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1. Introduction

Consider the optimization problem

inf f(x), subject to Ax ≤ b, (1)

where f : Rn → R, b ∈ Rq, and A is a q × n real matrix.
We make the following assumptions:
(H1) f is convex, differentiable, and ∇f is Lipschitz continuous on Rn: there is

L(f) > 0 such that for every x, y ∈ Rn we have

∥∇f(y)−∇f(x)∥2 ≤ L(f)∥y − x∥2.

(H2) The rows of the matrix A are linearly independent.
Let θ be the dual function of (1) given by

θ(λ) = inf
x∈Rn

L(x, λ) := f(x) + λT (Ax− b), (2)

for λ ∈ Rq. The function θ is concave [5, 7] and it was shown in [4] that under As-
sumptions (H1), (H2), it is strongly concave on Rq with constant of strong concavity
λmin(AA

T )/L(f). This property was also shown in [8] with stronger assumptions,
namely assuming f strongly convex and twice continuously differentiable.
For more general convex problems of the form

inf
x∈Rn

{f(x) : Ax ≤ b, gi(x) ≤ 0, i = 1, . . . , p}, (3)

where f, gi : Rn → R are convex, b ∈ Rq, and A is a q × n real matrix, the local
strong concavity of the dual function obtained dualizing all constraints was shown
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag



2 V. Guigues / On the Strong Concavity ...

in [4] in a neighborhood of an optimal dual solution. Such a property was also
shown in [8] with stronger assumptions, namely assuming functions f and g twice
continuously differentiable whereas in [4] it was only assumed that functions f, gi
have Lipschitz continuous gradients (in both proofs, strong convexity of f was also
used).
The strong concavity of the dual function can be used to design efficient solution
methods on the dual problem, for instance the Drift-Plus-Penalty Algorithm de-
scribed in [8]. It was also used in [4] to compute inexact cuts for the recourse
function of a two-stage convex stochastic program. These inexact cuts are useful to
design Inexact Stochastic Mirror Descent (ISMD) Method, introduced in [4], which
is an inexact variant of Stochastic Mirror Descent (SMD, see [6]).
In this paper, we provide three new proofs for the strong concavity of θ given by
(2). The first one uses the assumptions from [4], the second one applies when f
is coercive while the third ones applies when f is twice continuously differentiable.
We also show that for problems of the form (3), the assumption that the gradients
of all constraints at the optimal solution are linearly independent cannot be further
weakened and that the assumption of strong convexity of the objective cannot be
weakened to convexity. Finally, several examples are given.

2. Preliminaries

Given a convex function f : Rn → R ∪ {−∞,+∞}, as usual, dom f := {x ∈ Rn :
f(x) < +∞} is its (effective) domain and for any x ∈ Rn with |f(x)| < +∞ the
subdifferential ∂f(x) is defined by

∂f(x) := {s ∈ Rn : ⟨s, y − x⟩ ≤ f(y)− f(x), ∀y ∈ Rn},

and ∂f(x) := ∅ if |f(x)| = +∞. The function f is said to be proper if dom f ̸= ∅
and f does not take the value −∞. The Legendre-Fenchel conjugate f ∗ on Rn is
defined by

f ∗(y) := sup
x∈Rn

{⟨y, x⟩ − f(x)} for all y ∈ Rn.

Similarly, given a concave function g : Rn → R ∪ {−∞,+∞} (i.e., −g is convex),
its (effective) domain is the set {x ∈ Rn : g(x) > −∞}. We refer to [5, 7] for the
above concepts.
In what follows, X ⊂ Rn is a nonempty convex set, and its relative interior will be
denoted by riX.
Definition 2.1. (Strongly convex functions) A function f : Rn → R ∪ {+∞} is
strongly convex on X with constant of strong convexity α > 0 with respect to a
norm ∥ · ∥ if for any x, y ∈ X ∩ dom f we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− αt(1− t)

2
∥y − x∥2, (4)

for all 0 ≤ t ≤ 1.
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We can show that for lower semicontinuous convex functions, strong convexity on the
relative interior of the domain implies strong convexity everywhere. More precisely,
we have the following:
Lemma 2.2. Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous convex
function which is strongly convex on the relative interior of its domain with constant
of strong convexity α > 0 with respect to the norm ∥ · ∥, i.e., f satisfies (4) for
x, y ∈ ri(dom(f)) and 0 ≤ t ≤ 1. Then f is strongly convex on Rn with the same
constant of strong convexity α > 0 with respect to the norm ∥ · ∥.

