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We introduce two new optimization models for the dispatch of ambulances. The first model, called the

ambulance selection problem, is used when an emergency call arrives to decide whether an ambulance should

be dispatched for that call, and if so, which ambulance should be dispatched, or whether the request should

be put in a queue of waiting requests. The second model, called the ambulance reassignment problem, is

used when an ambulance finishes its current task to decide whether the ambulance should be dispatched

to a request waiting in queue, and if so, which request, or whether the ambulance should be dispatched

to an ambulance staging location, and if so, which ambulance staging location. These decisions affect not

only the emergency call and ambulance under consideration, but also the ability of the ambulance fleet to

service future calls. There is uncertainty regarding the locations, arrival times, and types of future calls. To

obtain decisions that are good not only for the current emergency call and ambulance under consideration,

but also for future calls, we propose a rolling horizon approach that combines the current decisions to be

made as first-stage decisions with second-stage models that represent the ability of the ambulance fleet to

service future calls. The second-stage optimization problems can be formulated as large-scale deterministic

integer linear programs. We propose a column generation algorithm to solve the continuous relaxation of

these second-stage problems. The optimal objective values of these second-stage continuous relaxations are

used to make approximately optimal first-stage decisions. We compare our resulting dispatch policy with the

popular closest-available-ambulance dispatch rule (for the ambulance selection problem) and a combination of

priority dispatch and the closest ambulance staging location rule (for the ambulance reassignment problem),

for the Rio de Janeiro emergency medical service, based on data of more than 2 years of emergency calls for

that emergency medical service. These tests show that our proposed policy results in smaller response times

than the popular decision rules.
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1. Introduction

This paper proposes new optimization models for aiding ambulance dispatch decisions. The paper

also presents a solution method for these problems, and tests the proposed approach with real

emergency medical service data.

1.1. Ambulance Fleet Operations

We consider requests for emergency medical service that arrive at a call center. A call center

telecommunicator receives the call and obtains data from the caller, including the nature of the

emergency and the location of the emergency. (Often multiple calls are received related to the

same emergency. It is an important question how to determine whether or not a particular call is

related to an emergency that has already been reported. We do not address that question in this

paper.) The telecommunicator records the data and decides whether to request that an ambulance

be dispatched to the emergency. If so, a decision is made which ambulance should be dispatched

to the emergency, or whether the request should be placed in a queue of requests waiting for an

ambulance to be dispatched. Sometimes multiple ambulances are dispatched to an emergency. Here

we consider the more typical situation in which a single ambulance is dispatched to an emergency.

Usually, if an ambulance is dispatched to an emergency, it is an available ambulance, that is, an

ambulance that is not on the way to an emergency, or busy at an emergency, or transporting

patients from an emergency to a hospital. That is, an available ambulance is an ambulance that is

either waiting at an ambulance staging location for an assignment, or on its way to an ambulance

staging location after attending to an emergency. Some emergency medical services also consider

dispatching an ambulance that is on the way to another emergency, that is, an ambulance that has

already been dispatched to an (apparently less urgent) emergency is preempted and dispatched to

the new (apparently more urgent) emergency. In some systems the telecommunicator makes the

decision, and in other systems a separate ambulance dispatcher makes the decision.

If an ambulance is dispatched to the emergency, then it takes the ambulance some time to arrive

at the location of the emergency. The amount of time that elapses from the moment the first call

related to an emergency is received until the first ambulance personnel arrive at the patient(s)

is called the response time. (In practice, distinction is made between different response times, for

example, the elapsed time can start when the first call related to an emergency is received or when

the telecommunicator requests that an ambulance be dispatched or when the ambulance personnel
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receive the dispatch instructions, and the elapsed time can end when the first ambulance arrives

at the location of the emergency or when the first ambulance personnel arrive at the patient(s). In

this paper we consider one of these times as the response time.) It has been found that mortality

odds increase as the response time increases (Blackwell and Kaufman 1991). More specifically, the

effectiveness of a treatment often depends on the response time. For example, it has been found

that if an ambulance arrives 10 minutes after the onset of myocardial infarction (heart attack), then

defibrillation reduces prehospital mortality from 6% to 2%, but if an ambulance arrives 60 minutes

after the onset of infarction, then defibrillation reduces prehospital mortality from 13% to 12%

(Cretin and Willemain 1979). In addition, response times of emergency medical services (EMSs)

are relatively easy to measure, and most EMSs record and report (for example, to the National

Emergency Medical Services Information System NEMSIS) response time data. Therefore many

EMSs as well as academic papers put great emphasis on the response time performance metric.

As summary statistic of response time data, EMSs often measure specific quantiles of the response

time empirical distribution. For example, the 0.8 and 0.9 empirical quantiles are measured (often

pooling all emergency data, that is, without distinction between different types of emergencies), and

for performance to be acceptable, the considered quantiles have to be less than specified threshold

values (Henderson and Mason 2004, Restrepo et al. 2009, Mason 2013). It has been pointed out that

response time is not the only factor under control of emergency medical services that affects the

survival probabilities of patients, and also that the impact of emergency medical care and response

time depends on the type of emergency. For example, it has been found that advanced pre-hospital

life-support has greater impact on mortality and morbidity of patients who had respiratory distress

than patients who had cardiac arrest (Stiell et al. 2008). A potential concern with using the type of

emergency in dispatch decisions is that emergencies are often misclassified by telecommunicators

due to limited or incorrect data. Based on an analysis of medical emergency data in the UK under

two systems for classifying emergencies into priority classes, Nicholl et al. (1999) found that the

benefits of priority dispatch outweighed the risk of misclassification. Therefore, it makes sense

to take the characteristics of the emergency into account when deciding whether to immediately

dispatch an ambulance to the emergency, and if so, which ambulance to dispatch, as opposed to

considering only specific quantiles of the response time distribution irrespective of the nature of

the emergencies.

Also, the capabilities of the ambulance and personnel can affect the survival probability of

the patient, depending on the type of emergency. Although many academic papers consider all

ambulances to be the same, typically ambulances are not the same. For example, some EMSs

make a distinction between basic life support (BLS) ambulances and advanced life support (ALS)

ambulances (Schilling et al. 1979), some EMSs make a distinction between first responders staffed
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by emergency medical technicians and second responders staffed by paramedics, and some EMSs

have stroke units in addition to BLS and ALS ambulances. At a sufficient level of detail, every

ambulance is unique, because the crew members of different ambulances have different qualifications

and experience. Persse et al. (2003) compared a targeted EMS system that dispatches BLS or

ALS ambulances according to the nature of the emergency and an EMS system that provides

uniform service with all ALS ambulances. The study focused on witnessed ventricular fibrillation

cardiac arrest emergencies, and compared system performance in terms of four outcomes: return of

spontaneous circulation, survival to hospital admission, survival to hospital discharge, and survival

to 1 year. All performance measures were better for the targeted system that dispatched BLS

or ALS ambulances according to the nature of the emergency. For the reasons discussed above,

our model distinguishes between different types of emergencies, and each individual ambulance is

modeled.

After arriving at the location of the emergency, the ambulance crew treat the patients as the

crew deem best, and decide whether to transport patients to a hospital. In some fraction of cases,

it is decided not to transport any patients to a hospital, and thus the ambulance becomes available

after treatment at the emergency site has been completed. In other cases, the ambulance transports

patients to a chosen hospital, and becomes available thereafter. Sometimes ambulances are used

for scheduled transportation of patients, for example, to transfer patients from one hospital to

another. We model such transportation tasks as a specific type of “emergency”. After patients

have been transported in an ambulance, the ambulance has to be cleaned. The cleaning is regarded

as part of the ambulance’s work related to an emergency. After an ambulance has completed its

work related to an emergency, a decision has to be made where to dispatch the newly available

ambulance to. If any requests are waiting in queue, the ambulance can be dispatched to a chosen

waiting emergency. The ambulance can also be used to preempt another ambulance that is on

its way to the location of an emergency, for example, if the newly available ambulance is closer

to the emergency than the previously dispatched ambulance. Otherwise the ambulance can be

sent toward an ambulance staging location, and it is regarded as available during such a journey.

There are various types of ambulance staging locations. Most EMSs have one or more facilities

that make provision for ambulance maintenance, office space, and training. Such facilities can be

used for ambulance staging, but typically a larger number of smaller facilities are also used for

ambulance staging. These smaller facilities may make provision for ambulance personnel to relax

during less busy times. During busy times, ambulances may use public facilities such as parking

lots for ambulance staging. For the purpose of this paper, all ambulance staging locations will be

called stations.

This paper proposes an optimization-based method to make two types of decisions mentioned

above:
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1. When a request arrives, the decision whether an ambulance should be dispatched to the

emergency, and if so, which ambulance to dispatch to the emergency, or whether to add the request

to a queue of waiting requests. We will call this decision the ambulance selection decision.

2. When an ambulance becomes available (after completing its service at the location of an

emergency or at a hospital), the decision whether to dispatch the ambulance to an emergency

waiting in queue, and if so, to which emergency to dispatch the ambulance, or whether to send

the ambulance to a station, and if so, to which station to send the ambulance. We will call this

decision the ambulance reassignment decision.

We do not include the two types of preemption alternatives mentioned above, that is, (1) when a

request arrives, the alternative to preempt an ambulance already on its way to an emergency and

to dispatch it to the newly arrived emergency, and (2) when an ambulance becomes available, the

alternative to preempt an ambulance already on its way to an emergency and to dispatch the newly

available ambulance to the emergency (called “diversions” by Mason (2013)). Lim et al. (2011)

simulated and compared four dispatch policies, obtained by switching each of the two alternatives

mentioned above (the first alternative was called “Reroute Enabled Dispatch” and the second

alternative was called “Free Ambulance Exploitation Dispatch”) on and off. The results suggested

that these alternatives add very little benefit. In addition, preempting ambulances have practical

disadvantages, and thus it is questionable whether use of these alternatives is a wise decision.

1.2. Related Literature

There is a large literature on the location and relocation of emergency facilities, including stations

and ambulances. Here we give a brief overview of this work with emphasis on the aspects that

are relevant for ambulance operations. For surveys, see Chaiken and Larson (1972), ReVelle et al.

(1977), Brotcorne et al. (2003), Green and Kolesar (2004), Li et al. (2011), Aringhieri et al. (2017). A

number of static problems have been proposed to choose locations for stations or ambulances. Many

of these problems use the notion that a demand point is covered if a station or ambulance is located

within a specified distance or travel time of the demand point. The location set covering problem

(LSCP) was proposed by Toregas et al. (1971) to determine the minimum number of emergency

service facilities (stations) that covers a given set of demand points. A related problem is the

maximal covering location problem (MCLP), proposed by Church and ReVelle (1974), to maximize

the weighted set of demand points that is covered by a given number of facilities. Many variations

of these two models have been proposed to capture aspects that are relevant for the location and

relocation of ambulances. Many of these variations consider the policy of assigning ambulances

to stations (called the ambulance’s “home base” or “depot”), and when an ambulance becomes

available and is sent to a station, to always send it to its home base. (In contrast with this policy, and
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similar to Schmid (2012), we allow an ambulance to be sent to any station to improve coverage.) For

example, Berlin and Liebman (1974) used a LSCP to locate stations, and simulation to determine

the number of homogeneous ambulances to allocate to each station. Schilling et al. (1979) proposed

two models to choose locations for multiple equipment types. Daskin and Stern (1981) proposed an

extension of LSCP that rewards the objective with the number of additional ambulances that can

cover a demand point, to make provision for the possibility that some ambulances may be busy when

an emergency call is received. Similarly, Hogan and Revelle (1986) proposed extensions of MCLP

that also reward demand that is covered by more than one facility/ambulance. Gendreau et al.

(1997) proposed an extension of MCLP called the double standard model (DSM) that maximizes

the demand covered by at least 2 ambulances, subject to 2 constraints on the coverage of all

demand.

One shortcoming of the deterministic location problems mentioned above is that they do not

explicitly model uncertainty regarding important problem parameters, such as when and where

calls arrive, and where the available ambulances are when a call arrives. One of the first related

quantities to be modeled as a random variable was whether an ambulance is busy or available

when a call arrives. A very influential paper in this regard was Daskin (1983), which proposed the

maximum expected covering location problem (MEXCLP) that uses a binomial distribution for

the number of busy ambulances (with the busy/available random variables of different ambulances

being independent, with the same busy probability for all ambulances) to explicitly model the

probability (or fraction of time) that a demand point is covered by different numbers of ambulances.

ReVelle and Hogan (1989) proposed two versions of the maximum availability location problem

(MALP), version I with the same busy probability for all ambulances, and version II that allows

different busy probabilities at different stations. The objective of MEXCLP is to maximize the

expected demand that is covered by a given number of ambulances, whereas the objective of

MALP is to maximize the demand-weighted set of points that is covered with probability at least

equal to a specified quantity α ∈ (0,1) by a given number of ambulances. Sorensen and Church

(2010) proposed a problem with the same objective as MEXCLP, but that allows different busy

probabilities at different stations, similar to MALP II, and their simulation results demonstrated

that the resulting model consistently produces better solutions than MEXCLP and MALP II.

Various further extensions have been proposed. Repede and Bernardo (1994) proposed an extension

of MEXCLP that models time-varying demand for ambulances. Ingolfsson et al. (2008) proposed a

heuristic for the MEXCLP with random delay times (prior to ambulance travel) and random travel

times, and with different busy probabilities for different ambulances. Erkut et al. (2009) compared

the solutions of the MCLP, the MEXCLP, the MCLP with random response times (MCLP+PR),

the MEXCLP with random response times (MEXCLP+PR), and the MEXCLP+PR with different
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busy probabilities for different ambulances, in terms of the fraction of calls with response time less

than a threshold, using data from Edmonton, Alberta, Canada.

A few papers proposed ambulance location models that did not use the notion of coverage. For

example, Volz (1971) proposed a method to locate a given number of ambulances to minimize

expected response time. Swoveland et al. (1973a) proposed a branch-and-bound approach to locate

stations that uses simulation to evaluate the expected response time objective. Swoveland et al.

(1973b) used simulation and a heuristic, also to minimize expected response time. Fitzsimmons

(1973) developed an approximation based on an M/G/∞ queue for the probability that an ambu-

lance is busy, used it to search for ambulance locations that minimize expected response time, and

applied it to choose ambulance locations for the city center of Los Angeles.

