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ABSTRACT

We consider a random variable expressed as the Euclidean distance between an arbitrary
point and a random variable uniformly distributed in a closed and bounded set of a three-
dimensional Euclidean space. Four cases are considered for this set: a union of disjoint
disks, a union of disjoint balls, a union of disjoint line segments, and the boundary of a
polyhedron. In the first three cases, we provide closed-form expressions of the cumulative
distribution function and the density. In the last case, we propose two algorithms with
complexity O(n ln n), n being the number of edges of the polyhedron, that computes exactly
the cumulative distribution function. An application of these results to probabilistic seismic
hazard analysis and extensions are discussed. Finally, we present an open source library,
available athttps://github.com/vguigues/Areas_Library, that implements the algorithms
presented in this paper.
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1. Introduction

Consider a closed and bounded set S ⊂ R3 and a random variable X : Ω →
S uniformly distributed in S. Given an arbitrary point P ∈ R3, we study the

distribution of the Euclidean distance D : Ω → R+ between P and X defined by

D(ω) = ‖−−−−−→PX(ω)‖2 for any ω ∈ Ω.

Denoting respectively the density and the cumulative distribution function

(CDF) of D by fD(·) and FD(·), we have fD(d) = FD(d) = 0 if d < min
Q∈S

‖−−→PQ‖2 while
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Fig. 1. Different supports S for random variable X.

fD(d) = 0 and FD(d) = 1 if d > max
Q∈S

‖−−→PQ‖2. For min
Q∈S

‖−−→PQ‖2 ≤ d ≤ max
Q∈S

‖−−→PQ‖2, we

have

FD(d) = P(D ≤ d) =
µ(B(P, d)∩ S)

µ(S)

where µ(A) is the Lebesgue measure of the set A and B(P, d) is the ball of center P

and radius d. As a result, the computation of the CDF of D amounts to a problem

of computational geometry, namely computing the Lebesgue measures of S and of

B(P, d)∩ S for any d ∈ R+.

We consider four cases for S, represented in Figure 1 and denoted by (A), (B),

(C), and (D) in this figure: (A) a disk, (B) a ball, (C) a line segment, and (D) the

boundary of a polyhedron. The cases where S is a union of disks, a union of balls,

or a union of line segments are straightforward extensions of cases (A), (B), and

(C).

The study of these four cases is useful for Probabilistic Seismic Hazard Analy-

sis (PSHA) to obtain the distribution of the distance between a given location on

earth and the epicenter of an earthquake which, in a given seismic zone, is usually

assumed to have a uniform distribution in that zone modelled as a union of disks,

a union of balls, a union of line segments, or the boundary of a polyhedron in

R3. This application, which motivated this study, is described in Section 2 follow-

ing the lines of the seminal papers Cornell [1968], McGuire [1976], which paved

the way for PSHA. PSHA involves several approximations and models and there-
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fore, as in Guibas et al. [1989], Kostitsyna et al. [2015], Löffler [2010], Myers and

Joskowicz [2008, 2009], Ostrovsky-Berman and Joskowicz [2005], Stewart [1991],

our algorithms perform geometric computations over inexact inputs.

In this context, the outline of the paper is as follows. In Section 2, we provide

an overview on PSHA. In Section 3, we consider case (A), the case where S is a

disk. In Section 4 and Subsection 5.1, we consider respectively case (B), where S
is a ball, and case (C), where S is a line segment. In these three cases (A), (B), and

(C), we obtain closed-form expressions for the CDF and the density of D. The main

mathematical contributions of this paper are Sections 5.2 and 5.3 which provide

for case (D), i.e., the case where S is the boundary of a polyhedron, two algorithms

with complexity O(n ln n) where n is the number of edges of the polyhedron,

that computes exactly the CDF of D. An approximate density for D can then be

obtained. We are not aware of other papers with these results. However, particular

cases have been discussed: in Baker [2008], cases (A) and (C) are considered taking

for P respectively the center of the disk and a point on the perpendicular bisector of

the line segment. In Stewart and Zhang [2013], as a particular case of (D), a rectangle

is considered for S while P is the center of the rectangle. In the case where S is

the boundary of a polyhedron, to our knowledge, the current versions of the most

popular softwares for PSHA (OPENQUACK, CRISIS 2012 Ordaz et al. [2012]) do

not compute exactly the CDF of D. For instance, CRISIS 2012 uses an approximate

algorithm that performs a spatial integration subdividing the boundary of the

polyhedron into small triangles. We also implemented a Matlab library available at

https://github.com/vguigues/Areas_Librarywith the algorithms presented in

this paper. This library as well as numerical experiments are presented in Section

6 while extensions of our results, in particular to handle the case of a general

polyhedron and the case where the ℓ2-norm is replaced by either the ℓ1-norm or

the ℓ∞-norm, are discussed in the last Section 7.

Throughout the paper, we use the following notation. For a point A in R3,

we denote its coordinates with respect to a given Cartesian coordinate system by

xA, yA, and zA. For two points A,B ∈ R3, AB is the line segment joining points

A and B, i.e., AB = {tA + (1 − t)B : t ∈ [0, 1]}, (AB) = {tA + (1 − t)B : t ∈ R}
is the line passing through A and B, and

−→
AB is the vector whose coordinates are

(xB − xA, yB − yA, zB − zA). Given two vectors x, y ∈ R3, we denote the usual scalar

product of x and y in R3 by 〈x, y〉 = xT y. For P ∈ R2, we denote the circle and the

disk of center P and radius d by respectively C(P, d) andD(P, d).

2. Overview of the four steps of PSHA

An important problem in civil engineering is to determine the level of ground shak-

ing a given structure can withstand. In regions with high levels of seismic activity,

it makes sense to invest in structures able to resist high levels of ground shaking.

On the contrary, in regions without seismic activity during the structure lifetime,

we should not invest in such structures. More precisely, it would be reasonable to
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Fig. 2. Seismic zones around a given point P.

design structures able to resist up to a Peak Ground Acceleration A∗m.s−2 that is

very rarely exceeded, say with a small probability ε, over a given time window.

This approach is used in PSHA: the confidence level ε and the time window being

fixed (say of t years), the main task of PSHA is to estimate at a given location P, the

Peak Ground Acceleration (PGA) A∗ such that the probability of the event

Et(A
∗,P) = {There is at least an earthquake causing a PGA

greater than A∗ at P in the next t years} (1)

is ε. We present the approach introduced by Cornell [1968], McGuire [1976], to

model and solve this problem. In this approach, we consider the seismic zones that

could have an impact on the PGA at P (see Figure 2 for an example of 4 zones

with P belonging to one of these zones). These zones are bounded sets that do

not overlap: typically disks, line segments, or simple polygones. The number of

earthquakes provoking PGAs at P greater than A∗ over the next t years depends

on the frequency of earthquakes in each zone. As for the ground acceleration at P

provoked by the earthquakes of a given zone, it will depend on the magnitudes of

these earthquakes, which are random, and the locations of their epicenters, which

are random too. To take these factors into account, PSHA uses a four-step process

(see Figure 2):

(i) in zone i, the process of earthquake arrivals is modelled as a Poisson process

with rate λi. We will assume that the earthquake arrival processes in the

different zones are independent.

(ii) In zone i, the magnitude of earthquakes is modelled as a random variable

Mi with density fMi
(·).

(iii) The distance between P and the epicenter of the earthquakes of zone i is

modelled as a random variable Di with density fDi
(·).
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Poisson process for the earthquakes of zone i causing PGA > A∗ at P, rate λipi

Poisson process for the earthquakes of zone i causing PGA ≤ A∗ at P, rate λi(1 − pi)

Fig. 3. Splitting of the process of earthquake arrivals in zone i into a process of earthquakes causing
PGA > A∗ at P (arrivals represented by black balls) and a process of earthquakes causing PGA ≤ A∗ at
P.

(iv) A ground motion prediction model is chosen expressed as a regression of

the ground acceleration on magnitude, distance, and possibly other factors.

We now detail these steps and explain how to combine them to achieve the main

task of PSHA: compute the probability of event (1) for any A∗. The ability to

compute this probability for any A∗ makes possible the estimation, by dichotomy,

of an acceleration A∗ satisfying P
(

Et(A
∗,P)

)

= ε.

From (i), we obtain that the distribution of the number of earthquakes Nti in

zone i on a time window of t time units is given by

P(Nti = k) = e−λit
(λit)

k

k!
, k ∈N,

where the rate λi represents the mean number of earthquakes in zone i per time

unit, say per year. From now on, we fix an acceleration A∗ and introduce the event

E(A∗,P, i) = {An earthquake from zone i causes a PGA

greater than A∗ at P} (2)

with its probability pi = P
(

E(A∗,P, i)
)

. For each earthquake in zone i, either event

E(A∗,P, i) occurs for this earthquake, i.e., this earthquake causes a PGA greater than

A∗ at P, or not. As a result, we can define two new counting processes for zone i: the

process Ñti counting the earthquakes causing PGA > A∗ at P (events represented by

black balls in Figure 3) and the process counting the earthquakes causing PGA ≤ A∗

at P. To proceed, we need the following well-known lemma:

Lemma 1. Consider a Poisson process Nt with arrival rate λ. Assume that arrivals are

of two types I and II: type I with probability p and type II with probability 1 − p. We also

assume that the arrival types are independent. Then the process Ñt of type I arrivals is a

Poisson process with rate λp.
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Proof. We compute for every k ∈N,

P

(

Ñt = k
)

=

+∞
∑

j=k

P

(

Ñt = k|Nt = j
)

P

(

Nt = j
)

[Total Probability Theorem]

=

+∞
∑

j=k

Ck
j p

k(1 − p) j−ke−λt (λt) j

j!

= e−λt (λpt)k

k!

+∞
∑

j=0

[

λ(1 − p)t
] j

j!
= e−λpt (λpt)k

k!
,

which shows that Ñt is a Poisson random variable with parameterλpt. We conclude

using the independence of the arrival types on disjoint time windows.

This lemma shows that the process (Ñti)t is a Poisson process with rate λipi.

Denoting by N the number of zones, it follows that the probability to have k

earthquakes causing a PGA greater than A∗ at P over the next time window of t

years is

P

(

N
∑

i=1

Ñti = k
)

=
∑

x1+...+xN=k

P

(

Ñt1 = x1; . . . ; ÑtN = xN
)

=
∑

x1+...+xN=k

N
∏

i=1

P

(

Ñti = xi

)

=
∑

x1+...+xN=k

N
∏

i=1

e−λipit
(λipit)

xi

xi!

where for the second equality we have used the independence of Ñt1, . . . , ÑtN .

Taking k = 0 in the above relation, we obtain

1 − P(Et(A
∗,P)) = P(Et(A∗,P)) = e−(

∑N
i=1 λipi)t. (3)

Setting Ñt =
∑N

i=1 Ñti, the expectation of Ñt which is the mean number of earth-

quakes causing a PGA greater than A∗ at P over the next t years, can be expressed

as

λt(A
∗,P) = E

[

Ñt

]

=

N
∑

i=1

E

[

Ñti

]

= (

N
∑

i=1

λipi)t. (4)

Using this relation and (3), the probability of event Et(A
∗,P) can be rewritten

P(Et(A
∗,P)) = 1 − e−λt(A

∗,P)

with λt(A
∗,P) given by (4).

It remains to explain how the probability pi of event (2) is computed. This com-

putation is based on a ground motion prediction model (step (iv) above) which is a
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regression equation representing the PGA induced by an earthquake of magnitude

M at distance D of its epicenter. This relation takes the form

ln PGA = ln PGA(M,D, θ) + σ(M,D, θ)ε. (5)

In this relation, ln PGA(M,D, θ) (resp. σ(M,D, θ)) is the conditional mean (resp.

standard deviation) of ln PGA given the magnitude M and distance D to the epi-

center while ε is a standard Gaussian random variable. We see that the PGA

depends on the magnitude, the distance to the epicenter and other parameters,

generally referred to as θ (such as the ground conditions). More precisely, the mean

ln PGA(M,D, θ) should increase with M (the higher the magnitude, the higher the

PGA) and decrease with D (the larger the distance, the lower the PGA). As an

example, the ground motion prediction model in Cornell [1968] is of the form

ln PGA = 0.152+ 0.859M− 1.803 ln(D + 25) + 0.57ε

which amounts to take ln PGA(M,D, θ) = 0.152 + 0.859M − 1.803 ln(D + 25) and

σ(M,D, θ) = 0.57.

The density fMi
(·) used for the distribution of the magnitude of the earthquakes

of zone i depends on the history of the magnitudes of the earthquakes of that

zone. For a large number of seismic zones, the density proposed by Gutenberg and

Richter [1944] has shown appropriate. It is of the form

fMi
(m) =

βie
−βi(m−Mmin(i))

1 − e−βi(Mmax(i)−Mmin(i))

for some parameter βi > 0 where the support of Mi is [Mmin(i),Mmax(i)].