Proof. Take any x, y ∈ dom(f) and 0 < t < 1. We want to show (4). Since
ri(dom(f)) is nonempty, we can take an arbitrary point x0 ∈ ri(dom(f)). Observe
that since f is lower semicontinuous and convex with x, y ∈ dom f , using Proposition
1.2.5 in [5] we have

f(x) = lim
u→x

f(u) = lim
θ→0,θ>0

f(x+ θ(x0 − x)),

f(y) = lim
u→y

f(u) = lim
θ→0,θ>0

f(y + θ(x0 − y)),
(5)

and by lower semicontinuity of f at tx+ (1− t)y we also have

f(tx+ (1− t)y) ≤ lim
θ→0,θ>0

f(tx+ (1− t)y + θ(x0 − tx− (1− t)y))

= lim
θ→0,θ>0

f(t(x+ θ(x0 − x)) + (1− t)(y + θ(x0 − y)))

≤ lim
θ→0,θ>0

tf(x+θ(x0!−x)) + (1−t)f(y + θ(x0−y))− αt(1−t)

2
∥(1−θ)(x−y)∥2

(5)
= tf(x) + (1− t)f(y)− αt(1− t)

2
∥y − x∥2, (6)

where we have used the fact that x + θ(x0 − x), y + θ(x0 − y) ∈ ri(dom(f)) in the
inequality above and that f is strongly convex on ri(dom(f)).

It is well known (see for instance Proposition 6.1.2 in [5]) that if f is strongly convex
with constant α with respect to norm ∥ · ∥ and subdifferentiable on X (i.e., the
subdifferential ∂f(x) of f at x is nonempty for every x ∈ X) then for all x, y ∈ X,
we have

f(y) ≥ f(x) + sT (y − x) +
α

2
∥y − x∥2, ∀s ∈ ∂f(x).

Therefore, using the notation (here and in what follows) ⟨x, y⟩ = xTy for x, y ∈ Rn,
since for a function f satisfying (H1) we must have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L(f)

2
∥y − x∥22,

for all x, y ∈ Rn, if f satisfies (H1) and is strongly convex on Rn with constant of
strong convexity α with respect to norm ∥ · ∥2 then we must have α ≤ L(f).
We also recall that a convex function f : Rn → R ∪ {+∞} is strongly convex on
ri(dom(f)) with constant of strong convexity α > 0 with respect to norm ∥ · ∥ if and
only if for every x, y ∈ ri(dom(f)) we have

⟨σ − s, y − x⟩ ≥ α∥y − x∥2, for all σ ∈ ∂f(y), s ∈ ∂f(x). (7)



4 V. Guigues / On the Strong Concavity ...

For a proof of the above characterization (7), see the proof of Theorem 6.1.2 in [5].
Finally, if f : Rn → R is twice differentiable then f is strongly convex on Rn with
constant of strong convexity α > 0 with respect to norm ∥·∥2 if and only if for every
x ∈ Rn, we have ∇2f(x) ≽ αIn(see for instance Proposition 1 in [2]).

Definition 2.3. (Strongly concave functions) A function f : Rn → R ∪ {−∞} is
strongly concave on X with constant of strong concavity α > 0 with respect to the
norm ∥·∥ if and only if −f is strongly convex on X with constant of strong convexity
α > 0 with respect to the norm ∥ · ∥.

We recall two well known results of convex analysis that will be used in the sequel.

Proposition 2.4. Let f : Rn → R ∪ {+∞} be a convex and lower semicontinuous
function. Then f ∗ is strongly convex on Rn with constant of strong convexity α > 0
for norm ∥ · ∥2 if and only if f is differentiable and ∇f is Lipschitz continuous on
Rn with constant 1/α for the norm ∥ · ∥2.

For a proof of the previous proposition, see the proof of Proposition 12.60 in [7]. The
following result is known as Baillon-Haddad Theorem that we specialize to functions
f : Rn → R:

Theorem 2.5. [1] Let f : Rn → R be convex, differentiable and satisfying Assump-
tion (H1) for some 0 < L(f) < ∞. Then ∇f is 1/L(f)-co-coecive, meaning that for
all x, y ∈ Rn we have

⟨y − x,∇f(y)−∇f(x)⟩ ≥ 1

L(f)
∥∇f(y)−∇f(x)∥22. (8)

Remark 2.6. Theorem 2.5 follows from Proposition 2.4 and property (7).

