ε-optimal primal-dual solutions and allows us to derive
bounds on the two quantities 〈µ̂, g(ŷ, x̄)〉 and max

y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉 which, by

the first order optimality conditions, are null if ŷ and (λ̂, µ̂) are respectively optimal

primal and dual solutions. More precisely, if ŷ (resp. (λ̂, µ̂)) is an ε-optimal feasible
primal (resp. dual) solution, then we have shown that −2ε ≤ 〈µ̂, g(ŷ, x̄)〉 ≤ 0 and

0 ≤ max
y∈Y
〈∇yLx̄(ŷ, λ̂, µ̂), ŷ − y〉 ≤ 2DY

√
Lε+ 2ε.

5. ISDDP algorithm for nondifferentiable problems. The objective of this
section is to introduce and study new variants of ISDDP which use the inexact cuts
built in the previous sections.

We consider multistage stochastic nonlinear optimization problems of the form
(5.45)

min
x1∈X1(x0,ξ1)

f1(x1, x0, ξ1) + E
[

min
x2∈X2(x1,ξ2)

f2(x2, x1, ξ2) + E [. . .

. . .+ E
[
minxT∈XT (xT−1,ξT ) fT (xT , xT−1, ξT )

]]]
,

where x0 is given, (ξt)
T
t=2 is a stochastic process, ξ1 is deterministic, and

Xt(xt−1, ξt) = {xt ∈ Rn : Atxt +Btxt−1 = bt, gt(xt, xt−1, ξt) ≤ 0, xt ∈ Xt}.
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We make the following assumption on (ξt):

(H) (ξt) is interstage independent and for t = 2, . . . , T , ξt is a random vector tak-
ing values in RK with a discrete distribution and a finite support Θt = {ξt1, . . . , ξtNt}
with pti = P(ξt = ξti) > 0, i = 1, . . . , Nt, while ξ1 is deterministic.

In the sequel, we will denote by Atj , Btj , and btj the realizations of At, Bt, and
bt in ξtj .

For this problem, we can write Dynamic Programming equations: the first stage
problem is

(5.46) Q1(x0) =

{
minx1∈Rn f1(x1, x0, ξ1) +Q2(x1)
x1 ∈ X1(x0, ξ1)

for x0 given and for t = 2, . . . , T , Qt(xt−1) = Eξt [Qt(xt−1, ξt)] with

(5.47) Qt(xt−1, ξt) =

{
minxt∈Rn ft(xt, xt−1, ξt) +Qt+1(xt)
xt ∈ Xt(xt−1, ξt),

with the convention that QT+1 is null.
We set X0 = {x0} and make the following assumptions (H1) on the problem data:

(H1): there exists ε > 0 such that for t = 1, . . . , T ,
1) Xt is a nonempty, compact, and convex set.
2) For every j = 1, . . . , Nt, the function ft(·, ·, ξtj) is convex, proper, lower

semicontinuous on Xt×Xt−1 and for every xt−1 X εt−1 we have

Xt ⊂ dom(ft(·, xt−1, ξtj)).

3) For every j = 1, . . . , Nt, each component gti(·, ·, ξtj), i = 1, . . . , p, of function
gt(·, ·, ξtj) is convex, lower semicontinuous and finite on Xt×Xt−1.

4) X1(x0, ξ1) 6= ∅ and for every t = 2, . . . , T , for every j = 1, . . . , Nt, for every
xt−1 ∈ X εt−1, the set ri(Xt) ∩Xt(xt−1, ξtj) is nonempty.

5) for every t ≥ 2, for every j = 1, . . . , Nt, there is (xtj , xt−1j) ∈ ri(Xt)×Xt−1

such that gt(xtj , xt−1j , ξtj) < 0.

We are now in a position to describe the ISDDP algorithm for nondifferentiable
optimization problems of form (5.45). The ISDDP algorithm given below combines
SDDP with the inexact cuts derived in Section 2.2:

ISDDP algorithm.

Step 0) Initialization. Let Q0
t : Xt−1 → R, t = 2, . . . , T + 1, be affine functions

satisfying Q0
t ≤ Qt. Set k = 1.

Step 1) Forward pass. Setting xk0 = x0, generate a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) from the

distribution of (ξ1, ξ2, . . . , ξT ) and for t = 1, 2, . . . , T , compute a δkt -optimal
solution xkt of

min
{
ft(xt, x

k
t−1, ξ̃

k
t ) +Qk−1

t+1 (xt) : xt ∈ Xt(x
k
t−1, ξ̃

k
t )
}
.(5.48)

Step 2) Backward pass.
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For t = T, T − 1, . . . , 2,
For j = 1, . . . , Nt,

Compute an εkt -optimal solution xktj of

(5.49) Qk
t (xkt−1, ξtj) =



min
xt,z

ft(xt, z, ξtj) +Qkt+1(xt)

Atjxt +Btjz = btj ,
gt(xt, z, ξtj) ≤ 0,
xt ∈ Xt,
z = xkt−1, [λktj ]

and an εkt -optimal dual solution λktj of the dual of problem (5.49)

obtained dualizing constraints z = xkt−1.
End For
Compute

βkt =
∑Nt

j=1 ptjλ
k
tj ,

θkt =
∑Nt

j=1 ptj

(
ft(x

k
tj , x

k
t−1, ξtj) +Qkt+1(xktj)− 〈λktj , xkt−1〉

)
and store the new cut

Ckt (xt−1) := θkt − 2εkt + 〈βkt , xt−1〉

for Qt, making up the new approximation Qkt = max{Qk−1
t , Ckt }.

