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Abstract

In this paper we investigate the dual of a Multistage Stochastic Linear Program (MSLP).
By writing Dynamic Programming equations for the dual, we can employ an SDDP type
method, called Dual SDDP, which solves these Dynamic Programming equations. allows us
to compute a sequence of nonincreasing deterministic upper bounds for the optimal value
of the problem. Since the Relatively Complete Recourse (RCR) condition may fail to hold
for the dual (even for simple problems), we design two variants of Dual SDDP, namely
Dual SDDP with penalizations and Dual SDDP with feasibility cuts, that converge to the
optimal value of the dual (and therefore primal when there is no duality gap) problem under
mild assumptions. We also show that optimal dual solutions can be obtained using dual
information from Primal SDDP (applied to the original primal MSLP) subproblems.

As a byproduct of the developed methodology we study sensitivity of the optimal value
of the problem as a function of the involved parameters. For the sensitivity analysis we
provide formulas for the derivatives of the value function with respect to the parameters and
illustrate their application on an inventory problem. Since these formulas involve optimal
dual solutions, we need an algorithm that computes such solutions to use them, i.e., we need
to solve the dual problem.

Finally, as a proof of concept of the tools developed, we present the results of numerical
experiments computing the sensitivity of the optimal value of an inventory problem as a
function of parameters of the demand process and compare Primal and Dual SDDP on the
inventory and a hydro-thermal planning problems.

Keywords: Stochastic optimization, Sensitivity analysis, SDDP, Dual SDDP, Relatively
complete recourse.

AMS subject classifications: 90C15, 90C90.

1 Introduction

Duality plays a key role in optimization. For generic optimization problems, weak duality
allows us to bound the optimal value. Dual information is also used in many optimization
algorithms such as Uzawa algorithm [2], primal-dual projected gradient [27] or Stochastic
Dual Dynamic Programming (SDDP) [28]. Moreover, for several classes of optimization
problems, the dual is easier to solve than the primal problem, for instance when it is amenable
to decomposition techniques such as price decomposition [5]. Even when there is a duality
gap between the primal and dual optimal values, solving the dual gives a bound on the
optimal value, as mentioned earlier. Duality is also a fundamental tool in the reformulation
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of Robust Optimization problems, see for instance [4]. Finally, derivatives of the value
function of classes of optimization problems can be related to optimal dual solutions, see [7],
[33], and more recently [14, 16, 17], for the characterization of subdifferentials, subgradients,
and ε-subgradients of value functions of convex optimization problems.

For stochastic control problems, stochastic Lagrange multipliers were already used in
[21, 22, 23]. In the context of multistage stochastic programs, duality was studied in [34],
see also [37] for a review. More recently, the sensitivity analysis of multistage stochastic
programs was discussed in [8] and [39]. In [8] the authors study the sensitivity with respect
to parameters driving the considered price model. The corresponding parameters are in the
objective function and the analysis of the estimate of marginal price is based on Danskin’s
theorem with the SDDP method used for the numerical calculations. In [39], the authors use
the Envelope Theorem for the sensitivity analysis. The required derivatives are described
in terms of Lagrange multipliers associated with the value functions.

In this paper, focusing our attention on the dual of a Multistage Stochastic Linear
Program (MSLP), we are able to provide insights into the important problem of computation
of a sequence of deterministic upper bounds for the optimal value. The developed approach
proved to be especially useful in the infinite horizon setting when the discount factor is
very close to one; in such cases the standard methodology of statistical upper bounds does
not work, cf. [36]. This is important for evaluating accuracy of the obtained solutions
and stopping criteria. As a byproduct we apply the developed methodology to sensitivity
analysis of the optimal values. A method, based on inner approximations, to compute a
sequence of deterministic upper bounds on the value of the risk-averse policy of a MSLP
was suggested in [31]. As it is pointed in [31], that approach has a rather slow rate of
convergence for large-scale problems. Our main contributions are summarized below.

Formulating Dynamic Programming equations for the dual problem. A simple
but crucial ingredient for our developments and subsequent analysis of solution methods for
the dual problem of a MSLP is to write DP equations for that dual problem. We are not
aware of another paper with these equations. However, a similar study was done in [24].
More precisely, for a stochastic linear control problem with uncertainty in the right-hand-
side, in [24], DP equations are written for the conjugate of the cost-to-go functions and
using an SDDP type method for these DP equations, a sequence of upper bounds on the
MSP optimal value is constructed which is the sequence of conjugates of the approximate
first-stage cost-to-go functions evaluated at the initial state x0. Our approach is essentially
different and has the advantage of being much simpler: contrary to derivations in [24] which
require some algebra, our DP equations can be immediately obtained from the dual problem
formulation, this latter being known (given in [37] for instance).

Dual SDDP. Applying an SDDP-type method to the aforementioned DP equations for
the dual gives rise to our Dual SDDP method. By running Primal SDDP and Dual SDDP
in parallel, we are able to compute a deterministic lower bound LB and a deterministic
upper bound UB of the MSLP. When the relative gap between the LB and UB is close
enough (within some precision), it provides a valid stopping criteria, which implies that
the algorithm (Parallel Primal SDDP and Dual SDDP) solves for an approximately optimal
primal solution of the MSLP and such solution can be obtained from the forward pass of
Primal SDDP. On top of that, we relax two assumptions made in [24]: (a) the relatively
complete recourse assumption of the dual and (b) randomness in the right-hand-side of the
constraints only. The next three paragraphs describe how the scope of (a) and (b) was
extended in our analysis.

Dual SDDP for dual problems without relatively complete recourse. In [24],
it is assumed that the dual problem of the considered MSLP satisfies an assumption (As-
sumption 3) stronger than relatively complete recourse. This assumption may not be easy
to check or may not be satisfied (for instance it is not satisfied for the inventory and hydro-
thermal problems considered in Section 5). Therefore, it is desirable to extend the scope of
Dual SDDP in such a way that it can still compute a converging sequence of deterministic
upper bounds without this assumption. We present two variants of Dual SDDP that can do
that: Dual SDDP with penalizations and Dual SDDP with feasibility cuts.
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Dual SDDP for problems with interstage dependent cost coefficients. In sec-
tion 5.3 we consider problems having interstage dependent cost coefficients. Such problems
arise in many applications such as hydro-thermal production with interstage dependent
prices [29], swing options in energy markets and gas trading portfolio problems with un-
certainty on gas prices [8]. Writing DP equations for the corresponding dual problem, we
can apply Dual SDDP algorithm to solve these equations, which, interestingly, have concave
cost-to-go functions whereas primal cost-to-go functions are not convex. This is in sharp
contrast with the solution methods proposed so far, such as [8, 26, 9], which apply SDDP
on the primal cost-to-go functions using a Markov chain approximation of the cost coeffi-
cients process. An interesting approach to construction of deterministic upper bounds for a
class of linear multistage programs, including problems with stochastic cost coefficients, was
suggested in [12]. The approach is based on a convex-concave formulation of the considered
problems and builds on a cutting plane method outlined in [3]. Also we can mention [32, 25]
which employs a combination of scenario tree and sampling.

Sensitivity analysis of MSLPs. We explain how to compute derivatives of the optimal
value, seen as a function of the problem parameters, of a MSLP in terms of dual optimal
solutions. Therefore, the construction of the dual problem is essential for our approach,
contrary to [8]. With respect to the sensitivity analysis of [39], in our approach, we do not
use value functions directly, which are not known and can only be approximated, but rather
construct the dual problem which is solved by an SDDP type algorithm, called Dual SDDP.

The outline of the paper is the following. Our building blocks are elaborated in Section 2
where we write DP equations for the dual, we explain how to build upper bounding functions
for the cost-to-go functions of the dual using penalizations, and study the dynamics of La-
grange multipliers. Sensitivity analysis of MSLPs is conducted in Section 3 while Dual SDDP
and its variants are studied in Section 4. Finally, the results of numerical simulations testing
the tools developed on an inventory and an hydro-thermal problem are presented in Section
5. The interested reader can find and test the code of all implementations and of Primal and
Dual SDDP for MSLPs at https://github.com/vguigues/Dual_SDDP_Library_Matlab

and https://github.com/vguigues/Primal_SDDP_Library_Matlab. Proofs are collected
in the Appendix.

2 Duality of multistage linear stochastic programs

2.1 Writing Dynamic Programming equations for the dual

Consider the multistage linear stochastic program

min
xt≥0

E

[
T∑
t=1

c>t xt

]
s.t. A1x1 = b1,

Btxt−1 +Atxt = bt, ∀t = 2, ..., T.

(1)

Here vectors ct = ct(ξt) ∈ Rnt , bt = bt(ξt) ∈ Rmt and matrices Bt = Bt(ξt), At = At(ξt) are
functions of random process ξt ∈ Rdt , t = 1, ..., T (with ξ1 being deterministic).

Many examples and applications of such problems can be found, e.g., in monographs: [6],
[20], [37]. We denote by ξ[t] = (ξ1, ..., ξt) the history of the data process up to time t and by
E|ξ[t] the corresponding conditional expectation. The optimization in (1) is performed over
functions (policies) xt = xt(ξ[t]), t = 1, ..., T, of the data process satisfying the feasibility
constraints.

The Lagrangian of problem (1) is

L(x, π) = E
[∑T

t=1 c
>
t xt + π>t (bt −Btxt−1 −Atxt)

]
(2)
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in variables1 x = (x1(ξ[1]), . . . , xT (ξ[T ])) and π = (π1(ξ[1]), . . . , πT (ξ[T ])) with the convention
that x0 = 0. Dualization of the feasibility constraints leads to the following dual of problem
(1) [37, Section 3.2.3]:

max
π

E
[∑T

t=1 b
>
t πt

]
s.t. A>T πT ≤ cT ,

A>t−1πt−1 + E|ξ[t−1]

[
B>t πt

]
≤ ct−1, t = 2, ..., T.

(3)

The optimization in (3) is over policies πt = πt(ξ[t]), t = 1, ..., T .
Unless stated otherwise, we make the following assumption throughout the paper.