3. Problems with linear constraints

3.1. Proofs of the strong concavity of the dual function

In this section we give several proofs of the following proposition, first proved in [4].

Proposition 3.1. Let the Assumptions (H1) and (H2) hold. Then the dual func-
tion θ given by (2) is strongly concave on Rq with constant of strong concavity
λmin(AA

T )/L(f) with respect to the norm ∥ · ∥2.

We first recall the proof of Proposition 3.1 given in [4].

Proof of Proposition 3.1 from [4].
The dual function of (1) given by (2) can be written

θ(λ) = inf
x∈Rn

{f(x) + λT (Ax− b)} = −λT b− sup
x∈Rn

{−xTATλ− f(x)}

= −λT b− f ∗(−ATλ) by definition of f ∗.
(9)

From Assumption (H1) and Proposition 2.4, −f ∗ is strongly concave with constant
of strong concavity 1/L(f). Assumption (H2) implies Ker(AAT ) = {0} which,
together with the strong concavity of −f ∗, easily implies that λ → −f ∗(−ATλ) is
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strongly concave with constant of strong concavity λmin(AA
T )/L(f) (see Proposition

2.5 in [4] for details) and therefore so is θ which is the sum of a linear function and
of −f ∗(−ATλ).
Our second proof is based on Theorem 2.5.
Second proof of Proposition 3.1.
If dom(−θ) is empty there is nothing to show. Let us now assume that dom(−θ) is
nonempty. Since −θ is convex, the subdifferential ∂(−θ)(λ) is nonempty for every
λ in the relative interior of dom(−θ). We first show that for x, y ∈ ri(dom(−θ))
relation (7) holds for f = −θ, α = λmin(AA

T )/L(f) and ∥ · ∥ = ∥ · ∥2. Let us
take λ1, λ2 ∈ ri(dom(−θ)). Then ∂(−θ)(λ1) and ∂(−θ)(λ2) are nonempty. Using for
instance Lemma 2.1 in [3] or Corollary 4.5.3 p. 273 in [5], we have

−∂(−θ)(λ) = {Ax− b : x ∈ S(λ)} (10)

where S(λ) is the set of optimal solutions of (2). The latter equality yields that
S(λ1) and S(λ2) are nonempty. Next, for any x1 ∈ S(λ1) and x2 ∈ S(λ2), by first
order optimality conditions, we have

∇f(xi) + ATλi = 0, i = 1, 2. (11)

Now for any s2 ∈ ∂(−θ)(λ2) and s1 ∈ ∂(−θ)(λ1) we can find x1 ∈ S(λ1) and
x2 ∈ S(λ2) such that si = −(Axi − b), i = 1, 2, which implies

⟨s2 − s1, λ2 − λ1⟩ = −⟨A(x2 − x1), λ2 − λ1⟩ using (10)
= −⟨x2 − x1, A

T (λ2 − λ1)⟩
= ⟨x2 − x1,∇f(x2)−∇f(x1)⟩ using (11)
≥ (1/L(f))∥∇f(x2)−∇f(x1)∥22 using (8) (12)
= (1/L(f))∥AT (λ2 − λ1)∥22 using (11)

≥ λmin(AA
T )

L(f)
∥λ2 − λ1∥22.

Recalling the characterization (7) of strong convexity, we have shown that −θ is
strongly convex with constant of strong convexity λmin(AA

T )/L(f) with respect to
the norm ∥ · ∥2 on ri(dom(−θ)). Since −θ is convex and lower semicontinuous on
Rq, we can apply Lemma 2.2 with X = Rq to obtain the strong convexity of −θ
(or equivalently the strong concavity of θ) on Rq with constant of strong convexity
λmin(AA

T )/L(f) with respect to the norm ∥ · ∥2.
Our next proof of the strong concavity of the dual function applies when the objective
function f is coercive. It is based on properties of the value function.
Proposition 3.2. Let the Assumptions (H1) and (H2) hold and assume that f is
coercive in the sense that f(x) → +∞ as ∥x∥ → +∞. Then the dual function θ given
by (2) is strongly concave on Rq

+ with constant of strong concavity λmin(AA
T )/L(f)

with respect to norm ∥ · ∥2.