Larson (1974) proposed a continuous-time Markov process called the hypercube queueing model

that can be used for performance modeling of emergency operations. In the model there are N

distinct servers and multiple demand locations. Larson (1974) proposed an algorithm to compute

the transition rates for any given fixed preference policy, that is, a policy that specifies for every

demand point a preference list of all the servers from most preferred to least preferred (with ties

allowed) independent of the state of the process. Then, when a call arrives from a demand point,

the most preferred available server in the preference list for that demand point (one of the most

preferred available servers in case of ties) is dispatched to serve the call. The algorithm exploits the

similarity of the most preferred available servers for adjacent states of the Markov process, that is,

states that differ in the availability of only one server, to reduce the effort to compute the transition

rates. After the transition rates have been computed, a system of 2N linear equations can be solved

to compute the stationary probabilities, and then various long-run average performance metrics can

be computed. Larson (1975) proposed an approximation procedure to compute busy probabilities

for the servers of the hypercube queueing model. Hill et al. (1984) applied the hypercube queueing

model for ambulance location and design of ambulance response districts in Boston. Jarvis (1985)

proposed a probability model that uses an approximation procedure similar to that of Larson

(1975), but unlike the hypercube queueing model, allows general service time distributions that

depend on both the station as well as the emergency location. Goldberg et al. (1990b), Goldberg

and Paz (1991) also proposed a probability model that uses an approximation procedure similar

to that of Larson (1975), but unlike the hypercube queueing model, includes travel time from

station to the emergency location as well as on-site service time that is allowed to depend on the

emergency location (and, in the case of Goldberg, Dietrich, Chen, Mitwasi, Valenzuela, and Criss

(1990b), is also allowed to depend on the emergency type). Then the ambulance location problem

was formulated as a mixed integer nonlinear program. Goldberg and Szidarovszky (1991) proposed

and compared methods to solve the system of N nonlinear equations. The hypercube queueing
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model of Larson (1974) can accommodate ties in the given fixed preference policy by enumerating

all permutations of the tied servers. However, this is inefficient, and therefore Burwell et al. (1993)

proposed a more efficient model that explicitly formulates the balance equations allowing for ties.

Restrepo et al. (2009) proposed two models that use the Erlang loss formula to approximate the

fraction of calls with response time more than a threshold and to allocate ambulances to stations.

Erkut et al. (2008) proposed to use patient survival probability as objective, and they compared,

in terms of the expected number of survivors, the solutions of the problems considered in Erkut

et al. (2009) with the solutions of modifications of these problems in which the objective is to

maximize patient survival probability. Knight et al. (2012) proposed to use different functions of

patient survival probability as a function of response time for different patient types (unlike Erkut

et al. (2008) that used the same patient survival probability function for all patients), and they

allocated ambulances to stations to maximize the expected total number of survivors. Schmid and

Doerner (2010) extended the DSM to a multistage model with time-dependent travel times and

time-dependent ambulance location decisions. Cho et al. (2014) solved the problem of location of

both trauma centers and ambulances (in their case, helicopters).

Compared with the work on static location problems for stations and/or ambulances, relatively

little work has been done to optimize ambulance operations. In ambulance operations, two types

of dispatch decisions mentioned in Section 1.1 are important: (1) the ambulance selection decision,

and (2) the ambulance reassignment decision. The solutions of the static location problems men-

tioned above are sometimes used for ambulance reassignment decisions by assigning a home base to

each ambulance, and then when an ambulance becomes available and is not dispatched to a request

waiting in queue, the ambulance is sent to its home base (Goldberg et al. 1990b, Henderson and

Mason 2004, Restrepo et al. 2009, Bandara et al. 2012, Knight et al. 2012, Mason 2013, Mayorga

et al. 2013, Bandara et al. 2014). An extension of this approach for ambulance reassignment is

to choose which station to send an ambulance to when an ambulance becomes available and is

not dispatched to a request waiting in queue. This way ambulances can be dynamically positioned

when the ambulances become available to better cover demand points. This approach is followed

in Schmid (2012) and in this paper. A further extension is to also allow the decision to send an

ambulance at any time from one station to another station to improve the configuration of avail-

able ambulances. Various terms are used for such decisions, including ambulance redeployment,

repositioning, relocation, move-up, or system-status management. One approach to ambulance

redeployment is to solve, up-front, an ambulance location problem for each possible number of

available ambulances, and to store the solutions in a compliance table. Then, whenever the number

of available ambulances changes, the available ambulances are redeployed according to the solu-

tions stored in the compliance table (Alanis et al. 2013). This approach has some shortcomings —
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it ignores the cost of frequently redeploying the ambulances, which can be considerable (Bélanger

et al. 2016), and it does not look into the future, for example to take into account ambulances

that should become available soon. Many researchers have studied various ambulance redeploy-

ment problems, including Gendreau et al. (2001), Brotcorne et al. (2003), Gendreau et al. (2006),

Andersson and Värbrand (2007), Nair and Miller-Hooks (2009), Maxwell et al. (2010), Schmid

(2012), Maxwell et al. (2013, 2014), Degel et al. (2015), Jagtenberg et al. (2015), Bélanger et al.

(2016), Van Barneveld et al. (2016, 2017). As pointed out by Haghani et al. (2004), Andersson

and Värbrand (2007), Schmid (2012), Bandara et al. (2012), Mayorga et al. (2013), Bandara et al.

(2014), Bélanger et al. (2016), there are practical problems associated with redeploying ambulances

from one station to another. For example, Schmid (2012) mentioned that it is illegal in Austria to

redeploy ambulances from one station to another. Also, Larson and Stevenson (1972) showed, with

both simple models and numerical examples, that the mean response time is not very sensitive to

the location of ambulances. More specifically, it was shown that the mean travel time obtained by

locating emergency facilities randomly is close to the mean travel time obtained by locating emer-

gency facilities optimally. For the reasons mentioned above, when an ambulance becomes available

we dynamically choose to which station to send the ambulance, but we do not send an ambulance

that is already at one station to another station.

For the ambulance selection decision, the closest available ambulance rule is simple and popular

(Berlin and Liebman 1974, Goldberg et al. 1990a, Henderson and Mason 1999, 2004, Maxwell et al.

2009, 2010, 2013, Alanis et al. 2013). Some emergency services partition the service region into

response areas or districts, and apply some fixed preference policy to make ambulance selection

decisions. For example, for each district, a preference list of districts is chosen in advance. Typically,

for each district, that district appears first in its preference list. Then, when an emergency call

located in a district arrives, the first district in the emergency district’s priority list with an available

ambulance is determined, and the ambulance in that district closest to the emergency location is

dispatched. Carter et al. (1972) conducted a detailed study for a setting with 2 ambulances, and

characterized the optimal response area for each ambulance. Swoveland et al. (1973a) compared

two dispatch rules, the closest available ambulance rule, and a service district rule that works as

follows: Each ambulance is assigned to a service district, with one ambulance assigned to each

district. When an emergency call arrives in a district, if the ambulance assigned to that district is

available, then it is dispatched to the call, even if it is temporarily outside its district; otherwise,

if the ambulance assigned to that district is not available, then the closest available ambulance is

dispatched to the call. Knight et al. (2012) proposed a dispatch rule based on a static preference

matrix ρ. The service region is partitioned into “demand nodes”, and each available ambulance is

at a station. Then ρi,j denotes the jth most preferred station to use for an emergency at demand
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node i. An ambulance is dispatched from station ρi,j to an emergency at demand node i if and

only if there is no available ambulance at stations ρi,1, . . . , ρi,j−1 and there is at least one available

ambulance at station ρi,j.

Mayorga et al. (2013) proposed a heuristic to partition the service region into districts, with a

number of ambulances in each district. They used simulation to compare the performance of four

dispatch policies for a setting with two priority levels; two types of policies specifying ambulance

selection decisions if there is an ambulance available in the same district as the emergency, combined

with two types of policies specifying ambulance selection decisions if there is no ambulance available

in the same district. If there is an ambulance available in the same district as the emergency,

then the first type of policy evaluated dispatches the closest available ambulance within the same

district, and the second type of policy evaluated applies a heuristic ambulance selection rule to each

district. If there is no ambulance available in the same district as the emergency, then the first type

of policy evaluated assumes that an alternate emergency response, for example provided by the fire

department, is automatically dispatched within the same district, and the second type of policy

evaluated dispatches an ambulance from another district using a preference list of ambulances.

Under both policies, if an emergency call arrives and all ambulances are busy, then the emergency is

handled by an outside service, that is, there is no queue of waiting requests in the simulation. Also,

the simulation returns an ambulance to its home base when it becomes available. Therefore, the

simulation includes an ambulance selection decision and a very restrictive ambulance reassignment

decision.

Various dispatch policies that require real-time computation have been proposed. Andersson

and Värbrand (2007) proposed heuristics for ambulance dispatch and relocation for a system with

three priority levels, based on a measure of “preparedness” for each zone. For priority 1 calls, they

dispatch the closest available ambulance. They allow preemption of ambulances already dispatched

to lower priority calls. For priority 2 and 3 calls, they dispatch the ambulance with expected travel

time less than a specified threshold that will result in the least decrease in the minimum prepared-

ness measure over all zones. For the available ambulance relocation decision, they proposed an

integer nonlinear program that minimizes the relocation time subject to constraints that specify

the maximum number of ambulances that may be relocated and the minimum preparedness mea-

sure after relocation. They did not specify how they select towards which request waiting in queue

to dispatch a newly available ambulance. Lee (2011) considered the same preparedness measure

as Andersson and Värbrand (2007), and showed that it resulted in worse performance than the

closest-available-ambulance rule. Then two modifications of the preparedness-based dispatching

rule were proposed. The first modification dispatches the available ambulance that maximizes the

minimum preparedness measure over all zones divided by the travel time from the ambulance
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to the emergency location. The second modification replaces the minimum preparedness measure

over all zones in the calculations with other aggregates of the preparedness measures of different

zones. If an ambulance becomes available and there are requests waiting in queue, then the newly

available ambulance is dispatched to the request in queue closest to the ambulance. Lee (2012)

proposed a rule for the ambulance reassignment decision that takes into account both the dis-

tances or times between the newly available ambulance and requests waiting in queue, as well as

a centrality measure of each request waiting in queue. It was not specified how to select a station

to which to send the newly available ambulance if there are no requests waiting in queue, or how

the ambulance selection decision is made. Schmid (2012) proposed a dynamic programming for-

mulation for the ambulance selection decision and the ambulance reassignment decision, with the

restriction that if an ambulance becomes available and there are requests waiting in queue, then

the newly available ambulance is dispatched to the next request in first-come-first-served order. An

approximate dynamic programming method was used that restricted ambulance selection decisions

to the closest-available-ambulance rule, and that attempted to optimize the ambulance reassign-

ment decision. It was shown that after sufficient training these solutions outperform policies that

combine the closest-available-ambulance dispatching rule with one of the following three ambu-

lance reassignment rules if there are no requests waiting in queue: (1) send the newly available

ambulance to the closest station, (2) send the newly available ambulance to its home base, or

(3) send the newly available ambulance to a random station. Bandara et al. (2012) formulated

an ambulance dispatching problem with two priority levels and exponentially distributed service

times as a continuous-time Markov Decision Process (MDP), and showed (for a sufficiently small

number of ambulances to enable solving the MDP) that the closest-available-ambulance dispatch-

ing policy is suboptimal. It was assumed that if an emergency call arrives and all ambulances are

busy, then the emergency is handled by an outside service, that is, there is no queue of waiting

requests in the model. It was also assumed that an ambulance returns to its home base when it

becomes available. Therefore, the MDP includes an ambulance selection decision and a very restric-

tive ambulance reassignment decision. Similarly, Bandara et al. (2014) proposed an ambulance

dispatching heuristic that takes emergency priorities into account, and used simulation to compare

the performance of the heuristic and the closest-available-ambulance dispatching rule for a setting

with two priority levels. The same assumptions as in Bandara et al. (2012) are made, and therefore

the model also includes an ambulance selection decision and a very restrictive ambulance reassign-

ment decision. Li and Saydam (2016) used simulation to compare two dispatch policies, a policy

that dispatches the closest available ambulance to all calls, and a policy that dispatches the closest

available ambulance to priority 1 calls, and the ambulance within a specified response time radius

which has the least utilization to priority 2 and 3 calls. It was assumed that if an emergency call
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arrives and all ambulances are busy, then the call is lost. It was also assumed that an ambulance

returns to its home base when it becomes available. Therefore, the simulation also includes an

ambulance selection decision and a very restrictive ambulance reassignment decision. Jagtenberg

et al. (2017a) compared two dispatch policies with the closest-available-ambulance policy. In all

policies, ambulance reassignment decisions are made according to the first-come first-served rule:

if an ambulance becomes available and there are calls waiting in queue, then the ambulance is

dispatched to the waiting call that first entered the queue. If an ambulance becomes available and

there is no call waiting in queue, then the ambulance returns to its home base. One dispatch policy

is based on a Markov decision process with a simplified state, that represents the location of the

currently considered emergency, and the set of available ambulances, assuming that each available

ambulance is at its home base. The second dispatch policy, called DMEXCLP, works as follows:

for each available ambulance that can reach the emergency location within the threshold time, the

objective value of the MEXCLP with the available ambulances excluding that ambulance is com-

puted. Then the available ambulance that can reach the emergency location within the threshold

time with the largest objective value of the MEXCLP without that ambulance is dispatched. If no

available ambulance can reach the emergency location within the threshold time, then the available

ambulance, irrespective of travel time to the emergency location, with the largest objective value of

the MEXCLP without that ambulance is dispatched. Simulation results showed that the heuristic

has a much lower fraction of late arrivals than the closest-available-ambulance policy, but that the

heuristic also has a much greater mean response time than the closest-available-ambulance policy.