In each zone, the epicenter has a uniform distribution in that zone. The seismic

zones usually considered in PSHA are disks, balls, line segments, or the boundary

of a polyhedron. As a result, the determination of the density fDi
(·) of the dis-

tance Di between P and the epicenter in zone i can be determined analytically or

approximately using Sections 3, 4, 5.1, and 5.2.

Gathering the previous ingredients, assuming that Di and Mi are independent,

and using the Total Probability Theorem, we obtain

pi =

∫ Mmax(i)

mi=Mmin(i)

∫ ∞

xi=0

P

(

PGA > A∗|Mi = mi; Di = xi

)

fMi
(mi) fDi

(xi)dmidxi

where P
(

PGA > A∗|Mi = mi; Di = xi

)

is given by the ground motion prediction

model (5). For implementation purposes, the above integral is generally estimated

discretizing the continuous distributions of magnitude Mi, i = 1, . . . ,N , and dis-

tance Di, i = 1, . . . ,N .

Finally, we mention the existence of an alternative, zoneless approach to PSHA

introduced by Frankel [1995] and Woo [1996].
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3. Distance to a random variable uniformly distributed in a disk

Let S = D(S0,R0) be a disk of center S0 and radius R0 > 0 and let P be a point in

the plane containing S at Euclidean distance R1 of S0. We first consider the case

where R1 = 0. If 0 ≤ d ≤ R0, we get FD(d) = πd2

πR2
0

= (d/R0)2 and fD(d) = 2 d
R2

0

, if

d > R0 we have FD(d) = 1 and fD(d) = 0 while if d < 0 we have FD(d) = fD(d) = 0.

Let us now consider the case where R1 ≥ R0. If d > R1 + R0 we have FD(d) = 1

and fD(d) = 0 while if d < R1 − R0 we have FD(d) = fD(d) = 0. Let us now take

R1 − R0 ≤ d ≤ R1 + R0. The intersection of the disks D(S,R0) and D(P, d) is the

union of two lenses having a line segment AB in common (see Figures 4 and 5).

Without loss of generality, assume that (S0P) is the x-axis and that the equations of

the boundaries of the disks are given by x2 + y2 = R2
0

and (x − R1)2 + y2 = d2. From

these equations, we obtain that the abscissa of the intersection points A and B of the

boundaries of the disks is x∗ =
R2

0
+R2

1
−d2

2R1
. Note that A = B if and only if d = R1 ± R0.

In Figure 5, we represented a situation where x∗ ≥ 0 and a situation where x∗ < 0.

In both cases, D(S0,R0) ∩ D(P, d) is the union of a lens of height h1(d) in a disk of

radius d (the disk D(P, d)) and of a lens of height h2(d) in a disk of radius R0 (the

diskD(S0,R0)) where

h1(d) = d − R1 + x∗ = d − R1 +
R2

0
+R2

1
−d2

2R1
and

h2(d) = R0 − x∗ = R0 −
R2

0
+R2

1
−d2

2R1
.

(6)

Recall that the areaA(R, h) of a lens of height h contained in a disk of radius R (see

Figure 4) isA(R, h) = R2 θ
2 − R2 sin(θ2 ) cos(θ2 ) with cos(θ2 ) = R−h

R , i.e.,

A(R, h) = R2Arccos

(

R − h

R

)

− (R − h)
√

R2 − (R − h)2. (7)

In the sequel, we will denote by A(S) the area of a surface S. With this notation, it

follows that

A(D(S0,R0) ∩D(P, d)) = A(d, h1(d)) +A(R0, h2(d)) (8)
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Fig. 5. Random variable X uniformly distributed in a ball of radius R0 and center S0. Case where
R1 ≥ R0 > 0.

where

A(d, h1(d)) = d2Arccos













d2 + R2
1
− R2

0

2R1d













−
d2 + R2

1
− R2

0

2R1

√

√

d2 −












d2 + R2
1
− R2

0

2R1













2

(9)

and

A(R0, h2(d)) = R2
0Arccos













R2
0 + R2

1
− d2

2R0R1













−
R2

0 + R2
1
− d2

2R1

√

√

R2
0
−













R2
0
+ R2

1
− d2

2R1













2

. (10)

For R1 − R0 ≤ d ≤ R1 + R0, we obtain FD(d) =
A(d,h1(d))+A(R0,h2(d))

πR2
0

where A(d, h1(d))

andA(R0, h2(d)) are given by (9) and (10). The density is

fD(d) =
1

πR2
0

[

h′2(d)
∂A(R0, h2(d))

∂h
+
∂A(d, h1(d))

∂R
+ h′1(d)

∂A(d, h1(d))

∂h

]

(11)
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Fig. 6. Random variable X uniformly distributed in a ball of radius R0 and center S0. Case where
0 < R1 < R0.

where h′
1
(d) = 1 − d

R1
, h′

2
(d) = d

R1
, and

∂A(R, h)

∂R
= 2RArccos

(

1 − h
R

)

− 2
√

h(2R − h),

∂A(R, h)

∂h
= 2

√

h(2R− h).

(12)

We now consider the case where R1 > 0 and R1 < R0 (see Figure 6). If 0 ≤ d ≤ R0−R1,

we obtain FD(d) = πd2

πR2
0

= d2

R2
0

, if d < 0 we have FD(d) = fD(d) = 0 while if d > R0 + R1

we have FD(d) = 1 and fD(d) = 0 (see Figure 6). If R1 + R0 ≥ d > R0 − R1, both in

the case where the abscissa x∗ of the intersection points between the boundaries

of D(S0,R0) and D(P, d) is positive and negative, we check (see Figure 6) that the

area ofD(S0,R0)∩D(P, d) is still given by (8) withA(d, h1(d)) andA(R0, h2(d)) given

respectively by (9)and (10). Summarizing, if 0 < R1 < R0 then if R1+R0 ≥ d > R0−R1,

the density of D at d is given by (11) and if 0 ≤ d ≤ R0 −R1, we have fD(d) = 2d
R2

0

. The

density of D when X is uniformly distributed in a disk is given for some examples

in Figure 7.

Finally, we consider the case where S is a diskD and P ∈ R3 is not contained in

the planeP containing this disk. Let S0 be the center ofS and let S1, S2 be two points

of the boundary of the disk such that
−−−→
S0S1 and

−−−→
S0S2 are linearly independent. We

introduce the projection P0 = πP[P] = argmin Q∈P‖
−−→
PQ‖2 of P onto P. Since vectors

−−−→
S0S1 and

−−−→
S0S2 are linearly independent, if A is the (3, 2) matrix [

−−−→
S0S1,

−−−→
S0S2] whose

first column is
−−−→
S0S1 and whose second column is

−−−→
S0S2, then the matrix A⊤A is

invertible. It follows that the projection P0 = πP[P] of P onto P can be expressed as
−−−→
S0P0 = A(A⊤A)−1A⊤−−→S0P. With this notation, the intersection ofP and the ballB(P, d)
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left: R1 = 0, top right: R1 = 0.5, bottom left: R1 = 0.75, bottom right: R1 = 6.

d

Cut of the ball B(P,d)
P

P
S0

P0

R(d) =

√

d2 − ‖−−→PP0‖22

R0 = ‖
−−−→
S0S1‖2

Fig. 8. Euclidean distance to a point uniformly distributed in a disk.

of center P and radius d is either empty or it is a disk of center P0 and radius

R(d) =

√

d2 − ‖−−→PP0‖22 (13)

(see Figure 8). In the latter case, denoting this disk byD(P0,R(d)) and using the fact
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thatD =D∩P (recall thatD ⊂ P), we obtain

D∩B(P, d) = D∩P∩ B(P, d) =D∩D(P0,R(d)).

Since D and D(P0,R(d)) are disks contained in the plane P, setting R0 = ‖
−−−→
S0S1‖2

and R1 = ‖
−−−→
S0P0‖2, the previous results provide the area of their intersection and the

following CDFs and densities for D:

Case where P0 = S0: The CDF and density of D are given by














































FD(d) = fD(d) = 0 if d < ‖−−→S0P‖2,


















FD(d) =
R(d)2

‖−−−→S0S1‖22
=

d2−‖−−→S0P‖2
2

‖−−−→S0S1‖22
fD(d) = 2d

‖−−−→S0S1‖22



















if ‖−−→S0P‖2 ≤ d ≤
√

‖−−→S0P‖2
2
+ ‖−−−→S0S1‖22,

FD(d) = 1 and fD(d) = 0 if d >

√

‖−−→S0P‖2
2
+ ‖−−−→S0S1‖22.

Case where 0 < ‖−−−→S0P0‖2 < ‖
−−−→
S0S1‖2: Setting

dmin =

√

‖−−→PP0‖22 + (‖−−−→S0S1‖2 − ‖
−−−→
S0P0‖2)2 and

dmax =

√

‖−−→PP0‖22 + (‖−−−→S0S1‖2 + ‖
−−−→
S0P0‖2)2,

(14)

the CDF of D is given by










































(a) FD(d) = 0 if d < ‖−−→PP0‖2,
(b) FD(d) =

R(d)2

‖−−−→S0S1‖22
=

d2−‖−−→PP0‖22
‖−−−→S0S1‖22

if ‖−−→PP0‖2 ≤ d ≤ dmin,

(c) FD(d) =
A(R(d),h1(R(d)))+A(‖−−−→S0 S1‖2,h2(R(d)))

π‖−−−→S0S1‖22
if dmin ≤ d ≤ dmax,

(d) FD(d) = 1 if d > dmax,

(15)

where the expression of A is given by (7) and, where, using the expressions of h1

and h2 and recalling that R0 = ‖
−−−→
S0S1‖2 and R1 = ‖

−−−→
S0P0‖2,

h1(R(d)) =

√

d2 − ‖−−→PP0‖22 − ‖
−−−→
S0P0‖2 +

‖−−−→S0S1‖22+‖
−−−→
S0P0‖22+‖

−−→
PP0‖22−d2

2‖−−−→S0P0‖2
,

h2(R(d)) = ‖−−−→S0S1‖2 −
‖−−−→S0S1‖22+‖

−−−→
S0P0‖22+‖

−−→
PP0‖22−d2

2‖−−−→S0P0‖2
.

(16)

It follows that fD(d) = 0 if d < ‖−−→PP0‖2 or d > dmax while fD(d) = 2d

‖−−−→S0S1‖22
if ‖−−→PP0‖2 ≤

d ≤ dmin. Finally, if dmin ≤ d ≤ dmax, we have

fD(d) = 1

π‖−−−→S0S1‖22













d

‖−−−→S0P0‖2
∂A(‖−−−→S0S1‖2,h2(R(d)))

∂h + d
√

d2−‖−−→PP0‖22

∂A(R(d),h1(R(d)))
∂R













+ d

π‖−−−→S0S1‖22













1
√

d2−‖−−→PP0‖22
− 1

‖−−−→S0P0‖2













∂A(R(d),h1(R(d)))
∂h

(17)

where the expressions of
∂A(R,h)
∂R and

∂A(R,h)
∂h are given by (12).
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Case where ‖−−−→S0P0‖2 ≥ ‖
−−−→
S0S1‖2: With the definitions (14) of dmin and dmax, if

d < dmin then FD(d) = fD(d) = 0, if d > dmax then FD(d) = 1 and fD(d) = 0, while if

dmin ≤ d ≤ dmax, fD(d) is given by (17) and FD(d) is given by (15)-(c) with h1(R(d))

and h2(R(d)) given by (16).

4. Distance to a random variable uniformly distributed in a ball

Let S = B(S0,R0) be a ball of radius R0 > 0 and center S0 in R3 and let P be at

Euclidean distance R1 of S0. The computations are identical to those of the previous

section replacing two dimensional lenses and disks by three dimensional caps and

balls. If R1 = 0 then if d > R0, we have fD(d) = 0 and FD(d) = 1, if d < 0, we have

fD(d) = FD(d) = 0 while if 0 ≤ d ≤ R0, we obtain FD(d) =
(4/3)πd3

(4/3)πR3
0

, i.e., fD(d) = 3 d2

R3
0

(see Figure 6). If 0 < R1 < R0, then if d > R0 +R1, we have FD(d) = 1 and fD(d) = 0, if

d < 0, we have FD(d) = fD(d) = 0 while if 0 ≤ d ≤ R0 − R1, we have FD(d) =
(4/3)πd3

(4/3)πR3
0

,

i.e., fD(d) = 3 d2

R3
0

(see Figure 6). If R1 ≥ R0 then if d > R0 + R1, we have fD(d) = 0

and FD(d) = 1 and if d < R1 − R0, we have fD(d) = FD(d) = 0. If 0 < R1 < R0 and

R0−R1 < d ≤ R0+R1 or if R1 ≥ R0 and R1−R0 ≤ d ≤ R1+R0, thenB(S0,R0)∩B(P, d)

is the union of a spherical cap of height h1(d) contained in a ball of radius d (the

ball B(P, d)) and of a spherical cap of height h2(d) contained in a ball of radius R0

(the ball B(S0,R0)) where the expressions (6) for h1(d) and h2(d) are still valid. Now

recall that the volume of a spherical cap (see Figure 4 for a cut of this cap) of height

h contained in a ball of radius R in R3 is

V(R, h) =

∫ R

x=R−h

πr2(x)dx =

∫ R

x=R−h

π[R2 − x2]dx =
πh2

3
(3R − h). (18)

It follows that if 0 < R1 < R0 and R0 − R1 < d ≤ R0 + R1 or if R1 ≥ R0 and

R1 − R0 ≤ d ≤ R1 + R0, we have

FD(d) = 3
4πR3

0

[V(d, h1(d)) +V(R0, h2(d))]

= 1
4R3

0

[

h2
1
(d)(3d− h1(d))+ h2

2
(d)(3R0 − h2(d))

]

where we recall that h1(d) and h2(d) are given by (6) and the density is

fD(d) =
3

4πR3
0

[

∂V

∂R
(d, h1(d)) + h′1(d)

∂V

∂h
(d, h1(d)) + h′2(d)

∂V

∂h
(R0, h2(d))

]

where

∂V(R, h)

∂R
= πh2 and

∂V(R, h)

∂h
= πh(2R − h).