(A1) The process ξ1, ..., ξT is stagewise independent (i.e., random vector ξt+1 is independent
of ξ[t], t = 1, ..., T −1), and distribution of ξt has a finite support, {ξt,1, . . . , ξt,Nt} with
respective probabilities pt,j , j = 1, ..., Nt, t = 2, ..., T . We denote by At,j , Bt,j , ct,j , bt,j
the respective scenarios corresponding to ξt,j .

Since the random process ξt, t = 1, ..., T , has a finite number of realizations (scenarios),
problem (1) can be viewed as a large linear program and (3) as its dual. By the standard
theory of linear programming we have the following.

Proposition 2.1 Suppose that problem (1) has a finite optimal value. Then the optimal
values of problems (1) and (3) are equal to each other and both problems have optimal
solutions.

We can write the following dynamic programming equations for the dual problem (3).
At the last stage t = T , given πT−1 and ξ[T−1], we need to solve the following problem with
respect to πT :

max
πT

E[b>T πT ]

s.t. A>T πT ≤ cT ,
A>T−1πT−1 + E

[
B>T πT

]
≤ cT−1.

(4)

Since ξT is independent of ξ[T−1], the random parameters in (4) are functions of the marginal
distribution of ξT , and are independent of ξ[T−1]. Also it is assumed that ξT has a finite
support. Therefore problem (4) can be written in terms of scenarios, corresponding to the
marginal distribution of ξT , as follows

max
πT,1,...,πT,NT

NT∑
j=1

pT,jb
>
T,jπT,j

s.t. A>T,jπT,j ≤ cT,j , j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pT,jB
>
T,jπT,j ≤ cT−1,

(5)

with
∑NT
j=1 pT,jb

>
T,jπT,j = E[b>T πT ] and

∑NT
j=1 pT,jB

>
T,jπT,j = E

[
B>T πT

]
being the respective

expectations.
The optimal value VT (πT−1, ξT−1) and an optimal solution2 (π̄T,1, . . . , π̄T,NT ) of problem

(5) are functions of vectors πT−1 and cT−1 and matrix AT−1. And so on going backward
in time, using the stagewise independence assumption, we can write the respective dynamic
programming equations for t = T − 1, ..., 2, as

max
πt,1,...,πt,Nt

Nt∑
j=1

pt,j
[
b>t,jπt,j + Vt+1(πt,j , ξt,j)

]
s.t. A>t−1πt−1 +

Nt∑
j=1

pt,jB
>
t,jπt,j ≤ ct−1,

(6)

1Note that since ξ1 is deterministic, the first-stage decision x1 is also deterministic; we write it as x1(ξ[1]) for
uniformity of notation, and similarly for π1.

2Note that problem (5) may have more than one optimal solution. In case of finite number of scenarios the
considered linear program always has a solution provided its optimal value is finite.
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with Vt(πt−1, ξt−1) being the optimal value of problem (6). Finally at the first stage the
following problem should be solved

max
π1

b>1 π1 + V2(π1, ξ1). (7)

These dynamic programming equations can be compared with the dynamic program-
ming equations for primal problem (1), where the respective cost-to-go (value) function
Qt(xt−1, ξt,j), j = 1, ..., Nt, is given by the optimal value of

min
xt≥0

c>t,jxt +Qt+1(xt)

s.t. Bt,jxt−1 +At,jxt = bt,j ,
(8)

with QT+1(·) ≡ 0, and for t = T − 1, ..., 1,

Qt+1(xt) := E[Qt+1(xt, ξt+1)] =

Nt∑
j=1

pt+1,jQt+1(xt, ξt+1,j).

Let us make the following observations about the dual problem.

(i) Unlike in the primal problem, the optimization (maximization) problems (5) and (6) do
not decompose into separate problems with respect to each πt,j and should be solved
as one linear program with respect to (πt,1, ..., πt,Nt).

(ii) The value function Vt(πt−1, ξt−1) is a concave function of πt−1.

(iii) If At and ct, t = 2, ..., T , are deterministic, then Vt(πt−1) is only a function of πt−1.

2.2 Relatively complete recourse

The following definition of Relatively Complete Recourse (RCR) is applied to the dual
problem. Recall that we assume that the set of possible realizations (scenarios) of the data
process is finite.

Definition 2.1 For t ∈ {2, . . . , T}, we say that the sequence (π̃1, . . . , π̃t−1) is generated by
the forward (dual) process if π̃1 ∈ Rm1 and for πτ−1 = π̃τ−1, τ = 2, ..., t, going forward in
time, π̃τ coincides with some πτ,j, j = 1, ..., Nτ , where πτ,1, . . . , πτ,Nτ is a feasible solution
of the respective dynamic program - program (6) for τ = 2, ..., T − 1, and program (5) for
τ = T . We say that the dual problem (3) has Relatively Complete Recourse (RCR) if at
every stage t = 2, ..., T , for any generated (π1, . . . , πt−1) by the forward process for stages
1, . . . , t − 1, the respective dynamic program (program (6) for t = 2, ..., T − 1, and program
(5) for t = T ) has a feasible solution at stage t.

Without RCR it could happen that Vt(πt−1, ξt−1) = −∞ for a generated πt−1 and ξt−1 =
ξt−1,j . Unfortunately, it could happen that the dual problem does not have the RCR prop-
erty even if the primal problem has it for instance for the hydro-thermal and inventory
problems considered in Section 5). This could happen even in the two-stage case. Indeed,
for t = T and j = 1, ..., NT , the dual of problem (8) is the problem (16) (below) with fea-
sibility constraints A>T,jλT,j ≤ cT,j . Compared with this, the additional last constraint is
added in (5). The infeasibility of problem (5) could happen because of that last constraint,
but not because of the remaining constraints since the primal problem is feasible bounded
below and therefore by the LP duality Theorem the dual problem is feasible and has a finite
optimal value. The RCR is crucial for an implementation of the SDDP algorithm. One way
to deal with the problem of absence of RCR in numerical procedures is to use feasibility
cuts, we will discuss this later. Another way is the following penalty approach which will
be used in Section 4. As it was pointed above, the infeasibility of problem (5) can happen
because of its last constraint. In order to deal with this, consider the following relaxation of
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problem (5):

max
πT,1,...,πT,NT ,, ζT≥0

NT∑
j=1

pT,jb
>
T,jπT,j − v>T ζT

s.t. A>T,jπT,j ≤ cT,j , j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pT,jB
>
T,jπT,j ≤ cT−1 + ζT ,

(9)

where vT is a vector with positive components. For ζT large enough, the last constraint of
problem (9) is satisfied. Consequently problem (9) is always feasible and hence its optimal
value ṼT (πT−1, ξT−1) > −∞. We also have that

ṼT (πT−1, ξT−1) ≥ VT (πT−1, ξT−1), (10)

with the equality holding if ζT = 0 in the optimal solution of (9). If VT (πT−1,ξT−1) is finite,
this equality holds if the components of vector vT are large enough (see Lemma 7.1).

Similarly, problems (6) can be relaxed to

max
πt,1,...,πt,Nt ,ζt≥0

Nt∑
j=1

pt,j

[
b>t,jπt,j + Ṽt+1(πt,j , ξt,j)

]
− v>t ζt

s.t. A>t−1πt−1 +
Nt∑
j=1

pt,jB
>
t,jπt,j ≤ ct−1 + ζt,

(11)

with vector vt having positive components. In that way, the infeasibility problem is avoided
and by (10) the obtained value gives an upper bound for the optimal value of the dual
problem. Note that for sufficiently large vectors vt this upper bound coincides with the
optimal value of the dual problem (Lemma 7.1).

2.3 Dynamics of Lagrange multipliers

Let us consider for the moment the two-stage setting, i.e., T = 2. The primal problem can
be written as

min
x1≥0

c>1 x1 + E [Q(x1, ξ2)] s.t. A1x1 = b1, (12)

where Q(x1, ξ2) is the optimal value of the second-stage problem

min
x2≥0

c2(ξ2)>x2 s.t. B2(ξ2)x1 +A2(ξ2)x2 = b2(ξ2). (13)

The Lagrangian of problem (13) is

L(x1, x2, λ, ξ2) = c2(ξ2)>x2 + λ>(b2(ξ2)−B2(ξ2)x1 −A2(ξ2)x2).

In the dual form, Q(x1, ξ2,j) is given by the optimal value of the problem

max
λ2,j

(b2,j −B2,jx1)>λ2,j s.t. c2,j −A>2,jλ2,j ≥ 0. (14)

We have that if x1 = x̄1 is an optimal solution of the first-stage problem, then optimal
Lagrange multipliers π2,j are given by the optimal solution λ̄2,j of problem (14).

This can be extended to the multistage setting of problem (1) (recall that the stagewise
independence condition is assumed). At the last stage t = T , given optimal solution x̄T−1,
the following problem should be solved

min
xT≥0

cT (ξT )>xT s.t. BT (ξT )x̄T−1 +AT (ξT )xT = bT (ξT ). (15)

For a realization ξT = ξT,j , the dual of problem (15) is the problem

max
λT,j

(bT,j −BT,j x̄T−1)>λT,j s.t. cT,j −A>T,jλT,j ≥ 0. (16)

6



We then have that πT,j are given by the optimal solution λ̄T,j of problem (16).
At stage t = T − 1, given optimal solution x̄T−2, the following problem is supposed to

be solved (see (8))

min
xT−1≥0

cT−1(ξT−1)>xT−1 +QT (xT−1)

s.t. AT−1(ξT−1)xT−1 = bT−1(ξT−1)−BT−1(ξT−1)x̄T−2.
(17)

We have that QT (·) is a convex piecewise linear function. Therefore for every realization
ξT−1 = ξT−1,j it is possible to represent (17) as a linear program and hence to write its dual.
The optimal Lagrange multipliers of that dual give the corresponding Lagrange multipliers
πT−1,j . And so on for other stages going backward in time. That is, we have the following.

Remark 2.1 If (x̄1, ..., x̄T (ξ[T ])) is an optimal solution of the primal problem, then for
xt−1 = x̄t−1 the Lagrange multiplier πt,j is given by the respective Lagrange multiplier of
problem (8).