End For
Step 4) Do k ← k + 1 and go to Step 1).

Remark 5.1. ISDDP algorithm given above applies both to differentiable and
nondifferentiable problems. In the differentiable case (when all functions ft(·, ·, ξtj)
and gti(·, ·, ξtj) are differentiable), compared to ISDDP introduced in [15], the variant
of ISDDP given above does not need to solve an additional optimization problem to
obtain the intercept of the cut. However, all subproblems solved in the forward and
backward passes have additional variables and constraints; the number of additional
variables and constraints being the size of xt−1 for stage t.

When objective functions ft(·, ·, ξtj) have saddle point representations (which is
the case of all “well structured” convex functions), we can also derive another variant
of ISDDP that combines SDDP with the inexact cuts given in Section 3. For instance,
assuming to alleviate notation that ft is deterministic of the form ft(xt, xt−1) with
saddle point representation

(5.50) ft(xt, xt−1) = xTt−1at,1 + xTt at,2 + max
w∈Wt

xTt Ātw + xTt−1B̄tw −Ψt(w),

setting

∆k+1 = {λ = (λ0, λ1, . . . , λk) ∈ Rk+1 : λ ≥ 0,
∑k
i=0 λi = 1},

θ̄0:k
t = [θ0

t ; θ
1
t − 2ε1

t ; . . . ; θ
k
t − 2εkt ], β0:k

t = [β0
t , β

1
t , . . . , β

k
t ],

φtk(λ) = −λT θ̄0:k,

from the saddle point representation

Qkt+1(xt) = max
λ∈∆k+1

k∑
i=0

λi(θ
i
t − 2εit + 〈βit , xt〉) = max

λ2∈∆k+1

xTt β
0:k
t λ2 − φt,k(λ2),
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of Qkt+1 where ε0
t = 0, we deduce the saddle point representation

(5.51) xTt−1at,1 + xTt at,2 + max
λ∈Λ

xTt Akt λ+ xTt−1Btλ− φ̃t,k(λ)

of ft(xt, xt−1) +Qkt+1(xt) where

Akt = [Āt, β
0:k
t ], Bt = [B̄t, 0], φ̃t,k(λ1, λ2) = Ψt(λ1) + φt,k(λ2),

Λ = {λ = (λ1, λ2) : λ1 ∈ Wt, λ2 ∈ ∆k+1}.

In this situation, (5.51) provides a saddle point representation of the objective
functions of problems (5.49) solved in the backward passes which allows us to build,
using Section 3, inexact cuts of controlled accuracy for value functions Qk

t (·, ξtj) and
therefore for Qt.

We now study the convergence of ISDDP and start introducing more notation.
Due to Assumption (H), the realizations of (ξt)

T
t=1 form a scenario tree of depth T +1

where the root node n0 associated to a stage 0 (with decision x0 taken at that node)
has one child node n1 associated to the first stage (with ξ1 deterministic). We denote
by N the set of nodes and for a node n of the tree, we define:

• C(n): the set of children nodes (the empty set for the leaves);
• xn: a decision taken at that node;
• pn: the transition probability from the parent node of n to n;
• ξn: the realization of process (ξt) at node n: for a node n of stage t, this

realization ξn contains in particular the realizations bn of bt, An of At, and
Bn of Bt.

Next, we define for iteration k decisions xkn for all node n of the scenario tree
simulating the policy obtained in the end of iteration k−1 replacing cost-to-go function
Qt by Qk−1

t for t = 2, . . . , T + 1:

Simulation of ISDDP policy in the end of iteration k − 1.

For t = 1, . . . , T ,
For every node n of stage t− 1,

For every child node m of node n, compute a δkt -optimal solution xkm of

(5.52) Qk−1
t (xkn, ξm) =


inf
xm

ft(xm, x
k
n, ξm) +Qk−1

t+1 (xm)

Amxm +Bmx
k
n = bm,

gt(xm, x
k
n, ξm) ≤ 0,

xm ∈ Xt,

where xkn0
= x0.

End For
End For

End For

We will assume that the sampling procedure in ISDDP satisfies the following
property:
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(H2) The samples in the backward passes are independent: (ξ̃k2 , . . . , ξ̃
k
T ) is a real-

ization of ξk = (ξk2 , . . . , ξ
k
T ) ∼ (ξ2, . . . , ξT ) and ξ1, ξ2, . . . , are independent.