The density of D when X is uniformly distributed in a ball is given for some

examples in Figure 9.
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Fig. 9. Density of D when X is uniformly distributed in a ball of radius R0 = 1: some examples. Top left:
R1 = 0, top right: R1 = 0.5, bottom left: R1 = 0.75, bottom right: R1 = 6.

5. Distance to a random variable uniformly distributed in a polygone

5.1. Distance to a random variable uniformly distributed on a line segment

Let S = AB be a line segment in R3 with A , B and let P ∈ R3. We introduce the

projection P0 of P onto line (AB):

P0 = A +
〈−→AB,

−→
AP〉

‖−→AB‖2
2

−→
AB.

This projection P0 belongs to line segment AB if and only if 〈−−→P0A,
−−→
P0B〉 ≤ 0 (see Fig-

ure 10). In this case, setting dmin = min(‖−→PA‖2, ‖
−→
PB‖2) and dmax = max(‖−→PA‖2, ‖

−→
PB‖2),
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Fig. 10. Distance to a random variable uniformly distributed on a line segment.

we obtain the following CDF for D (see Figure 10):






























































FD(d) = 0 if d < ‖−−→PP0‖2,

FD(d) =
2R(d)

‖−→AB‖2
=

2

√

d2−‖−−→PP0‖22
‖−→AB‖2

if ‖−−→PP0‖2 ≤ d ≤ dmin,

FD(d) =
min(‖−−→P0A‖2 ,‖

−−→
P0B‖2)+R(d)

‖−→AB‖2

=
min(‖−−→P0A‖2 ,‖

−−→
P0B‖2)+

√

d2−‖−−→PP0‖22
‖−→AB‖2

if dmin ≤ d ≤ dmax,

FD(d) = 1 if d > dmax.

(19)

If P0 does not belong to AB, i.e., if 〈−−→P0A,
−−→
P0B〉 > 0, we obtain the following CDF for

D (see Figure 10):



























FD(d) = 0 if d < dmin,

FD(d) =
R(d)−R(dmin)

‖−→AB‖2
=

√

d2−‖−−→PP0‖22−
√

d2
min
−‖−−→PP0‖22

‖−→AB‖2
if dmin ≤ d ≤ dmax,

FD(d) = 1 if d > dmax.

(20)

An analytic expression of the density can be obtained deriving the above CDF. The

density of D when X is uniformly distributed in a line segment is given for two

examples in Figure 11.

5.2. Simple polygone: an algorithm based on Green’s theorem

Let S be a simple polygone contained in a plane given by its extremal points

{S1, S2, . . . , Sn}where the boundary ofS is∪n
i=1

SiSi+1 with the convention that Sn+1 =

S1 and where Si , S j for i , j with 1 ≤ i, j ≤ n. We assume that when travelling

on the boundary of S from S1 to S2, then from S2 to S3 and so on until the last line

segment SnS1, one always has the relative interior of S to the left (see Figure 12).

Let P be a point in the plane P containing S. FD(d) is the area of the intersection

of S and the disk D(P, d) of center P and radius d divided by the area of S. These

areas will be computed making use of a special case of Green’s theorem: if D is a
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Fig. 11. Density of D when X is uniformly distributed on a line segment AB: some examples.

P
d

S4

I1 S2

S5

S6

S7

S8
S9

S10

S1

I4

S11

I3

I2

S3

Fig. 12. Random variable uniformly distributed in a polyhedron in the plane.

closed and bounded region in the plane then the areaA(D) ofD can be expressed

as a line integral over the boundary ∂D of D:

A(D) =
1

2

∮

∂D

[xdy− ydx]. (21)

Since the boundary ofS is a union of line segments and the boundary ofS∩D(P, d)

is made of line segments and arcs, we need to compute
∫

C
[xdy− ydx] with C a line

segment or an arc. If C = AB is a line segment, denoting respectively the coordinates

of A and B by (xA, yA) and (xB, yB), we obtain

IAB :=

∫

AB

[xdy− ydx] = yBxA − yAxB. (22)
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Now let C =
⌢

ABR0,P be an arc starting at A = (xA, yA) and ending at B = (xB, yB) with

A and B belonging to the circle of center P = (xP, yP) and radius R0 > 0. We assume

that when travelling along the arc from A to B, the relative interior of the disk is to

the left. If θ(A,B) is the angle ∠APB, using (21) we obtain

R2
0
θ(A,B)

2
=

1

2

(

I ⌢
ABR0 ,P

+ IPA + IBP

)

where I ⌢
ABR0 ,P

:=

∫

⌢
ABR0 ,P

[xdy− ydx]. Using (22), the above relation can be written

I ⌢
ABR0 ,P

= R2
0θ(A,B) + xP(yB − yA) − yP(xB − xA). (23)

We introduce the function Angle defined on the boundary ofD(P, d) taking values

in [0, 2π[ and given by

Angle(x, y) = Arccos
(

x−xP

R0

)

if y ≥ yP and

Angle(x, y) = 2π −Arccos
(

x−xP

R0

)

if y < yP.
(24)

This function associates to a point of the boundary of D(P, d) its angle. With this

notation, for two points A = (xA, yA) and B = (xB, yB) of the boundary of D(P, d),

we have

θ(A,B) = Angle(xB, yB) − Angle(xA, yA) if Angle(xA, yA) ≤ Angle(xB, yB)

θ(A,B) = 2π + Angle(xB, yB) − Angle(xA, yA) otherwise

and formula (23) can be written



































I ⌢
ABR0 ,P

= R2
0
(Angle(xB, yB) − Angle(xA, yA)) + xP(yB − yA) − yP(xB − xA)

if Angle(xA, yA) ≤ Angle(xB, yB) and

I ⌢
ABR0 ,P

= R2
0
(2π + Angle(xB, yB) − Angle(xA, yA)) + xP(yB − yA)

−yP(xB − xA) if Angle(xA, yA) > Angle(xB, yB).

(25)

To compute the area of the intersection S ∩ D(P, d), we need to determine the

intersections between the boundary of S and the circle C(P, d) of center P and

radius d. This will be done using Algorithm 1 which computes the intersection

between a given line segment AB with A , B and the sphere of center P and radius

d in R3. When this intersection is nonempty, let I1(d) and I2(d) be the intersection

points (eventually I1(d) = I2(d)). Writing Ii(d) as

Ii(d) = A + ti
−→
AB, (26)

ti solves ‖−→PA + ti
−→
AB‖2

2
= d2. Introducing

∆ = 〈−→PA,
−→
AB〉2 − ‖−→AB‖22(‖−→PA‖22 − d2), (27)
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if ∆ < 0 then the boundary of S and C(P, d) have an empty intersection while if

∆ ≥ 0 the intersections I1(d) and I2(d) are given by (26) where

ti =
−〈−→PA,

−→
AB〉 ±

√
∆

‖−→AB‖2
2

. (28)

We are now in a position to write Algorithm 1, observing that Ii(d) ∈ (AB) belongs

to line segment AB if and only if 〈−−−−→Ii(d)A,
−−−−→
Ii(d)B〉 ≤ 0.

Algorithm 1: Computation of the intersection points between line segment

AB with A , B and the sphere of center P and radius d in R3.

Inputs: A,B,P, d.

Initialization: N=0; //Will store the number of intersections (0, 1, or 2).

List Intersections=Null; //Will store the intersection points.

//Check if line (AB) and the sphere have an empty intersection or not

Compute ∆ = 〈−→PA,
−→
AB〉2 − ‖−→AB‖22(‖−→PA‖22 − d2).

If ∆ ≥ 0 then //if ∆ < 0 the intersection is empty.

If ∆ = 0 then //the intersection of (AB) and the sphere is a singleton {I}
Compute I = A + t

−→
AB where t = −〈

−→
PA,
−→
AB〉

‖−→AB‖2
2

(see (26), (28)) and

check if I belongs to AB:

If 〈−→IA,−→IB〉 ≤ 0, then //I belongs to AB

List Intersections={I}, N=1.
End If

Else

Compute the intersections I1(d) and I2(d) of (AB) and the sphere

given by (26), (28).

If 〈−−−−→I1(d)A,
−−−−→
I1(d)B〉 ≤ 0 then //I1(d) belongs to AB

If 〈−−−−→I2(d)A,
−−−−→
I2(d)B〉 ≤ 0 then //I2(d) belongs to AB

//I1(d) and I2(d) belong to AB

List Intersections={I1(d), I2(d)}, N=2.
Else //Only I1(d) belongs to the intersection

List Intersections={I1(d)}, N=1.
End If

Else

If 〈−−−−→I2(d)A,
−−−−→
I2(d)B〉 ≤ 0 then //I2(d) belongs to AB

List Intersections={I2(d)}, N=1.
End If

End If

End If
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End If

Outputs: N, List Intersections.

Algorithm 4 which computes the CDF of D will also make use of Algorithm 2

that (i) computes the minimal distance dmin and maximal distance dmax between P

and the boundary ofS, (ii) computes the area ofS, and (iii) determines if P belongs

to the relative interior of S or not. The computation of the area of S will be done

using formula (21). To know if P belongs to the relative interior of S or not, we

compute the crossing number (stored in variable Crossing Number of Algorithm 2)

for point P and polyhedron S. Let R be the ray starting at P and parallel to the

positive x-axis. The crossing number counts the number of times ray R crosses the

boundary of S going either from the inside to the outside of S or from the outside

to the inside of S. If the crossing number is odd then P belongs to the relative

interior of S. Otherwise, the crossing number is even and P is on the boundary of

S or outside S.

Though the computation of the crosssing number (the value of variable

Crossing Number in the end of Algorithm 2) is known (see for instance O’Rourke

[1998]), we recall it here for the sake of self-completeness. For each edge SiSi+1 of the

polygone, we consider its intersection with R. Each time a single intersection point

is found that belongs to the relative interior of an edge, Crossing Number increases

by one. If the intersection between the edge and the ray is nonempty but is not a

single point from the relative interior of the edge, then either this intersection is an

extremal point or it is the whole edge. There are 8 possibles cases, denoted by A-H

in Figure 13. This figure also provides the increase in the crossing number in each

case. To deal with these cases, the following (known) rules are used in Algorithm 2:

(a) horizontal edges (edges SiSi+1 with ySi
= ySi+1

) are not considered, (b) for upward

edges (edges SiSi+1 with ySi
< ySi+1

), only the final vertex is counted as an intersec-

tion, and (c) for downward edges (edges SiSi+1 with ySi
> ySi+1

), only the starting

vertex is counted as an intersection.a The increase in the crossing number using

these rules is reported for cases A-H in Figure 13. Comparing with the expected

increase in the crossing number in each case, we see that variable Crossing Number

that is updated using these rules in Algorithm 2, will be even if and only if

P is on the boundary of the polygone or outside the polygone, as expected.

Algorithm 2: Given a polygone S contained in a plane and a point P in

that plane, the algorithm computes the area of S, the crossing number, and the

minimal and maximal distances from P to the boundary of S.

aAlternatively, we can of course count only the starting vertices of upward edges and the final vertices
of downard edges.
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Algorithm 2: +1
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Crossing Number with

Algorithm 2: +1 +1

+1

Unchanged Unchanged

Unchanged+2

+2 Unchanged

Fig. 13. Increase in the crossing number when the ray passes through an extremal point of the polygone
or when an edge of the polygone is contained in the ray.

Inputs: P and the vertices S1, S2, . . . , Sn of a polygone contained in a plane.

Initialization:L = 0. //Will store line integral (21) takingD = S, i.e.,

//will storeA(S).

Crossing Number=0. //Will store the crossing number.

dmin = +∞. //Will store the minimal distance from P to the boundary of S.

dmax = 0. //Will store the maximal distance from P to the boundary of S.