3 Sensitivity analysis

In this section we discuss an application of the duality analysis to a study of sensitivity of
the optimal value to small perturbations of the involved parameters (we refer to [8] and [39]
for relevant examples).

3.1 General case

Suppose now that the data ct(ξt, θ), bt(ξt, θ), Bt(ξt, θ), At(ξt, θ) of problem (1) also depend
on parameter vector θ ∈ Rk. Denote by ϑ(θ) the optimal value of the parameterized problem
(1) considered as a function of θ, and by S(θ) and D(θ) the sets of optimal solutions of the
respective primal and dual problems. Recall that the sets S(θ) and D(θ) are nonempty
provided the optimal value ϑ(θ) is finite. Consider the directional derivative

ϑ′(θ, h) = lim
τ↓0

ϑ(θ + τh)− ϑ(θ)

τ

of ϑ(·) at θ in direction h. Recall that ϑ(·) is (Gâteaux) differentiable at θ iff ϑ′(θ, h) exists
for all h ∈ Rk and is linear in h, in which case ϑ′(θ, h) = h>∇ϑ(θ).

Let L(x, π, θ) be the corresponding Lagrangian (see (2)) considered as a function of θ.
Then we have the following formula for the directional derivatives of the optimal value
function (e.g., [7, Proposition 4.27]).

Proposition 3.1 Suppose that the data functions are continuously differentiable functions
of θ, and for a given θ = θ̄ the optimal value ϑ(θ̄) is finite and the sets S(θ̄) and D(θ̄) of
optimal solutions are bounded. Then

ϑ′(θ̄, h) = max
π∈D(θ̄)

min
x∈S(θ̄)

h>∇θL(x, π, θ̄). (18)

In particular if S(θ̄) = {x̄} and D(θ̄) = {π̄} are singletons, then ϑ(·) is differentiable at θ̄
and

∇ϑ(θ̄) = ∇θL(x̄, π̄, θ̄). (19)

Next, as an example, we consider the sensitivity analysis of an inventory model.

3.2 Application to the inventory model

Consider the inventory model

min E

[
T∑
t=1

at(yt − xt−1) + gt(Dt − yt)+ + ht(yt −Dt)+

]
s.t. xt = yt −Dt, yt ≥ xt−1, t = 1 . . . , T.

(20)
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Here D1, ...,DT is a (random) demand process, at, gt, ht are the ordering, back-order penalty
and holding costs per unit, respectively, xt is the inventory level and yt − xt−1 is the order
quantity at time t, the initial inventory level x0 is given. We refer to [40] for a thorough
discussion of that model. Note that Dt is a random variable whereas dt stands for its
particular realization. We make the standard assumption that gt > at ≥ 0, ht > 0, t =
1, ..., T , this ensures that (20) has an optimal solution.

In the classical setting the demand process is assumed to be stagewise independent, i.e.,
Dt+1 is assumed to be independent of D[t] = (D1, ...,Dt) for t = 1, ..., T − 1. In order to
capture the autocorrelation structure of the demand process it is tempting to model it as,
say first order, autoregressive process Dt = µ+ φDt−1 + εt, where errors εt are assumed to
be a sequence i.i.d. (independent identically distributed) random variables. However this
approach may result in some of the realizations of the demand process to be negative, which
of course does not make sense. One way to deal with this is to make the transformation
Yt := logDt and to model Yt as an autoregressive process. A problem with this approach is
that it leads to nonlinear equations for the original process Dt, which makes it difficult to
use in the numerical algorithms discussed below.

We assume that the demand is modeled as the following multiplicative autoregressive
process

Dt = εt(φDt−1 + µ), t = 1, ..., T, (21)

where φ ∈ (0, 1), µ ≥ 0 are parameters and D0 ≥ 0 is given. The errors εt are i.i.d.
with log-normal distributions having means and standard deviations given by E[εt] = 1 and
Var(εt) = σ2 > 1, respectively. This guarantees that all realizations of the demand process
are positive. It is possible to view (21) as a linearization of the log-transformed process
logDt, with parameters φ and µ are estimated from the data, cf. [38]. See the Appendix
(Section 7) for a discussion of statistical properties of the process (21).

The process (21) involves parameters φ and µ which are estimated from the data. As
such, these parameters are subject to estimation errors. This raises the question of the
sensitivity of the optimal value ϑ(θ) = ϑ(φ, µ) of the corresponding problem (20) viewed as
a function of θ = (φ, µ). Using Proposition 3.1, derivatives ∂ϑ(φ, µ)/∂φ and ∂ϑ(φ, µ)/∂µ
are given by

∂ϑ(φ, µ)/∂φ = ∂L(x̄, ȳ, π̄)/∂φ = E
[∑T

t=1 π̄tεtDt−1

]
, (22)

∂ϑ(φ, µ)/∂µ = ∂L(x̄, ȳ, π̄)/∂µ = E
[∑T

t=1 π̄tεt

]
, (23)

where (x̄, ȳ) is an optimal solution of the primal problem and π̄ are the corresponding
Lagrange multipliers.

With these derivatives at hand, asymptotic distributions of the estimates of φ and µ
can be translated into the asymptotics of the optimal value in a straightforward way by
application of the Delta Theorem (cf. [11]). We refer to Section 5.2 for the corresponding
numerical experiments.

4 Dual SDDP

In this section, using the results of Section 2, we discuss an adaptation of the cutting planes
approach for the approximation of the value functions of the dual problem, similar to the
standard SDDP method. The interested reader can find the implementation of Primal SDDP
and all variants of Dual SDDP described in this section at https://github.com/vguigues/
Dual_SDDP_Library_Matlab and https://github.com/vguigues/Primal_SDDP_Library_

Matlab. We will make the following assumption.

(A2) Primal problem (1) satisfies the RCR assumption.

We first consider the case where only bt and Bt are functions of ξt, and hence are random.
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4.1 Dual SDDP for problems with uncertainty in bt and Bt

In Dual SDDP, concave value functions Vt, t = 2, . . . , T , are approximated at the end of
iteration k by polyhedral upper bounding functions V kt given by:

V kt (πt−1) = min
0≤i≤k

θ
i

t + 〈βit, πt−1〉 (24)

where θ
i

t and β
i

t are respectively real numbers and vectors whose computation is detailed
below. The algorithm uses valid upper bounds on the norm of dual optimal solutions:

Proposition 4.1 Suppose that the optimal value of primal problem (1) is finite. Then for
every t = 1, . . . , T , there exist πt, πt ∈ Rmt such that the dual problem (6) is unchanged
(i.e., has the same optimal value) adding box constraints πt ≤ πt ≤ πt. If additionally there
is x̂ > 0 feasible for primal problem (1) we can find πt and πt as functions of x̂.

Due to Lemma 4.1, we do not change the optimal value of (6) (resp. (7)) adding the box
constraints πt ≤ πt,j ≤ πt (resp. π1 ≤ π1 ≤ π1). This reformulation of the DP equations
will be used by our Dual SDDP algorithm (observe that the original dual problem may
however have unbounded dual solutions).

Recall that it is assumed that the number of scenarios is finite and hence problem (1) can
be viewed as a large linear program. The assumption of existence of feasible x̂ > 0 means
that problem (1) possesses a feasible solution with all components being strictly positive. If
moreover the equality constraints of problem (1) are linearly independent, then this strict
feasibility condition implies that the set of optimal solutions of the dual problem (i.e., the
set of Lagrange multipliers) is bounded, see for instance [19]. On the other hand, in the
above lemma the linear independence condition is not assumed. A proof of Lemma 4.1 and
a way to obtain the corresponding bounds πt, πt can be found in the Appendix.

As mentioned earlier, a difficulty to solve the dual problem with an SDDP type method
is that RCR may not be satisfied by the dual problem, even if RCR holds for the primal.
We propose two variants of Dual SDDP to solve the Dual problem even if RCR does not
hold for the dual: Dual SDDP with penalizations and Dual SDDP with feasibility cuts.

Dual SDDP with penalizations. Dual SDDP with penalizations is based on the
developments of Section 2.2. It introduces slack variables in the constraints which may
become infeasible for some past decisions in the subproblems solved in the forward passes
of Dual SDDP. Slack variables ζt are penalized in the objective function with sequences
vt,k of positive penalizing coefficients. Therefore, all subproblems solved in forward and
backward passes of this variant of Dual SDDP, called Dual SDDP with penalizations, are
always feasible and at iteration k, the method builds polyhedral upper bounding function
V kt for Vt of form (24) (see Proposition 4.2). Similarly to SDDP, trial points are generated
in a forward pass and cuts for Vt are computed in a backward pass. Of course, if RCR holds
for the dual problem, then we do not need slack variables ζt, we can take coefficients vtk
null, and Dual SDDP with penalization is just SDDP applied to DP equations (5), (6), (7)
for the dual. The detailed Dual SDDP method with penalizations is as follows.

Initialization. For t = 2, . . . , T, take for V 0
t an affine upper bounding function for Vt

and V 0
T+1 ≡ 0.3 Set iteration counter k to 1.

Step 1: forward pass of iteration k (computation of dual trial points). For the
first-stage of the forward pass, we compute an optimal solution πk1 of

V k−1 = max
π1

b>1 π1 + V k−1
2 (π1), s.t. π1 ≤ π1 ≤ π1. (25)

Recall that the optimal value of the first-stage problem does not change adding box con-
straints π1 ≤ π1 ≤ π1 for appropriate values π1 and π1. The introduction of these box
constraints ensures that the optimal value of (25) (which is an approximate first-stage prob-
lem due to the approximation of V2 by V k−1

2 ) is finite for all iterations.

3The upper bounding functions V 0
t are given. This is standard in SDDP-type methods.
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For stage t = 2, . . . , T − 1, given πkt−1, we compute an optimal solution of

max
πt,1,...,πt,Nt , ζt≥0

Nt∑
j=1

pt,j
[
b>t,jπt,j + V k−1

t+1 (πt,j)
]
− v>t,kζt

s.t. A>t−1π
k
t−1 +

Nt∑
j=1

pt,jB
>
t,jπt,j ≤ ct−1 + ζt,

πt ≤ πt,j ≤ πt, j = 1, ..., Nt.