Jagtenberg et al. (2017b) assumed that all ambulances are dispatched from their home bases, that

there is always an ambulance available at its home base when an emergency call arrives, and that

an ambulance must always be dispatched immediately to an emergency. They also assumed that

after service each ambulance returns to its home base, and that the time that elapses from the

moment the ambulance arrives at the emergency location until the ambulance is back at its home

base is deterministic and is the same for all emergencies and all ambulances, that is, the elapsed

time does not depend on the emergency location or the ambulance home base location. Thus they

considered a very restrictive ambulance reassignment decision. They showed with an example that

for any online policy the ratio of fraction of late arrivals to the offline minimum fraction of late

arrivals can be arbitrarily large, and thus no online policy can have a finite competitive ratio. They

also used simulation to compare the expected performance ratios of the closest-available-ambulance

policy and of DMEXCLP, and showed that the expected performance ratio of DMEXCLP is better

than that of the closest-available-ambulance policy.
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Different
Paper Emergency Types Ambulance/Crew Dispatch Policies Reassignment Policies

Considered Capabilities?
Andersson and Värbrand (2007) Priority 1, 2, 3 7 Priority 1: dispatch closest

available ambulance;
Priorities 2, 3: dispatch available
ambulance sufficiently close that
will maximize minimum prepared-
ness metric of remaining available
ambulances

Minimize relocation travel
time to raise minimum
preparedness metric above
threshold

Lee (2011) Single type 7 Dispatch available ambulance suffi-
ciently close that will maximize min-
imum composite preparedness metric
of remaining available ambulances;
Calls are queued if no ambulance
available

No relocation;
Upon completion of task,
ambulance dispatched to
closest call in queue if any,
otherwise stay in place

Schmid (2012) Priorities were
mentioned, but
all requests were
assumed to be of
the same priority

7 Ambulances dispatched
according to approximate
dynamic programming solution;
Calls are queued if no ambulance
available

Ambulances sent to ambu-
lance stations according to
approximate dynamic pro-
gramming solution

Bandara et al. (2012) Priority 1, 2 7 Ambulances dispatched according to
continuous-time MDP solution (solved
for 2,3 zones and 2 ambulances);
No queueing of calls: Either an ambu-
lance is dispatched immediately or the
call is served by “outside” resources

Upon completion of task,
ambulance sent to its home
station

Mayorga et al. (2013) Priority 1, 2 7 Ambulances dispatched according
to one of four district-
based dispatching heuristics;
No queueing of calls: Either an ambu-
lance is dispatched immediately or the
call is served by “outside” resources

Upon completion of task,
ambulance sent to its home
station
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Bandara et al. (2014) Priority 1, 2 7 Ambulances dispatched according
to closest-available-ambulance
rule for Priority 1 calls, and a
contingency table for Priority 2 calls;
No queueing of calls: Either an ambu-
lance is dispatched immediately or the
call is served by “outside” resources

Upon completion of task,
ambulance sent to its home
station

Li and Saydam (2016) Priority 1, 2, 3 7 A tabu search algorithm
is used to choose a home
station for each ambulance;
Priority 1: dispatch closest
available ambulance;
Priorities 2, 3: dispatch ambulance
sufficiently close with least utilization
Calls are missed if no ambulance
available

Upon completion of task,
ambulance sent to its home
station

Jagtenberg et al. (2017a,b) Single type 7 Dispatch ambulance sufficiently
close that will maximize
expected coverage metric of
remaining available ambulances;
Calls are queued if no ambulance
available

Upon completion of task,
ambulance dispatched to
oldest call in queue if any,
otherwise ambulance sent
to its home station

Guigues et al. (2022) Arbitrary, as spec-
ified by the user,
such as MPDS or
APCO or NEM-
SIS chief complaint
types or emergency
codes

3 Ambulance dispatch decisions deter-
mined by two-stage stochastic pro-
gram

Ambulance reassignment
decisions determined
by two-stage stochastic
program

Table 1: Summary of papers that consider different ambulance dispatch decisions.
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1.3. Contributions

The contributions of this paper are as follows.

(A) Modeling the operation of an ambulance fleet under uncertainty. We propose a

model for optimizing ambulance dispatch decisions, including ambulance selection decisions and

ambulance reassignment decisions. In particular, the proposed model has the following features:

1. The model takes into account the type of each emergency. The type of emergency affects the

type of ambulance and crew needed, the marginal value of response time, and the set of appropriate

hospitals for the emergency. As pointed out in Section 1.2, most existing models consider only one

emergency type, that is, the effects of emergency type mentioned above are ignored. Some existing

models distinguish a small number (2 or 3) priority levels. However, as pointed out above, the

emergency type has more dimensions than just priority level.

2. The model considers each ambulance and crew as unique. As pointed out in Section 1.1, each

ambulance and crew has unique capabilities and skills. For example, some crews may have special

training or experience in the handling of stroke victims, and some crews may be skilled in coping in

dangerous situations such as rioting. As pointed out in Section 1.2, most existing models consider

ambulances as interchangeable, that is, the only attributes of ambulances and crews taken into

account are the availability and location of the ambulance. A small number of existing models

make a distinction between BLS and ALS ambulances.

3. The model allows the hospital for each emergency to be chosen, taking into account the

emergency type and the location of the emergency relative to hospitals. Most existing models ignore

choices among multiple hospitals; in fact, most existing models either have no hospital entity in

the model, or have a single “hospital” entity irrespective of the type and location of the emergency.

4. The model makes provision for a queue of waiting emergencies. This is both necessary if

all ambulances are busy, and desirable if the emergency is not urgent and few ambulances are

available. Many existing models ignore the possibility of a queue of waiting emergencies. Instead,

it is assumed that if all ambulances are busy then some unlimited outside service will take care of

the emergency.

5. The model makes provision for both ambulance selection decisions as well as nontrivial ambu-

lance reassignment decisions. When an ambulance becomes available, it can be assigned to an

emergency in queue, and it can also be sent to a chosen station. Since many existing models ignore

the possibility of a queue of waiting emergencies, such models cannot accommodate decisions to

assign available ambulances to emergencies in queue. Also, many existing models assume that when

an ambulance becomes available, it will go to its home base, even if sending it to a different station

would improve coverage greatly.
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6. The model allows ambulances on their way to a station to be dispatched to an emergency.

Because of the triangle inequality, that would result in a smaller response time than waiting until

the ambulance reaches the station before dispatching the ambulance to the emergency. Also, with

modern communication technology dispatchers are in constant contact with ambulances, and such

en-route dispatching is easy to execute. As pointed out in Section 1.2, most existing models allow

only ambulances at stations to be dispatched.

7. Dispatch decisions have consequences not only for the emergency and the ambulance under

consideration, but also for future emergencies and for other ambulances that have to take care of

future emergencies. It is challenging to take these future consequences of dispatch decisions into

account, because future consequences are a complicated function of current decisions, and because

the future consequences are uncertain. The model takes into account that future consequences

are uncertain. Most existing models either do not take uncertainty into account, or incorporate

uncertainty into a simulation model.

(B) Solution method for solving the optimization problems to dispatch ambulances

under uncertainty. In principle, the problem of optimizing ambulance operations can be formu-

lated as a Markov decision process or as a multistage stochastic integer program. However, these

problems would be intractable. Therefore, we propose to use the following rolling horizon approach.

Each time an ambulance selection decision or an ambulance reassignment decision has to be made,

a two-stage stochastic optimization problem is formulated and solved. The first-stage decisions are

either ambulance selection decisions or ambulance reassignment decisions, as appropriate for the

decision at hand. The second-stage decisions are sequences of ambulance selection decisions and

ambulance reassignment decisions over a considered time horizon. For each first-stage decision, the

setting for the decision is known. For example, if an ambulance selection decision has to be made

then the type and location of the newly arrived emergency is known, or if an ambulance reassign-

ment decision has to be made then the location of the newly available ambulance is known, and

in both cases the current state of the system is known. In contrast, the settings for second-stage

decisions are not known yet, and the uncertainty is represented with a set of second-stage scenarios.

The number of first-stage alternatives is relatively small. If an ambulance selection decision has

to be made, then the first-stage alternatives correspond to the available compatible ambulances

combined with the candidate hospitals, as well as the alternative to add the emergency to the

queue. If an ambulance reassignment decision has to be made, then the first-stage alternatives cor-

respond to the emergencies in queue as well as the stations. Therefore, each two-stage problem can

be solved by computing the expected second-stage cost for each feasible first-stage alternative, and

then choosing the first-stage alternative with the best combination of first-stage and second-stage

cost. Therefore, to solve the two-stage problems fast enough, we need to be able to quickly compute
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the expected second-stage cost for every feasible first stage decision. The second-stage cost is given

by the mean cost over a finite set of scenarios, and its computation requires solving a sequence of

ambulance selection problems and ambulance reassignment problems for each scenario. That is, the

second-stage cost can be computed by separately solving a deterministic sequence of ambulance

selection problems and ambulance reassignment problems for each scenario. To facilitate faster

selection of first-stage decisions, we consider a continuous relaxation of the second-stage problem

for each scenario. In addition, due to the huge number of second-stage decision variables for each

scenario, we solve the continuous relaxation of the second-stage problem with column generation,

and we devise an approach to quickly solve the column generation subproblems to find decision

variables with negative reduced cost.

(C) Numerical tests with real emergency medical service data. We used more than 2

years of emergency call data of the Rio de Janeiro emergency medical service to calibrate models

of emergency call arrivals. We used the resulting models to compare the performance of the pro-

posed ambulance dispatch policies with the closest-available-ambulance rule (for the ambulance

selection problem) and the closest-station rule (for the ambulance reassignment problem). The

results showed that the proposed dispatch policy yields smaller response times. The results also

showed the benefit of the proposed column generation algorithm to solve the two-stage stochastic

problems. In addition, it was observed that reasonable response times can be obtained even with

quite a small number of ambulances and stations.

The rest of this paper is organized as follows. In Section 2, we specify the optimization models. In

Section 3, we explain how these problems are solved. The numerical results for the Rio de Janeiro

EMS are presented in Section 4.

2. Optimization Models

First we describe the two types of ambulance dispatch problems:

1. The ambulance selection problem: When a request arrives, the problem to decide whether an

ambulance should be dispatched to the emergency, and if so, which ambulance to dispatch to the

emergency, or whether to add the request to a queue of waiting requests.

2. The ambulance reassignment problem: When an ambulance becomes available, the problem

to decide whether to dispatch the ambulance to an emergency waiting in queue, and if so, to which

emergency to dispatch the ambulance, or whether to send the ambulance to a station, and if so,

to which station to send the ambulance.

Ambulances can be dispatched from stations, from emergency locations (if the ambulance is not

needed to transport patients to a hospital), from hospitals, and from intermediate locations while

traveling towards a station. The models considered here do not allow ambulances to be dispatched
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while busy with service — while traveling towards an emergency location, or while providing on-site

emergency care, or while traveling with patient(s) towards a hospital. That is, we do not model

preemption or “forward” dispatching of ambulances. An ambulance that is not busy with service

must either be at a station, or traveling toward a station. If ambulances are allowed to wait at a

hospital for a dispatch, then the hospital is also a station in the model.

For each of these two types of ambulance dispatch problems, we propose and evaluate two

optimization models, one “itinerary-based” optimization model and one “arc-based” optimization

model. All the optimization models are intended to be solved in rolling horizon fashion, each time

that an ambulance dispatch decision has to be made. The itinerary-based optimization models

typically take less time to solve, and the arc-based optimization models typically result in slightly

better objective values.

All models “look ahead” until the end of a chosen time horizon (for example, a few hours or

until the end of the day) to approximate the impact of current decisions on the objective values

in the future. All problems minimize a combination of the cost of the immediate decision and the

expected future costs affected by the immediate decision over the planning horizon.

Next we present the features that are common to all the models. Additional features that are

specific to some models are added later. The input parameters of the models are summarized in

Table 2. Let [0, T ] denote the time horizon currently considered, with t= 0 denoting the current

time. Thus the dispatch decision on-hand has to be made at time 0. The feasible decisions at time 0

are the same for the itinerary-based ambulance selection problem and the arc-based ambulance

selection problem, and similarly the feasible decisions at time 0 are the same for the itinerary-based

ambulance reassignment problem and the arc-based ambulance reassignment problem. Additional

future dispatch decisions are also modeled, but the main purpose of the future decisions in the

models is to approximate the impact of current decisions on future objective values, and updated

optimization problems will be solved before future decisions are actually made. Space is discretized

for all the models. Let L denote the set of discrete locations, used for representing emergency call

locations as well as ambulance locations. Each emergency call is characterized by its arrival time,

its location, and its type. Let C denote the set of call types, let A denote the set of ambulance types,

let B denote the set of ambulance stations, and let H denote the set of hospitals. A call of type

c ∈ C can be served by a subset A(c)⊂A of ambulance types, and a call of type c ∈ C at location

` ∈ L can be sent to a subset H(c, `)⊂H of hospitals. Many call types do not involve transport

to a hospital. To simplify notation, it is assumed that the call type c ∈ C contains information

whether transport to a hospital is involved or not, and if call type c does not involve transport to

a hospital, then H(c, `) = `. Thus the set H of “hospitals” contains more than actual hospitals. For
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Length of the time horizon T
Set of locations L
Set of emergency call types C
Set of ambulance types A
Set of stations B
Set of hospitals H
Set of ambulance types serving call type c∈ C A(c)
Set of candidate hospitals for call type c∈ C at location `∈L H(c, `)
Set of emergency call types that can be served by ambulance type a∈A C(a)
Set of emergency calls E
Arrival time of call e∈ E t1(e)
Type of call e∈ E c(e)
Location of call e∈ E `(e)
Set of individual ambulance units U
Type of ambulance u a(u)
Set of feasible itineraries for ambulance u∈ U over [0, T ] I(u)
Set of all feasible itineraries over [0, T ] I
Location of the emergency call at t= 0 `0
Type of the emergency call at t= 0 c0

Type of the ambulance which becomes available at t= 0 a0

Hospital where the ambulance becomes available at t= 0 h0

Number of calls of type c∈ C at location `∈L in queue at t= 0 C0(c, `)
Number of ambulances of type a∈A available at station b∈B at t= 0 A0(a, b)
Number of ambulances of type a∈A available at hospital h∈H at t= 0 A0(a,h)
Location at time t+ 1 of an ambulance of type a
which is at `1 at time t on its way to `2

L(t, a, `1, `2)

Set of intermediate locations that can be reached at time t
by an ambulance of type a going from a hospital to station b

L(t, a, b)

Number of ambulances of type a at location `1 at t= 0 going to station b A0(a, `1, b)
Number of ambulances of type a at location `1 at t= 0 going to
an emergency of type c at location ` and then going to hospital h

A0(c, a, `1, `, h)

Number of ambulances of type a at location `1 at t= 0 traveling to
hospital h with emergency type c patient after on-site emergency care
has been provided

A0(c, a, `1, h)

Number of emergency calls of type c for period t and location ` λ(t, c, `)
Time for an ambulance of type a to go from location `1 at time t to location `,
provide on-site emergency care for an emergency of type c at location `,
travel from location ` to hospital h and deliver the patient to hospital h

τ(t, c, a, `1, `, h)

Time for an ambulance of type a to travel with a patient of type c
from location `1 at time t= 0, after on-site emergency care has been provided,
to hospital h and deliver the patient at hospital h

τ0(c, a, `1, h)

Maximum number of ambulances at station b Amax(b)
Table 2 Problem input parameters

each ambulance type a ∈A, let C(a) := {c ∈ C : a ∈A(c)} denote the set of call types that can be

served by ambulance type a.