For i = 1, . . . , n,

L = L + 1
2ISiSi+1

where for a line segment AB, IAB is given by (22).

//Computation of the crossing number

If ySi
< yP ≤ ySi+1

or ySi+1
< yP ≤ ySi

then

//Compute the abscissa xI of the intersection I of the line y = yP

//and line segment SiSi+1:

xI = xSi
+

xSi+1
− xSi

ySi+1
− ySi

(yP − ySi
).

If xI > xP then

Crossing Number = Crossing Number+ 1

End If

End If

//Computation of the maximal distance from P to the boundary of S
dmax = max(dmax, ‖

−−→
PSi‖2)

//Computation of the minimal distance from P to the boundary of S
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Compute the projection P0 of P onto line (SiSi+1):

P0 = Si +
〈−−→SiP,

−−−−→
SiSi+1〉

‖−−−−→SiSi+1‖22

−−−−→
SiSi+1.

If 〈−−−→P0Si,
−−−−→
P0Si+1〉 ≤ 0 then

//P0 belongs to AB

dmin = min(dmin, ‖
−−→
PP0‖2).

Else

dmin = min(dmin, ‖
−−→
PSi‖2, ‖

−−−→
PSi+1‖2).

End If

End For

Outputs: Crossing Number,L, dmin, dmax.

The outputs of Algorithm 2 allow us to know if P belongs to S or not. Indeed, P

belongs toS if and only if P belongs to the relative interior ofS, which occurs if and

only if the crossing number is odd, or if P is on the boundary of S, which occurs if

and only if dmin = 0. As a result, P belongs to S if and only if Crossing Number is

odd or dmin = 0.

Remark. The crossing number computed replacing the condition xI > xP by

xI ≥ xP in Algorithm 2 will not necessarily be odd if P belongs to the boundary

of S. For instance, if S is the rectangle S = {(x, y) : x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}
then if the condition xI > xP is replaced by xI ≥ xP in Algorithm 2, if we take

P = ((x1 + x2)/2, y1) then variable Crossing Number will be even while if we take

P = (x2, (y1 + y2)/2) this variable will be odd. However, both points belong to the

boundary of S.

Let us now comment on Algorithm 4 that computes the cumulative distribution

function of D using Algorithms 1 and 2.

We first explain the different steps of Algorithm 4 when there is at least an edge

of S that has a nonempty intersection with both the relative interior ofD(P, d) and

the complement of D(P, d). In other words, we exclude for the moment the cases

D(P, d) ⊂ S, S ⊂ D(P, d), andD(P, d)∩ S = ∅.
In this case, at the end of Algorithm 4, ℓ stores line integral (21) with D =

S ∩D(P, d), i.e., the area of S ∩D(P, d).

In the first For loop of Algorithm 4, starting from ℓ = 0, we update ℓ travelling

along the edges of S always leaving the relative interior of S to the left. In the end

of this loop, ℓ is the sum of line integrals (22) computed for all the line segments

belonging to the boundary of S∩D(P, d). More precisely, at iteration i of this loop,

we consider edge SiSi+1. For this edge, 6 cases can happen:

(i) Si belongs to D(P, d) and Si+1 belongs to the relative interior of D(P, d). In

this case, the whole segment SiSi+1 belongs to the boundary of S ∩D(P, d)
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Fig. 14. Cases where Si+1 is not on the boundary ofD(P, d).

and ℓ ← ℓ + 1
2ISiSi+1

. This corresponds to subcases A1 (where Si is on the

boundary of D(P, d)) and A2 (where Si belongs to the relative interior of

D(P, d)) in Figure 14.

(ii) Si belongs to D(P, d) and Si+1 does not belong to D(P, d). In this situation,

either Si belongs to the boundary of D(P, d) (subcases B1 and B3 in Figure

14) or Si belongs to the relative interior ofD(P, d) (subcase B2 in Figure 14).

If SiSi+1 and C(P, d) have an intersection point Ii that is different from Si

then SiIi belongs to the boundary of S ∩D(P, d) and ℓ← ℓ + 1
2ISiIi

.

(iii) Si belongs to D(P, d) and Si+1 is on the boundary of D(P, d). As in (i), the

whole segment SiSi+1 belongs to the boundary of S ∩ D(P, d) and ℓ ←
ℓ + 1

2ISiSi+1
.

(iv) Si does not belong to D(P, d) and Si+1 belongs to the relative interior of

D(P, d) (case C in Figure 14). In this case, SiSi+1 and C(P, d) have a single

intersection point Ii, IiSi+1 belongs to the boundary of S ∩ D(P, d), and

ℓ← ℓ + 1
2IIiSi+1

.

(v) Both Si and Si+1 are outside D(P, d). There are three subcases: SiSi+1 and

C(P, d) have two intersection points Ii1 and Ii2 (case D1 in Figure 14); SiSi+1

and C(P, d) have a single intersection point (case D1 in Figure 14); or SiSi+1

and C(P, d) have an empty intersection (case D3 in Figure 14). In case D1,

Ii1Ii2 belongs to the boundary of S ∩D(P, d) and ℓ← ℓ + 1
2IIi1Ii2

.

(vi) Si does not belong toD(P, d) and Si+1 is on the boundary ofD(P, d). If SiSi+1

and C(P, d) have two intersection points Ii and Si+1 then IiSi+1 belongs to

the boundary of S ∩D(P, d) and ℓ← ℓ + 1
2IIiSi+1

.

We also have to determine the arcs that belong to the boundary of S ∩ D(P, d). A

simple way to do this would be as follows:
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(a) store all the intersections between the edges of the polygone and the bound-

ary ofD(P, d).

(b) Sort these intersection points (xi, yi) in ascending order of their angles

Angle(xi, yi).

(c) To know if a given arc belongs to S∩D(P, d), take the middle M of this arc

and compute the crossing number and dmin for S and M using Algorithm

2. The corresponding arc belongs to S ∩D(P, d) if and only if the crossing

number is odd or dmin = 0

The complexity of this algorithm is O(n2) where n is the number of edges. Al-

gorithm 4 which has complexity O(n ln n) selects the appropriate arcs in a more

efficient manner. In this algorithm, the extremities of these arcs are stored, with-

out repetitions, in the list Intersections which is updated along the iterations

of the first For loop of Algorithm 4: Intersections(i) will be the i-th ”relevant”

(see below) intersection point found. To know the arcs that belong to S ∩D(P, d),

a second list Arcs is used: the i-th element of list Arcs is 1 if and only if the arc

from the boundary ofD(P, d) obtained starting at Intersections(i) and ending at

the next element from list Intersections found travelling counter clockwise on

the boundary ofD(P, d) belongs to S ∩D(P, d). To produce this information, when

an intersection between S and C(P, d) is found we need to know the type of this

intersection, knowing that there are three types of intersections:

T1: the intersection is not ”relevant”, i.e., there is no arc fromS∩C(P, d) starting

or ending at this point;

T2: there is an arc from S ∩ C(P, d) starting at this point (in this case the corre-

sponding entry of Arcs is one);

T3: there is an arc from S ∩ C(P, d) ending at this point (in this case the corre-

sponding entry of Arcs is zero).

Now let us go back to the 6 cases (i)-(vi) discussed above and considered in the first

For loop of Algorithm 4. It remains to explain how to determine in each of these

cases the intersection type when an intersection is found.

First, since vertices belonging to the boundary ofD(P, d) are starting vertices of

an edge and ending vertices of another edge, to avoid counting them twice, we do

not consider the intersection points that are starting vertices of an edge. With this

convention, in case (i), i.e., subcases A1 and A2 in Figure 14, we do not need to store

intersection points, even if Si belongs toD(P, d).

In case (ii), corresponding to subcases B1,B2, and B3 in Figure 14, if SiSi+1 and

C(P, d) have an intersection point that is different from Si then this intersection point

is stored in list Intersections and it is of type T2: the corresponding entry in Arcs

is one (these type T2 intersections are represented by red balls in Figure 14).

In case (iv), corresponding to case C in Figure 14, there is a single intersection

point between SiSi+1 and C(P, d) and it is of type T3: the corresponding entry in

Arcs is zero (these type T3 intersections are represented by red circles in Figure 14).
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Case (v) corresponds to cases D1,D2, and D3 in Figure 14. In subcase D1, i.e.,

when SiSi+1 and C(P, d) have two intersections, the first one encountered when

travelling from Si to Si+1 is of type T3 while the second one is of type T2. In subcase

D2, SiSi+1 and C(P, d) have a single intersection which is of type T1.

Let us now consider cases (iii) and (vi), the cases where Si+1 is on the boundary

of D(P, d). We want to determine the intersection type for Si+1. This is done using

an auxiliary algorithm, Algorithm 3, that takes as entries P and d (the center and

radius of C(P, d)) and three successive vertices Si, Si+1, and Si+2 of S, knowing that

Si+1 is on the boundary of D(P, d). The output variable Arc of this algorithm is

one (resp. zero) if and only if Si+1 is of type T2 or T3 (resp. type T1). What matters

to determine the intersection type for Si+1 is whether SiSi+1 is contained in some

half-space (to be specified below) that does not contain P or not. An additional

input variable of Algorithm 3 described below, variable In, takes the value zero in

the former case and the value one in the latter case. To explain this algorithm, it

is convenient to introduce two half spacesHRight andHP and a line L1. These half

spaces and lines depend on the entries of Algorithm 3, i.e., P and d (the center and

radius of C(P, d)) and three successive vertices Si, Si+1, and Si+2 of S. Line L1 is the

line that contains line segment SiSi+1. The open half spaceHRight is the set of points

that are to the right of line L1 when travelling on this line in the direction Si → Si+1.

Denoting by L2 the line that is tangent to the circle C(P, d) at Si+1 (recall that Si+1

belongs to C(P, d)), the closed half spaceHP is the set of points that are on the side

of line L2 that does not contain P, including L2. The definitions of these sets follow.

For L1 andHRight, we obtain:


















































































































if xSi+1
= xSi

and ySi+1
> ySi

then
{

L1 = {(x, y) : x = xSi
},

HRight = {(x, y) : x > xSi
}.

If xSi+1
= xSi

and ySi+1
< ySi

then
{

L1 = {(x, y) : x = xSi
},

HRight = {(x, y) : x < xSi
}.

If xSi+1
> xSi

then














L1 = {(x, y) : y = ySi
+

ySi+1
−ySi

xSi+1
−xSi

(x − xSi
)},

HRight = {(x, y) : y < ySi
+

ySi+1
−ySi

xSi+1
−xSi

(x − xSi
)}.

If xSi+1
< xSi

then














L1 = {(x, y) : y = ySi
+

ySi+1
−ySi

xSi+1
−xSi

xSi
(x − xSi

)},
HRight = {(x, y) : y > ySi

+
ySi+1

−ySi

xSi+1
−xSi

(x − xSi
)}.

(29)

Next observe that M = (x, y) ∈ HP if and only if 〈−−−−→Si+1M,
−−−→
Si+1P〉 ≤ 0 and therefore

HP = {(x, y) : (x − xSi+1
)(xP − xSi+1

) + (y − ySi+1
)(yP − ySi+1

) ≤ 0}. (30)

Let us first consider the case when input variable In of Algorithm 3 is one, i.e.,

the case when Si does not belong to HP. In this case, the edge Si+1Si+2 can belong

to three different regions, denoted by R1, R2, and R3 in Figure 15 and respectively
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Fig. 15. The six cases where an endpoint Si+1 of an edge is on the boundary ofD(P, d).

represented in pink at the top left, in green at the top right, and in yellow in

the middle left figures of Figure 15. In this Figure 15, type T2 intersections are

represented by red balls while type T3 intersections are represented by red circles.

Regions R1,R2, and R3 are given by (see Figure 15):

R1 =HP ∩HRight ∪ L1, R2 = HP, and R3 =HP ∩HRight.

If Si+2 belongs to R1 or R3, then Si+1 is a type T1 intersection while if Si+2 belongs to

R2 Si+1 is a type T2 intersection.

We now consider the case where input variable In of Algorithm 3 is zero, i.e.,

the case where Si+1 belongs to HP. In this case, Si+2 can belong to three different

regions, denoted by R4, R5, and R6 in Figure 15 and respectively represented in

pink in the middle right, in green in the bottom left, and in yellow in the bottom

right figures of Figure 15.
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Regions R4,R5, and R6 are given by (see Figure 15):

R4 = HP ∩HRight ∪ L1, R5 = HP, and R6 = HP ∩HRight.
If Si+2 belongs to R4 or R6 then Si+1 is a type T1 intersection while if Si+2 belongs

to R5 Si+2 is a type T3 intersection.

Summarizing our observations, if Si+1 belongs to the boundary of D(P, d), this

intersection is stored as a ”relevant” intersection (it is not a type T1 intersection) if

and only if In=1 and Si+2 ∈ R2 (in this case, it is a type T2 intersection) or In=0 and

Si+2 ∈ R5 (in this case, it is a type T3 intersection).