(26)

An optimal solution of the problem above has Nt components (πt,1, πt,2, . . . , πt,Nt) for πt.

We generate a realization ξ̃kt of ξkt ∼ ξt which, if (t, k) 6= (2, 1), is independent of previous
realizations ξ̃1

2 , . . ., ξ̃
1
T−1,. . ., ξ̃k2 , . . . , ξ̃

k
t−1, and take πkt = πt,jt(k) where index jt(k) satisfies

ξ̃kt = ξt,jt(k).
Step 2: backward pass of iteration k (computation of new cuts). We first

compute a new cut for VT . Let (xT , xT−1,Ψ,Ψ) be an optimal solution of4

min
xT ,xT−1,Ψ,Ψ

x>T−1(cT−1 −A>T−1π
k
T−1) + E[c>T xT + Ψ

>
πT −Ψ>πT ]

s.t. ATxT +BTxT−1 + Ψ−Ψ = bT , a.s.
0 ≤ xT−1 ≤ vT,k, xT ,Ψ,Ψ ≥ 0 a.s.

(27)

which is the dual of (26) with box constraints πT ≤ πT ≤ πT added and with optimal value

V
k

T (πkT−1).
The new cut for VT is given by

β
k

T = −AT−1xT−1, θ
k

T = V
k

T (πkT−1)− 〈βkT , πkT−1〉.

For t = T − 1, . . . , 2, compute an optimal solution (xt−1, ν,Ψ,Ψ) of

min
xt−1,ν,Ψ,Ψ

x>t−1

[
ct−1 −A>t−1π

k
t−1

]
+ E

[
k∑
i=0

νiθ
i

t+1 + Ψ
>
πt −Ψ>πt

]

s.t. Btxt−1 −
k∑
i=0

νiβ
i

t+1 −Ψ + Ψ = bt, a.s.

k∑
i=0

νi = 1,Ψ,Ψ ≥ 0, a.s.

ν0, . . . , νk ≥ 0, 0 ≤ xt−1 ≤ vt,k, a.s.

(28)

with optimal value V
k

t (πkt−1) and

β
k

t = −At−1xt−1, θ
k

t = V
k

t (πkt−1)− 〈βkt , πkt−1〉.

Step 3: Do k ← k + 1 and go to Step 1.

The validity of the cuts computed in the backward pass of Dual SDDP with penalizations
is shown in Proposition 4.2.

Proposition 4.2 Consider Dual SDDP algorithm with penalizations vt,k ≥ 0. Let Assump-
tions (A1) and (A2) hold. Then for every t = 2, . . . , T , the sequence V kt is a nonincreasing
sequence of upper bounding functions for Vt, i.e., for every k ≥ 1 we have Vt ≤ V kt ≤ V k−1

t

and therefore (V k) (recall that V k−1 is the optimal value of (25)) is a nonincreasing sequence
of deterministic upper bounds on the optimal value of (1).

4We suppressed the dependence of the optimal solution on T and k to alleviate notation.
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Figure 1: Graph of V2 and of V γ
2 for γ = 1, 100, 1000.

To understand the effect of the sequence of penalizing parameters (vt,k) on Dual SDDP with
penalizations, we define the following Dynamic Programming equations (see also Lemma 7.1
in the Appendix):

V γT (πT−1) =


max

πT,1,...,πT,NT ,, ζT≥0

NT∑
j=1

pT,jb
>
T,jπT,j − γe>ζT

s.t. A>T,jπT,j ≤ cT,j , j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pT,jB
>
T,jπT,j ≤ cT−1 + ζT ,

(29)

for t = 2, . . . , T − 1:

V γt (πt−1) =


max

πt,1,...,πt,Nt ,ζt≥0

Nt∑
j=1

pt,j
[
b>t,jπt,j + V γt+1(πt,j)

]
− γe>ζt

s.t. A>t−1πt−1 +
Nt∑
j=1

pt,jB
>
t,jπt,j ≤ ct−1 + ζt,

(30)

and we define the first-stage problem

max
π1

π>1 b1 + V γ2 (π1), (31)

where e is a vector of ones and γ is a positive real number. As we will see below, V γt can
be seen as an upper bounding concave approximation of Vt which gets “closer” to Vt when
γ increases. For inventory problem (20), it is easy to see that functions Vt in DP equations
(5), (6), (7) and functions V γt in DP equations (29), (30), (31) (obtained using in these
equations data ct, bt At, Bt, corresponding to the inventory problem) are only functions of
one-dimensional state variable πt−1. Therefore, Dynamic Programming can be used to solve
these Dynamic Programming equations and obtain good approximations of functions Vt
and V γt . To obtain these approximations, we need to obtain approximations of the domains
of functions Vt and compute approximations of these functions on a set of points in that
domain. To observe the impact of penalizing term γ on V γt , we run Dynamic Programming
both on DP equations (5), (6), (7) and on DP equations (29), (30), (31) for γ = 1, 100, and
1000, on an instance of the inventory problem with T = 20 and Nt = 20. The corresponding
graphs of V2 (bold dark solid line) and of V γ2 for γ = 1, 100, 1000, are represented in Figure 1.
We observe that all functions V γ2 are, as expected, concave upper bounding functions for V2

and are finite everywhere. We also see that on the domain of V2, V γ2 gets closer to V2 when γ
increases and eventually coincides with V2 on this domain when γ is sufficiently large. Similar
graphs were observed for remaining functions Vt, V

γ
t , t = 3, . . . , T . Therefore, convergence

of Dual SDDP with penalizations requires the coefficients vt,k to become arbitrarily large.
Proof of the following theorem is given in the Appendix.
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Theorem 4.1 Consider optimization problem (1) and Dual SDDP with penalizations ap-
plied to the dual of this problem. Let Assumptions (A1) and (A2) hold. Assume that samples
ξ`t , t = 2, . . . , T , ` ≥ 1, in the forward passes are independent, that vt,k+1 ≥ vt,k for all t, k,
and that limk→+∞ vt,k = +∞ for every stage t. Then the sequence V k is a sequence of de-
terministic upper bounds on the optimal value of (1) which converges to this optimal value.

The “deterministic” upper bounds V k are functions of the randomly generated samples and
as such can be viewed as random variables. By the standard theory of SDDP, these bounds
converge almost surely to the optimal value of the dual problem, and hence, of the primal
problem.

We refer to Section 5 for examples of sequences vt,k used to solve an hydro-thermal and
an inventory problem.

Dual SDDP with feasibility cuts. For dual problems not satisfying the RCR as-
sumption, a subproblem for a given stage t in the forward pass can be infeasible. In this
situation, as was done in Section 5 of [14] for SDDP, we can build a feasibility cut for stage
t − 1 and go back to the previous stage t − 1 to resolve the problem with that feasibility
cut added, and so on until a sequence of feasible states is obtained for all stages. In this
context, no penalized slack variables are used, neither in the forward nor in the backward
pass. Since the adaptations from [14] are simple, we skip the details of the derivations of
this SDDP method applied to the dual. It will be tested in the numerical experiments of
Section 5.

4.2 Dual SDDP for problems with uncertainty in all parameters

We have seen in Section 2.1 how to write DP equations on the dual problem of a MSLP
when all data (At, Bt, ct, bt) in (ξt) is random. In this situation, cost-to-go functions Vt
are functions Vt(πt−1, ξt−1) of both past decision πt−1 and past value ξt−1 of process (ξt).
Also recall that functions Vt(·, ξt−1) are concave for all ξt−1. Therefore, Dual SDDP with
penalizations from the previous section must be modified as follows. For each stage t =
2, . . . , T, instead of computing just one approximation of a single function (function Vt), we
now need to compute approximations of Nt functions, namely concave cost-to-go functions
Vt(·, ξt−1,j), j = 1, . . . , Nt. The approximation V kt,j computed for Vt(·, ξt−1,j) at iteration k

is a polyhedral function V kt,j given by:

V kt,j(πt−1) = min
0≤i≤k

θ
i

t,j + 〈βit,j , πt−1〉.

Therefore more computational effort is needed. However, the adaptations of the method
can be easily written. More specifically, at iteration k, in the forward pass, dual trial points
are obtained replacing Vt(·, ξt−1,j) by V k−1

t,j and in the backward pass a cut is computed

at stage t for Vt(·, ξt−1,jt−1(k)) with jt−1(k) satisfying ξt−1,jt−1(k) = ξ̃kt−1 where ξ̃kt−1 is the
sampled value of ξt−1 at iteration k.

4.3 Dual SDDP for problems with interstage dependent cost coef-
ficients

We consider problems of form (1) where costs ct affinely depend on their past while bt are
stagewise independent. Specifically, similar to derivations of Section 3.2, suppose that ct
follow a multiplicative vector autoregressive process of form

ct = εt ◦
(∑p

j=1 Φt,jct−j + µt

)
, (32)

with (x ◦ y)i = xiyi denoting the componentwise product, and where matrices Φt,j and
vectors µt ≥ 0 as well as c2−p, c3−p, . . . , c0, c1 ≥ 0 are given.

We assume that the process (bt, εt) is stagewise independent and that the support of
bt, εt is the finite set

{(bt,1, εt,1), . . . , (bt,Nt , εt,Nt)},
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with εt,i > 0 and pt,i = P{(bt, εt) = (bt,i, εt,i)}, i = 1, . . . , Nt. For some values of Φt,j (for
instance for matrices with nonnegative entries), this guarantees that all realizations of the
price process {ct} are positive. The developments which follow can be easily extended to
other linear models for {ct}, for instance SARIMA or PAR models, see [13] for the definition
of state vectors of minimal size for generalized linear models.