The initial conditions at time t= 0 are specified as follows: If a call arrives at time 0, then the

location and the type of the call that has just arrived are denoted by `0 and c0 respectively. If
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an ambulance completes service (at a “hospital”) at time 0, then the ambulance type and the

hospital are denoted by a0 and h0 respectively. For each emergency type c ∈ C and emergency

location `∈L, let C0(c, `) denote the number of calls at time 0 waiting in queue for an ambulance

to be dispatched to serve the call. This includes any call that has just arrived at t= 0 at location

`0. For each ambulance type a∈A and ambulance station b∈B, let A0(a, b) denote the number of

ambulances of type a at b available for dispatch just before the dispatch of ambulances at time 0.

Similarly, for each ambulance type a ∈ A and hospital h ∈ H, let A0(a,h) denote the number of

ambulances of type a at h available for dispatch just before the dispatch of ambulances at time 0,

including any ambulance of type a0 at hospital h0 that just became available.

First we present deterministic formulations of the problems, as though the arrival times, loca-

tions, types of the emergency calls, travel times, and emergency service times over the planning

horizon are known. In Section 2.3 we describe the extension of this model to incorporate random

arrival times, locations, types of emergency calls, travel times, and emergency service times.

2.1. Deterministic Itinerary-based Model

2.1.1. Problem input parameters Let U denote the set of individual ambulance units, and

let a(u) ∈A denote the type of ambulance u. At time 0 the current state of each ambulance unit

u∈ U is known. Let E denote the set of individual emergency calls from time 0 onward, including

the calls waiting in queue at time 0, any call that has just arrived at time 0, and future calls that

will arrive after time 0. For each call e ∈ E , let t1(e) denote the arrival time of call e, let c(e) ∈ C

denote the type of call e, and let `(e)∈L denote the location of call e.

Next we describe an itinerary for an ambulance unit u ∈ U . Each itinerary starts at time 0. If

the ambulance was dispatched to a call before time 0 and it has not yet completed the task for the

call, then it can be determined when and where the ambulance will become available for its next

dispatch. Otherwise, the ambulance is available to be dispatched at time 0. Thereafter an itinerary

consists of a sequence of dispatches to either emergency calls e∈ E or to ambulance stations b∈B.

Given a sequence of dispatches up to and including a particular emergency call e∈ E in an itinerary

for a particular ambulance u ∈ U , it can be determined at what time t2(e) and at what hospital

h2(e) ambulance u will become available after completing its task for call e. Then ambulance u

must either be dispatched to a call in {e′ ∈ E : c(e) ∈ C(a(u)), t1(e′)< t2(e)} where C(a(u)) is the

set of call types that ambulance with type a(u) can serve, or the ambulance must be dispatched to

an ambulance station b∈B. That is, although all emergency calls E are inputs of the deterministic

formulation, an ambulance cannot be dispatched to an emergency before the emergency arrives.

The call or ambulance station to dispatch an ambulance to can be chosen with knowledge of future

calls, and thus the deterministic formulation still provides an optimistic bound of the objective
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value of the stochastic problem. If an ambulance u is dispatched to an ambulance station b at

time t2(e), then thereafter the ambulance can be dispatched to any call in {e′ ∈ E : c(e′)∈ C(a(u))}.

If t1(e′) is less than the arrival time of ambulance u to station b, then it means that the ambulance

is dispatched to call e′ while still on the way to b, and the arrival time of the ambulance at call e′

can be calculated accordingly. If t1(e′) is greater than the arrival time of ambulance u to station b,

then the arrival time of the ambulance at call e′ is equal to t1(e′) plus the travel time from b to

`(e′). For each ambulance u ∈ U , let I(u) denote the set of such itineraries for ambulance u over

the time horizon [0, T ], and let I :=∪u∈UI(u) denote the set of feasible itineraries. An ambulance

can serve approximately one emergency per hour, and thus if the time horizon is a few hours

long, the number |I(u)| of itineraries for an ambulance is not very large. For any ambulance u∈ U

and emergency e ∈ E , let Ie(u)⊂ I(u) denote the set of all itineraries of ambulance u that serve

emergency e. For each ambulance u∈ U , emergency e∈ E , and itinerary i∈ Ie(u), the response time

for emergency e can be determined, and the quality-of-care obtained by matching ambulance u

with emergency e can be determined. That enables determination of a cost f(i) for each itinerary

i∈ I. In addition, for each emergency e∈ E , there is a penalty g(e) if emergency e is not served by

any ambulance during the time horizon.

2.1.2. Decision variables For each itinerary i∈ I, let decision variable xi = 1 if itinerary i is

chosen, and xi = 0 otherwise. If the problem on-hand is an ambulance selection problem, then let

e0 ∈ E denote the emergency that has just arrived at time 0. If xi = 1 for some itinerary i∈ Ie0(u),

then ambulance u is dispatched to emergency e0 with response time as determined by itinerary i.

More specifically, if ambulance u is dispatched to emergency e0 at time 0 in itinerary i, then the

corresponding policy implements such a dispatch decision at time 0; otherwise the policy places

emergency e0 in queue, and the ambulance to be dispatched to the emergency will be determined

by solving an ambulance reassignment problem later. Otherwise, if xi = 0 for all itineraries i ∈

∪u∈UIe0(u), then the policy also places emergency e0 in queue, and the ambulance to be dispatched

to the emergency will be determined by solving an ambulance reassignment problem later. If the

problem on-hand is an ambulance reassignment problem, then let u0 ∈ U denote the ambulance

that has just become available at time 0. Consider the unique itinerary i∈ I(u0) such that xi = 1.

Then itinerary i must start with a dispatch of ambulance u0 at time 0, either to an emergency that

is in queue at time 0, or to an ambulance station. The policy implements that dispatch immediately.

2.1.3. Itinerary-based optimization problem The itinerary-based optimization problem

is as follows:
min

∑
i∈I f(i)xi +

∑
e∈E g(e)

(
1−

∑
u∈U

∑
i∈Ie(u) xi

)
s.t.

∑
i∈I(u) xi = 1 ∀ u∈ U∑
u∈U

∑
i∈Ie(u) xi ≤ 1 ∀ e∈ E

(1)
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2.2. Deterministic Arc-based Models

2.2.1. Problem input parameters Basic problem parameters. Both time and space are

discretized for the model. Let t= 0 denote the current time (which can be any time instant during

the current day) and let t = 1, . . . , T denote the time steps until the end T of the time horizon.

Let L denote the set of discrete locations, used for representing emergency call locations as well as

ambulance locations. Each emergency call is characterized by its arrival time, its location, and its

type. Let C denote the set of call types, let A denote the set of ambulance types, let B denote the

set of ambulance stations, and let H denote the set of hospitals. A call of type c∈ C can be served

by a subset A(c)⊂A of ambulance types, and a call of type c ∈ C at location ` ∈ L can be sent

to a subset H(c, `)⊂H of hospitals. For each ambulance type a∈A, let C(a) := {c∈ C : a∈A(c)}

denote the set of call types that can be served by ambulance type a.

Initial conditions. Other input includes the initial conditions for the problem. If a call arrives

at time 0, then the location and the type of the call that has just arrived are denoted by `0 and

c0 respectively. If an ambulance completes service at a hospital at time 0, then the ambulance

type and the hospital are denoted by a0 and h0 respectively. For each emergency type c ∈ C and

emergency location `∈L, let C0(c, `) denote the number of calls at time 0 waiting in queue for an

ambulance to be dispatched to serve the call. This includes the call that has just arrived at t= 0

at location `0.

For each ambulance type a ∈A and ambulance station b ∈ B, let A0(a, b) denote the number of

ambulances of type a at b available for dispatch just before the dispatch of ambulances at time 0.

Similarly, for each ambulance type a ∈ A and hospital h ∈ H, let A0(a,h) denote the number of

ambulances of type a at h available for dispatch just before the dispatch of ambulances at time 0,

including the ambulance of type a0 at hospital h0 that just became available.

Keeping track of ambulance locations. As mentioned above, ambulances can also be dis-

patched while traveling towards a station. To model this, and in general to keep track of ambulance

locations both while stationary and while moving, it is useful to determine where ambulances can

be while traveling to specific destinations. First, for each time t ∈ {0,1, . . . , T − 1}, ambulance

type a∈A, hospital h∈H, and destination station b∈B, let L(t, a,h, b)∈L denote the forecasted

location of the ambulance at time t+ 1 if the ambulance starts from h at t to travel towards b.

In addition, for each current ambulance location `1 ∈ L at time t, and destination station b ∈ B,

let L(t, a, `1, b)∈L denote the forecasted location of the ambulance at time t+ 1 if the ambulance

continues to travel towards b. Next, for each time t∈ {0,1, . . . , T}, let

L1(t, a, b) :=
⋃
h∈H

{L(t− 1, a, h, b)} \ {b}

22



denote the set of all intermediate locations that can be reached by an ambulance at time t if the

ambulance starts traveling at time t−1 from some hospital towards b. By induction, for each τ ≥ 2,

let

Lτ (t, a, b) :=
⋃

`1∈Lτ−1(t−1,a,b)

{L(t− 1, a, `1, b)} \ {b}

denote the set of all intermediate locations that can be reached by an ambulance at time t if

the ambulance starts traveling at time t− τ from some hospital towards b. Then, for each time

t∈ {0,1, . . . , T}, ambulance type a∈A, and destination station b∈B, let

L(t, a, b) :=
⋃
τ≥1

Lτ (t, a, b)

denote the set of all intermediate locations that can be reached by an ambulance at time t if the

ambulance travels from some hospital towards b.

For each ambulance type a ∈A, station b ∈ B, and initial ambulance location `1 ∈ L(0, a, b), let

A0(a, `1, b) denote the number of ambulances of type a at location `1 traveling towards b available

for dispatch just before the dispatch of ambulances at time 0. In addition, for each call type

c ∈ C, ambulance type a ∈ A(c), initial ambulance location `1 ∈ L, emergency location ` ∈ L, and

hospital h ∈H(c, `), let A0(c, a, `1, `, h) denote the number of ambulances of type a at location `1

at time 0 traveling to an emergency type c at location ` and from there to hospital h. Also, let

A0(c, a, `1, h) denote the number of ambulances of type a∈A(c) at location `1 ∈L at time 0 traveling

with emergency type c ∈ C patient(s) after on-site emergency care has already been provided, to

hospital h∈∪`∈LH(c, `).

Forecasts of emergency calls, service times, and travel times For each time t∈ {1, . . . , T},

call type c ∈ C, and emergency location ` ∈ L, let λ(t, c, `) denote the forecasted number of calls

of type c at location ` in time period t. For each dispatch time t ∈ {0,1, . . . , T}, call type c ∈

C, ambulance type a ∈ A(c), initial ambulance location `1 ∈ ∪b∈BL(t, a, b) ∪ B ∪ H, emergency

location `∈L, and hospital h∈H(c, `), let τ(t, c, a, `1, `, h) denote the forecasted time for ambulance

type a to travel from `1 at time t to `, provide on-site emergency care for call type c at `, travel

with patient(s) from ` to hospital h, and deliver the patient(s) at h. Also, for each call type

c ∈ C, ambulance type a ∈ A(c), initial ambulance location `1 ∈ L, and hospital h ∈ ∪`∈LH(c, `),

let τ0(c, a, `1, h) denote the forecasted time for ambulance type a to travel with patient(s) from `1

at time 0 after on-site emergency care has already been provided, to hospital h, and deliver the

patient(s) of type c at h.
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2.2.2. Decision variables for the ambulance selection problem The following first-stage

(for t= 0) decision variables are used for the ambulance selection problem:

• x0(c, a, b, `, h) = the number of ambulances of type a∈A(c) dispatched at time 0 from station

b∈B to serve calls of type c∈ C at location `∈L, and transport them to hospital h∈H(c, `); this

includes both calls in queue as well as the call that arrived at time 0;

• x0(c, a, `1, b, `, h) = the number of ambulances of type a ∈ A(c) at location `1 ∈ L(0, a, b) at

time 0 traveling toward station b∈B dispatched to serve calls of type c∈ C that arrived at location

`∈L at time 0, and transport them to hospital h∈H(c, `).

The following second-stage (for t= 1, . . . , T ) decision variables are used for the ambulance selec-

tion problem:

• xt(c, a, b, `, h) = the number of ambulances of type a∈A(c) dispatched at time t from station

b∈B to serve calls of type c∈ C at location `∈L, and transport them to hospital h∈H(c, `); this

includes both calls in queue as well as the calls that arrived at time t;

• xt(c, a, `1, b, `, h) = the number of ambulances of type a ∈ A(c) at location `1 ∈ L(t, a, b) at

time t traveling toward station b∈B dispatched to serve calls of type c∈ C that arrived at location

`∈L and transport them to hospital h∈H(c, `);

• xt(c, a,h′, `, h) = the number of ambulances of type a∈A(c) dispatched at time t from hospital

h′ ∈H to serve calls of type c∈ C at location `∈L, and transport them to hospital h∈H(c, `);

• yt(a,h, b) = the number of ambulances of type a∈A instructed at time t to move from hospital

h∈H towards station b∈B;

• Ct(c, `) = the number of calls of type c∈ C waiting in queue at location `∈L at the beginning

of time t;

• At(a, b) = the number of ambulances of type a∈A at station b∈B at the beginning of time t;

• At(a, `1, b) = the number of ambulances of type a∈A at location `1 ∈L(t, a, b) moving towards

station b∈B at the beginning of time t.

Next we make a few remarks regarding these decision variables.

Remark 2.1 First, recall that the decision variables above are written for a deterministic problem,

but these variables will be used as part of a stochastic problem. If the realized emergency calls during

the time horizon coincided with the forecasted calls, then an optimal solution of the deterministic

optimization problem would give optimal dispatch decisions for the entire time horizon. However,

typically the realized calls will not coincide with the forecasted calls, in which case the optimal

first-stage decision variables give a useful immediate dispatch decision but the optimal second-stage

decision variables may not be useful as decisions — the purpose of the second-stage model is to

approximate the effect of the first-stage decisions on future costs, and not to fix useful decisions for

the future.
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Second, recall that times t = 1,2, . . . , T , correspond to a discretization of the time horizon, but

that t= 0 can be any time when an emergency call arrives (for the ambulance selection problem)

or when an ambulance becomes available (for the ambulance reassignment problem). Therefore, we

assume that it does not happen simultaneously that an emergency call arrives and an ambulance

becomes available. This explains why at (each) time t= 0, either an ambulance selection problem

or an ambulance reassignment problem is considered.

Third, first-stage decision variables x0(c, a, b, `, h) and x0(c, a, `1, b, `, h) can be restricted to pairs

(c, `) corresponding to calls in queue at t= 0. Although these restrictions are implemented in code,

for simplicity of exposition we do not introduce notation for such restrictions. When there is no

call in queue for a given pair (c, `), then the constraints below will imply that the corresponding

variables x0(c, a, b, `, h) and x0(c, a, `1, b, `, h) are zero.