As said in the introduction, a useful tool for the convergence analysis of SDDP
and ISDDP is Lemma 5.2 in [11] for vanishing errors and Lemma 4.1 in [15] for
bounded errors. We provide different proofs of these lemmas with slightly different
assumptions, one of them being stronger (the continuity of f [which is satisfied when
the lemmas are applied to study the convergence of ISDDP]) and two being weaker.
More precisely, in these lemmas we do not assume fn ≤ f and take equicontinuous
sequences fn instead of sequences of Lipschitz continuous functions. If we assumed
fn ≤ f , the proof would be a little shorter, because boundedness of {fn} would be
immediate. From these assumptions, we also derive a stronger conclusion, used in the
convergence analysis.

Lemma 5.1. Let (X, d) be a compact metric space. If {xn}n∈N is a sequence in X,
{fn}n∈N is an equicontinuous sequence of real functions on X, f1 ≤ f2 ≤ f3 ≤ . . . ,
and f is a continuous real function on X then the following conditions are equivalent:

(a) limm,n→∞ fm(xn)− f(xn) = 0.
(b) limn→∞ fn(xn)− f(xn) = 0.

Morever, if (a) or (b) holds then fn converges uniformly to a continuous function
which coincides with f on the set

Y∗ =

{
y ∈ X : y = lim

j→∞
xnj

for some subsequence {xnj
}j∈N

}
.

Proof. See the Appendix.

The proof of the previous lemma can be adapted to prove Lemma 5.2 which will
be used in the convergence analysis of ISDDP with bounded errors.

Lemma 5.2. Let (X, d) be a compact metric space, let f : X → R be continuous
and suppose that the sequence of equicontinuous functions fk, k ∈ N satisfies fk(x) ≤
fk+1(x) for all x ∈ X, k ∈ N. Let (xk)k∈N be a sequence in X and assume that

(5.53) lim
k→+∞

f(xk)− fk(xk) ≤ S

for some finite S ≥ 0. Then

(5.54) lim
k→+∞

f(xk)− fk−1(xk) ≤ S.

Moreover, fn converges uniformly to a continuous function g such that |f(y)−g(y)| ≤
S for every y in the set

Y∗ =

{
y ∈ X : y = lim

j→∞
xnj

for some subsequence {xnj
}j∈N

}
.

Proof. See the Appendix.

We are now in a position to state our first convergence theorem for ISDDP.

Theorem 5.3 (Convergence of ISDDP with bounded errors). Consider the se-
quences of decisions (xkn)n∈N and of functions (Qkt ) generated in the simulation of
ISDDP. Assume that (H), (H1), and (H2) hold, and that errors εkt and δkt are bounded:
0 ≤ εkt ≤ ε̄, 0 ≤ δkt ≤ δ̄ for finite δ̄, ε̄. Then the following holds:
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(i) for t = 2, . . . , T + 1, for all node n of stage t− 1, almost surely
(5.55)
0 ≤ lim

k→+∞
Qt(xkn)−Qkt (xkn) ≤ lim

k→+∞
Qt(xkn)−Qkt (xkn) ≤ (δ̄ + 2ε̄)(T − t+ 1);

(ii) for every t = 2, . . . , T , for all node n of stage t − 1, the limit superior and

limit inferior of the sequence of upper bounds
( ∑
m∈C(n)

pm(ft(x
k
m, x

k
n, ξm) +

Qt+1(xkm))
)
k

satisfy almost surely

(5.56)

0 ≤ limk→+∞

∑
m∈C(n)

pm
[
ft(x

k
m, x

k
n, ξm) +Qt+1(xkm)

]
−Qt(x

k
n),

limk→+∞
∑

m∈C(n)

pm
[
ft(x

k
m, x

k
n, ξm) +Qt+1(xkm)

]
−Qt(x

k
n) ≤ (δ̄ + 2ε̄)(T − t+ 1);

(iii) the limit superior and limit inferior of the sequence Qk−1
1 (x0, ξ1) of lower

bounds on the optimal value Q1(x0) of (5.45) satisfy almost surely
(5.57)
Q1(x0)−δ̄T−2ε̄(T−1) ≤ lim

k→+∞
Qk−1

1 (x0, ξ1) ≤ lim
k→+∞

Qk−1
1 (x0, ξ1) ≤ Q1(x0);

(iv) for t = 2, . . . , T , almost surely the sequence of functions (Qkt )k converges
uniformly to a continuous function Q∗t which is at most at distance (δ̄ +
2ε̄)(T − t+1) from Qt on every accumulation point x̄n of the sequences (xkn)k
for every node n of stage t− 1.

Proof. (i) We show (5.55) for t = 2, . . . , T + 1, and all node n of stage t − 1 by
backward induction on t. The relation holds for t = T + 1. Now assume that it holds
for t + 1 for some t ∈ {2, . . . , T}. Let us show that it holds for t. Take a node n of
stage t− 1. Let Sn be the iterations where the sampled scenario passes through node
n and take an iteration k ∈ Sn. It was shown in Lemma 5.2 in [15] that for the classes
of problems we consider, Assumptions (H1)-3),5) imply that almost surely for every
j, k, there exists xt satisfying

xt ∈ ri(Xt), Atjxt +Btjx
k
t−1 = btj and gt(xt, x

k
t−1, ξtj) < 0.