Using the notation ct1:t2 = (ct1 , ct1+1, . . . , ct2−1, ct2) for t1 ≤ t2 integer, for the corre-
sponding primal problem (of the form (1)), we can write the following Dynamic Programming
equations: define QT+1 ≡ 0 and for t = 2, . . . , T ,

Qt(xt−1, ct−p:t−1) = Ebt,εt
[
Qt(xt−1, ct−p:t−1, bt, εt)

]
(33)

where Qt(xt−1, ct−p:t−1, bt, εt) is given by

min
xt≥0

[
εt ◦

( p∑
j=1

Φt,jct−j + µt

)]>
xt +Qt+1

(
xt, ct+1−p:t−1, εt ◦

( p∑
j=1

Φt,jct−j + µt

))
s.t. Atxt +Btxt−1 = bt,

(34)
while the first-stage problem is

min
x1≥0

c>1 x1 +Q2(x1, c2−p:1)

s.t. A1x1 = b1.

Standard SDDP does not apply directly to solve Dynamic Programming equations (33)-
(34) because functions Qt given by (33)-(34) are not convex. Nevertheless, we can use the
Markov Chain discretization variant of SDDP to solve Dynamic Programming equations
(33)-(34). On the other hand, as pointed above, it is possible to apply SDDP for the dual
problem with the added state variables. Along the lines of Section 2.1 we can write Dynamic
Programming equations for the dual, now with function Vt depending on πt−1, ct−1, . . . , ct−p.

These functions are concave and therefore we can apply Dual SDDP with penalizations
to these DP equations to build polyhedral approximations of these functions Vt of form

V kt (πt−1, ct−1, . . . , ct−p) = min
0≤i≤k

θit + 〈βit,0, πt−1〉+

p∑
j=1

〈βit,j , ct−j〉 (35)

at iteration k.
We conclude this section highlighting some advantages and disadvantages of Dual SDDP

compared to Primal SDDP. For Dual SDDP, a stage t subproblem is coupled across scenarios
1, . . . , Nt and hence is larger. If ct and At are random then with Dual SDDP we must store
NT , rather than one, sets of cuts at each stage. As a result of the last two issues, the
computational effort per iteration is larger for Dual SDDP but fewer iterations are required.
On the other hand, Dual SDDP computes deterministic valid upper bounds and provides a
feasible dual policy. Also, similarly to primal SDDP which provides statistical upper bounds
(for a minimization problem) on the optimal value of the Multistage Stochastic Program,
Dual SDDP provides statistical lower bounds (for a maximization problem).

5 Numerical experiments

In this section, we report numerical results obtained applying Primal SDDP and variants
of Dual SDDP to the inventory problem and to the Brazilian interconnected power system
problem. All methods were implemented in Matlab and run on an Intel Core i7, 1.8GHz,
processor with 12.0 GB of RAM. Optimization problems were solved using Mosek [1].

5.1 Dual SDDP for the inventory problem

We consider the inventory problem (20) with parameters at = 1.5 + cos(πt6 ), pt,i = 1
N where

N is the number of realizations for each stage, ξt,j = Dtj = (5 + 0.5t)(1.5 + 0.1ztj) is the
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Figure 2: Graph of V2 (bold black solid line) and cuts computed for V2 by Dual SDDP with
penalizations vt,k = 100 (left panel) and Dual SDDP with feasibility cuts (right panel).

demand process where (zt,1, . . . , zt,N ) is a sample from the standard Gaussian distribution,
x0 = 10, gt = 2.8, and ht = 0.2.

Illustrating the correctness of DP equations (5), (6), (7) and checking the
convergence of the variants of Dual SDDP. We solve this inventory problem using
Dynamic Programming applied both to DP equations (5), (6), (7) and to DP equations
(29)-(30) for γ = 1, 100, 1000. In this latter case, we obtain approximations of functions
V γt . We also run Primal SDDP, Dual SDDP with feasibility cuts, and Dual SDDP with
penalties vt,k = 1, 100, 1000, on the same instance, knowing that Dual SDDP variants were
run for 100 iterations (the upper bounds computed by these methods stabilize in less than
10 iterations) and Primal SDDP was stopped when the gap is < 0.1 where the gap is defined
as Ub−Lb

Ub where Ub and Lb correspond to upper and lower bounds computed by Primal
SDDP along iterations. The lower bound Lb is the optimal value of the first-stage problem
and the upper bound Ub is the upper end of a 97.5%-one-sided confidence interval on the
optimal value obtained using the sample of total costs computed by all previous forward
passes.5 With this stopping criterion and the considered instance of the inventory problem,
Primal SDDP was run for 232 iterations.

In Figure 2, we report the graph of V2 and the cuts computed for V2 by Dual SDDP
with feasibility cuts (right panel) and Dual SDDP with penalties vt,k = 100 (left panel).
All cuts are, as expected, upper bounding affine functions for V2 on its domain. However,
it is interesting to notice that for Dual SDDP with feasibility cuts, few different cuts are
computed and these cuts are tangent or very close to V2 at the trial points. On the contrary,
Dual SDDP with penalties may compute many cuts dominated by others on the domain of
V2. Therefore, cut selection techniques, for instance along the lines of [15] and [18] using
Limited Memory Level 1 cut selection, could be useful for Dual SDDP.

We report in Table 1 the approximate optimal values and the time needed to compute
them with Primal SDDP, Dual SDDP, and Dynamic Programming applied to respectively
(5), (6), (7) and (29), (30), (31) with γ = 1, 100, 1000. The approximate optimal values
reported are the last upper bound computed for variants of Dual SDDP and the last lower
bound computed for Primal SDDP. All approximate optimal values are very close (suggesting
that all variants were correctly implemented) and Dynamic Programming is much slower
than the other sampling-based algorithms. For Dual SDDP with penalization, if penalties are
too small the upper bound can be +∞ while if penalties are sufficiently large the algorithm
converges to an optimal policy.

Finally, we report for this instance in Figure 3 the evolution of the lower bound Lb
and upper bound Ub computed by Primal SDDP and the upper bounds computed by Dual
SDDP with penalties vt,k = 1000 and Dual SDDP with feasibility cuts. With Dual SDDP,

5An advantage of using all previous forward passes for the upper bound computation is the smoothing of the
sequence of upper bounds. This strategy allows us to obtain more reliable approximate policies. A disadvantage
is that the associated upper bounds for Primal SDDP are inflated due to large costs from early iterations.
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Method Optimal value CPU time (s.)

DP on (5), (6), (7) 321.6 685

DP on (29), (30), (31), γ = 1 +∞ 2 860

DP on (29), (30), (31), γ = 100 322.2 3 808

DP on (29), (30), (31), γ = 1000 321.8 3 376

Primal SDDP 322.5 105

Dual SDDP with penalties, vt,k = 1 2 131.4 9.4

Dual SDDP with penalties, vt,k = 100 322.5 11.3

Dual SDDP with penalties, vt,k = 1000 322.5 11.9

Dual SDDP with feasibility cuts 322.5 10.6

Table 1: Optimal value and CPU time needed (in seconds) to compute them on an instance of
the inventory problem with T = Nt = 20 by Dynamic Programming (DP), Primal SDDP, and
variants of Dual SDDP.
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Figure 3: Left: upper and lower bounds computed by Primal SDDP and upper bounds computed
by Dual SDDP with feasibility cuts and Dual SDDP with penalties vt,k = 1000 for the first 10
iterations. Right: same outputs for iterations 10,. . . , 100.

the upper bound is naturally large at the first iteration but decreases much quicker than
the upper bound Ub computed by Primal SDDP, especially for Dual SDDP with feasibility
cuts, with all upper bounds converging to the optimal value of the problem.

Tests on a larger instance. We now run Primal and Dual SDDP on a larger instance
with T = 100 and Nt = 100 for 600 iterations. The evolution of the upper bounds com-
puted along the iterations of Dual SDDP (both with feasibility cuts and with penalizations
vt,k = 1000) and of the upper and lower bounds computed by Primal SDDP are reported
in Table 2 for iterations 2, 3, 5, 10, 50, 100, 200, 300, 400, 500, and 600. We see that for the
first iterations, the upper bound decreases more quickly with the variants of Dual SDDP,
the most important decrease being obtained for Dual SDDP with feasibility cuts. How-
ever, on this instance, the convergence of Dual SDDP with feasibility cuts is slower, i.e., a
solution of high accuracy is obtained quicker using Dual SDDP with penalizations. More
precisely, we fix confidence levels ε = 0.2, 0.15, 0.1, 0.05, 0.01, and for each confidence level,
we compute the time needed, running Primal and Dual SDDP in parallel, to obtain a solu-
tion with relative accuracy ε stopping the algorithm when the upper bound Ub D computed
by a variant of Dual SDDP and the lower bound Lb, computed by Primal SDDP, satisfies
(Ub D-Lb)/Ub D< ε. The results are reported in Table 3. In this table, we also report the
time needed to obtain a solution of relative accuracy ε using only the information provided
by Primal SDDP, stopping the algorithm when (Ub-Lb)/Ub< ε.

We observe that if ε is not too small, the smallest CPU time is obtained combining
Primal SDDP with Dual SDDP with feasibility cuts while when ε is small (0.05 and 0.01) the
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Iteration
Primal

SDDP

Lb

Primal

SDDP

Ub

Dual SDDP with

feasibility

cuts

Dual SDDP

with

penalties

2 656.4 25 443 20 002 20 015

3 713.1 19 340 8 693.1 20 012

5 3361.8 14 800 7 246.8 19 993

10 5330.1 10 662 5 736.6 16 452

50 5483.1 6 594.5 5721.8 5500.9

100 5483.5 6 039.2 5715.1 5484.8

200 5483.6 5 762.4 5710.0 5484.2

300 5483.7 5 671.0 5704.6 5484.0

400 5483.7 5 625.3 5702.7 5483.9

500 5483.7 5 597.9 5702.5 5483.8

600 5483.7 5 579.9 5702.2 5483.8

Table 2: For an instance of the inventory problem with T = Nt = 100, lower bound Lb and
upper bound Ub computed by Primal SDDP and upper bounds computed by Dual SDDP with
feasibility cuts and Dual SDDP with penalties vt,k = 1000 along iterations.