2.2.3. Decision variables for the ambulance reassignment problem The following first-

stage decision variables are used for the ambulance reassignment problem:

• x0(c, a,h, `, h′) = the number of ambulances of type a∈A(c) dispatched at time 0 from hospital

h∈H to serve calls of type c∈ C at location `∈L, and transport them to hospital h′ ∈H(c, `);

• y0(a,h, b) = the number of ambulances of type a∈A instructed at time 0 to move from hospital

h∈H towards station b∈B.

The second-stage (for t = 1, . . . , T ) decision variables for the ambulance reassignment problem

as the same as the decision variables for the ambulance selection problem.

Next we make a few remarks regarding the decision variables for the ambulance reassignment

problem.

Remark 2.2 First-stage decision variables x0(c, a,h, `, h′) and y0(a,h, b) are needed for a= a0 and

h = h0 only. In addition, similar to the third point of Remark 2.1, first-stage decision variables

x0(c, a,h, `, h′) can be restricted to pairs (c, `) corresponding to calls in queue at t = 0. Although

these restrictions are implemented in code, for simplicity of exposition we do not introduce notation

for such restrictions. When a 6= a0 or h 6= h0, then A0(a,h) = 0 and the constraints below will imply

that the corresponding variables x0(c, a,h, `, h′) and y0(a,h, b) are zero, and when there is no call in

queue for a given pair (c, `), then the constraints below will imply that the corresponding variables

x0(c, a,h, `, h′) are zero.

2.2.4. Constraints for the ambulance selection problem The following five sets of

constraints apply to the first-stage variables for the ambulance selection problem only:
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(S1) Flow balance equations at the stations: For each a∈A, b∈B,

A1(a, b) = A0(a, b)−
∑
c∈C

∑
`∈L

∑
h∈H(c,`)

x0(c, a, b, `, h)

+
∑

{`1∈L(0,a,b) :L(0,a,`1,b)=b}

A0(a, `1, b)−
∑
c∈C

∑
`∈L

∑
h∈H(c,`)

x0(c, a, `1, b, `, h)

. (2)

The left side in (2) is the number of ambulances of type a at station b at the beginning of period

t= 1. This is equal to the initial number A0(a, b) of ambulances of type a at station b available for

dispatch minus the number of ambulances of type a that leave station b in the first stage plus the

number of ambulances of type a that arrive at station b during the first stage. This latter is the

number of ambulances of type a that would have arrived at station b during the first stage based

on their status at t= 0 minus the number of these ambulances that are dispatched while en-route

to station b to attend a call. The remaining flow constraints follow the same logic and therefore

are given without detailed explanation.

(S2) Flow balance equations at the locations between hospitals and stations: For each

a∈A, b∈B, `1 ∈L(0, a, b),

A1(a, `1, b) =
∑

{`′1∈L(0,a,b) :L(0,a,`′1,b)=`1}

A0(a, `′1, b)−
∑
c∈C

∑
`∈L

∑
h∈H(c,`)

x0(c, a, `′1, b, `, h)

. (3)

(S3) Flow balance equations for the queues: For each c∈ C, `∈L,

C1(c, `) = C0(c, `) +λ(0, c, `)−
∑
a∈A(c)

∑
b∈B

∑
h∈H(c,`)

x0(c, a, b, `, h)

−
∑
a∈A(c)

∑
b∈B

∑
`1∈L(0,a,b)

∑
h∈H(c,`)

x0(c, a, `1, b, `, h).
(4)

(S4) Initial ambulance supply at locations constraints: For each a ∈ A, b ∈ B, `1 ∈

L(0, a, b), ∑
c∈C(a)

∑
`∈L

∑
h∈H(c,`)

x0(c, a, `1, b, `, h) ≤ A0(a, `1, b). (5)

(S5) Initial ambulance supply at stations constraints: For each a∈A, b∈B,

∑
c∈C(a)

∑
`∈L

∑
h∈H(c,`)

x0(c, a, b, `, h) ≤ A0(a, b). (6)

For t= 1, . . . , T , the following constraints apply:
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(At1) Flow balance equations at the stations: For each t= 1, . . . , T , a∈A, b∈B,

At+1(a, b) = At(a, b) +
∑

{h∈H :L(t,a,h,b)=b}

yt(a,h, b)

+
∑

{`1∈L(t,a,b) :L(t,a,`1,b)=b}

At(a, `1, b)− ∑
c∈C(a)

∑
`∈L

∑
h∈H(c,`)

xt(c, a, `1, b, `, h)


−
∑
c∈C(a)

∑
`∈L

∑
h∈H(c,`)

xt(c, a, b, `, h).

(7)

(At2) Flow balance equations at the hospitals: For each t= 1, . . . , T , a∈A, h∈H,∑
c∈C(a)

∑
`∈L

∑
h′∈H(c,`)

xt(c, a,h, `, h
′) +

∑
b∈B

yt(a,h, b)

=
∑
c∈C(a)

∑
`1∈L

∑
{`∈L : τ(0,c,a,`1,`,h)=t}

A0(c, a, `1, `, h)

+
∑
c∈C(a)

∑
{`1∈L : τ0(c,a,`1,h)=t}

A0(c, a, `1, h)

+
∑
c∈C(a)

∑
{`∈L : h∈H(c,`)}

∑
b∈B

∑
{t′∈{0,...,t−1} : t′+τ(t′,c,a,b,`,h)=t}

xt′(c, a, b, `, h)

+
∑
c∈C(a)

∑
{`∈L : h∈H(c,`)}

∑
h′∈H

∑
{t′∈{1,...,t−1} : t′+τ(t′,c,a,h′,`,h)=t}

xt′(c, a,h
′, `, h)

+
∑
c∈C(a)

∑
{`∈L : h∈H(c,`)}

∑
b∈B

∑
`1∈L

∑
{t′∈{0,...,t−1} : `1∈L(t′,a,b), t′+τ(t′,c,a,`1,`,h)=t}

xt′(c, a, `1, b, `, h).

(8)

The left side of (8) incorporates the requirement that every ambulance that finishes service at a

hospital in time period t has to be sent either to a call in queue or to a station (even if the station

is at the hospital itself). The right side of (8) represents the number of ambulances of type a

that finish service at a hospital h in time period t. In particular, the terms A0(c, a, `1, `, h) and

A0(c, a, `1, h) represent the number of ambulances of type a in service at t= 0 (either going to an

emergency and then to hospital h or traveling to hospital h after on-site emergency care has been

provided) that finish that service in time period t.

(At3) Flow balance equations at the locations between hospitals and stations: For

each t= 1, . . . , T , a∈A, b∈B, `1 ∈L(t, a, b),

At+1(a, `1, b) =
∑

{h∈H :L(t,a,h,b)=`1}

yt(a,h, b)

+
∑

{`′1∈L(t,a,b) :L(t,a,`′1,b)=`1}

At(a, `′1, b)− ∑
c∈C(a)

∑
`∈L

∑
h∈H(c,`)

xt(c, a, `
′
1, b, `, h)

. (9)

(At4) Flow balance equations for the queues: For each t= 1, . . . , T , c∈ C, `∈L,

Ct+1(c, `) = Ct(c, `) +λ(t, c, `)−
∑
a∈A(c)

∑
b∈B

∑
h∈H(c,`)

xt(c, a, b, `, h)

−
∑
a∈A(c)

∑
h′∈H

∑
h∈H(c,`)

xt(c, a,h
′, `, h)−

∑
a∈A(c)

∑
b∈B

∑
`1∈L(t,a,b)

∑
h∈H(c,`)

xt(c, a, `1, b, `, h).
(10)
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(At5) Station capacity constraints: For each t= 1, . . . , T + 1, b∈B,

∑
a∈A

At(a, b) ≤ Amax(b), (11)

where Amax(b) denotes the maximum number of ambulances that can park at station b.

(At6) Ambulance supply at the locations between hospitals and stations constraints:

For each t= 1, . . . , T , a∈A, b∈B, `1 ∈L(t, a, b),

∑
c∈C(a)

∑
`∈L

∑
h∈H(c,`)

xt(c, a, `1, b, `, h) ≤ At(a, `1, b). (12)

(At7) Ambulance supply at stations constraints: For each t= 1, . . . , T , a∈A, b∈B,

∑
c∈C(a)

∑
`∈L

∑
h∈H(c,`)

xt(c, a, b, `, h) ≤ At(a, b). (13)

2.2.5. Constraints for the ambulance reassignment problem The following four sets

of constraints apply to the first-stage variables for the ambulance reassignment problem only:

(R1) Flow balance equations at the stations: For each a∈A, b∈B,

A1(a, b) = A0(a, b) +
∑

{h∈H :L(0,a,h,b)=b}

y0(a,h, b) +
∑

{`1∈L(0,a,b) :L(0,a,`1,b)=b}

A0(a, `1, b). (14)

(R2) Flow balance equations at the hospitals: For each a∈A, h∈H,

∑
b∈B

y0(a,h, b) +
∑
c∈C

∑
`∈L

∑
h′∈H(c,`)

x0(c, a,h, `, h′) = A0(a,h). (15)

(R3) Flow balance equations at the locations between hospitals and stations: For each

a∈A, b∈B, `1 ∈L(0, a, b),

A1(a, `1, b) =
∑

{h∈H :L(0,a,h,b)=`1}

y0(a,h, b) +
∑

{`′1∈L(0,a,b) :L(0,a,`′1,b)=`1}

A0(a, `′1, b). (16)

(R4) Flow balance equations for the queues: For each c∈ C, `∈L,

C1(c, `) = C0(c, `)−
∑

h∈H(c,`)

∑
a∈A(c)

∑
h′∈H

x0(c, a,h′, `, h). (17)

For t= 1, . . . , T , constraints (At1), (At3), (At4), (At5), (At6), and (At7) apply, and flow balance

constraints (At2) at the hospitals are replaced by constraints (At8).
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(At8) Flow balance equations at the hospitals: For each t= 1, . . . , T , a∈A, h∈H,∑
c∈C(a)

∑
`∈L

∑
h′∈H(c,`)

xt(c, a,h, `, h
′) +

∑
b∈B

yt(a,h, b)

=
∑
c∈C(a)

∑
`1∈L

∑
{`∈L : τ(0,c,a,`1,`,h)=t}

A0(c, a, `1, `, h)

+
∑
c∈C(a)

∑
{`1∈L : τ0(c,a,`1,h)=t}

A0(c, a, `1, h)

+
∑
c∈C(a)

∑
{`∈L : h∈H(c,`)}

∑
b∈B

∑
{t′∈{1,...,t−1} : t′+τ(t′,c,a,b,`,h)=t}

xt′(c, a, b, `, h)

+
∑
c∈C(a)

∑
{`∈L : h∈H(c,`)}

∑
h′∈H

∑
{t′∈{0,...,t−1} : t′+τ(t′,c,a,h′,`,h)=t}

xt′(c, a,h
′, `, h)

+
∑
c∈C(a)

∑
{`∈L : h∈H(c,`)}

∑
b∈B

∑
`1∈L

∑
{t′∈{1,...,t−1} : `1∈L(t′,a,b), t′+τ(t′,c,a,`1,`,h)=t}

xt′(c, a, `1, b, `, h).

(18)

2.2.6. Objective function for the ambulance selection problem Let ft(c, a, b, `, h)

denote the cost per call if ambulance type a ∈ A(c) is dispatched at time t from station b ∈ B to

serve a call of type c∈ C at location `∈L, and transport them to hospital h∈H(c, `); this includes

a penalty for the waiting time and other costs. Similarly, let ft(c, a,h
′, `, h) denote the cost per

call if ambulance type a ∈ A(c) is dispatched at time t from hospital h′ ∈ H to serve a call of

type c∈ C at location `∈L, and transport them to hospital h∈H(c, `); let ft(c, a, `1, b, `, h) denote

the cost per call if ambulance type a ∈ A(c) at location `1 ∈ L(t, a, b) at time t traveling toward

station b ∈ B is dispatched to serve a call of type c ∈ C that arrived at location ` ∈ L at time t,

and transport them to hospital h ∈H(c, `); let ft(a,h, b) denote the cost if ambulance type a ∈A

is dispatched at time t from hospital h∈H to station b∈B; let gt(c, `) denote the penalty per call

of type c ∈ C waiting in queue at location ` ∈ L at the beginning of time t; let gt(a, b) denote the

cost per ambulance of type a ∈ A at station b ∈ B at the beginning of time t; and let gt(a, `1, b)

denote the cost per ambulance of type a ∈ A that moves from location `1 ∈ L(t, a, b) to location

L(t, a, `1, b) during time t.

For the ambulance selection problem, the objective is to minimize

T∑
t=0

∑
c∈C

∑
a∈A(c)

∑
`∈L

∑
h∈H(c,`)

∑
b∈B

ft(c, a, b, `, h)xt(c, a, b, `, h) +
∑
b∈B

∑
`1∈L(t,a,b)

ft(c, a, `1, b, `, h)xt(c, a, `1, b, `, h)


+

T∑
t=1

∑
c∈C

∑
a∈A(c)

∑
`∈L

∑
h∈H(c,`)

∑
h′∈H

ft(c, a,h
′, `, h)xt(c, a,h

′, `, h) +
T∑
t=1

∑
a∈A

∑
b∈B

∑
h∈H

ft(a,h, b)yt(a,h, b)

+
T∑
t=0

∑
c∈C

∑
`∈L

gt+1(c, `)Ct+1(c, `) +
∑
a∈A

∑
b∈B

gt+1(a, b)At+1(a, b) +
∑

`1∈L(t+1,a,b)

gt+1(a, `1, b)At+1(a, `1, b)


.

(19)
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2.2.7. Objective function for the ambulance reassignment problem Using the nota-

tion of the previous sections, for the ambulance reassignment problem, the objective is to minimize

T∑
t=1

∑
c∈C

∑
a∈A(c)

∑
`∈L

∑
h∈H(c,`)

∑
b∈B

ft(c, a, b, `, h)xt(c, a, b, `, h) +
∑
b∈B

∑
`1∈L(t,a,b)

ft(c, a, `1, b, `, h)xt(c, a, `1, b, `, h)


+

T∑
t=0

∑
c∈C

∑
a∈A(c)

∑
`∈L

∑
h∈H(c,`)

∑
h′∈H

ft(c, a,h
′, `, h)xt(c, a,h

′, `, h) +
T∑
t=0

∑
a∈A

∑
b∈B

∑
h∈H

ft(a,h, b)yt(a,h, b)

+
T∑
t=0

∑
c∈C

∑
`∈L

gt+1(c, `)Ct+1(c, `) +
∑
a∈A

∑
b∈B

gt+1(a, b)At+1(a, b) +
∑

`1∈L(t+1,a,b)

gt+1(a, `1, b)At+1(a, `1, b)


.