Recalling that Xt × Xt−1 ⊂ dom(gti) for all i, we can reproduce the reasoning used
just after Proposition 4.1 in Section 4 to deduce that for every j, t, there exists

(5.58) (xt, z) ∈ ri(Stj)

where
Stj = {(xt, z) : Atjxt +Btjz = btj , gt(xt, z, ξtj) ≤ 0, xt ∈ Xt}.

Condition (5.58) is exactly Slater condition (2.12) (from Proposition 2.3) written for
problem (5.49) solved in the backward pass of iteration k for scenario j. Therefore, we
can apply Proposition 2.3 to value function Qk

t (·, ξtj) to obtain a 2εkt -inexact cut for
this function for stage t and iteration k of ISDDP. More precisely, fix j ∈ {1, . . . , Nt}
and take m such that ξtj = ξm. Recalling that λkm is defined in (5.52) and setting

Cktm(xn) = ft(x
k
m, x

k
n, ξm) +Qkt+1(xkn)− 2εkt + 〈λkm, xn − xkn〉,

using Proposition 2.3, we get for all xn ∈ Xt−1 and k ∈ Sn:

(5.59) Cktm(xn) ≤ Qk
t (xn, ξm)
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and

(5.60) Qk
t (xkn, ξm)− Cktm(xkn) ≤ 2εkt .

This implies that Qkt is indeed a valid cut for Qt: for xn ∈ Xt−1 and k ∈ Sn, we have

(5.61)
Qt(xn) =

∑
m∈C(n) pmQt(xn, ξm) ≥

∑
m∈C(n) pmQk

t (xn, ξm)
(5.59)

≥
∑
m∈C(n) pmCktm(xn) = Ckt (xn).

Also by definition of xkm computed in the simulation of iteration k we get

(5.62) ft(x
k
m, x

k
n, ξm) +Qk−1

t+1 (xkm) ≤ Qk−1
t (xkn, ξm) + δkt .

Therefore, for k ∈ Sn:

(5.63)

Ckt (xkn) =
∑

m∈C(n)

pmCktm(xkn),

(5.60)

≥
∑

m∈C(n)

pm

[
Qk
t (xkn, ξm)− 2εkt

]
,

≥ −2ε̄+
∑

m∈C(n)

pmQk−1
t (xkn, ξm),

(5.62)

≥ −2ε̄+
∑

m∈C(n)

pm
[
ft(x

k
m, x

k
n, ξm) +Qk−1

t+1 (xkm)− δkt
]
,

≥ −2ε̄− δ̄ +
∑

m∈C(n)

pm
[
ft(x

k
m, x

k
n, ξm) +Qk−1

t+1 (xkm)
]
.

It follows that for k ∈ Sn

(5.64)

0
(5.61)

≤ Qt(xkn)−Qkt (xkn) ≤ Qt(xkn)− Ckt (xkn)
(5.63)

≤ 2ε̄+ δ̄ +
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)− ft(xkm, xkn, ξm)−Qk−1

t+1 (xkm)
]

≤ 2ε̄+ δ̄ +
∑

m∈C(n)

pm

[
Qt(x

k
n, ξm)− ft(xkm, xkn, ξm)−Qt+1(xkm)︸ ︷︷ ︸
≤0 by definition of Qt and xk

m

]
+

∑
m∈C(n)

pm

[
Qt+1(xkm)−Qk−1

t+1 (xkm)
]
.

Using the induction hypothesis, we have for everym ∈ C(n) that limk→+∞Qt+1(xkm)−
Qkt+1(xkm) ≤ (δ̄+ 2ε̄)(T − t). Following the proof of Lemma 4.2 in [16], we obtain that
sequence (βkt )k is almost surely bounded and that functions (Qkt )k are L-Lipschitz
continuous and therefore sequence (Qkt )k is monotone and equicontinuous. Since Qt
is continuous on Xt−1, we can apply Lemma 5.2 to obtain limk→+∞Qt+1(xkm) −
Qk−1
t+1 (xkm) ≤ (δ̄ + 2ε̄)(T − t), which, plugged into (5.64), gives

(5.65) lim
k→+∞,k∈Sn

Qt(xkn)−Qkt (xkn) ≤ (δ̄ + 2ε̄)(T − t+ 1).

Finally, to conclude the proof of (i), it remains to show that

(5.66) lim
k→+∞,k/∈Sn

Qt(xkn)−Qkt (xkn) ≤ (δ̄ + 2ε̄)(T − t+ 1),
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and with relation (5.65) at hand, relation (5.66) can be shown by contradiction fol-
lowing the end of the proof of Theorem 4.2 in [15].

(ii) and (iii) can be shown using (i) and following the proof of Theorem 4.2-(ii),
(iii) in [15].

(iv) is an immediate consequence of (i) and Lemma 5.2.