ε Primal SDDP
Dual SDDP with

feasibility cuts

Dual SDDP with

penalties vt,k = 1000

0.2 300.2 29.5 35.8

0.15 459.8 35.8 41.2

0.1 825.6 48.3 48.3

0.05 2366.2 96.1 61.5

0.01 - - 103.2

Table 3: Time needed (in seconds) to obtain a relative accuracy ε with Primal SDDP, Dual
SDDP with feasibility cuts, and Dual SDDP with penalties vt,k = 1000 for an instance of the
inventory problem with T = Nt = 100.

smallest CPU time is obtained combining Primal SDDP with Dual SDDP with penalizations.
For ε = 0.05 and 0.01, 600 iterations are even not enough to get a solution of relative accuracy
ε using Primal SDDP or combining Primal SDDP and Dual SDDP with feasibility cuts.

In Figure 4, we report the cumulative CPU time along iterations of all methods. We see
that each iteration requires a similar computational bulk and after around 500 iterations
the CPU time increases linearly with the number of iterations.

5.2 Sensitivity analysis for the inventory problem

Consider the inventory problem of Section 5.1 with (Dt) as in (21), T = 10 stages, and
with optimal value ϑ(θ) for the two-dimensional parameter vector θ = (φ, µ). Our goal is
to compute derivatives (22) and (23) solving the primal and dual problems by respectively
Primal and Dual SDDP.

We consider 4 instances with (φ, µ) = (0.01, 0.1), (0.01, 3.0), (0.001, 0.1), and (0.001, 3.0).
The remaining parameters of these instances are those from the previous section. We dis-
cretize both the primal and dual problem into Nt = 100 samples for each stage t = 2, . . . , 10.
We take the relative error ε = 0.01 for the stopping criterion and use 10 000 Monte Carlo
simulations to estimate the expectations in (22), (23). For Primal SDDP, the upper bound
Ub and lower bound Lb at termination are given in Table 4 for the four instances.

The optimal mean values of Lagrangian multipliers for the demand constraints computed,
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Figure 4: Cumulative CPU time along iterations of Primal SDDP, Dual SDDP with feasibility
cuts, and Dual SDDP with penalizations vt,k = 1000.

Bound Instance 1 Instance 2 Instance 3 Instance 4

Ub 17.9176 478.687 15.3940 404.242
Lb 17.9163 475.017 15.3927 402.913

Table 4: Upper and lower bounds at the last iteration of Primal SDDP.

for a given stage t ≥ 2, averaging over the 10 000 values obtained simulating 10 000 forward
passes after termination, are given in Table 5. In this table, LM stands for the multipliers
obtained using Primal SDDP as explained in Remark 2.1 whereas Dual stands for the mul-
tipliers obtained using Dual SDDP with penalties. The fact that the multipliers obtained
are close for both methods illustrates the validity of the two alternatives we discussed in
Sections 3-4 to compute derivatives of the value function of a MSP.

Stage Instance 1 Instance 2 Instance 3 Instance 4

LM Dual LM Dual LM Dual LM Dual

2 0.2465 0.2373 1.6701 1.66959 0.0444 0.0328 1.666 1.666
3 0.3218 0.31095 1.4098 1.4120 0.1421 0.1340 1.406 1.409
4 0.3268 0.3221 0.9862 0.9861 0.19439 0.18974 0.984 0.984
5 0.3086 0.3058 0.6330 0.6329 0.2145 0.2128 0.6327 0.6327
6 0.3408 0.3412 0.49998 0.499897 0.2708 0.2717 0.4999 0.4998
7 0.5026 0.5051 0.63397 0.63397 0.4378 0.4418 0.6339 0.6339
8 0.7047 0.7049 0.8348 0.8340 0.6404 0.6413 0.8349 0.8334
9 0.8985 0.9032 1.0322 1.0343 0.83501 0.8401 1.0315 1.0343
10 1.1022 1.1037 1.2302 1.2365 1.03926 1.04091 1.23 1.23

Table 5: Comparison between optimal Lagrange multipliers from Primal SDDP and Dual SDDP
with penalties.

With optimal dual solutions {π̄t} and the realizations of {Dt} and {εt} at hand, we are
able to compute the sensitivity of the optimal value with respect to φ and µ, using (22) and
(23), with expectations estimated for 10 000 Monte Carlo simulations. We benchmark our
method against the finite-difference method. Specifically, for value function ϑ, the finite-

difference method approximates the derivative with respect to u0 by v′(u0) ≈ v(u0+δ)−v(u0−δ)
2δ

for some small δ.
The sensitivity of the optimal value of the inventory problem with respect to (φ, µ)

is displayed in Table 6. In this table, S-φ and S-µ denote the derivatives with respect
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to φ and µ computed by our method, and fd-φ, fd-µ denote the derivatives computed by
the finite-difference method. In order to measure the difference between the two methods,

we also compute S-gap-φ and S-gap-µ, where S-gap-φ := |fd-φ−S-φ|
|fd-φ| × 100% and S-gap-

µ := |fd-µ−S-µ|
|fd-µ| × 100%.

Instance fd-φ S-φ S-gap-φ(%) fd-µ S-µ S-gap-µ(%)
1 403.604 401.094 0.622 164.578 164.158 0.255
2 10 716.111 10 671.262 0.419 185.346 184.847 0.270
3 269.514 269.443 0.026 134.646 134.463 0.136
4 7 780.570 7 770.274 0.132 158.017 158.001 0.0101

Table 6: Sensitivity of the optimal value with respect to φ and µ by the two methods.

We observe that the derivatives obtained by both methods are close to each other, es-
pecially when φ and µ are small. This is because small φ and µ gives rise to less variability
in the demand. Note also that the finite-difference method is more time consuming since it
requires computing the optimal value twice. Instead, our method only needs to solve the
model once. Moreover, computing the Lagrange multipliers does not significantly consume
CPU time, as they are generated as a by-product of Primal SDDP. Alternatively, as dis-
cussed above, one can compute the optimal multipliers using Dual SDDP with penalties.
Another drawback of the finite-difference method lies in its numerical instability. Indeed,
the method is more accurate when δ is very small. However, the division by a very small
number generates inaccuracies while our approach is more stable.

5.3 Dual SDDP for inventory problem with interstage dependent
cost coefficients

We consider a variant of the inventory model (20) with interstage dependent cost coefficients.
Similar to (32), the cost ct is modeled by a Markovian random process such as

ct = εt · (θct−1 + µ), t = 1, · · · , T, (36)

where εt follows the log-normal distribution with mean 1.0 and variance 2.0 for all t and
θ ∈ (0, 1), µ > 0. In this model, we assume all other parameters, at, gt, ht and the demand dt
are deterministic. As mentioned in section 4.3, the dual formulation of the inventory problem
brings the random cost coefficients into the right-hand side of the model. By treating the
random costs as state variables, the value functions become concave and can be directly
solved by Dual SDDP with penalizations. This is in contrast to the primal problem where
such approach destroys convexity of the respective value functions.

To illustrate the convergence of Dual SDDP applied to this problem with interstage
dependent random process, we ran the algorithm on the T = 12-stage inventory problem
with self-generated data under parameter (θ, µ) = (0.001, 0.1). Moreover, we also present
numerical results obtained solving the primal model with a Markovian approximation variant
of SDDP, as described in [10].

We discretize the random process in both the primal and dual models with Nt = 100
for t = 2, · · · , T . For the dual model, {εjt}t,j are generated in a stage-wise independent
manner from the lognormal distribution. To apply Markovian SDDP on the primal, we
deploy 100, 000 sample paths to train the transition matrix with 100 Markov states.

Figure 5 shows the evolution of the deterministic primal (lower) bound and the dual
(upper) bound while Table 7 details the values of the bounds and the relative gaps through-
out different iterations. It can be noticed that after some iterations, the Markovian primal
problem and the dual problem converge with relatively small gap, which confirms the via-
bility of the dual approach. In addition, our dual approach provides a valid upper bound
for problems with interstage dependent cost processes, while for Markovian SDDP, it is still
unclear how to compute a valid upper bound for such problems.
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Figure 5: Evolution of primal and dual bounds for interstage dependent cost process

Iter. Primal LB. Dual UB. Gap(%)

10 53.4104 73.6759 27.51
100 56.8763 57.5192 1.11
180 56.8763 57.4734 1.04

Table 7: Convergence results of MC-primal and TS-dual

5.4 Dual SDDP for an hydro-thermal generation problem

We repeat the experiments of Section 5.1 for the Brazilian interconnected power system
problem discussed in [10] for T = 12 stages and Nt = 50 inflow realizations for every stage.
These realizations are obtained calibrating log-normal distributions for each month of the
year using historical data of inflows and sampling from these distributions. The data used
for these simulations (including the inflow scenarios) is available on Github6. In particular,
the size of the state vector is 4 for every stage for this application.

We solve this problem using Primal SDDP and Dual SDDP with penalizations. For
this variant of Dual SDDP, a general procedure to define sequences of penalizations (vt,k)
ensuring convergence of the corresponding Dual SDDP method is to take vt,k = γ0α

k−1e,
k ≥ 1, t = 2, . . . , T , with α > 1, γ0 > 0. For numerical reasons, we also take a large upper
bound U for these sequences and use

vt,k = min(U, γ0α
k−1)e, k ≥ 1, t = 2, . . . , T. (37)

We consider three variants of Dual SDDP: for the first variant, denoted by Dual SDDP 1,
vt,k are as in (37) with γ0 = 104, α = 1.3, U = 1010. To illustrate the fact that for
constant sequences vt,k = γ0, Dual SDDP converges (resp. does not converge) for sufficiently
large constants γ0 (resp. sufficiently small constants γ0) we also define two other variants
corresponding to U = +∞, γ0 = 109, α = 1, and U = +∞, γ0 = 106, α = 1, in (37),
respectively denoted by Dual SDDP 2 and Dual SDDP 3.