Proof. Let v be the value function given by

v(c) = {inf f(x) | Ax− b+ c ≤ 0} for c ∈ Rq. (13)
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We first show that (i) v is differentiable and (ii) ∇v is Lipschitz continuous with
Lipschitz constant L(f)/λmin(AA

T ).
Let us show (i). By Assumption (H2), A is surjective meaning that for any y ≤ b−c
we can find x satisfying Ax = y ≤ b − c which is feasible for (13) (due to (H2),
problem (13) is in fact strictly feasible for every c). Therefore, for any c, problem (13)
is convex, with polyhedral nonempty feasible set, and continuous coercive objective
function, implying that it has a finite optimal value v(c) and optimal solutions. Also
since v is convex and finite for any c, it is a continuous convex function, hence its
subdifferential is nonempty at any c and is given by the set of optimal dual solutions
of the dual problem

sup
λ≥0

θc(λ), (14)

where θc(λ) = inf
x∈Rn

f(x) + λT (Ax− b+ c).

Take c ∈ Rq. To show that v is differentiable at c, if suffices to show that ∂v(c)
is a singleton. Take λ1, λ2 ∈ ∂v(c), which, as we recall, are optimal solutions
to dual problem (14). Let x(c) be an optimal solution of (13) (recall that (13)
has optimal primal and dual solutions). By the optimality conditions, we have
∇f(x(c)) +ATλ1 = 0 and ∇f(x(c)) +ATλ2 = 0. Therefore λ1 − λ2 ∈ Ker(AT ) and
by Assumption (H2) we have Ker(AT ) = {0} which implies λ1 = λ2, i.e., ∂v(c) is a
singleton and (i) is shown. Therefore, for each c ∈ Rq there is a unique multiplier
λ(c) = ∇v(c).
Let us now show (ii). We will still denote by x(c) an optimal solution of (13). Take
c1, c2 ∈ Rq. By the optimality conditions, we get

∇f(x(ci)) + ATλ(ci) = 0, i = 1, 2, (15)

and by complementary slackness

⟨λ(ci), Ax(ci)− b+ ci⟩ = 0, i = 1, 2. (16)

Therefore

⟨A(x(c2)− x(c1)), λ(c1)− λ(c2)⟩ =
〈
x(c2)− x(c1), A

T (λ(c1)− λ(c2))
〉

(15)
= ⟨x(c2)− x(c1),∇f(x(c2))−∇f(x(c1))⟩

(8)
≥ (1/L(f))∥∇f(x(c2))−∇f(x(c1))∥22 (17)
(15)
= (1/L(f))∥AT (λ(c2)− λ(c1))∥22

≥ λmin(AA
T )

L(f)
∥λ(c2)− λ(c1)∥22.

Observe that in the first inequality above, (8) can be used because (H1) is satisfied.
Next since λ(c1), λ(c2) ≥ 0, we have

⟨λ(c1), Ax(c2)− b+ c2⟩ ≤ 0, ⟨λ(c2), Ax(c1)− b+ c1⟩ ≤ 0. (18)
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It follows that

⟨A(x(c2)−x(c1)), λ(c1)−λ(c2)⟩ = ⟨Ax(c2)− b− (Ax(c1)− b), λ(c1)− λ(c2)⟩
(16)
= ⟨λ(c1), c1⟩+ ⟨λ(c2), c2⟩+ ⟨λ(c1), Ax(c2)− b⟩+ ⟨λ(c2), Ax(c1)− b⟩ (19)

(18)
≤ ⟨λ(c2)− λ(c1), c2 − c1⟩ ≤ ∥λ(c2)− λ(c1)∥2∥c2 − c1∥2,

where the last inequality is due to the Cauchy-Schwartz inequality.
Combining (17) and (19) we get

∥∇v(c2)−∇v(c1)∥2 = ∥λ(c2)− λ(c1)∥2 ≤
L(f)

λmin(AAT )
∥c2 − c1∥2.

Therefore, we have shown that v is differentiable and has Lipschitz continuous gra-
dient with Lipschitz constant L(f)/λmin(AA

T ). Recalling that v is convex, using
Proposition 2.4 we deduce that v∗ is strongly convex on Rq with constant of strong
convexity λmin(AA

T )/L(f). Since v∗ = −θ on Rq
+, this shows the strong concavity

of θ on Rq
+ with the constant of strong concavity λmin(AA

T )/L(f).