We can now state our second convergence theorem for ISDDP:

Theorem 5.4 (Convergence of ISDDP with vanishing errors). Consider the se-
quences of decisions (xkn)n∈N and of functions (Qkt ) generated in the simulation of IS-
DDP. Assume that (H), (H1), and (H2) hold, and that for all t we have limk→+∞ εkt =
limk→+∞ δkt = 0. Then almost surely the limit of the sequence (Qk−1

1 (x0, ξ1))k≥1 is
the optimal value Q1(x0) of (5.45). Moreover, for t = 2, . . . , T , almost surely the
sequence of functions (Qkt )k converges uniformly to a continuous function Q∗t which
coincides with Qt on every accumulation point x̄n of the sequences (xkn)k for every
node n of stage t− 1.

Proof. It suffices to follow the proof of Theorem 5.3 and to use Lemma 5.1 instead
of Lemma 5.2.

If instead of the inexact cuts from Section 2 we use in ISDDP the inexact cuts from
Section 3 based on saddle point representations of the objective, we obtain similar
convergence results, due to the fact that the error terms in both the cuts from Section
2 and from Section 3 linearly depend on δkt and εkt .

6. Numerical experiments. We consider the multistage nondifferentiable non-
linear stochastic program given by the following DP equations: the Bellman function
for stage t = 1, . . . , T , isQt(xt−1) = Eξt,Ψt,Ut

[Qt(xt−1, ξt,Ψt, Ut)] and for t = 1, . . . , T ,
Qt(xt−1, ξt,Ψt, Ut) is given by

(6.67)
min ft(xt, xt−1, ξt, Ut) +Qt+1(xt)
−100 e ≤ xt ≤ 100 e,
max(4(xt − e)T (xt − e), xTt (ξtξ

T
t + αIn)xt + xTt ξt + 1) ≤ Ψt,

where xt ∈ Rn, ft(xt, xt−1, ξt, Ut) = max((xt−xt−1)T (ξtξ
T
t +αIn)(xt−xt−1)+xTt ξt+

1, xTt (ξtξ
T
t + αIn)xt + xTt e + Ut), e is a vector of size n of ones, and QT+1 is the null

function. In these equations, α ≥ 0 is a parameter, ξt is a discretization of a Gaussian
random vector with mean vector mt having entries 1 or −1 and covariance matrix
Σt = AtA

T
t + 0.5I where At has entries in [−0.5, 0.5]; Ut is a discrete random variable

taking values +10, −10, and Ψt has discrete distribution with support contained in
[104, 105]. The number of realizations Nt for (ξt,Ψt, Ut) is fixed to Nt = N for each
stage. We assume that (ξ1,Ψ1, U1) is known and (ξ2,Ψ2, U2), . . . , (ξT ,ΨT , UT ) are
independent.

We generate 2 instances of this problem with parameters α = 0.2 and T, n,M
given by (T, n,M) = (5, 10, 20) and (T, n,M) = (5, 50, 20). The instances are cho-
sen taking realizations Ψtj of Ψt sufficiently large, in such a way that Assumption
(H1)-4) holds. It is easy to check that the remaining assumptions (H1) and (H) are
satisfied and therefore SDDP can be applied to solve the problem as well as SDDP
combined with the inexact cuts from Section 2. In what follows, we denote the corre-
sponding solution methods by SDDP and ISDDPND (Inexact SDDP for nondifferentiable
problems). We also solved problem (6.67) using Stochastic Dynamic Cutting Plane
(denoted by StoDCuP), StoDCuP combined with inexact cuts (denoted by IStoDCuP)
introduced in [16] as well as the inexact variant of SDDP introduced in [15] that we
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Iteration 1-10 11-20 21-40 41-140 141-240 241-350 > 350

Parameter value 10 5 3 1 0.5 0.1 e-6
Table 1

Relative error of the subproblem solutions along iterations of inexact methods (Mosek parameter
MSK DPAR INTPNT TOL REL GAP).

IMSDDP ISDDPND ISDDPD IStoDCuP MSDDP SDDP StoDCuP

Iterations 439 409 465 655 569 431 770
CPU time 233.1 282.2 322.5 582.4 352.7 297.3 791.8

T = 5, n = 10,M = 20
IMSDDP ISDDPND ISDDPD IStoDCuP MSDDP SDDP StoDCuP

Iterations 400 400 400 - 400 400 -
CPU time 3 424 4 387 3 237 - 3 547 4 504 -

T = 5, n = 50,M = 20, α = 0.2
Table 2

Number of iterations and CPU time in seconds needed to solve the two instances. For the
second instance, the unfilled cells for IStoDCuP and StoDCuP indicate that these methods had not
converged after completing the maximal number of 600 iterations. It took IStoDCuP (resp. StoDCuP)
2 230 s. (resp. 2 356 s.) to complete these 600 iterations.