Algorithm 3: Given three successive vertices Si, Si+1, and Si+2 of a simple

polygone S and a circle of center P and radius d > 0 with Si+1 belonging to this

circle, the algorithm determines if Si+1 is or is not a starting or ending point of

an arc from the boundary ofD(P, d) ∩ S.

Inputs: P, d, Si, Si+1, Si+2, In.

Initialization: Arc=0.

If In and (xSi+2
− xSi+1

)(xP − xSi+1
) + (ySi+2

− ySi+1
)(yP − ySi+1

) ≤ 0 then Arc = 1.

Else if In and (xSi+2
− xSi+1

)(xP − xSi+1
) + (ySi+2

− ySi+1
)(yP − ySi+1

) > 0 then Arc = 1.

End if

Output: Arc.

In the end of the first For loop of Algorithm 4, the ”relevant” intersections points

(xi, yi) of S and C(P, d) are stored in list Intersections. We then sort these in-

tersections in ascending order of their angles Angle(xi, yi) where we recall that

Angle is defined in (24). The values in list Arcs are sorted correspondingly. For

Nb Intersections intersection points, this defines Nb Intersections arcs on the

circle. At i-th iteration of the second For loop of Algorithm 4, the i-th arc is con-

sidered. If this arc belongs to S ∩D(P, d), i.e., if Arcs(i) = 1, the corresponding line

integral (25) is computed. The sum of these line integrals makes up the last part of

line integral (21) forD = D(P, d)∩ S.

It remains to check that the algorithm correctly computes FD(d) when variable

Nb Intersections in the end of Algorithm 4 is null. This can occur in three dif-

ferent manners reported in Figure 16: (i) D(P, d) ∩ S = ∅, (ii) the polygone S is

contained in D(P, d), and (iii) the disk D(P, d) is contained in S. Case (ii) corre-

sponds to ℓ = L and in this case FD(d) = 1. If ℓ , L, case (i) occurs when P is

outside S and case (iii) when P belongs to the relative interior of S. To know

if case (i) or case (iii) occurs, we use the crossing number computed by Algo-

rithm 2. If the crossing number is odd then P is inside S and FD(d) = πd2/L.

Otherwise, the crossing number is even, P is outside S (case (i)) and FD(d) = 0.
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Fig. 16. Cases where Nb Intersections=0.

Algorithm 4: Computation of the value FD(d) of the cumulative distribution

function of D at d when X is uniformly distributed in a polygone contained in a

plane with P in that plane.

Inputs: P, the vertices S1, . . . , Sn, of polygone S, Crossing Number,L, d.

Initialization: ℓ = 0 //Will store line integral (21) takingD = S ∩D(P, d),

//i.e., will compute the area ofD = S ∩D(P, d).

Intersections=Null. //List of the intersections found for S and C(P, d).

Nb Intersections=0. //Number of intersections found for S and C(P, d).

Arcs=Null. //Stores the arcs that are on the boundary of S ∩D(P, d).

For i = 1, . . . , n,

//Check if Si belongs toD(P, d) or not:

If ‖−−→SiP‖2 ≤ d then

If ‖−−−→Si+1P‖2 < d then //Cases A1 and A2 in Figure 14

ℓ← ℓ + 1
2ISiSi+1

where for a line segment AB, IAB is given by (22).

Else If‖−−−→Si+1P‖2 > d //Cases B1,B2, and B3 in Figure 14

Call Algorithm 1 to compute the intersections between the circle

of center P and radius d with the line segment SiSi+1.

If there is an intersection point different from Si then

Let Ii be this intersection point.



November 8, 2022 12:4 WSPC/Guidelines ws-ijcga

28

ℓ← ℓ + 1
2ISiIi

where for a line segment AB, IAB is given by (22).

Nb Intersections← Nb Intersections+ 1.

Intersections[Nb Intersections] = Ii.

Arcs[Nb Intersections] = 1.

End If

Else

ℓ← ℓ + 1
2ISiSi+1

where for a line segment AB, IAB is given by (22).

Call Algorithm 3 with input variables P, d, Si, Si+1, Si+2 and with

variable In set to 1.

If the variable Arc returned by this algorithm is 1 then

Nb Intersections← Nb Intersections+ 1.

Intersections[Nb Intersections] = Si+1.

Arcs[Nb Intersections] = 1.

End If

End If

Else

If ‖−−−→Si+1P‖2 < d then //Case C in Figure 14

Call Algorithm 1 to compute the intersection Ii between the circle

of center P and radius d with the line segment SiSi+1 (note that

the intersection is a single point).

ℓ← ℓ + 1
2IIiSi+1

where for a line segment AB, IAB is given by (22).

Nb Intersections← Nb Intersections+ 1.

Intersections[Nb Intersections] = Ii.

Arcs[Nb Intersections] = 0.

Else If ‖−−−→Si+1P‖2 > d then //Cases D1,D2, and D3 in Figure 14

Call Algorithm 1 to compute the intersections between the circle

of center P and radius d with the line segment SiSi+1.

If there are two intersection points then

Let Ii1 and Ii2 be these intersection points where Ii1 and Ii2 satisfy
xIi1
−xSi

xSi+1
−xSi

≤ xIi2
−xSi

xSi+1
−xSi

if xSi+1
, xSi

and
yIi1
−ySi

ySi+1
−ySi

≤ yIi2
−ySi

ySi+1
−ySi

if xSi+1
= xSi

.

ℓ← ℓ + 1
2IIi1Ii2

where for a line segment AB, IAB is given by (22).

Nb Intersections← Nb Intersections+ 2.

Intersections[Nb Intersections− 1] = Ii1.

Intersections[Nb Intersections] = Ii2.

Arcs[Nb Intersections− 1] = 0.

Arcs[Nb Intersections] = 1.

End If

Else

Call Algorithm 1 to compute the intersections between the circle

of center P and radius d with the line segment SiSi+1.

If there is one intersection then
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Call Algorithm 3 with input variables P, d, Si, Si+1, Si+2

and with variable In set to 0.

If the variable Arc returned by this algorithm is 1 then

Nb Intersections← Nb Intersections+ 1.

Intersections[Nb Intersections] = Si+1.

Arcs[Nb Intersections] = 0.

End If

Else If there are two intersections Ii and Si+1 then

ℓ← ℓ + 1
2IIiSi+1

where for a line segment AB,

IAB is given by (22).

Nb Intersections← Nb Intersections+ 1.

Intersections[Nb Intersections] = Ii.

Arcs[Nb Intersections] = 0.

Call Algorithm 3 with input variables P, d, Si, Si+1, Si+2

and with variable In set to 1.

If the variable Arc returned by this algorithm is 1 then

Nb Intersections← Nb Intersections+ 1.

Intersections[Nb Intersections] = Si+1.

Arcs[Nb Intersections] = 1.

End If

End If

End If

End If

End For

If Nb Intersections=0 then

If ℓ = L then

FD(d) = 1

Else if variable Crossing Number is odd then

//D(P, d) is inside the polygone

FD(d) = πd2/L
Else

//D(P, d) has no intersection with the polygone

FD(d) = 0

End If

Else

Sort the elements (xi, yi) of list Intersections

by ascending order of their angles Angle(xi, yi) and sort the elements of list

Arcs correspondingly.

Let again Intersections and Arcs be the corresponding sorted lists.

For i = 1, . . . , Nb Intersections

If Arcs[i]=1 then
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ℓ← ℓ + 1
2I ⌢

ABd,P

where A = Intersections[i],

B =

{

Intersections[i + 1] if i < Nb Intersections,

Intersections[1] if i = Nb Intersections,

and where I ⌢
ABd,P

is obtained substituting R0 by d in (25).

End If

End For

FD(d) = ℓ/L.

End If

Output: FD(d).

After calling Algorithm 2, if the crossing number is odd, we know that P belongs to

the relative interior of S and for 0 ≤ d ≤ dmin, we have fD(d) = 2πd
L . For d ≥ dmax or

d ≤ 0, the density is null. If the crossing number is even, fD(d) is null for 0 ≤ d ≤ dmin.

For dmin ≤ d ≤ dmax, Algorithm 5 provides approximations of the density at points

di, i = 1, . . . ,N − 1.

Algorithm 5: Computation of the approximate density of D (distance from P to

a random variable uniformly distributed in a polygone) in the range [dmin, dmax].

Inputs: The vertices S1, . . . , Sn of a polygone contained in a plane,

a point P in this plane, and the number N of discretization points.

Initialization: Call Algorithm 2 to compute dmin, dmax, the crossing number,

and the areaL of S.

F Old= 0.

For i = 1, . . . ,N − 1,

Compute di = dmin +
(dmax−dmin)i

N .

Call Algorithm 4 with input variables the crossing number, L, dmin, dmax,

and d = di to compute FD(di).

Compute f̃D(di) =
N

[

FD(di)−F Old
]

dmax−dmin
and set F Old = FD(di).

End For

Outputs: f̃D(di), i = 1, . . . ,N − 1.

Finally, we consider the case where the polygone is contained in a planeP and P is

not contained in that plane. In this situation, referring to arguments from Section 3,

we can use the previous results reparametrizing the problem and replacing P and

d respectively by P0, the projection of P onto P, and R(d) =

√

d2 − ‖−−→PP0‖22. Indeed,
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since S ⊂ P, we have

S ∩ B(P, d) = S ∩ P ∩ B(P, d) = S ∩D(P0,R(d))

whereD(P0,R(d)) is the disk of center P0 and radius R(d) contained in the plane P
(see Figure 8). Since S1, S2, and S3 are consecutive extremal points of S, the vectors
−−−→
S2S1 and

−−−→
S2S3 are linearly independent. Using Gram-Schmidt orthonormalization

process, we obtain two points S′
1

and S′3 of the plane P such that the vectors
−−−→
S2S′

1

and
−−−→
S2S′

3
are orthonormal and for any point Q in plane P, the vector

−−→
S2Q can be

uniquely written as a linear combination of these vectors. Vectors
−−−→
S2S′

1
and
−−−→
S2S′

3
are

given by

−−−→
S2S′1 =

−−−→
S2S1

‖−−−→S2S1‖2
and
−−−→
S2S′3 =

−−−→
S2S3 − 〈

−−−→
S2S3,

−−−→
S2S′

1
〉−−−→S2S′

1

‖−−−→S2S3 − 〈
−−−→
S2S3,

−−−→
S2S′

1
〉−−−→S2S′

1
‖2
.

It follows that if A is the (3, 2) matrix [
−−−→
S2S′

1
,
−−−→
S2S′3] whose first column is

−−−→
S2S′

1
and

whose second column is
−−−→
S2S′3, then the matrix A⊤A is invertible and the projection

P0 = πP[P] of P on P can be expressed as

−−−→
S2P0 = A(A⊤A)−1A⊤−−→S2P. (31)

Before calling Algorithms 2 and 4, we need to reparametrize the problem: we

write
−−−→
S2P0 = xP0

−−−→
S2S′

1
+ yP0

−−−→
S2S′3 = A(xP0

; yP0
) and

−−→
S2Si = A(xi; yi) for i = 1, . . . , n. In

particular, we have (x1, y1) = (‖−−−→S2S1‖2, 0) and (x2, y2) = (0, 0). Since A has rank 2,

eventually after re-ordering the lines of A, we can assume that A is of the form

A = [A0; a0] where A0 is a (2, 2) invertible matrix with A0(1, 1) , 0. Using Gaussian

elimination, the system
−−−→
S2P0 = A(xP0

; yP0
) can be written

[

U0

0 0

] [

xP0

yP0

]

=

[

b

0

]

for

some two-dimensional vector b and an invertible upper triangular matrix U0 =
[

U11 U12

0 U22

]

. Another by-product of Gaussian elimination is the lower triangular

matrix L0 =

[

1 0

L21 1

]

such that A = L0U0 is the LU decomposition of A0. We obtain

xP0
=

−−−→
S2P0(1)

U11

[

1 +
U12L21

U22

]

− U12

U11

−−−→
S2P0(2), yP0

=

−−−→
S2P0(2) − L21

−−−→
S2P0(1)

U22
, (32)

and for i ≥ 3,

xi =

−−→
S2Si(1)

U11

[

1 +
U12L21

U22

]

− U12

U11

−−→
S2Si(2), yi =

−−→
S2Si(2) − L21

−−→
S2Si(1)

U22
. (33)

Algorithms 2, 3, and 4 can now be used with P replaced by (xP0
, yP0

) and where

the coordinates of the extremal points of the polygone are (xi, yi), i = 1, . . . , n. First,

Algorithm 2 is called to compute the areaL ofS, the crossing number for P0 andS,
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and the minimal and maximal distances from P0 to the boundary ofS, respectively

denoted by dmin and dmax. Recalling the definition (31) of P0, we introduce

dm =

√

d2
min
+ ‖−−→PP0‖22 and dM =

√

d2
max + ‖

−−→
PP0‖22. (34)

With this notation, for d ≥ dM or d ≤ 0, the density is null and if the crossing number

is odd, i.e., if P0 belongs to the relative interior of S, then for 0 ≤ d ≤ dm, we have

fD(d) = 2πd
L . Otherwise, if the crossing number is even, fD(d) is null for 0 ≤ d ≤ dm.