Proofs of the strong concavity of θ for strongly convex f .
The proof of the strong concavity of θ when, additionally to (H1) and (H2), the
function f is strongly convex is known. It can be seen as a special case of Theorem
10 in [8]. For completeness, we provide below a simple proof of this result and
provide a new proof when f is twice continuously differentiable.

Proposition 3.3. Let the Assumptions (H1) and (H2) hold. Assume that f is
strongly convex on Rn with constant of strong convexity α with respect to ∥ · ∥2.
Then the dual function θ given by (2) is strongly concave on Rq with constant of
strong concavity αλmin(AA

T )/L(f)2 with respect to the norm ∥ · ∥2.

Proof. For any λ ∈ Rq, due to the strong convexity of f , optimization problem
(2) has a unique optimal solution denoted by x(λ). By (10), θ is differentiable with
∇θ(λ) = Ax(λ)− b. It follows that

− ⟨∇θ(λ2)−∇θ(λ1), λ2 − λ1⟩ = −⟨A(x(λ2)− x(λ1)), λ2 − λ1⟩,

= −⟨x(λ2)− x(λ1), A
T (λ2 − λ1)⟩

(11)
= ⟨x(λ2)− x(λ1),∇f(x(λ2))−∇f(x(λ1))⟩
≥ α∥x(λ2)− x(λ1)∥22 (20)
(H1)

≥ (α/L(f)2)∥∇f(x(λ2))−∇f(x(λ1))∥22
= (α/L(f)2)∥AT (λ2 − λ1)∥22

≥ αλmin(AA
T )

L(f)2
∥λ2 − λ1∥22.

In (20), the first equality comes from ∇θ(λ) = Ax(λ)− b, the first inequality comes
from the strong convexity of f , while the last equality comes from the optimality
conditions. This achieves the proof.
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Since we must have α ≤ L(f), we get a smaller constant of strong concavity than
in the previous case where f was not necessarily strongly convex. We now provide
a new proof when f is strongly convex and twice continuously differentiable on Rn.

Proposition 3.4. Let the Assumptions (H1) and (H2) hold. Assume that f is
strongly convex on Rn with constant of strong convexity α with respect to ∥ · ∥2 and
twice continuously differentiable on Rn. Then the dual function θ given by (2) is
strongly concave on Rq with constant of strong concavity not larger than 1

α
λmin(AA

T )
with respect to the norm ∥ · ∥2.

Proof. By the Implicit Function Theorem, θ is twice continuously differentiable with

∇2θ(λ) = −HT
xλH

−1
xx Hxλ

where Hxλ = ∇2
xλL(x(λ), λ) = AT , Hxx = ∇2

xxL(x(λ), λ) = ∇2f(x(λ)).

Hence, ∇2θ(λ) = −A[∇2f(x(λ))]−1AT .

The function f being strongly convex with constant of strong convexity α we
have that ∇2f(x) ≽ αIn for all x and therefore 1

α
In ≽ [∇2f(x)]−1. Using As-

sumption (H2), the matrix A[∇2f(x(λ))]−1AT is invertible for all λ and satis-
fies 1

α
AAT ≽ A[∇2f(x(λ))]−1AT implying λmin(A[∇2f(x(λ))]−1AT ) ≤ 1

α
λmin(AA

T ),
which implies that θ is strongly concave with constant of strong concavity not larger
than 1

α
λmin(AA

T ) with respect to the norm ∥ · ∥2.

3.2. Applications

We illustrate Proposition 3.1 with 3 examples. The first example is a degenerate
one and corresponds to linear programs which indeed satisfy (H1) and can satisfy
(H2). However, as discussed in Example 3.5 below, for such problems the domain
dom(θ) = {λ : θ(λ) > −∞} of the dual function θ is either a singleton or the
empty set and such functions are indeed, by definition, strongly concave even if this
property will not, in this case, be enlightening in practice.