will denote by ISDDPD (Inexact SDDP for differentiable problems) in what follows
(the interested reader can find in the Appendix the formulas for the inexact cuts to
use for this inexact variant of SDDP). Observe that this inexact variant ISDDPD was
designed for differentiable problems but can be applied to (6.67) reformulating the
problem as a differentiable problem replacing in (6.67) each max with 2 quadratic con-
straints. Finally, we consider a mixed StoDCuP-SDDP variant (denoted by MSDDP)
which uses StoDCuP for the first 150 iterations and SDDP for the remaining itera-
tions, as well as its inexact counterpart (denoted by IMSDDP) which is StoDCuP with
inexact cuts, i.e., IStoDCuP, for the first 150 iterations and SDDP with the inexact
cuts from Section 2, i.e., ISDDPND, for the remaining iterations. The Matlab imple-
mentation of all methods can be found at https://github.com/vguigues/ISDDP NLP.
All subproblems were solved using Mosek optimization library [1].

For the inexact variants with inexact cuts to be well defined, we also need to set
the level of accuracy of the computed solutions along the iterations of the methods.
In our experiments, the relative error of the subproblem solutions (Mosek parameter
MSK DPAR INTPNT TOL REL GAP whose range is any value ≥ 10−14 and default
value is 10−8) is given in Table 1; see also Remark 2 in [15] for other choices of
sequences of noises εkt . For the exact variants, this parameter was set to 10−10 for all
iterations.

All methods compute at each iteration a lower bound on the optimal value which
is the optimal value of the first stage problem solved in the forward pass and upper
bounds computed by Monte-Carlo simulations, from iteration 400 on, using the last
400 forward scenarios. The algorithms stopped when a relative gap of at most 0.1
was achieved or, for the largest instance, when the maximal number of 600 iterations
was reached.

The number of iterations before stopping the algorithms as well as the CPU time
is given in Table 2 for all methods and the two instances.

The evolution of the upper and lower bounds for some iterations, all methods,
and the two instances is given in Tables 3 and 4.
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Iteration IMSDDP ISDDPND ISDDPD IStoDCuP MSDDP SDDP StoDCuP

400 14.34 14.66 14.32 5.07 14.35 14.66 2.76

409 14.39 14.66 14.41 6.07 14.41 14.66 4.67

431 14.46 - 14.45 9.17 14.46 14.67 7.47

439 14.48 - 14.49 9.45 14.49 - 8.95

465 - - 14.62 12.80 14.57 - 12.34

500 - - - 12.80 14.57 - 12.34

569 - - - 13.71 14.62 - 13.57

770 - - - - - - 13.97

T = 5, n = 10,M = 20, α = 0.2
Iteration IMSDDP ISDDPND ISDDPD IStoDCuP MSDDP SDDP StoDCuP

200 -96 077 84.8 84.4 -1.832e6 -8 884 83.8 -1.843e6

300 53.7 85.8 85.7 -1.05e6 35.1 85.6 -1.0e6

400 84.6 85.9 85.9 -6.6e5 84.5 85.9 -7.2e5

600 - - - -3.3e4 - - -3.5e4

T = 5, n = 50,M = 20, α = 0.2
Table 3

Lower bounds computed along the iterations of the methods for both instances.

We observe that the sequences of upper bounds decrease and as expected the
sequences of lower bounds are increasing and both sequences converge to the same
values. On these instances, StoDCuP and its inexact variant IStoDCuP need more
iterations and time than the other methods to converge (for the largest instance the
maximal number of 600 iterations was even not enough for StoDCuP and IStoDCuP to
converge). However, we observed that the first iterations of StoDCuP and IStoDCuP

are much quicker than the first iterations of SDDP and its inexact variants, which
explains the good performance of the mixed StoDCuP-SDDP method and its inexact
counterpart. Indeed, IMSDDP is the quickest to converge for the first instance and the
second quickest, after ISDDPD, for the largest instance. In particular, both MSDDP and
IMSDDP converge much quicker than SDDP. Out of the 8 runs of the inexact methods,
only one did not converge quicker than its exact counterpart, namely ISSDPD for the
smallest instance. Among inexact variants ISSDPD and ISSDPND of SDDP, method
ISSDPD was the quickest on the instance with the largest value of the state vector size
n (n = 50) while ISSDPND was the quickest on the smallest instance, which may come
from the increase in the CPU time needed to solve subproblems with ISSDPND due to
the copy of variables used to derive the cuts. On the other hand, ISSDPND is more
general and can apply to nondifferentiable problems contrary to ISSDPD.

7. Conclusion. In [15], an inexact variant of SDDP called ISDDP was intro-
duced. Two variants of the method were described in [15]: one for linear problems and
one for nonlinear differentiable problems. In this paper, we explained how to extend
ISDDP for nondifferentiable multistage stochastic programs. We provided formulas
to compute inexact cuts for value functions of possibly nondifferentiable optimization
problems and combined these cuts with SDDP to describe two new inexact variants
of SDDP, one for each of the classes of cuts derived (the cuts from Section 2 and the
cuts from Section 3).