(20)

2.3. Stochastic Model

In this section we describe a stochastic model of ambulance dispatch operations. The stochastic

model is used to generate scenarios for the two-stage optimization problem, and is used in a

simulation to test the performance of different ambulance dispatch policies.

The same space discretization is used for the optimization problem and the simulation, but the

time discretization applies to the optimization problem only. The main random variable is the

sequence of emergency calls of each type at each location. Other quantities, such as travel times,

are modeled as deterministic. Emergency calls arrive in continuous time according to an exogenous

stochastic process. We assume that the stochastic process has the property that with probability 1,

at most one emergency call arrives at a continuous time point. (In the numerical tests, emergency

calls of type c for location ` arrive according to a nonhomogeneous Poisson process with rate

λ(τ, c, `) at time τ .) Let ω(τ) denote a random sequence of emergency calls during time interval

(τ,T ′), where T ′� T denotes a specified simulation time horizon, and let ξ(τ) denote a random

sequence of emergency calls during time interval (τ, τ + T ). For any time τ , let s(τ) denote the

state of the process at time τ . That is, s(τ) contains information about the location and current

assignment of each ambulance, and the calls in queue at time τ , including the data of a call, if

any, that has just arrived. Let π denote any deterministic policy that takes the state s(τ) at any

time τ as input, and specifies either an ambulance selection decision or an ambulance reassignment

decision π(s(τ)), as appropriate. The simulation generates a sample path ω(0) according to the

specified stochastic process, and keeps track of the state and performance metrics of the process.

When an ambulance selection decision or an ambulance reassignment decision has to be made at

time τ , the simulation provides s(τ) as input to π, receives the decision π(s(τ)) as output from π,

and updates the state of the process accordingly.

Next we describe how the optimization problems specified in Section ?? are used in a corre-

sponding policy π.
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First, suppose that π is called at time τ with a request for an ambulance selection decision, and

with state s(τ) provided as input. Then time τ in the simulation corresponds to time t= 0 in the

current optimization problem, and the time interval (τ, τ+T ) is partitioned into discrete time peri-

ods indexed by t= 1, . . . , T for the purpose of the optimization problem. Also, N independent and

identically distributed “second-stage scenarios”, denoted by ξ1(τ), . . . , ξN(τ), each being a sequence

of emergency calls during time interval (τ, τ +T ), is generated according to the specified stochastic

process. Note that scenarios ξ1(τ), . . . , ξN(τ) are independent of the sample path ω(τ) used to

evaluate the policies. Also note that all the input of the optimization problem either does not

change, or can be derived from the state s(τ) provided as input by the simulation and the generated

scenarios ξ1(τ), . . . , ξN(τ). For example, the set C of emergency call types does not change, the type

c0 of the emergency call at t= 0 is part of the state s(τ), and the number λn(t, c, `) of emergency

calls of type c for period t and location ` under scenario n can be derived from ξn(τ). Let x0 :=(
x0(c0, a, b, `0, h), x0(c0, a, `1, b, `0, h), a ∈ A(c0), b ∈ B, `1 ∈ L(0, a, b), h ∈ H(c0, `0)

)
denote the first-

stage decision variables of the ambulance selection problem, and for each scenario n, let (xn, yn) :=(
xn,t(c, a, b, `, h), xn,t(c, a, `1, b, `, h), xn,t(c, a,h

′, `, h), yn,t(a,h
′, b),Cn,t(c, `),An,t(a, b),An,t(a, `1, b), t=

1, . . . , T, c ∈ C, a ∈ A(c), b ∈ B, ` ∈ L, `1 ∈ L(0, a, b), h ∈ H(c, `), h′ ∈ H
)

denote the second-stage

decision variables for scenario n. Let

F (x0) :=
∑
c∈C

∑
a∈A(c)

∑
`∈L

∑
h∈H(c,`)

[∑
b∈B

f0(c, a, b, `, h)x0(c, a, b, `, h)

+
∑
b∈B

∑
`1∈L(0,a,b)

f0(c, a, `1, b, `, h)x0(c, a, `1, b, `, h)


denote the first-stage part of the ambulance selection problem objective, and for any scenario n, let

G(s(τ), ξn(τ), xn, yn) denote the remaining (second-stage) part of the ambulance selection problem

objective. Then, for each first-stage decision x0 and each scenario n, the continuous relaxation of

the second-stage of the ambulance selection problem is

Q(s(τ), ξn(τ), x0) := min
xn,yn

G(s(τ), ξn(τ), xn, yn)

s.t. (At1 ), (At2 ), (At3 ), (At4 ), (At5 ), (At6 ), (At7 ).
(21)

Policy π then chooses an ambulance selection decision

π(s(τ)) ∈ arg min
x0

F (x0) +
1

N

N∑
n=1

Q(s(τ), ξn(τ), x0)

s.t. (S1 ), (S2 ), (S3 ), (S4 ), (S5 ).

Similarly, suppose that π is called at time τ with a request for an ambulance reassignment decision,

and with state s(τ) provided as input. Let x̃0 :=
(
x0(c, a0, h0, `, h), yt(a0, h0, b), c ∈ C, b ∈ B, ` ∈
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L, h ∈ H(c, `)
)

denote the first-stage decision variables, and for each scenario n, let (xn, yn) :=(
xn,t(c, a, b, `, h), xn,t(c, a, `1, b, `, h), xn,t(c, a,h

′, `, h), yn,t(a,h
′, b),Cn,t(c, `),An,t(a, b),An,t(a, `1, b), t=

1, . . . , T, c ∈ C, a ∈ A(c), b ∈ B, ` ∈ L, `1 ∈ L(0, a, b), h ∈ H(c, `), h′ ∈ H
)

denote the second-stage

decision variables for scenario n. Let

F̃ (x̃0) :=
∑
c∈C

∑
`∈L

∑
h∈H(c,`)

f0(c, a0, h0, `, h)x0(c, a0, h0, `, h) +
∑
b∈B

f0(a0, h0, b)y0(a0, h0, b)

denote the first-stage part of the ambulance reassignment problem objective, and for any scenario n,

let G(s(τ), ξn(τ), xn, yn) denote the remaining (second-stage) part of the ambulance reassignment

problem objective. Then, for each first-stage decision x̃0 and each scenario n, the continuous relax-

ation of the second-stage of the ambulance reassignment problem is

Q̃(s(τ), ξn(τ), x̃0) := min
xn,yn

G(s(τ), ξn(τ), xn, yn)

s.t. (At1 ), (At3 ), (At4 ), (At5 ), (At6 ), (At7 ), (At8 ).
(22)

Policy π then chooses an ambulance reassignment decision

π(s(τ)) ∈ arg min
x̃0

F̃ (x̃0) +
1

N

N∑
n=1

Q̃(s(τ), ξn(τ), x̃0)

s.t. (R1 ), (R2 ), (R3 ), (R4 ).

3. Column Generation

We propose a column generation algorithm to solve the optimization problems (21) and (22).

Problems (21) and (22) are large linear programs that have to be solved fast in practice. In addition,

in both problems the number of decision variables is large relative to the number of constraints, so

that in a basic feasible solution most decision variables have value zero. This motivates the column

generation algorithm proposed in this section to solve these problems. We describe the algorithm

for problem (21). A similar algorithm is used for problem (22).

The dual variables for problem (21) are as follows:

• For each t = 1, . . . , T , a ∈ A, b ∈ B, let βt(a, b) denote the dual variable associated with the

flow balance constraint (At1) at station b.

• For each t= 1, . . . , T , a ∈ A, h ∈H, let αt(a,h) denote the dual variable associated with the

flow balance constraint (At2) at hospital h.

• For each t = 1, . . . , T , a ∈ A, b ∈ B, `1 ∈ L(t, a, b), let ψt(a, b, `1) denote the dual variable

associated with the flow balance constraint (At3) at location `1.

• For each t= 1, . . . , T , c∈ C, `∈L, let φt(c, `) denote the dual variable associated with the flow

balance constraint (At4) for the queue of call type c at location `.

• For each t = 1, . . . , T + 1, b ∈ B, let νt(b) ≥ 0 denote the dual variable associated with the

capacity constraint (At5) for station b.
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• For each t = 1, . . . , T , a ∈ A, b ∈ B, `1 ∈ L(t, a, b), let θt(a, b, `1) ≥ 0 denote the dual variable

associated with the ambulance supply constraint (At6) for location `1.

• For each t= 1, . . . , T , a∈A, b∈B, let γt(a, b)≥ 0 denote the dual variable associated with the

ambulance supply constraint (At7) for station b.

For problem (21), the Lagrangian relaxation is to minimize

T∑
t=1

∑
c∈C

∑
a∈A(c)

∑
b∈B

∑
`∈L

∑
h∈H(c,`)

[
ft(c, a, b, `, h) +βt(a, b)−αt+τ(t,c,a,b,`,h)(a,h) +φt(c, `) + γt(a, b)

]
xt(c, a, b, `, h)

+
T∑
t=1

∑
c∈C

∑
a∈A(c)

∑
`∈L

∑
h∈H(c,`)

∑
h′∈H

[
ft(c, a,h

′, `, h) +αt(a,h
′)−αt+τ(t,c,a,h′,`,h)(a,h) +φt(c, `)

]
xt(c, a,h

′, `, h)

+
T∑
t=1

∑
c∈C

∑
a∈A(c)

∑
b∈B

∑
`1∈L(t,a,b)

∑
`∈L

∑
h∈H(c,`)

[
ft(c, a, `1, b, `, h) +βt(a, b)1{L(t,a,`1,b)=b}−αt+τ(t,c,a,`1,`,h)(a,h)

+ψt(a, b,L(t, a, `1, b))1{L(t,a,`1,b)∈L(t,a,b)}+φt(c, `) + θt(a, b, `1)
]
xt(c, a, `1, b, `, h)

+
T∑
t=1

∑
a∈A

∑
b∈B

∑
h∈H

[
ft(a,h, b) +αt(a,h)−βt(a, b)1{L(t,a,h,b)=b}−ψt(a, b,L(t, a,h, b))1{L(t,a,h,b)∈L(t,a,b)}

]
yt(a,h, b)

+
T∑
t=1

∑
c∈C

∑
`∈L

[gt(c, `)−φt(c, `) +φt−1(c, `)]Ct(c, `) +
∑
c∈C

∑
`∈L

[gT+1(c, `) +φT (c, `)]CT+1(c, `)

+
T∑
t=1

∑
a∈A

∑
b∈B

[gt(a, b)−βt(a, b) +βt−1(a, b) + νt(b)− γt(a, b)]At(a, b)

+
∑
a∈A

∑
b∈B

[gT+1(a, b) +βT (a, b) + νT+1(b)]AT+1(a, b)

+
T∑
t=1

∑
a∈A

∑
b∈B

∑
`1∈L(t,a,b)

[
gt(a, `1, b)−βt(a, b)1{L(t,a,`1,b)=b}+ψt−1(a, b, `1)

−ψt(a, b,L(t, a, `1, b))1{L(t,a,`1,b)∈L(t,a,b)}− θt(a, b, `1)
]
At(a, `1, b)

+
∑
a∈A

∑
b∈B

∑
`1∈L(T+1,a,b)

[gT+1(a, `1, b) +ψT (a, b, `1)]AT+1(a, `1, b)

+
T∑
t=1

∑
a∈A

∑
h∈H

αt(a,h)

− ∑
c∈C(a)

∑
`1∈L

∑
{`∈L : τ(0,c,a,`1,`,h)=t}

A0(c, a, `1, `, h)

−
∑
c∈C(a)

∑
{`1∈L : τ0(c,a,`1,h)=t}

A0(c, a, `1, h)


−

T∑
t=1

∑
c∈C

∑
`∈L

φt(c, `)λ(t, c, `)−
T+1∑
t=1

∑
b∈B

νt(b)Amax(b).

The column generation algorithm starts with an initial feasible solution for problem (21), for

instance obtained with the closest-available-ambulance rule to allocate ambulances to calls and

the closest-station rule to choose the station to which to send an ambulance when it finishes its

task and there are no calls waiting in queue. Then an optimal primal-dual pair is computed for
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the restriction of problem (21) with only the decision variables that are nonzero in the initial

feasible solution. If the optimal dual solution of the restricted problem is feasible for the dual

of problem (21), then the primal-dual pair is optimal for problem (21). Otherwise, there exists

a primal decision variable with negative reduced cost, and variables with negative reduced cost

are added to the restricted problem to obtain the next restricted problem. Every iteration adds a

number of primal decision variables with negative reduced cost until the optimal dual solution of

the restriction of problem (21) is feasible for the dual of problem (21). Next we explain how to find

primal decision variables with negative reduced cost. We will consider column generation for three

types of primal decision variables: xt(c, a, `1, b, `, h), xt(c, a, b, `, h), and xt(c, a,h
′, `, h).

3.1. Column Generation for Variables xt(c, a, `1, b, `, h)

The column generation subproblem to determine the variable xt(c, a, `1, b, `, h) with the smallest

objective coefficient in the Lagrangian relaxation is

min
{
ft(c, a, `1, b, `, h) +βt(a, b)1{L(t,a,`1,b)=b}−αt+τ(t,c,a,`1,`,h)(a,h)

+ψt(a, b,L(t, a, `1, b))1{L(t,a,`1,b)∈L(t,a,b)}+φt(c, `) + θt(a, b, `1) : (23)

t∈ {1, . . . , T}, c∈ C, a∈A(c), b∈B, `1 ∈L(t, a, b), `∈L, h∈H(c, `)} ,

where the dual variable values are optimal dual values for the previous restricted problem. Solving

this column generation subproblem exactly can be time consuming, and is unnecessary for most

iterations. Next we show how to compute variables xt(c, a, `1, b, `, h) with negative reduced cost

under the following simplifying assumptions:

(A1) The time τ(t, c, a, `1, `, h) for ambulance type a to travel from `1 at time t to `, provide on-

site emergency care for call type c at `, travel with patient(s) from ` to hospital h, and deliver the

patient(s) at h, does not depend on the call type c. Thus this time is denoted with τ(t, a, `1, `, h).

(A2) Similarly, the cost ft(c, a, `1, b, `, h) for ambulance type a to travel from `1 at time t to `,

provide on-site emergency care for call type c at `, travel with patient(s) from ` to hospital h, and

deliver the patient(s) at h, does not depend on the ambulance station b or the call type c. Thus

this cost is denoted with ft(a, `1, `, h).

(A3) The set A(c) of ambulances to choose from does not depend on the call type c. Thus

A(c) =A for all c.