We run Dual SDDP for 1000 iterations and Primal SDDP for 3000 iterations. The evo-
lution of the upper and lower bounds computed by the methods for the first 1000 iterations
is given in Figure 6.7

More precisely, the values of these bounds for iterations 2, 5, 10, 50, 100, 150, 200, 250,
300, 350, 400, 1000, and 3000 are reported in Table 8. We observe that parameter γ0 for Dual

6https://github.com/vguigues/Primal_SDDP_Library_Matlab
7The upper bounds for Primal SDDP are computed as explained in Section 5.1.
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Figure 6: Top left: upper and lower bounds computed by Primal SDDP and upper bounds
computed by Dual SDDP 1, Dual SDDP 2, and Dual SDDP 3, for the first 20 iterations for an
instance of the hydro-thermal problem with T = 12, Nt = 50. Top right: same outputs for
iterations 21,. . . , 150. Bottom: same outputs for iterations 151,. . . , 1000.
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Iteration
Primal

SDDP

Lb

Primal

SDDP

Ub
Dual SDDP 1 Dual SDDP 2 Dual SDDP 3

2 1.317 143.98 1000.2 1000.2 1000.2

5 5.5588 109.36 1000.2 1000.2 994.04

10 14.032 81.728 360.40 1000.2 495.08

50 23.670 41.346 54.999 1000.2 96.720

100 24.787 35.502 36.322 64.072 82.494

150 25.111 32.447 30.685 35.595 79.465

200 25.249 30.672 29.076 30.404 78.059

250 25.374 30.079 28.215 28.943 76.917

300 25.436 29.434 27.710 28.030 76.344

350 25.477 29.014 27.309 27.532 75.852

400 25.526 28.626 27.110 27.188 75.526

1000 25.703 27.175 26.304 26.335 74.292

3000 25.798 26.883 - -

Table 8: For an instance of the hydro-thermal problem with T = 12, Nt = 50, lower bound Lb
and upper bound Ub computed by Primal SDDP and upper bounds computed by variants of
Dual SDDP along iterations. All costs have been divided by 106 to improve readability.

Iteration Primal SDDP Dual SDDP 1 Dual SDDP 2

100 0.30 0.32 0.61

200 0.18 0.13 0.17

300 0.14 0.08 0.09

400 0.11 0.06 0.06

500 0.09 0.05 0.05

800 0.07 0.03 0.03

1000 0.05 0.02 0.02

Table 9: Relative error as a function of the number of iterations for Primal SDDP, Dual SDDP

1, and Dual SDDP 2.

SDDP 3 is too small to allow this method to converge to the optimal value of the problem
whereas the other two variants Dual SDDP 1 and Dual SDDP 2 of Dual SDDP converge.
Naturally, these methods start with large upper bounds but after a few tens of iterations
the upper bounds with Dual SDDP 1 and Dual SDDP 2 are better than the upper bound
computed by Primal SDDP. In particular, it is interesting to notice that the best (lowest)
upper bounds are obtained with the variant of Dual SDDP that uses adaptive penalizations,
i.e., penalizations that increase with the number of iterations before reaching value U in
(37).

We also report in Table 9 the relative error
UpperM (i)−LowerSDDP(i)

UpperM (i) for iterations i = 100,

200, 300, 400, 500, 800, and 1000 for all methods M where UpperM (i) and LowerSDDP(i)
are respectively the upper bound computed by method M at iteration i and the lower
bound computed by Primal SDDP at iteration i. For iterations 300 on, the relative error is
much smaller with variants of Dual SDDP, meaning that Primal SDDP overestimates the
optimality gap.

However, each iteration of Dual SDDP takes more time as can be seen in Figure 7 which
reports the cumulative CPU time for all methods. More precisely, running Dual and Primal
SDDP in parallel, we can compute the time needed to obtain a solution of relative accuracy
ε using the standard stopping criterion for Primal SDDP (see [35]) or using the lower bound
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Figure 7: Cumulative CPU time for Primal SDDP, Dual SDDP 1, Dual SDDP 2, and Dual
SDDP 3.

ε Primal SDDP Dual SDDP 1 Dual SDDP 2

0.3 515 1 042 4 133

0.2 1 167 1 895 7 446

0.15 1 659 2 910 9 882

0.1 3 168 5 114 16 387

0.075 5 359 8 003 22 457

0.05 11 124 15 738 35 113

0.04 45 391 23 449 51 381

Table 10: Time (in seconds) needed to obtain a solution of relative accuracy ε with Primal
SDDP and variants of Dual SDDP for an instance of the hydro-thermal problem.

from Primal SDDP and the upper bound from Dual SDDP, and computing the relative error
obtained with these bounds each time a new bound (either lower bound or upper bound)
is computed. The results are reported in Table 10. We see that due to the fact that Dual
SDDP iterations are more time consuming, for all relative accuracies but one, the use of the
stopping criterion based on Dual SDDP upper bounds requires more computational bulk.
From this experiment, performed on a larger problem (in terms of size of the state vector
and number of control variables for each stage) than the inventory problem of Section 5.1, it
seems that the use of Dual SDDP for a stopping criterion of Primal SDDP will decrease the
overall computational bulk only for small problems (having a limited number of controls,
state variables, and scenarios). Finally, as an evidence of the fact that RCR does not hold
for the dual of the inventory and the hydro-thermal problem, we observed that the maximal
and mean values of ‖ζkt ‖1 along iterations, where ζkt is an optimal value of ζt in (26) for
iteration k, are positive for some stages.

6 Conclusion

We proposed a Dual SDDP method for MSLPs which is simply obtained applying an SDDP-
type method to DP equations for the dual problem. The method is described not only for
problems with stochastic right-hand sides of the linear constraints but for problems with
uncertainty in all parameters. Observing that even for simple applications such as inventory
problems RCR can fail to hold for the dual problem even if it holds for the primal problem,
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we discussed extensions of Dual SDDP incorporating either penalization or feasibility cuts
when RCR does not hold for the dual problem. We proposed to apply Dual SDDP to MSLPs
with interstage dependent cost coefficients, which offers a new method to solve such problems
based on the approximation of the concave cost-to-go functions for the dual whereas variants
of primal SDDP are based on (more complicated) nonconvex cost-to-go functions. We also
discussed sensitivity analysis of MSLPs studying the sensitivity of the optimal value as a
function of problem parameters and proposed to use Dual SDDP to estimate derivatives
of the optimal value function. Finally, we presented the results of encouraging numerical
simulations on an inventory and an hydro-thermal problem. Although few iterations of Dual
SDDP were required in our experiments to obtain an upper bound close to the problem
optimal value, iterations of Dual SDDP are more time consuming than iterations of Primal
SDDP. Therefore it would be useful to derive variants of Dual SDDP which converge quicker
than vanilla Dual SDDP.

7 Appendix

In this Appendix, we discuss some statistical properties of the multiplicative autoregressive
process (21), and prove Lemma 4.1, Proposition 4.2, and Theorem 4.1.

Properties of the multiplicative autoregressive process. Consider the multi-
plicative autoregressive process (21). Note that under the specified conditions the demand
process is not stationary. Indeed, since the errors εt are i.i.d. and E[εt] = 1 we have that
E[Dt] = φE[Dt−1] + µ and

Var(Dt) = E
[
Var
(
εt(φDt−1 + µ)|Dt−1

)]
+ Var [E(εt(φDt−1 + µ)|Dt−1)]

= E
[
σ2(φDt−1 + µ)2

]
+ Var(φDt−1 + µ)

= σ2E
[
(φDt−1 + µ)2

]
+ φ2Var(Dt−1).

(38)

It follows that E[Dt] converges to µ/(1 − φ) as t → ∞. Suppose, for example, that
µ = 0. Then Dt = εtφDt−1 = D0φ

t
∏t
τ=1 ετ , t = 1, ..., T, E[Dt] = D0φ

t → 0, and
Var(Dt) = D2

0φ
2t[(1 + σ2)t − 1]. Therefore if φ2(1 + σ2) < 1, then Var(Dt) → 0; and if

φ2(1 + σ2) > 1, then Var(Dt)→∞ provided D0 > 0.

We need now more notation. We introduce the sequence of functions for t = 2, . . . , T ,
with the first constraint A>T πT,j ≤ cT omitted for t < T ,

V
k

t (πt−1) :=



max
πt,1,...,πt,Nt , ζt

Nt∑
j=1

pt,jb
>
t,jπt,j − v>t,kζt

s.t. A>t πt,j ≤ ct, j = 1, . . . , Nt,

A>t−1πt−1 +

Nt∑
j=1

pt,jB
>
t,jπt,j ≤ ct−1 + ζt,

ζt ≥ 0, πt ≤ πt,j ≤ πt, j = 1, . . . , Nt.

(39)

Due to Assumption (A1) we can represent the scenarios for ξ1, ξ2, . . . , ξT , by a scenario tree
of depth T + 1 where the root node n0 associated to a stage 0 (with decision x0 taken at
that node) has one child node n1 associated to the first stage. We denote by N the set of
nodes and for a node n of the tree, by F (n) the parent node, by (xn, πn) a primal-dual pair
at that node and by ξn the realization of process (ξt) at node n (this realization ξn contains
in particular the realizations cn of ct, bn of bt, An of At, and Bn of Bt).

Proof of Proposition 4.1. If the optimal value of primal problem (1) is finite then
the optimal value of the corresponding dual problem is finite which implies that there is a
bounded dual solution and ensures the existence of πt and πt. Now assume there is x̂ > 0
feasible for (1). Let 1 ≤ t ≤ T and let us fix a node m of stage t. Let Am such that
constraints Amxm + BmxF (m) = bm are rewritten in compact form Amx = bm in terms of
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vector x = (xn)n∈N of decision variables in the scenario tree. The dual function obtained
dualizing the coupling constraints of node m is given by

θ(πm) = min E[c>x] + π>m(Amxm +BmxF (m) − bm), x ∈ Sm,

for Sm = {x = (xn)n∈N : x ≥ 0} ∩ Am where

Am = {x = (xn)n∈N : Anxn +BnxF (n) = bn,∀n 6= m,n ∈ N}.