Several comments are in order:
• the variants of ISDDP presented in this paper can be used both for nonlinear

differentiable and nonlinear nondifferentiable optimization problems.
• For errors bounded from above by ε, same as ISDDP for linear programs
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Iteration IMSDDP ISDDPND ISDDPD IStoDCuP MSDDP SDDP StoDCuP

400 20.81 17.79 20.4 32.61 22.17 20.55 43.19

409 19.03 15.72 18.3 27.47 21.94 19.79 26.32

431 16.48 - 17.1 19.85 18.57 16.25 16.25

439 15.89 - 16.81 18.78 18.56 - 20.03

465 - - 15.9 18.42 18.14 - 19.37

500 - - - 17.11 16.75 - 17.72

569 - - - 16.42 16.22 - 16.86

770 - - - - - 15.94

T = 5, n = 10,M = 20, α = 0.2
Iteration IMSDDP ISDDPND ISDDPD IStoDCuP MSDDP SDDP StoDCuP

400 86.22 86.7 86.1 21 348 87.7 89.0 19 538

600 - - - 9 342 - - 7 231

T = 5, n = 50,M = 20, α = 0.2
Table 4

Upper bounds computed along the iterations of the methods for both instances..

introduced in [15], ISDDP variants of this paper provide 3εT -optimal first
stage solutions. Using the analysis of Section 4, it is easy to check that ISDDP
for nonlinear stochastic programs from [15] provides for bounded errors a
O(T
√
ε)-optimal first stage solution. However, all subproblems solved in the

forward and backward passes of the variant of ISDDP that uses the cuts from
Section 2 have additional variables and constraints; the number of additional
variables and constraints being the size of xt−1 for stage t.

• All variants of ISDDP from [15] and from this paper converge to an optimal
policy for vanishing noises. The convergence analysis of ISDDP applied to
nonlinear programs in [15] was however more technical due to the fact that
the error terms in the inexact cuts were not a linear function of δkt and εkt
(see Proposition 5.4 in [15]).

8. Appendix.

Lemma 8.1. Assume that Fi : Rm → Rm is Li-co-coercive for i = 1, . . . , n. Then∑n
i=1 Fi is (

∑n
i=1 Li)-co-coercive.

Proof. We can assume w.l.o.g that all Li are positive. Let S(x) =
∑n
i=1 Fi(x),

L =
∑n
i=1 Li > 0 , and αi = Li

L . Observing that
∑n
i=1 αi = 1 and using the convexity

of ‖ · ‖2 we get:

(8.68)

〈y − x, S(y)− S(x)〉 ≥
∑n
i=1

1
Li
‖Fi(x)− Fi(y)‖2

= 1
L

∑n
i=1 αi‖

1
αi

(Fi(x)− Fi(y))‖2
≥ 1

L‖S(y)− S(x)‖2,

which achieves the proof of the lemma.

Proof of Lemma 5.1. Implication (a)⇒(b) holds trivially. Suppose (b) holds.
Since X is compact and f is continuous, the sequence {fn(xn)} is bounded. Combin-
ing this result with the compactness of X and the equicontinuity of {fn} we conclude
that this sequence is pointwise uniformly bounded. Hence the monotone sequence
{fn(x)} converges for any x ∈ X. Recall that Y∗ is the set of limit points of {xn}
and let g : X → R be the pointwise limit of {fn} that is,

g(x) = limn→∞ fn(x) (x ∈ X).
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We claim that
1. g is continuous;
2. {fn} converges uniformly to g;
3. g(y) = f(y) for any y ∈ Y∗.

Continuity of g follows from the equicontinuity of {fn} and its convergence to g.
Since {fn} is a sequence of equicontinuous functions converging monotonically in a
compact set to a continuous function g, this convergence is uniform. To prove item
3, suppose that limj→∞ xnj

= y. Direct use of the triangle inequality yields

|fnj (y)− f(y)| ≤ |fnj (y)− fnj (xnj )|+ |fnj (xnj )− f(xnj )|+ |f(xnj )− f(y)|.

It follows from the equicontinuity of {fn}, the continuity of f , and the convergence
of {xnj

} to y that the first and third terms in the right-hand side of the above
inequality converge to 0, while it follows from Assumption (b) that the middle term
also converges to 0. Since {fnj (y)} converges to g(y), we have g(y) = f(y).

To end the proof, take ε > 0. There exists M0 ∈ N such that

m ≥M0 ⇒ |fm(x)− g(x)| < ε ∀x ∈ X.

It follows from the continuity of f and g, and from the compactness of X that there
is δ > 0 such that

d(x, x′) ≤ δ ⇒ |f(x)− f(x′)| ≤ ε, |g(x)− g(x′)| ≤ ε.