For dm ≤ d ≤ dM, Algorithm 6 provides approximations f̃D(di) of the value of

the density at points di, i = 1, . . . ,N − 1.

Algorithm 6: Computation of the approximate density of D (distance from

P to a random variable uniformly distributed in a polyhedron) in the range

[dm, dM].

Inputs: The vertices S1, . . . , Sn of a polyhedron contained in a plane,

the point P, and the number N of discretization points.

Initialization: Call Algorithm 2 with P replaced by (xP0
, yP0

) (see equation

(32)) and where the coordinates of the extremal points of the polyhedron are

(xi, yi), i = 1, . . . , n, given by (33). This will compute the areaL of S, the

crossing number for P0 and S, and the minimal and maximal distances from P0

to the boundary of S, respectively denoted by dmin and dmax.

F Old= 0.

Compute dm and dM given by (34).

For i = 1, . . . ,N − 1,

Compute di = dm +
(dM−dm)i

N .

Call Algorithm 4 with input variables the crossing number, L, dmin, dmax,

and d =

√

d2
i
− ‖−−→PP0‖22 to compute FD(di).

Compute f̃D(di) =
N

[

FD(di)−F Old
]

dmax−dmin
and set F Old = FD(di).

End For

Oututs: f̃D(di), i = 1, . . . ,N − 1.

5.3. Simple polygone: an algorithm based on a triangulation of the polygone

Let S be a simple polygone contained in a plane given by its extremal points

{S1, S2, . . . , Sn} where the boundary of S is
⋃n

i=1 SiSi+1 where Si , S j for i , j and

1 ≤ i, j ≤ n.
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The computation, at a given value R, of the CDF of the distance between a given

point P and S requires computing the area of the intersection of S and of the ball of

center P and radius R. Without loss generality, we will assume that P is in the plane

containing S (if this is not the case, we can project P onto this plane and modify

the value of the radius). The area of the intersection can be obtained computing

a triangulation of the polyhedron (with complexity n log(n)), then computing the

area of intersection of diskD(P,R) with the n− 2 triangles of the triangulation, and

summing these n − 2 areas. Therefore, we need to devise an algorithm to compute

the area of the intersection of a disk and a triangle and we proceed as follows.

Consider a triangle with vertices A,B,C and a disk of center P and radius R. We

want to compute the area of the intesection of this triangle and this disk.

We first compute:

• the n1 intersections of AB and C(P,R) denoted by A1 when n1 = 1 and

A1,A2 when n1 = 2 where ‖−−−→AA1‖2 < ‖
−−−→
AA2‖2 (see Figure 17);

• the n2 intersections of BC and C(P,R) denoted by B1 when n2 = 1 and B1,B2

when n2 = 2 where ‖−−→BB1‖2 < ‖
−−→
BB2‖2 (see Figure 17);

• the n3 intersections of AC andC(P,R) denoted by C1 when n3 = 1 and C1,C2

when n3 = 2 where ‖−−→CC1‖2 < ‖
−−→
CC2‖2 (see Figure 17).

A B
A A
1 2

B C
B B
1 2

A B
A
1

B C
B
1

C A
C C
1 2

C A
C
1

Fig. 17. Intersections between the sides of the triangle and the cercle C(P,R).

Each ni, i = 1, 2, 3, can take 3 values (0, 1, or 2) and therefore the triple (n1, n2, n3) can

take 27 possible different values. We associate to base 3 number n3n2n1 its decimal

equivalent, denoted by Code in what follows, and given by Code = 9n3+3n2+n1. To

identify the shape of the intersection between the triangle and the disk, we branch

according to the value of variable Code and for a given value of Code, we consider

all possible shapes for the intersection of the triangle and the disk. Obviously, for all

values of Code corresponding to different permutations of the same triple (n1, n2, n3)

the different possible shapes for the intersection are the same. We now discuss for
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every possible value of variable Code how to compute the area of the intersection.

• Code=0.

In this case, there is no intersection between the circle C(P, d) and the triangle.

There are three possible shapes for the intersection represented in Figure 18: (a) the

triangle is contained in the disk, (b) the disk is outside the triangle, and (c) the disk

is inside the triangle.

P

(a) (b) (c)

Fig. 18. Possible shapes for the intersection when Code = 0.

To know which of subcases (a), (b), or (c) we are in, we compute

dA = ‖
−→
PA‖2, dB = ‖

−→
PB‖2, dC = ‖

−→
PC‖2. (35)

In what follows, we denote by

T(A,B,C) =
1

2

∣

∣

∣

∣

xA(yB − yC) + xB(yC − yA) + xC(yA − yB)
∣

∣

∣

∣

(36)

the area of triangle ABC. If dA < R, dB < R, and dC < R then the area is T(A,B,C).

Otherwise either P is inside the triangle and the area is πR2 or it is outside and the

area is null. To know if P is inside or outside the triangle, we compute the crossing

number for P and the triangle and the minimal distance dmin from P to the border

of the triangle. Knowing that the crossing number is odd if and only if P belongs

to the relative interior of the triangle, P is inside the triangle if and only if dmin = 0

or the crossing number is odd.

• Code = 1, 3, 9, corresponding to (n1, n2, n3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, i.e., one

side of the triangle has a single intersection with the circle and the remaining two

have no intersection.

There are two possible shapes for the intersection represented in Figure 19-

(a),(b).
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(a) (b)

Fig. 19. Possible shapes for the intersection when Code=1, 3, 9.

In case (a), P is outside the triangle and the area is null while in case (b), P is

inside the triangle and the area is πR2. We have already seen how to differentiate

these two cases on the basis of dmin and of the crossing number.

• Code=2, 6, 18, obtained when (n1, n2, n3) is (2, 0, 0), (0, 2, 0), (0, 0, 2), respec-

tively.

There are two possible shapes for the intersection represented in Figure 20-(a),

(b).

P

(a) (b)

Fig. 20. Possible shapes for the intersection when Code=2, 6, 18.

In each case, the intersection is a lens, of area ≤ 0.5πR2 in case (a) and ≥ 0.5πR2

in case (b). Let us recall how to compute analytically these areas.

Consider a chord AB of circleC(P,R). It defines two lenses represented in Figure

21-(a), (b).
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(a) (b)

Fig. 21. Two lenses given by chord AB in a disk of center P and radius R.

Let us recall the formula for the area L(P,R,A,B) of the lens in case (a) (in case

(b), it is given by πR2 − L(P,R,A,B)). In case (a), let C = A+B
2 and let cθ be the cosine

of acute angle ∠CPB given by

cθ =
〈−→PC,

−→
PB〉

R‖−→PC‖2
.

Then

L(P,R,A,B) = R2 arccos(cθ) − R2cθ
√

1 − cθ2.

With this notation, when Code = 18, i.e., when (n3, n2, n1) = (2, 0, 0), in case (a), the

area of the intersection is given by L(P,R,C1,C2). The cases where Code = 2, 6 are

dealt with by appropriate permutation of the intersection points.

• Code=4, 10, 12, obtained when (n3, n2, n1) is (0, 1, 1), (1, 0, 1), (1, 1, 0).

The possible shapes for the intersection between the triangle and disk are given

in Figure 22. We discuss how to compute the intersection area when (n3, n2, n1) =

(1, 1, 0), i.e., Code = 12. The cases Code=4,10, are similar, obtained by appropriate

permutation of A,B,C and the intersection points.

Let us first discuss on how to distinguish between cases (e) and (f). In theses

cases, the intersection is the union of a triangle and a lens. In case (e) the lens has

area lower than or equal to 0.5πR2 while in case (f) the lens has area greater than

0.5πR2. In case (f), P and C are in two different half-spaces separated by line (C1B1).

More precisely, let us introduce the function

[out]=Are In Same Half Space(C,P,A,B)

with inputs four points C,P,A,B inR2 which returns 0 if C and P are in two different

half-spaces separated by line (AB) and 1 otherwise. Clearly, out is 1 if and only if
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(a) (b)

(c) (d)

(e) (f)

Fig. 22. Possible shapes for the intersection when Code=4, 10, or 12.

(xA = xB and (xA−xP)(xA−xC) ≥ 0) or (xA , xB and (yP−DA,B(xP))(yC−DA,B(xC)) ≥ 0)

where

DA,B(x) = yA +
yB − yA

xB − xA
(x − xA).

With this notation, the intersection area in cases (a)-(f) is computed with the fol-

lowing pseudo-code where areawill store the intersection area:

area=0.

if dA < R and dB < R and dC = R then area = T(A,B,C),

else if dA < R and dB < R, and dC > R then area = L(P,R,C1,B1) + T(A,B,B1) +

T(A,B1,C1),
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P

(a) (b)

P

(c) (d)

Fig. 23. Possible shapes for the intersection when Code=5, 7, 11, 15, 19, or 21.

else if dA > R and dB > R and dC > R then area = πR2,

else if dA > R and dB > R and dC < R then

[out]=Are In Same Half Space(C,P,B1,C1),

if out=1 then area= T(C,B1,C1) + L(P,R,B1,C1),

else area= T(C,B1,C1) + πR2 − L(P,R,B1,C1),

end if

end if

• Code=5,7,11,15,19,21, corresponding to (n3, n2, n1) ∈ {(0, 1, 2), (0, 2, 1),(1, 0, 2),

(1, 2, 0), (2, 0, 1), (2, 1, 0)}.

The possible shapes for the intersection are represented in Figure 23. It follows

that when Code=5 or 11, i.e., when (n3, n2, n1) is (0, 1, 2) or (1, 0, 2), the area of the

intersection is computed with the following pseudo-code (stored in variable area):

if the crossing number for P and the triangle is odd or dmin = 0 then area=

πR2 − L(P,R,A1,A2)

else area=L(P,R,A1,A2).

end if

The pseudo-codes when Code=7,15,19,21, are obtained by appropriate per-

mutations of the intersection points.

• Code=8, 20, 24 obtained when (n3, n2, n1) = (0, 2, 2), (2, 0, 2), (2, 2, 0).
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P

(a) (b)

(c) (d)

Fig. 24. Possible shapes for the intersection when Code=8, 20, or 24

The possible shapes for the intersection are represented in Figure 24. It follows

that when Code=8, i.e., when (n3, n2, n1) = (0, 2, 2) the pseudo-code for computing

the area of the intersection (stored in variable area) is the following:

area=0.

[out]=Are In Same Half Space(B,P,A1,B2)

if dB > R

if out=1

area= L(P,R,A1,B2) + T(B1,A1,B2) + T(A2,A1,B1) + L(P,R,A2,B1),

else

area= πR2 − L(P,R,A1,B2) + T(B1,A1,B2) + T(A2,A1,B1) + L(P,R,A2,B1),

end if

else

if out=1

area= L(P,R,A1,B2) + T(B,A1,B2),

else

area= πR2 − L(P,R,A1,B2) + T(B,A1,B2).

end if

end if

The pseudo-codes for Code= 20 and 24 are obtained by appropriate permutations

of A,B,C, and the intersection points.
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P

P

(a) (b)

P

P

B

(c) (d)

Fig. 25. Possible shapes for the intersection when Code=13.

• Code=13 obtained when (n3, n2, n1) = (1, 1, 1).