Example 3.5. (Linear programs) Let f : Rn → R be given by

f(x) = cTx+ c0 (21)

where c ∈ Rn, c0 ∈ R. Clearly f is convex differentiable with Lipschitz continuous
gradients; any L(f) > 0 being a valid Lipschitz constant. Proposition 3.1 tells us
that if the rows of A are linearly independent then the dual function θ of (1) given
by (2) is strongly concave on Rq. In this case, the strong concavity can be checked
directly by computing θ. Indeed, we have

f ∗(x) =

{ −c0 if x = c,

+∞ if x ̸= c,
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and plugging this expression of f ∗ into (9), we get1

θ(λ) =

{ −λT b+ c0 if ATλ = −c,

−∞ if ATλ ̸= −c.

Therefore if c ∈ Im(AT ) then there is λ ∈ Rq such that

ATλ = −c, (22)

and if the rows of A are linearly independent then there is only one λ, let us call it
λ0, satisfying (22). In this situation, the domain of θ is a singleton: dom(θ) = {λ0},
and θ indeed is strongly concave (see Definition 2.1). If c /∈ Im(AT ) then dom(θ) = ∅
and θ is again strongly concave.

The example which follows gives a class of problems where the dual function is
strongly concave on Rq with f not necessarily strongly convex.

Example 3.6. (Quadratic convex programs) Consider a problem of form (1) where

f(x) =
1

2
xTQ0x+ aT0 x+ b0,

Q0 is an n × n nonnull semidefinite positive matrix, A is a q × n real matrix,
a0 ∈ Im(Q0), and b0 ∈ R. Clearly, f is convex, differentiable, and ∇f is Lipschitz
continuous with Lipschitz constant L(f) = ∥Q0∥2 = λmax(Q0) > 0 with respect
to ∥ · ∥2 on Rn. If the rows of A are linearly independent, using Proposition 3.1
we obtain that the dual function of (1) is strongly concave with constant of strong
concavity λmin(AA

T )/λmax(Q0) > 0 with respect to norm ∥ · ∥2 on Rq. Observe that
strong concavity holds in particular if Q0 is not definite positive, in which case f
is not strongly convex. For this example, strong concavity of θ is driven by the
greatest eigenvalue of Q0 and by the lowest eigenvalue of AAT .
Since f is convex, differentiable, its gradient being Lipschitz continuous with Lip-
schitz constant λmax(Q0), from Proposition 2.4, we know that f ∗ is strongly convex
with constant of strong convexity 1/λmax(Q0). This can be checked by direct com-
putation. Indeed, let

λmax(Q0) = λ1(Q0) ≥ λ2(Q0) ≥ . . . ≥ λr(Q0) > λr+1(Q0)

= λr+2(Q0) = . . . = λn(Q0) = 0

be the ordered eigenvalues of Q0 where r is the rank of Q0. Let P be a corresponding
orthogonal matrix of eigenvectors for Q0, i.e., Diag(λ1(Q0), . . . , λn(Q0)) = P TQ0P
with PP T = P TP = In. Defining

Q+
0 = PDiag

( 1

λ1(Q0)
, . . . ,

1

λr(Q0)
, 0, . . . , 0︸ ︷︷ ︸
n−r times

)
P T ,

1 In this simple case, the dual function is well known and can also be obtained without using the
conjugate of f
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it is straightforward to check that

f ∗(x) =

{ −b0 +
1
2
(x− a0)

TQ+
0 (x− a0) if x ∈ Im(Q0),

+∞ otherwise,
(23)

and plugging expression (23) of f ∗ into (9), we get

θ(λ) =

{
b0 − λT b− 1

2
(a0 + ATλ)TQ+

0 (a0 + ATλ) if ATλ ∈ Im(Q0),

−∞ otherwise.

If x′ = (x′
1, . . . , x

′
n) is the vector of the coordinates of x in the basis (v1, v2, . . . , vn)

where vi is ith column of P = [v1, v2, . . . , vn] (i.e., (v1, . . . , vr) is a basis of Im(Q0)
and (vr+1, . . . , vn) is a basis of Ker(Q0)) and writing a0 =

∑r
i=1 a

′
0ivi, we obtain

f ∗(x) =


g(P Tx), where g : Rn → R is given by

g(x′) = −b0 +
r∑

i=1

(x′
i − a′0i)

2

2λi(Q0)
if x ∈ Im(Q0),

+∞ otherwise.