(A4) The set H(c, `) of hospitals to choose from does not depend on the call type c. Thus this

set is denoted with H(`).

Then the calculations can be streamlined as follows:
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1. For each time t and emergency location `∈L, let

c∗t (`) ∈ arg min{φt(c, `) : c∈ C}

denote the critical call type at time t and location `.

2. For each time t, ambulance type a∈A, and intermediate location `1 ∈L, let

b∗t (a, `1) ∈ arg min
{
βt(a, b)1{L(t,a,`1,b)=b}+ψt(a, b,L(t, a, `1, b))1{L(t,a,`1,b)∈L(t,a,b)}+ θt(a, b, `1) : b∈B

}
denote the critical ambulance station at time t for ambulance type a and intermediate location `1.

Observe that if {b∈B : `1 ∈L(t, a, b)}= ∅, then there is no decision variable xt(c, a, `1, b, `, h) for

such `1.

3. For each time t, ambulance type a ∈A, emergency location ` ∈ L, and intermediate location

`1 ∈L, let

h∗t (a, `1, `) ∈ arg min
{
ft(a, `1, `, h)−αt+τ(t,a,`1,`,h)(a,h) : h∈H(`)

}
denote the critical hospital at time t for ambulance type a, emergency location `, and intermediate

location `1. In practice, the set H(`) is small, often a singleton, so the computation of h∗t (a, `1, `)

is quick.

Then the column generation subproblem (23) reduces to

min
{
ft(a, `1, `, h

∗
t (a, `1, `)) +βt(a, b

∗
t (a, `1))1{L(t,a,`1,b

∗
t (a,`1))=b∗t (a,`1)}−αt+τ(t,a,`1,`,h

∗
t (a,`1,`))(a,h

∗
t (a, `1, `))

+ψt(a, b
∗
t (a, `1),L(t, a, `1, b

∗
t (a, `1)))1{L(t,a,`1,b

∗
t (a,`1))∈L(t,a,b∗t (a,`1))}+φt(c

∗
t (`), `) + θt(a, b

∗
t (a, `1), `1) :

t∈ {0, . . . , T}, a∈A, `1 ∈L, `∈L} .
(24)

In most iterations, the column generation subproblem does not have to be solved to optimality.

Recall that in each column generation iteration, it is sufficient to find a variable xt(c, a, `1, b, `, h)

with negative objective value in the column generation subproblem, or to verify that no variable

xt(c, a, `1, b, `, h) has negative objective value. Also, for any emergency location `, an (available)

ambulance at an intermediate location `1 that is close to ` is more attractive than an ambulance

at an intermediate location `1 that is far from ` (this is also the intuition underlying the popular

closest-available-ambulance dispatch heuristic). These observations motivate Algorithm 1 below to

solve problem (24).

3.2. Column Generation for Variables xt(c, a, b, `, h)

Next, we consider the column generation subproblem to find a variable xt(c, a, b, `, h) with the

smallest objective coefficient in the Lagrangian relaxation, that is,

min
{
ft(c, a, b, `, h) +βt(a, b)−αt+τ(t,c,a,b,`,h)(a,h) +φt(c, `) + γt(a, b) :

t∈ {0, . . . , T}, c∈ C, a∈A(c), b∈B, `∈L, h∈H(c, `)} . (25)

Consider the following simplifying assumptions:
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Algorithm 1 Column generation algorithm for variables xt(c, a, `1, b, `, h)

1: For each emergency location `∈L, construct a list L(`) of intermediate locations `1 ∈L sorted

from closest to ` to furthest from `;

2: Find an initial feasible solution, and solve the restricted version of the continuous relaxation

of problem (2)–(13) with the decision variables that are nonzero in the initial feasible solution;

3: optimality verified ← false;

4: while not optimality verified do

5: optimality verified ← true;

6: Use the optimal dual variables for the restricted version of the continuous relaxation of

problem (2)–(13) to compute c∗t (`), b
∗
t (a, `1), and h∗t (a, `1, `);

7: for t∈ {0, . . . , T} do

8: for a∈A do

9: for `∈L do

10: negative found ← false;

11: for `1 ∈L(`) (from closest to furthest) while not negative found do

12: if objective value of column generation subproblem (24) is negative then

13: negative found ← true;

14: optimality verified ← false;

15: Add variable xt(c
∗
t (`), a, `1, b

∗
t (a, `1), `, h∗t (a, `1, `)) to the restricted version of the

continuous relaxation of problem (2)–(13);

16: end if

17: end for

18: end for

19: end for

20: end for

21: if not optimality verified then

22: Solve the current restricted version of the continuous relaxation of problem (2)–(13);

23: end if

24: end while

(B1) The time τ(t, c, a, b, `, h) for ambulance type a to travel from station b at time t to `, provide

on-site emergency care for call type c at `, travel with patient(s) from ` to hospital h, and deliver

the patient(s) at h, does not depend on the call type c. Thus this time is denoted with τ(t, a, b, `, h).
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(B2) The cost ft(c, a, b, `, h) for ambulance type a to travel from station b at time t to `, provide

on-site emergency care for call type c at `, travel with patient(s) from ` to hospital h, and deliver

the patient(s) at h, does not depend on the call type c. Thus this cost is denoted with ft(a, b, `, h).

(A3) The set A(c) of ambulances to choose from does not depend on the call type c. Thus

A(c) =A for all c.

(A4) The set H(c, `) of hospitals to choose from does not depend on the call type c. Thus this

set is denoted with H(`).

Then the calculations can be streamlined as follows:

1. For each time t and emergency location `∈L, let

ĉt(`) = c∗t (`) ∈ arg min{φt(c, `) : c∈ C}

denote the critical call type at time t and location `.

2. For each time t, ambulance type a∈A, station b∈B, and emergency location `∈L, let

ĥt(a, b, `) ∈ arg min
{
ft(a, b, `, h)−αt+τ(t,a,b,`,h)(a,h) : h∈H(`)

}
denote the critical hospital at time t for ambulance type a, station b, and emergency location `. As

mentioned before, typically the set H(`) is small, and thus the computation of ĥt(a, b, `) is quick.

Then the column generation subproblem (25) reduces to

min
{
ft(a, b, `, ĥt(a, b, `)) +βt(a, b)−αt+τ(t,a,b,`,ĥt(a,b,`))

(a, ĥt(a, b, `)) +φt(ĉt(`), `) + γt(a, b) :

t∈ {0, . . . , T}, a∈A, b∈B, `∈L} . (26)

For any emergency location `, an ambulance at a station b that is close to ` is more attractive than

an ambulance at a station b that is far from `. These observations motivate Algorithm 2 to solve

problem (26).

3.3. Column Generation for Variables xt(c, a,h′, `, h)

Next, we consider the column generation subproblem to find a variable xt(c, a,h
′, `, h) with the

smallest objective coefficient in the Lagrangian relaxation, that is,

min
{
ft(c, a,h

′, `, h) +αt(a,h
′)−αt+τ(t,c,a,h′,`,h)(a,h) +φt(c, `) :

t∈ {1, . . . , T}, c∈ C, a∈A(c), h′ ∈H, `∈L, h∈H(c, `)} . (27)

Consider the following simplifying assumptions:

(C1) The time τ(t, c, a,h′, `, h) for ambulance type a to travel from hospital h′ at time t to `,

provide on-site emergency care for call type c at `, travel with patient(s) from ` to hospital h, and

deliver the patient(s) at h, does not depend on the call type c. Thus this time is denoted with

τ(t, a,h′, `, h).
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Algorithm 2 Column generation algorithm for variables xt(c, a, b, `, h)

1: For each emergency location `∈L, construct a list B(`) of bases b∈B sorted from closest to `

to furthest from `;

2: Find an initial feasible solution, and solve the restricted version of the continuous relaxation

of problem (2)–(13) with the decision variables that are nonzero in the initial feasible solution;

3: optimality verified ← false;

4: while not optimality verified do

5: optimality verified ← true;

6: Use the optimal dual variables for the restricted version of the continuous relaxation of

problem (2)–(13) to compute ĉt(`) and ĥt(a, b, `);

7: for t∈ {0, . . . , T} do

8: for a∈A do

9: for `∈L do

10: negative found ← false;

11: for b∈B(`) (from closest to furthest) while not negative found do

12: if objective value of column generation subproblem (26) is negative then

13: negative found ← true;

14: optimality verified ← false;

15: Add variable xt(ĉt(`), a, b, `, ĥt(a, b, `)) to the restricted version of the continuous

relaxation of problem (2)–(13);

16: end if

17: end for

18: end for

19: end for

20: end for

21: if not optimality verified then

22: Solve the current restricted version of the continuous relaxation of problem (2)–(13);

23: end if

24: end while

(C2) The cost ft(c, a,h
′, `, h) for ambulance type a to travel from hospital h′ at time t to `,

provide on-site emergency care for call type c at `, travel with patient(s) from ` to hospital h,

and deliver the patient(s) at h, does not depend on the call type c. Thus this cost is denoted with

ft(a,h
′, `, h).
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(A3) The set A(c) of ambulances to choose from does not depend on the call type c. Thus

A(c) =A for all c.

(A4) The set H(c, `) of hospitals to choose from does not depend on the call type c. Thus this

set is denoted with H(`).

Then the calculations can be streamlined as follows:

1. For each time t and emergency location `∈L, let

čt(`) = c∗t (`) ∈ arg min{φt(c, `) : c∈ C}

denote the critical call type at time t and location `.

2. For each time t, ambulance a∈A, hospital h′ ∈H, and emergency location `∈L, let

ȟt(a,h
′, `) ∈ arg min

{
ft(a,h

′, `, h)−αt+τ(t,a,h′,`,h)(a,h) : h∈H(`)
}

denote the critical hospital at time t for ambulance a, hospital h′, and emergency location `.

Then the column generation subproblem (27) reduces to

min
{
ft(a,h

′, `, ȟt(a,h
′, `)) +αt(a,h

′)−αt+τ(t,a,h′,`,ȟt(a,h′,`))(a, ȟt(a,h
′, `)) +φt(čt(`), `) :

t∈ {1, . . . , T}, a∈A, h′ ∈H, `∈L
}
. (28)

For any emergency location `, an ambulance at a hospital h′ that is close to ` is more attractive

than an ambulance at a hospital h′ that is far from `. These observations motivate Algorithm 3 to

solve problem (28).

4. Case Study

4.1. Comparison between proposed policies and heuristics from the literature

The performance of the optimization-based policy for ambulance dispatch decisions described

in Sections 2 was evaluated using simulation. We consider two types of ambulances (ALS, BLS,

advanced and basic life support). The call types were grouped into four types of calls:

• Type 0: High priority, ALS preferred ambulance

• Type 1: Low priority, ALS preferred ambulance

• Type 2: High priority, no ambulance type preference

• Type 3: Low priority, no ambulance type preference

A rectangle that contains the service region of the Rio de Janeiro SAMU was discretized into 10×

10 rectangles. Of these 100 rectangles, 76 have an intersection with the SAMU service region, and

are shown in Figure 1. Distances between rectangles were approximated with geodesic distances,

and for the free flow travel time calculations the ambulance speeds were fixed to 60 km/h. The
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Algorithm 3 Column generation algorithm for variables xt(c, a,h
′, `, h)

1: For each emergency location `∈L, construct a list H(`) of hospitals h′ ∈H sorted from closest

to ` to furthest from `;

2: Find an initial feasible solution, and solve the restricted version of the continuous relaxation

of problem (2)–(13) with the decision variables that are nonzero in the initial feasible solution;

3: optimality verified ← false;

4: while not optimality verified do

5: optimality verified ← true;

6: Use the optimal dual variables for the restricted version of the continuous relaxation of

problem (2)–(13) to compute čt(`) and ȟt(a,h
′, `);

7: for t∈ {1, .., T} do

8: for a∈A do

9: for `∈L do

10: negative found ← false;

11: for h′ ∈H(`) (from closest to furthest) while not negative found do

12: if objective value of column generation subproblem (28) is negative then

13: negative found ← true;

14: optimality verified ← false;

15: Add variable xt(čt(`), a, h
′, `, ȟt(a,h

′, `)) to the restricted version of the continuous

relaxation of problem (2)–(13);

16: end if

17: end for

18: end for

19: end for

20: end for

21: if not optimality verified then

22: Solve the current restricted version of the continuous relaxation of problem (2)–(13);

23: end if

24: end while

SAMU has 34 ambulance stations and 10 associated hospitals. For the arc based models, time was

discretized into 30 minute intervals.

Emergency call data for the SAMU for the period January 2016–February 2018 were used to

calibrate the intensities λ(t, c, `) of calls for each 30 minute period t of each day of the week, for

each call type c, and for each discretized location `, of a Poisson process call arrival model via
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Figure 1 Discretization of the service region of the Rio de Janeiro SAMU into 10×10 rectangles, and a heatmap

of the mean intensity of emergency calls to the Rio de Janeiro SAMU for the period January 2016–

February 2018.

maximizing a regularized likelihood function. Figure 1 also shows a heatmap of the sum of the

intensities of the Poisson process (sum over the call types and time periods) for each discretized

location `. For the numerical tests, we considered a time window with high intensities of call arrivals

(specifically, Fridays between 18h00 and 20h00), and we simulated the call arrivals and dispatch

decisions during this time window. The algorithms were implemented using C++14 and run on a

computer with a Ryzen 5 2600 processor with 16GB of RAM memory, in a Ubuntu 22.04 OS.

We present three sets of results. First, we show that the proposed methods results in smaller

response times than the response times obtained with the popular closest-available-ambulance rule,

and with five heuristics from previous works in the literature, when considering deterministic travel

times (at any point in the simulation, the travel time between locations a and b are always the

same) and fixed service times. Second, we show that the proposed methods are also better when

considering random travel times and service times. Third, we report average run times for solving

the arc based models and the itinerary based model. The setting was simplified by assuming that

the patients of each call must be taken to the closest hospital. For the closest available heuristic,

we also assumed that if the queue is empty the ambulance must return to the closest ambulance

station.

Table 4 reports the average penalized response time for each policy in comparison with the

itinerary based model policy. Each row display the results for a number of ambulance stations and

41



High, ALS pref. Low, ALS pref. High, no pref. Low, no pref.
ALS 0 0 1 1
BLS 4 4 0 0

Table 3 Quality of care coefficients. The columns denote each type of call, with its respective priority and

ambulance type preference, and the rows represent the type of ambulance.

contains two subrows reporting the penalized response time (RT), and the number of standard

deviations of the difference between the itinerary policy and each other heuristic. The second

column reports the penalized the penalized response time for the itinerary based policy. We adopted

a penalization in the form: P (a, c,ω) = ωθc + 3600Mac, where thetac is the penalty to the response

time ω of a call of type c, and Mac is the quality of care coefficient for an ambulance of type a

assigned to a call of type c. We defined θ = (4,1,4,1) in the experiments: θc = 4 for high priority

calls and θc = 1 for low priority calls. The quality of care coefficients M were defined as in Table 3.