The possible shapes for the intersection are represented in Figure 25. Therefore

the pseudo-code for computing the intersection area is the following (where the

area of the intersection is stored in variable area):

if dA > R and dB > R and dC > R then area = πR2,

else if dA = R and dB > R and dC < R then area = L(P,R,A,B1) + T(A,C,B1),

else if dA = R and dC > R and dB < R then area = L(P,R,A,B1) + T(A,B,B1),

else if dB = R and dA > R and dC < R then area = L(P,R,B,C1) + T(C,B,C1),

else if dB = R and dC > R and dA < R then area = L(P,R,B,C1) + T(A,B,C1),

else if dC = R and dB > R and dA < R then area = L(P,R,C,A1) + T(C,A,A1),

else if dC = R and dB < R and dA > R then area = L(P,R,C,A1) + T(C,B,A1),

else if dA < R and dB > R and dC > R then

[out]=Are In Same Half Space(P,A,A1,C1),

if out=1 then area= L(P,R,A1,C1) + T(A,A1,C1),

else area= πR2 − L(P,R,A1,C1) + T(A,A1,C1)

end if

else if dB < R and dA > R and dC > R then

[out]=Are In Same Half Space(P,B,A1,B1),

if out=1 then area= L(P,R,A1,B1) + T(B,A1,B1),

else area= πR2 − L(P,R,A1,B1) + T(B,A1,B1)

end if

else if dC < R and dA > R and dB > R then

[out]=Are In Same Half Space(P,C,C1,B1),
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 26. Possible shapes for the intersection when Code=14, 16 or 22.

if out=1 then area= L(P,R,C1,B1) + T(C,C1,B1),

else area= πR2 − L(P,R,C1,B1) + T(C,C1,B1),

end if

end if

• Code=14, 16, 22 obtained when (n3, n2, n1) = (1, 1, 2), (1, 2, 1), (2, 1, 1). The pos-

sible shapes for the intersection are represented in Figure 26. It follows that the

pseudo-code for computing the area of the intersection (stored in variable area)

when Code= 14 is the following:

area= 0.

if dA > R and dB > R and dC > R then

[out]=Are In Same Half Space(P,C,A1,A2),
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if out=1 then area= πR2 − L(P,R,A1,A2),

else area= L(P,R,A1,A2),

end if

else if dA > R and dC < R and dB > R then

area= L(P,R,A1,C1)+L(P,R,B1,A2)+T(C,C1,A1)+T(C,A1,A2)+T(C,B1,A2),

else if dB = R and dA = R and dC < R then area= T(A,B,C),

else if dB = R and dA = R and dC > R then area= L(P,R,A,B),

else if dB = R

if dC < R then area= L(P,R,A1,C1) + T(B,C,A1) + T(C,A1,C1),

else

[out]=Are In Same Half Space(P,C,B,A),

if out= 1 then area= πR2 − L(P,R,A1,B),

else area= L(P,R,A1,B),

end if

end if

else if dA = R

if dC < R then area= L(P,R,B1,A2) + T(A,C,A2) + T(C,B1,A2),

else

[out]=Are In Same Half Space(P,C,B,A),

if out= 1 then area= πR2 − L(P,R,A,A2),

else area= L(P,R,A,A2),

end if

end if

end if

The pseudo-codes when Code= 16 and 22 are obtained by appropriate permutation

of A,B,C, and the intersection points.

• Code=17, 23, 25 obtained when (n3, n2, n1) = (1, 2, 2), (2, 1, 2), (2, 2, 1). The pos-

sible shapes for the intersection are represented in Figure 27. It follows that when

Code= 17 the pseudo-code for computing the area of the intersection is the follow-

ing:

if dA > R and dB > R and dC > R then

[out]=Are In Same Half Space(P,B,B2,A1),

if out= 1 then area= L(P,R,B1,A2) + L(P,R,A1,B2) + T(B1,A2,B2) +

T(A1,A2,B2),

else area= L(P,R,B1,A2)+πR2 − L(P,R,A1,B2)+T(B1,A2,B2)+T(A1,A2,B2),

end if

else if dA = R and dB = R then area= L(P,R,A,B2) + T(A,B,B2),

else if dC = R and dB = R then area= L(P,R,C,A1) + T(B,C,A1),

else if dB = R then

[out]=Are In Same Half Space(P,B,B2,A1),
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(a) (b)

(c) (d)

(e) (f)

Fig. 27. Possible shapes for the intersection when Code=17, 23 or 25.

if out= 1 then area= L(P,R,A1,B2) + T(A1,B,B2),

else area= πR2 − L(P,R,A1,B2) + T(A1,B,B2),

end if

else if dA = R then

area = L(P,R,A1,B2) + L(P,R,A2,B1) + T(A,B2,B1) + T(A,B1,A2),

else if dC = R then

area = L(P,R,A1,C) + L(P,R,A2,B1) + T(C,A2,A1) + T(C,B1,A2),

end if.

The pseudo-codes when Code= 23 and 25 are obtained by appropriate permu-

tation of A,B,C, and the intersection points.

• Code=26 corresponding to (n3, n2, n1) = (2, 2, 2). The possible shapes for the

intersection are represented in Figure 28. From this figure we obtain the following
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(a) (b)

(c) (d)

Fig. 28. Possible shapes for the intersection when Code=26.

pseudo-code to compute the intersection area:

if dA > R and dB > R and dC > R then

area = L(P,R,A2,B1) + L(P,R,B2,C1) + L(P,R,A1,C2)

+T(A2,B1,A1) + T(A1,C2,B1) + T(C2,B1,B2) + T(B2,C1,C2),

else ifdA = R and dB = R and dC = R then area= T(A,B,C),

else if dA = R and dB = R and dC > R then

area = L(P,R,C1,B2) + T(A,B,C1) + T(B,C1,B2),

else if dA = R and dC = R and dB > R then

area = L(P,R,A2,B1) + T(A,C,A2) + T(C,A2,B1),

else if dB = R and dC = R and dA > R then

area = L(P,R,A1,C2) + T(C,B,A1) + T(C,A1,C2),

else if dA = R and dB > R and dC > R then

area = L(P,R,A2,B1) + L(P,R,B2,C1) + T(A,A2,B1) + T(A,B1,B2) + T(A,C1,B2),

else if dB = R and dA > R and dC > R then

area = L(P,R,A1,C2) + L(P,R,C1,B2) + T(A,B,C2) + T(B,C1,C2) + T(B,B2,C1),

else if dC = R and dA > R and dB > R then

area = L(P,R,A1,C2) + L(P,R,A2,B1) + T(C,C2,A1) + T(C,A1,A2) + T(C,B1,A2),

end if
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6. The library: main functions and examples

The Matlab library, available at https://github.com/vguigues/Areas_Library,

computes the density of the distance D to a random variable uniformly distributed

in some sets and the area of intersection of disks and balls with those sets.

All necessary files to run the functions of the library are in foldersAreas Library

and its subfolder Examples which contains files to run the main functions on

examples. No external library is needed. We implemented all functions of these

folders except function polygon triangulatewhich computes a triangulation of a

polygone. This function, which can be found in folder Areas Library, is the Matlab

version by John Burkardt of the original C version by Joseph ORourke [1998].

If the folder Areas Libary is copied in folder C:\Users\user name, before using

the library, update the path in Matlab with commands:

addpath ’C:\Users\user name\Areas Libary’

addpath ’C:\Users\user name\Areas Libary\Examples’

The next section shows how to use the functions of the library from Sec-

tions 5.2 and 5.3 using the files of examples that can be found in folder

Areas Libary\Examples.

6.1. Density of the distance to a random variable uniformly distributed in a

polygone

The function to compute the density of the distance from a point P ∈ R2 to a ran-

dom variable uniformly distributed in a polygone S is:

[d,time,dmin,dmax]=density polyhedron(S,P,Np,algo)

where input variables are:

• algo: a char indicating the algorithm used. It can take two values ’g’

and ’t1’. When algo=’g’, the algorithm from Section 5.2 based on Green’s

theorem is used. When algo=’t1’ the algorithm from Section 5.3 is used to

compute the intersection areas of disks and the polygone.

• Np: the number of discretization points: the density is computed at Np

equally spaced points x1, x2, . . . , xNp from the support of the random vari-

able distance.

• P: point P as explained above.

• S = [S1; S2; S3; . . . ; Sn; S1]: the polyhedron where n is the number of vertices

and S1, S2, S3, . . . , Sn are the successive vertices of the polyhedron. Observe

that the first point S1 is repeated. When algo=’g’, when travelling on the

boundary of S from S1 to S2, then from S2 to S3 and so on until the last line

segment SnS1, one always has the relative interior of S to the left. When
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algo=’t1’ this restriction does not apply: if algo=’t1’, when travelling on of

S from S1 to S2, then from S2 to S3 and so on until the last line segment

SnS1, one can either have the relative interior of S to the left or to the right.

Output variables of function density polyhedron are:

• d: a vector of size Np where d(i) is the estimation of the density of the

random variable at xi.

• time is the time required to compute d.

• ]dmin,dmax[ is the support of the random variable meaning that dmax is

the maximal distance between P and the boundary of the polygone. If P

is inside the polygone then dmin= 0 and if P is outside the polygone then

dmin is the minimal distance from P to the boundary of the polygone.

We illustrate the use of this function on several examples written in folder

’Areas Libary\Examples’.

We start with an example written in file drectex.m of folder Examples where

S is a rectangle with side lengths L and αL with 0 < α < 1 and P is the center of

the rectangle. For this example, the density of the distance from P to a random

variable uniformly distributed in S is known in closed form and is given in Stewart

and Zhang [2013]. Therefore, this example allows us to test the implementation of

function density polyhedron comparing output d of this function when algo=’g’,

’t1’ with the theoretical values given in Stewart and Zhang [2013].

The function corresponding to this example is

[dG,dT1,d,ErrG,ErrT1]=drectex(Np,α,L).

The input variables are parameters Np, α, L, given above and the outputs are the

following:

• dG and dT1 are vectors of size Np and dG(i) (resp. dT1(i)) is the value of the

density at xi, i = 1, . . . ,Np, computed calling function density polyhedron

with variable algo=’g’ (resp. calling function density polyhedron with

variable algo=’t1’). Recall that xi, i = 1, . . . , xNp are Np equally spaced points

in ]dmin,dmax[.

• d is a vector of size Np: d(i) is the exact value of the density at xi computed

using the analytic formulas given in Stewart and Zhang [2013].

• ErrG is the maximal error when algo=’g’, i.e., ErrG=maxi=1,...,Np |dG(i)−d(i)|.
• ErrT1 is the maximal error when algo=’t1’, i.e., ErrT1=maxi=1,...,Np |dT1(i)−
d(i)|.

On top of that, the function plots vectors dG, dT1, and d. For instance, running
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Fig. 29. Plots produced calling [dG,dT1,d,ErrG,ErrT1]=drectex(Np,α,L).From left to right: rectangle
S and P, plot of dG, plot of dT1, and plot of d.

[dG,dT1,d,ErrG,ErrT1]=drectex(1,0.8,1)

the plots of Figure 29 are displayed. On this Figure, from left to right, the first

plot represents rectangle S = [(0, 0); (1, 0); (1, 0.8); (0, 0.8); (0, 0)] and P = (0.5, 0.4),

the second plot represents the density of D obtained using the algorithm from

Section 5.2, the third plot is the density of D obtained using the algorithm from

Section 5.3, while the last plot is the graph of the true density of D.

In this example, the densities are computed with the following Matlab code:

P1=[0,0]; P2=[L,0]; P3=[L,alpha×L]; P4=[0,alpha×L];
P=[L/2,alpha×L/2];
S=[P1;P2;P3;P4;P1];

[dG,timeg,dmin,dmax]=density polyhedron(S,P,Nb,’g’);

[dT1,timet1,dmin,dmax]=density polyhedron(S,P,Nb,’t1’);

ErrG=max(abs(d-dG)); ErrT1=max(abs(d-dT1)).
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Np ErrG ErrT1

10 000 0.017 0.023

20 000 0.010 0.020

50 000 0.007 0.04

100 000 0.004 0.03

Table 1. Maximal error obtained with the algorithms from Sections 5.2 and 5.3 to compute the density of
D (D being the distance from the center of a rectangle with side lengths 1 and 0.8 to a random variable
with uniform distribution in this rectangle) at Np discretization points.

To check the implementations of the algorithm from Sections 5.2 and 5.3,

we now report in Table 1 the values of ErrG and ErrT1 for several values

of the number Np of discretization points, namely when Np varies in the set

{10 000, 20 000, 50 000, 100 000}.
In all cases the maximal error is very small which shows that both algorithms

correctly compute the Np areas of intersection of the disks and polygone of this

example.b We also observe that the approximations are slightly better with the al-

gorithm from Section 5.2 and, as expected, the maximal error decreases with Np for

this algorithm. This is not the case for the other, probably due to roundoff errors.

We now compare the algorithms on other examples coded in Matlab file

dpolyex.m. More precisely, we consider three polyhedra (a triangle, a rectangle,

and an arbitrary polygone) and in each case a point P inside the polygone and a

point P outside. For these 6 examples the Matlab codes are the following.

• S = [(1, 1); (10, 1); (3, 4); (1, 1)] is a triangle and P = [5; 0] is outside this triangle.

In Figure 30, S and P are represented in the left plot while the corresponding density

of D is represented in the right plot. This density is obtained with the following

Matlab code:

P1=[1,1]; P2=[10,1]; P3=[3,4]; S=[P1;P2;P3;P1]; P=[5,0];

[dT1,timeT1,dminT1,dmaxT1]=density polyhedron(S,P,Np,algo);

where algo=’g’ or ’t1’.

• S = [(1, 1); (10, 1); (3, 4); (1, 1)] is a triangle and P = [4; 2] is inside this triangle.

In Figure 31, S and P are represented in the left plot while the corresponding density

of D is represented in the right plot. This density is obtained with the following

Matlab code:

bTo approximate the density at Np points, we need to compute the cumulative distribution function
at Np points and therefore when Np= 100 000, the algorithms are called 100 000 times each to compute
100 000 areas.
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Fig. 30. Density of D when X is uniformly distributed in a triangle.
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Fig. 31. Density of D when X is uniformly distributed in a triangle.