Observe that for x′, y′ ∈ Rr×{ (0, . . . , 0)︸ ︷︷ ︸
n−r times

} we have

g(y′) ≥ g(x′) +∇g(x′)T (y′ − x′) +
1

2λ1(Q0)
∥y′ − x′∥22

and g is strongly convex with constant of strong convexity 1/λ1(Q0) with respect
to the norm ∥ · ∥2 on Rr×{ (0, . . . , 0)︸ ︷︷ ︸

n−r times
}. Recalling that we have f ∗(x) = g(P Tx)

for x ∈ dom(f ∗) = Im(Q0) and that P Tx ∈ Rr×{ (0, . . . , 0)︸ ︷︷ ︸
n−r times

} for x ∈ Im(Q0), we

deduce that f ∗ is strongly convex with constant of strong convexity

λmin(PP T )

λ1(Q0)
=

λmin(In)

λmax(Q0)
=

1

λmax(Q0)

with respect to the norm ∥ · ∥2.

Example 3.7. Let f(x) =
∑M

k=1 αkfk(x) for αk ∈ R and fk : Rn → R convex
differentiable with Lipschitz constant Lk > 0 with respect to the norm ∥ · ∥2 on
Rn for k = 1, . . . ,M . Let A be a q × n matrix with independent rows. Then the
dual function (2) of (1) is strongly concave on Rq with constant of strong concavity
λmin(AA

T )/
∑M

k=1 αkLk with respect to ∥ · ∥2.

4. Problems with linear and nonlinear constraints

We now consider problems of form (3) with corresponding dual function

θ(λ, µ) = {inf f(x) + λT (Ax− b) + µTg(x) | x ∈ Rn} (24)

where g(x) = (g1(x), . . . , gp(x)).
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For this class of problems, the local strong concavity of dual function (24) is given
by the following theorem, which was shown in [4].
Theorem 4.1. Consider the optimization problem

inf
x∈Rn

{f(x) : Ax ≤ b, gi(x) ≤ 0, i = 1, . . . , p}, (25)

where A is a q × n real matrix. We assume that
(A1) f : Rn → R is strongly convex and has Lipschitz continuous gradient on Rn;
(A2) gi : Rn → R, i = 1, . . . , p, are convex and have Lipschitz continuous gradients;

(A3) if x∗ is the optimal solution of (25) then the rows of the matrix
(

A
Jg(x∗)

)
are linearly independent, where Jg(x) denotes the Jacobian matrix of g(x) =
(g1(x), . . . , gp(x)) at x;

(A4) there is x0 ∈ ri ({g ≤ 0}) such that Ax0 ≤ b.
Let θ be the dual function of problem (25):

θ(λ, µ) = {inf f(x) + λT (Ax− b) + µTg(x) | x ∈ Rn}. (26)

Let (λ∗, µ∗) ≥ 0 be an optimal solution of the dual problem2

sup
λ≥0,µ≥0

θ(λ, µ).

Then there is some neighborhood N of (λ∗, µ∗) such that θ is strongly concave on
N ∩ Rp+q

+ .

Comparing Theorem 4.1 where strong convexity of the objective is required with
Proposition 3.1 which applies to problems with convex (and possibly non strongly
convex) objectives, we can wonder if strong convexity can be relaxed to convexity
in Theorem 4.1. The answer is negative, as shown by the following example.

Example 4.2. Consider the optimization problem

(P1) min
x∈Rn

{c | x2
i ≤ 1, i = 1, . . . , n}

which is of form (3) with f(x) = c constant, without linear constraints, and with
constraint functions gi(x) = x2

i − 1, i = 1, . . . , n, which satisfy Assumption (A2).
Any feasible x∗ with all components nonnull is an optimal solution of (P1) satisfying
Assumption (A3) since the rows of Jg(x∗) = 2Diag(x∗) are linearly independent.
Clearly (A4) is also satisfied. However, (A1) is not satisfied. For this example, for
µ ≥ 0 dual function θ is given by

θ(µ) = c+ min
x∈Rn

n∑
i=1

µi(x
2
i − 1) = c−

n∑
i=1

µi

2Observe that the primal problem has a finite optimal value and the assumptions of the Convex
Duality Theorem are satisfied (Slater Assumption (A4) is fulfilled and the primal objective is
bounded from below on the feasible set), implying that the dual problem is feasible, has an optimal
solution, and the same optimal value as the primal problem.
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and is therefore not strongly concave. This shows that the conclusion of Theorem 4.1
may fail if we replace strong convexity by convexity in Assumption (A1). Observe
also that the nonlinear constraints of (P1) can be written as Ax ≤ b where b is
a vector of ones of size 2n and where the rows of A = [In;−In] are not linearly
independent.