We applied this penalization method in the objective function of the models and in the travel

time and response time calculations of each heuristic. Every other aspect of each heuristic of the

literature was kept as in its original implementation. We considered 10 minutes as the on-site and

at hospital service times for all calls. Table 5 reports the actual response times for each policy, also

with the number of standard deviations of difference with the itinerary based policy. Following

the same format, Tables 6 and 7 reports the comparison of penalized and actual response times

between the arc based model policy and each other policy.
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A
Itinerary

RT
Closest Av. Model Lee Andersson Bandara Jagtenberg Mayorga

10 6,071
RT: 9,973 5,815 7,643 10,396 13,244 9,948 13,747

STD: -2.9 0.4 -1.2 -2.6 -3.9 -2.8 -4.2

12 4,209
RT: 8,738 4,035 6,422 7,687 10,945 8,598 10,203

STD: -3.8 0.2 -1.8 -2.9 -4.7 -3.1 -3.9

14 3,234
RT: 5,354 3,019 5,295 7,436 8,389 7,076 9,840

STD: -1.8 0.2 -2.2 -4.7 -5.8 -3.6 -5.1

16 2,702
RT: 6,080 3,036 4,987 6,325 10,108 6,974 7,027

STD: -2.7 -0.4 -2.4 -3.3 -5.3 -3.8 -3.8

18 2,412
RT: 5,009 2,797 6,056 6,024 7,903 6,330 7,097

STD: -3.0 -0.5 -3.4 -3.4 -5.6 -4.0 -4.7

20 2,294
RT: 4,538 2,640 4,940 6,778 6,462 6,080 7,115

STD: -2.4 -0.6 -3.0 -4.3 -4.0 -3.6 -4.3

22 2,190
RT: 5,050 2,512 6,017 6,287 4,526 5,775 6,241

STD: -2.9 -0.5 -3.6 -3.9 -2.7 -4.0 -3.9

24 1,828
RT: 5,204 2,163 5,206 5,811 5,417 7,455 6,941

STD: -3.2 -0.8 -3.5 -3.9 -3.5 -5.4 -4.8

26 1,998
RT: 5,143 2,157 6,315 5,924 5,564 7,002 7,164

STD: -3.1 -0.8 -4.0 -3.7 -3.5 -4.6 -4.5

28 1,986
RT: 5,279 2,032 6,333 7,561 5,931 6,626 7,161

STD: -3.2 -0.3 -3.6 -4.7 -3.7 -4.5 -4.5

30 2,008
RT: 4,309 2,228 6,154 5,799 4,791 7,474 7,906

STD: -2.4 -1.2 -4.1 -3.6 -2.8 -4.8 -5.0

Table 4 Comparison of penalized response times (in seconds) between the itinerary based model and each other

policy.

A
Itinerary

RT
Closest Av. Arc Lee Andersson Bandara Jagtenberg Mayorga

10 1,939
RT: 2,437 1,862 1,998 2,447 3,604 2,477 3,949

STD: -1.8 0.4 -0.3 -1.9 -5.2 -2.4 -5.7

12 1,237
RT: 1,606 1,311 1,467 1,488 2,676 1,762 2,531

STD: -2.0 -0.3 -1.4 -1.2 -5.5 -2.4 -5.0

14 885
RT: 1,005 998 980 1,171 1,869 1,287 1,809

STD: -1.0 -1.2 -0.8 -2.1 -5.7 -2.7 -5.5

16 788
RT: 907 965 882 894 1,496 969 1,482

STD: -1.1 -1.7 -0.9 -1.1 -5.3 -1.8 -4.9

18 948
RT: 854 857 875 845 1,324 1,020 1,176

STD: 0.9 0.9 0.7 0.9 -2.5 -0.7 -1.7

20 836
RT: 766 862 862 862 1,082 970 1,018

STD: 0.9 -0.3 -0.3 -0.3 -2.3 -1.6 -1.9

22 771
RT: 652 858 775 806 956 964 913

STD: 1.5 -1.2 -0.1 -0.3 -1.8 -2.0 -1.4

24 679
RT: 663 710 748 779 861 963 885

STD: 0.2 -0.8 -0.9 -1.1 -1.7 -2.9 -2.2

26 723
RT: 566 782 744 633 766 957 809

STD: 2.1 -1.0 -0.2 1.0 -0.4 -2.5 -0.7

28 760
RT: 532 771 737 744 808 796 990

STD: 3.0 -0.4 0.2 0.2 -0.4 -0.5 -2.3

30 753
RT: 474 794 823 567 804 844 783

STD: 3.7 -0.6 -0.7 2.3 -0.5 -1.0 -0.3

Table 5 Comparison of actual response times (in seconds) between the route based model and each other policy.
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A
Arc
RT

Closest Av. Route Lee Andersson Bandara Jagtenberg Mayorga

10 1,862
RT: 2,437 1,939 1,998 2,447 3,604 2,477 3,949

STD: -1.9 -0.4 -0.5 -2.1 -5.4 -2.5 -6.0

12 1,311
RT: 1,606 1,237 1,467 1,488 2,676 1,762 2,531

STD: -1.7 0.3 -1.3 -1.0 -5.2 -2.3 -4.6

14 998
RT: 1,005 885 980 1,171 1,869 1,287 1,809

STD: -2.0 1.2 -0.4 -1.6 -5.0 -2.2 -4.9

16 965
RT: 907 788 882 894 1,496 969 1,482

STD: -0.5 1.7 -0.6 -0.7 -4.8 -1.1 -4.6

18 857
RT: 854 948 875 845 1,324 1,020 1,176

STD: 0.5 -0.9 0.3 0.4 -2.9 -1.2 -2.0

20 862
RT: 766 836 862 862 1,082 970 1,018

STD: 1.0 0.3 -0.1 -0.2 -1.9 -1.2 -1.7

22 858
RT: 652 771 775 806 956 964 913

STD: 1.9 1.2 0.3 0.1 -1.3 -1.6 -1.0

24 710
RT: 663 679 748 779 861 963 885

STD: 0.4 0.8 -0.6 -0.9 -1.6 -2.5 -1.9

26 782
RT: 566 723 744 633 766 957 809

STD: 2.4 1.0 0.4 1.5 0.1 -2.0 -0.5

28 771
RT: 532 760 737 744 808 796 990

STD: 3.2 0.4 0.3 0.4 -0.3 -0.4 -2.1

30 794
RT: 474 753 823 567 804 844 783

STD: 4.0 0.6 -0.5 2.6 -0.3 -0.8 -0.1

Table 6 Comparison of penalized response times (in seconds) between the arc based model and each other

policy.

A
Arc
RT

Closest Av. Route Lee Andersson Bandara Jagtenberg Mayorga

10 1,862
RT: 2,437 1,939 1,998 2,447 3,604 2,477 3,949

STD: -1.9 -0.4 -0.5 -2.1 -5.4 -2.5 -6.0

12 1,311
RT: 1,606 1,237 1,467 1,488 2,676 1,762 2,531

STD: -1.7 0.3 -1.3 -1.0 -5.2 -2.3 -4.6

14 998
RT: 1,005 885 980 1,171 1,869 1,287 1,809

STD: -2.0 1.2 -0.4 -1.6 -5.0 -2.2 -4.9

16 965
RT: 907 788 882 894 1,496 969 1,482

STD: -0.5 1.7 -0.6 -0.7 -4.8 -1.1 -4.6

18 857
RT: 854 948 875 845 1,324 1,020 1,176

STD: 0.5 -0.9 0.3 0.4 -2.9 -1.2 -2.0

20 862
RT: 766 836 862 862 1,082 970 1,018

STD: 1.0 0.3 -0.1 -0.2 -1.9 -1.2 -1.7

22 858
RT: 652 771 775 806 956 964 913

STD: 1.9 1.2 0.3 0.1 -1.3 -1.6 -1.0

24 710
RT: 663 679 748 779 861 963 885

STD: 0.4 0.8 -0.6 -0.9 -1.6 -2.5 -1.9

26 782
RT: 566 723 744 633 766 957 809

STD: 2.4 1.0 0.4 1.5 0.1 -2.0 -0.5

28 771
RT: 532 760 737 744 808 796 990

STD: 3.2 0.4 0.3 0.4 -0.3 -0.4 -2.1

30 794
RT: 474 753 823 567 804 844 783

STD: 4.0 0.6 -0.5 2.6 -0.3 -0.8 -0.1

Table 7 Comparison of actual response times (in seconds) between the arc based model and each other policy.

44



4.2. Comparison of response times when considering random travel times and service times.

We also compared the response times of the optimization models when both travel and service

times are random. Given an continuous uniform random number u∈ [0,1) and the free flow travel

time from point a to b be tf (a, b), the travel time from a to b was defined as t(a, b, u) = tf (a, b) +

exp(−tf (a, b) log(1− u)), where exp(λ) is a exponentially distributed random number. This defi-

nition introduces a random delay that is proportional to the free flow travel time. The modified

on-site service time is defined as tscene(c,u) = 600 + (−150c log(1− u)), where u ∈ [0,1) is also a

uniform random number. Similarly, the modified service time at hospital is defined by thosp(c,u) =

600−min(600, (−150c log(1− u))). Tables ??, ??, ?? and ?? reports the response times for the

arc and itinerary based policies in comparison with the other heuristics. Table arrangement is the

same from the previous section.

4.3. Comparison of run times between the optimization models

We also compared the run times of the itinerary and arc based (both the ambulance and call

selection) models during the simulations. Table 8 reports the average run times, in milliseconds,

and standard deviations for each number of ambulance stations.

Itinerary Call Ambulance
A avg std avg std avg std
10 454.7 423.7 1791.6 398.5 1720.5 363.5
12 521.0 612.3 1918.4 263.9 1823.1 316.9
14 672.4 859.8 2328.1 382.2 2277.4 370.7
16 672.9 890.4 2347.3 300.9 1194.2 293.7
18 699.1 901.1 2042.6 286.0 1963.0 339.5
20 790.2 1016.2 2072.0 344.7 1886.3 403.4
22 892.5 1115.6 2027.3 343.7 1919.4 375.3
24 976.4 1161.7 3210.2 321.6 2947.4 353.1
26 894.9 971.7 3147.2 332.0 3161.6 409.1
28 941.0 981.2 3665.3 364.8 3433.8 456.9
30 1112.1 995.3 3886.2 369.7 3614.7 411.2

Table 8 Comparison of run times between optimization models. All times are in milliseconds.

5. Conclusion

The main contribution of this paper is a model of ambulance fleet operations. The model incorpo-

rates many important aspects of ambulance fleet operations that are ignored in most of the existing

literature, including the following:

1. The model incorporates different emergency types and the consequences of emergency types,

such as ambulance requirements, hospital requirements, and marginal value of response time.
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2. The model facilitates different ambulance and crew types.

3. The model allows hospital choice, taking into account the emergency type and the location

of the emergency relative to hospitals.

4. The model makes provision for a queue of waiting emergencies.

5. The model incorporates both ambulance selection decisions as well as ambulance reassignment

decisions.

6. The model allows ambulances on their way to a station to be dispatched to an emergency.

7. The model takes into account the future consequences of dispatch decisions.

We proposed a policy based on a rolling horizon approach combined with a two-stage stochastic

problem solved each time an ambulance dispatch decision is required. An algorithm based on

column generation was proposed for solving the two-stage stochastic problem. The model and

algorithm were tested using a simulation calibrated with data of the Rio de Janeiro emergency

medical service. The proposed policy performs much better than the popular closest-available-

ambulance heuristic. Additional work is needed to reduce the time taken to compute the decisions

for the proposed policy.
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Appendix. Electronic Companion

Algorithm 4 is a single algorithm to find variables xt(c, a, b, `, h), xt(c, a,h
′, `, h), and

xt(c, a, `1, b, `, h) with negative reduced cost for problem (21).

Algorithm 4 Column generation algorithm for variables xt(c, a, b, `, h), xt(c, a,h
′, `, h), and

xt(c, a, `1, b, `, h)

1: For each emergency location `∈L, construct a list B(`) of bases b∈B sorted from closest to `

to furthest from `;

2: For each emergency location `∈L, construct a list H(`) of hospitals h′ ∈H sorted from closest

to ` to furthest from `;

3: For each emergency location `∈L, construct a list L(`) of intermediate locations `1 ∈L sorted

from closest to ` to furthest from `;

4: Find an initial feasible solution, and solve the restricted version of the continuous relaxation

of problem (2)–(13) with the decision variables that are nonzero in the initial feasible solution;

5: optimality verified ← false;

6: while not optimality verified do

7: optimality verified ← true;

8: Use the optimal dual variables for the restricted version of the continuous relaxation of

problem (2)–(13) to compute ĉt(`) = čt(`) = c∗t (`), ĥt(a, b, `), ȟt(a,h
′, `), h∗t (a, `1, `), and b∗t (a, `1);

9: for t∈ {0, . . . , T} do

10: for a∈A do

11: for `∈L do

12: negative found ← false;

13: for b∈B(`) (from closest to furthest) while not negative found do

14: if objective value of column generation subproblem (26) is negative then

15: negative found ← true;

16: optimality verified ← false;

17: Add variable xt(ĉt(`), a, b, `, ĥt(a, b, `)) to the restricted version of the continuous

relaxation of problem (2)–(13);

18: end if

19: end for

52



20: if t≥ 1 (variables xt(c, a,h
′, `, h) are defined only for t≥ 1 (not for t= 0)) then

21: negative found ← false;

22: for h′ ∈H(`) (from closest to furthest) while not negative found do

23: if objective value of column generation subproblem (28) is negative then

24: negative found ← true;

25: optimality verified ← false;

26: Add variable xt(čt(`), a, h
′, `, ȟt(a,h

′, `)) to the restricted version of the contin-

uous relaxation of problem (2)–(13);

27: end if

28: end for

29: end if

30: negative found ← false;

31: for `1 ∈L(`) (from closest to furthest) while not negative found do

32: if objective value of column generation subproblem (24) is negative then

33: negative found ← true;

34: optimality verified ← false;

35: Add variable xt(c
∗
t (`), a, `1, b

∗
t (a, `1), `, h∗t (a, `1, `)) to the restricted version of the

continuous relaxation of problem (2)–(13);

36: end if

37: end for

38: end for

39: end for

40: end for

41: if not optimality verified then

42: Solve the current restricted version of the continuous relaxation of problem (2)–(13);

43: end if

44: end while
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