By Linear Programming Duality, the optimal value Q1(x0) of primal problem (1) is the
optimal value of the dual problem

max
πm∈Rmt

θ(πm), (40)

which can clearly be written as

Q1(x0) = max
πm
{θ(πm) : πm = Amx− bm, x ∈ Aff(Sm)}, (41)

where Aff(Sm) is the affine hull of Sm. We now bound the optimal solutions of dual problem
(41). Since (40) and (41) have the same optimal values, adding these bounds as constraints
on πm in (40) does not change its optimal value. Since x̂ > 0 there is r > 0 such that

B(x̂, r) ⊆ {x ≥ 0} (42)

where B(x̂, r) is the 2-norm ball of center x̂ and radius r. We argue that Aff(Sm) = Am.
Indeed, the inclusion Aff(Sm) ⊆ Am is clear. Now if x ∈ Am then if x = x̂ we have that
x ∈ Sm ⊆ Aff(Sm) and if x 6= x̂, recalling that x̂ ∈ Am satisfies (42) we have that

y := x̂+
r

2

x− x̂
‖x− x̂‖

∈ Am ∩ B(x̂, r) ⊆ Sm.

Therefore x belongs to the line that contains y and x̂ with y, x̂ belonging to Sm which implies
x ∈ Aff(Sm) and Aff(Sm) = Am.

It follows that
B(x̂, r) ∩Aff(Sm) = B(x̂, r) ∩ Am ⊆ Sm

and that there is ρ∗(m) > 0 such that

B(0, ρ∗(m)) ∩ (AmAm − bm) ⊆ Am(B(x̂, r) ∩ Am)− bm. (43)

Let π̄m be an optimal solution of problem (41) and let z = 0 if π̄m = 0 and z = − π̄m
‖π̄m‖2 ρ∗(m)

otherwise. Recall that π̄m ∈ AmAff(Sm) − bm = AmAm − bm (see the constraints in (41))
and since 0 ∈ AmAm − bm, we have that AmAm − bm is a vector space, which implies that
z ∈ B(0, ρ∗(m))∩ (AmAm−bm) and therefore by (43) we have z ∈ Am(B(x̂, r)∩Am)−bm ⊆
AmSm − bm and z can be written z = Amx̃− bm for x̃ ∈ B(x̂, r) ∩ Sm. Denoting by V any
finite lower bound on the optimal value Q1(x0), it follows that

V ≤ Q1(x0) = θ(π̄m) ≤ E[c>x̃] + π̄>m(Amx̃− bm)

≤ E[c>x̂] + r
√∑T

t=1 E[‖ct‖22] + π̄>mz

= E[c>x̂] + r
√∑T

t=1 E[‖ct‖22]− ρ∗(m)‖π̄m‖2

which gives for every node n of stage t that

‖π̄n‖2 ≤ max
m∈Nodes(t)

E[c>x̂]− V + r
√∑T

t=1 E[‖ct‖22]

ρ∗(m)

with corresponding box constraints πt, πt where Nodes(t) are the nodes of stage t. �
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Proof of Proposition 4.2. We show by induction on k that Vt ≤ V kt for t = 2, . . . , T .
For k = 0 these relations hold by definition. Assume that for some k ≥ 1 we have Vt ≤ V k−1

t

for t = 2, . . . , T . We show by backward induction on t that Vt ≤ V kt for t = 2, . . . , T .

Observe that for any πT−1, optimization problem (39) with optimal value V
k

T (πT−1) is
feasible. Indeed, since primal problem (1) is feasible and has a finite optimal value, the
corresponding dual problem is feasible which implies that there is πT,1, . . . , πT,NT satisfying
A>T πT,j ≤ cT , πT ≤ πT,j ≤ πT , j = 1, . . . , NT , and for every such points we can find ζT ≥ 0

satisfying the remaining constraints in (39). Therefore V
k

T (πT−1) is finite for every πT−1

and is the optimal value of the corresponding dual optimization problem, i.e., for any πT−1

we get

V
k

T (πT−1) =


min

α,δ,Ψ,Ψ
δ>(cT−1 −A>T−1πT−1) + c>T

∑NT
j=1 αj +

∑NT
j=1 Ψ

>
j πT −

∑NT
j=1 Ψ>j πT

s.t. ATαj + pT,jBT,jδ −Ψj + Ψj = pT,jbT,j , j = 1, . . . , NT ,

0 ≤ δ ≤ vT,k, αj ,Ψj ,Ψj ≥ 0, j = 1, . . . , NT .

Using this dual representation and the definition of θ
k

T , β
k

T , we get for every πT−1:

θ
k

T + 〈βkT , πT−1〉 ≥ V
k

T (πT−1). (44)

Recalling representation (39) for V
k

T (πT−1), observe that for every πT−1 ∈ dom(VT ) we

have V
k

T (πT−1) ≥ VT (πT−1) whereas for πT−1 /∈ dom(VT ) we have VT (πT−1) = −∞ while

V
k

T (πT−1) is finite, which shows that for every πT−1 we have V
k

T (πT−1) ≥ VT (πT−1), which,
combined with (44) and the induction hypothesis, gives

V kT (πT−1) ≥ VT (πT−1)

for everyπT−1.
Now assume that V kt+1(πt) ≥ Vt+1(πt) for all πt for some t ∈ {2, . . . , T − 1}. We want to

show that V kt (πt−1) ≥ Vt(πt−1) for all πt−1. First observe that for every πt−1, linear program

(39) with optimal value V
k

t (πt−1) is feasible and has a finite optimal value. Therefore we

can express V
k

t (πt−1) as the optimal value of the corresponding dual problem given by

min
δ,ν,Ψ,Ψ

δ>
[
ct−1 −A>t−1πt−1

]
+
∑k
i=0 θ

i

t+1

∑Nt
j=1 νi(j) +

∑Nt
j=1 Ψ

>
j πt −

∑Nt
j=1 Ψ>j πt

s.t. pt,jBt,jδ −
k∑
i=0

νi(j)β
i

t+1 −Ψj + Ψj = pt,jbt,j , j = 1, . . . , Nt,

k∑
i=0

νi(j) = pt,j ,Ψj ,Ψj ≥ 0, j = 1, . . . , Nt,

ν0, . . . , νk ≥ 0, 0 ≤ δ ≤ vt,k.

(45)

Using this representation of V
k

t and the definition of θ
k

t , β
k

t , we obtain for every πt−1:

θ
k

t + 〈βkt , πt−1〉 ≥ V
k

t (πt−1). (46)

Next, recalling representation (39) for V
k

t (πt−1) and the induction hypothesis, we get

V
k

t (πt−1) ≥ V̂ kt (πt−1) (47)

where

V̂ kt (πt−1) :=



max
πt,1,...,πt,Nt , ζt

Nt∑
j=1

pt,j
(
b>t,jπt,j + Vt+1(πt,j)

)
− v>t,kζt

s.t. A>t−1πt−1 +

Nt∑
j=1

pt,jB
>
t,jπt,j ≤ ct−1 + ζt,

ζt ≥ 0, πt ≤ πt,j ≤ πt, j = 1, ..., Nt.
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Similarly to the induction step t = T , for every πt−1, we have

V̂ kt (πt−1) ≥ Vt(πt−1). (48)

Combining (46), (47), and (48) with the induction hypothesis, we obtain V kt (πt−1) ≥
Vt(πt−1) for all πt−1 which achieves the proof of the induction step t.

In particular V k−1
2 ≥ V2 which implies that V k−1 is greater than or equal to the optimal

value of dual problem (3) which is also, by linear programming duality, the optimal value
of primal problem (1). �

The proof of Theorem 4.1 is based on the following lemma:

Lemma 7.1 Suppose that the multistage problem (1) has a finite optimal value. Then for
sufficiently large values of the components of vectors vt, in the dynamic equations (11), the
optimal value of the multistage problem defined by these dynamic equations coincides with
the optimal value of the original problem (1).

Proof. As it was already mentioned, since it is assumed that the number of scenarios is
finite, we can view problem (1) as a large linear program (deterministic equivalent) written
under the form

min
x
c>x s.t. Ax = b, x ≥ 0. (49)

Also since (1) has a finite optimal value, it has a nonempty set of optimal solutions and
there is a bounded optimal solution of (49). Let us fix such an optimal solution x̄. We have
that problem (49) can be written

min
x
c>x s.t. Ax = b, 0 ≤ x ≤ x̄. (50)

The dynamic programming equations (5) - (7) represent the standard dual of (1). We can
also think about that dual as a large linear programming problem of the form (this is the
dual of (49)):

max
π

b>π s.t. A>π ≤ c. (51)

Similarly the deterministic equivalent of penalized dynamic equations (11) can be written
as:

max
π,ζ

b>π − v>ζ s.t. A>π ≤ c+ ζ, ζ ≥ 0. (52)

Next, from optimality conditions of linear programs, (x, π) is an optimal primal-dual pair
for (49)-(51) if and only if

x>(A>π − c) = 0, Ax = b, x ≥ 0, A>π ≤ c. (53)

The corresponding optimality conditions for (52) are

x>(A>π − c− ζ)− ζ>γ = 0, A>π ≤ c+ ζ, ζ ≥ 0, Ax = b, x ≥ 0, γ ≥ 0, x = v − γ. (54)

Now let π̄ be an optimal dual solution, i.e., an optimal solution of (51). Then (53) is
satisfied with (x, π) = (x̄, π̄). It follows that if v ≥ x̄, then (x, π, ζ, γ) = (x̄, π̄, 0, v − x̄) with
ζ = 0 satisfies (54), and hence (π̄, ζ̄) = (π̄, 0) is an optimal solution of (52) showing that
the optimal value of (52) is b>π̄ = c>x̄, i.e., the optimal value of (49). We obtain that for
v ≥ x̄, the optimal values of problems (51) and (52) do coincide. Observe that the dual of
(52) is given by

min
x
c>x s.t. Ax = b, 0 ≤ x ≤ v,

and for v ≥ x̄, this linear program has the same optimal value as (50), which, as we have
seen, is equivalent to primal problem (1). �

Proof of Theorem 4.1. Dual SDDP with penalizations is SDDP applied to Dynamic
Programming equations corresponding to a linear program with finite optimal value, satisfy-
ing relatively complete recourse with discrete uncertainties of finite support. Since samples
ξ̃kt in Dual SDDP with penalizations are independent, we can follow the convergence proof
of SDDP for linear programs from [30] to obtain that V k converges to the optimal value
of the penalized linear programs, which, by Lemma 7.1 (observe that the Lemma can be
applied since limk→+∞ vtk = +∞), is the optimal value of (1). �
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