It is also natural to wonder if in Proposition 3.1 and Theorem 4.1, Assumptions (H2)
and (A3) can be relaxed assuming that the gradients of the active constraints at an
optimal solution are linearly independent, instead of assuming that the gradients of
all constraints at an optimal solution are linearly independent.
For problems with linear constraints of form (1), from representation (9), if θ is
strongly concave on Rq then λ → f ∗(−ATλ) is strongly convex. If 0 ∈ dom(f ∗)
this implies that Ker(AT ) = {0} and therefore that Assumption (H2) must hold
otherwise f ∗(−ATλ) would be constant equal to f ∗(0) on the vector space Ker(AT )
of positive dimension which is not possible for a strongly convex function with 0 ∈
dom(f ∗). Similarly, the following example shows that in Theorem 4.1, Assumption
(A3) cannot be relaxed assuming that the gradients of the active constraints at the
optimal solution are linearly independent.

Example 4.3. Consider the optimization problem

(P2)


min
x∈Rn

1

2

n∑
i=1

x2
i

subject to −
n∑

i=1

xi ≤ −1 and
n∑

i=1

x2
i − 1 ≤ 0,

of form (3) satisfying (A4), with A = −eT where e is a vector of ones of dimension
n, f(x) = 1

2

∑n
i=1 x

2
i satisfying (A1), and p = 1, g1(x) =

∑n
i=1 x

2
i −1 satisfying (A2).

The optimal solution of this problem is x∗ = 1
n
e with corresponding optimal value

1
2n

and only the constraint −
∑n

i=1 xi ≤ −1 is active at x∗. For this problem, for
λ, µ ≥ 0, dual function θ is given by

θ(λ, µ) = min
x∈Rn

1

2

n∑
i=1

x2
i + λ(1−

n∑
i=1

xi) + µ(
n∑

i=1

x2
i − 1)

= λ− µ− n

2

λ2

1 + 2µ
.

The Hessian matrix of θ at (λ, µ) ≥ 0 is given by

∇2θ(λ, µ) =


−n

1 + 2µ

2nλ

(1 + 2µ)2

2nλ

(1 + 2µ)2
−4nλ2

(1 + 2µ)3

 .

Observe that 0 is an eigenvalue of ∇2θ(λ, µ) with ( 2λ
1+2µ

, 1) a corresponding eigen-
vector, the other eigenvalue being − n

1+2µ
− 4nλ2

(1+2µ)3
which is negative for λ, µ ≥ 0.
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Therefore for all λ, µ ≥ 0 we have that ∇2θ(λ, µ) is semidefinite negative but not
definite negative implying that θ is not strongly concave on any set of positive
measure contained in R2

+ and in particular there is no neighborhood N∗ of the
optimal dual solution λ∗, µ∗ such that θ is strongly concave on N∗ ∩ R2

+. Finally,
observe that strong duality holds and λ∗ =

1
n
, µ∗ = 0 since the dual problem is

max
λ,µ≥0

θ(λ, µ) = max
λ≥0

max
µ≥0

λ− µ− n

2

λ2

1 + 2µ

= max
(
max
λ≥ 1√

n

1

2
+ λ(1−

√
n), max

0≤λ≤ 1√
n

λ− n

2
λ2
)

= max
(
− 1

2
+

1√
n
,
1

2n

)
=

1

2n
,

whose optimal value is indeed the optimal value 1
2n

of the primal problem attained
at λ∗ =

1
n
, µ∗ = 0. Therefore for this problem, the gradient of the active constraint

at x∗ is −e and is consequently linearly independent whereas the gradients of the
constraints at x∗ are −e and 2

n
e and are therefore not linearly independent. This

shows that the conclusion of Theorem 4.1 does not hold if instead of assuming
that the gradients of all constraint functions at the optimal solution x∗ are linearly
independent we assume that the gradients of the active constraint functions at the
optimal solution are linearly independent.

5. Conclusion

In this paper we analyzed the strong concavity of the dual function of an optimization
problem. A possible extension would be to show this property for some classes of
problems when the dual function is obtained dualizing only some of the constraints.
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