It follows from the definition of Y∗ and the compactness of X that there is N0 ∈ N
such that d(xn, Y∗) < δ for n ≥ N0. Suppose that m ≥ M0 and n ≥ N0. There is
y ∈ Y∗ such that d(xn, y) < δ. Therefore
(8.69)
|fm(xn)− f(xn)| ≤ |fm(xn)− g(xn)|+ |g(xn)− g(y)|+ |g(y)− f(xn)|

= |fm(xn)− g(xn)|+ |g(xn)− g(y)|+ |f(y)− f(xn)| < 3ε,

which achieves the proof of the lemma. �

Proof of Lemma 5.2. The proof is a simple extension of the proof of Lemma
5.1. We outline the changes in the proof below. Since the sequence fn(xn)− f(xn) is
bounded from above and f is continuous on the compact set X, the sequence fn(xn)
is bounded from above. Same as in Lemma 5.1, together with the equicontinuity, the
monotonicity of fn, and the compactness of X, this implies that the sequence fn(x)
converges for every x ∈ X uniformly to a continuous function g. For every y ∈ Y∗,
taking {xnj} satisfying y = limj→∞ xnj , we get

|g(y)− f(y)| = | limj→∞ fnj (y)− f(limj→∞ xnj
)| = | limj→∞ fnj (y)− f(xnj

)|
≤ | limj→∞ fnj (y)− fnj (xnj

)|+ | limj→∞ fnj (xnj
)− f(xnj

)| = S.

To conclude, it suffices to modify the last inequality (8.69) in Lemma 5.1 by

|fm(xn)− f(xn)| ≤ |fm(xn)− g(xn)|+ |g(xn)− g(y)|+ |g(y)− f(xn)|
≤ |fm(xn)− g(xn)|+ |g(xn)− g(y)|+ |g(y)− f(y)|+ |f(y)− f(xn)|
≤ S + 3ε,

which concludes the proof of the lemma. �
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Formulas for inexact cuts for ISDDP from [15] applied to problem
(6.67). The inexact cut for ISDDP from [15] applied to problem (6.67) for Qt takes
the form Ckt (xt−1) = θkt − ηkt + 〈βkt , xt−1〉 for iteration k. This cut is computed as
follows. Given trial point xkt−1 we compute for j = 1, . . . , Nt, an approximate optimal
primal-dual solution (f∗tj , q

∗
tj , x

∗
tj , λ

∗
1j) of

(8.70)

minf,q,xt
f + q

f ≥ (xt − xkt−1)T (ξtjξ
T
tj + αIn)(xt − xkt−1) + xTt ξtj + 1, [λ1j ]

f ≥ xTt (ξtjξ
T
tj + αIn)xt + xTt e + Utj ,

4(xt − e)T (xt − e) ≤ Ψtj ,
xTt (ξtjξ

T
tj + αIn)xt + xTt ξtj + 1 ≤ Ψtj ,

−100 e ≤ xt ≤ 100 e,
q ≥ θit+1 + 〈βit+1, xt〉 − ηit+1, i = 0, . . . , k,

where λ∗1j is an approximate value for the optimal Lagrange multiplier associated
to the first constraint (any approximate primal-dual solution can be used, for in-
stance running a few iterations of a quadratic solver). We then define the Lagrangian
L(f, q, xt, xt−1, λ1, ξt) = f+q+λ1((xt−xt−1)T (ξtξ

T
t +αIn)(xt−xt−1)+xTt ξt+1−f)

obtained dualizing the coupling constraint and compute for j = 1, . . . , Nt, the optimal
value ηktj of

min
f,q,xt

(1− λ∗1j)(f − f∗tj) + 〈λ∗1j(ξtj + 2(ξtjξ
T
tj + αIn)(x∗tj − xkt−1)), xt − x∗tj〉+ q − q∗tj

f̄tj ≥ f ≥ xTt (ξtjξ
T
tj + αIn)xt + xTt e + Utj ,

4(xt − e)T (xt − e) ≤ Ψtj ,
xTt (ξtjξ

T
tj + αIn)xt + xTt ξtj + 1 ≤ Ψtj ,

−100 e ≤ xt ≤ 100 e,
q ≥ θit+1 + 〈βit+1, xt〉 − ηit+1, i = 0, . . . , k,

where f̄tj is an upper bound for ft(·, ·, ξtj) on Xt × Xt−1 := {xt : −100 e ≤ xt ≤
100 e} × {xt−1 : −100 e ≤ xt−1 ≤ 100 e}. Setting βktj = 2λ∗1j(ξtjξ

T
tj + αIn)(xkt−1 − x∗tj)

and
θktj = L(f∗tj , q

∗
tj , x

∗
tj , x

k
t−1, λ

∗
1j , ξtj)− 〈βktj , xkt−1〉,

the coefficients θkt , η
k
t , β

k
t of the cut Ckt are given by

θkt =

Nt∑
j=1

ptjθ
k
tj , β

k
t =

Nt∑
j=1

ptjβ
k
tj , and ηkt =

Nt∑
j=1

ptjη
k
tj .

If instead of approximate primal-dual solutions we compute exact primal-dual solu-
tions, we get ηktj = 0, L(f∗tj , q

∗
tj , x

∗
tj , x

k
t−1, λ

∗
1j , ξtj) = f∗tj + q∗tj and we get the usual cut

computed by SDDP applied to convex problems.
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