P1=[1,1]; P2=[10,1]; P3=[3,4]; S=[P1;P2;P3;P1];; P=[4,2];

[dT2,timeT2,dminT2,dmaxT2]=density polyhedron(S,P,Np,algo);

where algo=’g’ or ’t1’.

• S = [(3, 3); (12, 3); (12, 7); (3, 7); (3, 3)] is a rectangle and P = [1; 1] is outside this

rectangle. In Figure 32, S and P are represented in the left plot while the corre-

sponding density of D is represented in the right plot. This density is obtained with

the following Matlab code:

P1=[3,3]; P2=[12,3]; P3=[12,7]; P4=[3,7]; S=[P1;P2;P3;P4;P1];

P=[1,1];

[dR1,timeR1,dminR1,dmaxR1]=density polyhedron(S,P,Np,algo);

where algo=’g’ or ’t1’.

• S = [(3, 3); (12, 3); (12, 7); (3, 7); (3, 3)] is a rectangle and P = [6; 5] is inside this
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Fig. 32. Density of D when X is uniformly distributed in a rectangle.
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Fig. 33. Density of D when X is uniformly distributed in a rectangle.

rectangle. In Figure 33, S and P are represented in the left plot while the corre-

sponding density of D is represented in the right plot. This density is obtained with

the following Matlab code:

P1=[3,3]; P2=[12,3]; P3=[12,7]; P4=[3,7]; S=[P1;P2;P3;P4;P1];

P=[6,5];

[dR2,timeR2,dminR2,dmaxR2]=density polyhedron(S,P,Np,algo);

where algo=’g’ or ’t1’.

• S = [(1, 1); (3, 1); (5, 2); (7, 1); (8, 3); (6, 3); (7, 6); (4, 5); (1, 3); (2, 2); (1, 1)] is a poly-

gone and P = [4; 0] is outside this polygone. In Figure 34, S and P are represented

in the left plot while the corresponding density of D is represented in the right plot.

This density is obtained with the following Matlab code:

P1=[1,1]; P2=[3,1]; P3=[5,2]; P4=[7,1]; P5=[8,3];

P6=[6,3]; P7=[7,6]; P8=[4,5]; P9=[1,3]; P10=[2,2];

S=[P1;P2;P3;P4;P5;P6;P7;P8;P9;P10;P1];
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Fig. 35. Density of D when X is uniformly distributed in a polygone.

P=[4,0];

[dP1,timeP1,dminP1,dmaxP1]=density polyhedron(S,P,Np,algo);

where algo=’g’ or ’t1’.

• S = [(1, 1); (3, 1); (5, 2); (7, 1); (8, 3); (6, 3); (7, 6); (4, 5); (1, 3); (2, 2); (1, 1)] is a poly-

gone and P = [4; 3] is inside this polygone. In Figure 35, S and P are represented in

the left plot while the corresponding density of D is represented in the right plot.

This density is obtained with the following Matlab code:

P1=[1,1]; P2=[3,1]; P3=[5,2]; P4=[7,1]; P5=[8,3];

P6=[6,3]; P7=[7,6]; P8=[4,5]; P9=[1,3]; P10=[2,2];

S=[P1;P2;P3;P4;P5;P6;P7;P8;P9;P10;P1];

P=[4,3];

[dP2,timeP2,dminP2,dmaxP2]=density polyhedron(S,P,Np,algo);

where algo=’g’ or ’t1’.
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Fig. 36. Plots produced calling [dT1,dT2,dR1,dR2,dP1,dP2]=dpolyex(10000,’g’). In red, polygones
S with the corresponding densities of D on their right (plots of dT1, dT2 on top, dR1, dR2 in the middle,
and dP1, dP2 at the bottom).

Command

[dT1,dT2,dR1,dR2,dP1,dP2]=dpolyex(10000,’g’)

will run the code above to compute dT1,dT2,dR1,dR2,dP1,dP2with algo=’g’,

Np= 10 000, and will produce Figure 36 which represents polygones S above and

the corresponding densities of D on their right.

Command

[dT1,dT2,dR1,dR2,dP1,dP2]=dpolyex(Np,’t1’)

does the same with algo=’t1’.

Let fG(xi) (resp. fT(xi)) be the approximation of the density computed by the
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algorithm from Section 5.2 based on Green’s theorem (resp. the algorithm from

Section 5.3, based on a triangulation of the polygone) at xi. The maximal errors

maxi=1,...,Np | fG(xi) − fT(xi)| were 5.7×10−10 for S,P given in Figure 30, 4.1×10−8 for

S,P given in Figure 31, 8.6×10−10 for S,P given in Figure 32, 4.5×10−10 for S,P given

in Figure 33, 2.3×10−5 for S,P given in Figure 34, and 1.7×10−9 for S,P given in

Figure 35.

The fact that these errors are very small is an indication that both algorithms

were correctly implemented.

6.2. Area of the intersection of a disk and a polygone

The area of the intersection of polygone

S = [S1; S2; . . . ; Sn; S1]

(in Matlab notation) and the disk of center P ∈ R2 and radius d is computed as

follows with the library:

[Crossing Number,AreaP,dmin,dmax]=polyhedron(S,P,n)

[area]=area intersection disk polygone(S,P,d,n,Crossing Number,AreaP,algo)

where output area of function area intersection disk polygone is the area

of the intersection and the outputs of the first function polyhedron are:

• Crossing Number: the crossing number for S and P;

• AreaP: the area of polygone S;

• dmin (resp. dmax): the minimal (resp. maximal) distance from P to the

border of the polygone.

When algo=’g’ (resp. ’t’) the area of the intersection is computed with the algorithm

described in Section 5.2 (resp. the algorithm given in Section 5.3).

We test this function computing the areas of intersection of 350 disks and poly-

gones as well as the mean and maximal time required to compute these areas. The

polygones are generated using function

[Polygone]=generate polygone(n,R0)

of the library where parameters n and R0 are described below. This function gen-

erates randomly a polygone with 4n vertices as follows. We sample 4n points taking

n points in each orthant with polar angles generated randomly and independently

in this orthant and radial coordinates generated randomly and independently in

the interval [0,R0] (we take R0 = 1000 in our experiments). We then sort in ascend-

ing order the polar angles of these points. This list defines the successive vertices

of a star-shaped (simple) polygone. An example of such a star-shaped polygone

with n = 3 and 4n = 12 vertices is given in Figure 37, together with a triangulation

of this polygone.
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Fig. 37. Star-shaped polygone and a triangulation of this polygone.

The coordinates of the centers of the disks (resp. the radii) are obtained sam-

pling independently from the uniform distribution on the interval [−100, 100] (resp.

[50, 250]).

For each value of n in the set {10, 25, 50, 80, 100, 150, 200} we generate 50 star-

shaped polyhedra and disks as explained above and for each polygone and disk,

we compute the area of their intersection using both algorithms. The correspond-

ing function of the library is

[Errmax,ErrMoy,TimeGreen,TimeTr1]=random areas(M)

where M is the number of Monte-Carlo simulations (M = 50 in our experiments)

and where the outputs are the following:

• TimeGreen(k,j) (resp. TimeTr1(k,j) is the time required to compute

the intersection area for k-th instance and j-th value of n (for in-

stance for j = 1 we have n = 10, for j = 2, we have n = 25)

when area intersection disk polygone is called with algo=’g’ (resp.

algo=’t1’);

• Errmax and ErrMoy are vectors of size 7. ErrMoy( j) and Errmax( j) are defined

respectively by 1
50

∑50
k=1 |AG(k, j)−AT(k, j)| and maxk=1,...,50 |AG(k, j)−AT(k, j)|

whereAG(k, j) andAT(k, j) are the areas of the intersection for k-th Monte-

Carlo simulation and j-th value of n computed with respectively algo=’g’

and algo=’t1’.
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4n
Mean time
algo=’t1’

Mean Time
algo=’g’

Max time
algo=’t1’

Max time
algo=’g’

ErrMoy Errmax

40 0.30 0.004 0.34 0.008 9.5×10−10 10−8

100 1.99 0.007 2.54 0.014 2.5×10−9 4.1×10−8

200 8.09 0.012 8.96 0.018 3.8×10−9 3.6×10−8

320 22.57 0.020 34.26 0.036 6.8×10−9 3.4×10−8

400 45.21 0.021 669.76 0.039 1.1×10−8 1.7×10−7

600 128.52 0.033 2 772.5 0.074 1.4×10−8 1.2×10−7

800 369.80 0.043 9 661.8 0.076 1.7×10−8 9.7×10−8

Table 2. Mean and maximal time (in seconds) required to compute the areas of 50 polyhedra with 4n
vertices for algo=’g’ and algo=’t1’. The last two columns report respectively the mean and maximal
errors.

For each value of n, the mean and maximal time (over the 50 instances) required to

compute these areas are reported in Table 2. We also report in this table the values

of Errmax and ErrMoy.

We observe that errors are negligible which shows that both algorithms compute

the same areas. Moreover, on all instances the algorithm from Section 5.2 computes

all areas extremely quickly and much quicker than the algorithm of Section 5.3.

For this latter algorithm, both the mean and maximal time required to compute the

intersection areas significantly increase with the number of vertices of the polygone.

7. Application to PSHA and extensions

The results of Sections 3, 4, and 5 can be used to determine for the application

presented in Section 2 the distribution of the distance between the epicenter in S
and an arbitrary point P whenS is a union of disks, a union of balls, or the boundary

of a polyhedron in R3. For this application, the coordinates of P, of the centers of

the disks and of two points on the boundaries of these disks, of the centers of the

balls, and of the vertices S1, . . . , Sn of the polyhedron are given providing for each

point its latitude, its longitude, and its depth measured from the surface of the

earth. To apply the computations of the previous sections, we need to choose a

Cartesian coordinate system and use the corresponding Cartesian coordinates of

these points. These coordinates are given as follows. We take for the positive x-axis

the ray OA where O is the center of the earth and A is the point on the surface

of the earth with longitude 0 and latitude 0. We take for the positive z-axis the

ray OB where O is the center of the earth and B is the north pole. The positive

y-axis is chosen correspondingly and corresponds to ray OC where C is the point

on the surface of the earth with latitude 0 and longitude 90o East. Let P be a point

at depth d from the surface of the earth with latitude ϕ ∈ [0, 90o] (North or South)

and longitude λ ∈ [0, 180o] (East or West). If the latitude is ϕNorth (resp. ϕ South),

we use the notation ϕN (resp. ϕS) while if the longitude is λ East (resp. λWest),

we use the notation λE (resp. λW). Denoting by R the earth radius, the Cartesian
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coordinates of P in the chosen Cartesian coordinate system are

(

(R − d) cosϕ cosλ, (R − d) cosϕ sinλ, (R − d) sinϕ
)

if P = (R − d, λE, ϕN),
(

(R − d) cosϕ cosλ, (R − d) cosϕ sinλ,−(R − d) sinϕ
)

if P = (R − d, λE, ϕS),
(

(R − d) cosϕ cosλ,−(R − d) cosϕ sinλ, (R − d) sinϕ
)

if P = (R − d, λW, ϕN),
(

(R − d) cosϕ cosλ,−(R − d) cosϕ sinλ,−(R − d) sinϕ
)

if P = (R − d, λW, ϕS).

For the polygone case considered in Sections 5.2 and 5.3, instead of using a

triangulation of the polygone as in Section 5.3, we could decompose each polygone

into several convex components as in 18,19 and then use the algorithm from Section

5.2 to compute the intersection between the ball and each convex component.

However, it is not clear that convexity can be exploited for our problem since for

convex polygones, we can have an arbitrary large number of possible intersection

shapes and of intersections between the ball and the polygone. We would on top

of that need to add the preprocessing time of computing the decomposition in

convex polygones. The decomposition in convex components could be of interest

if, similar to the case where the convex components are triangles as in Section 5.3,

an algorithm more efficient in practice than the algorithm from section 5.2 can be

developped. In theory, the proposed algorithms have optimal complexity anyway.

In the case where the ℓ2-norm is replaced by either the ℓ1-norm or the ℓ∞-norm

and when S is a union of disks contained in a plane with P in that plane, we can

use the results of Section 5. Indeed, since the level curves of the ℓ1-norm and the

ℓ∞-norm in the plane are squares, to compute the CDF of D at a given point in these

cases we need to determine the area of the intersection of a square (a particular

polygone) with disks. It also possible to extend Algorithm 5 to the case where the

ℓ2-norm is replaced by either the ℓ1-norm or the ℓ∞-norm andS is a union of simple

polygones.

Another extension of interest is the case where S is an arbitrary polyhedron

in R3. In this case, the CDF and density of the corresponding random variable D

given by D(ω) = ‖−−−−−→PX(ω)‖2 for any ω ∈ Ω can be approximated using Monte Carlo

methods. This is possible if we have at hand a black box able to decide if a given

point in R3 belongs to polyhedron S or not.
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