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Abstract

This paper considers optimization problems where the objective is the sum of a function given
by an expectation and a closed convex composite function, and proposes stochastic composite
proximal bundle (SCPB) methods for solving it. Complexity guarantees are established for them
without requiring knowledge of parameters associated with the problem instance. Moreover, it
is shown that they have optimal complexity when these problem parameters are known. To
the best of our knowledge, this is the first proximal bundle method for stochastic programming
able to deal with continuous distributions. Finally, we present computational results showing
that SCPB substantially outperforms the robust stochastic approximation (RSA) method in all
instances considered.
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1 Introduction

The main goal of this paper is to propose and study the complexity of some stochastic composite
proximal bundle (SCPB) variants to solve the stochastic convex composite optimization (SCCO)
problem

ϕ∗ := min {ϕ(x) := f(x) + h(x) : x ∈ Rn} (1)

where
f(x) = Eξ[F (x, ξ)]. (2)

We assume the following conditions hold: i) f, h : Rn → R ∪ {+∞} are proper closed convex
functions such that domh ⊆ dom f ; ii) a stochastic first-order oracle, which for every x ∈ domh
and almost every random vector ξ returns s(x, ξ) such that E[s(x, ξ)] ∈ ∂f(x), is available; and iii)
for every x ∈ domh, E[∥s(x, ξ)∥2] ≤ M̄2 for some M̄ ∈ R+.

Literature Review. Proximal bundle methods for solving the deterministic version of (1),
i.e., where an oracle that outputs f(x) for any x is available, have been proposed in [17, 18, 21,
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37]. Moreover, convergence (but not complexity) analyses of proximal bundle methods have been
developed for example in [7, 26, 30, 34], and their iteration complexities have been derived for
example in [2, 5, 6, 15, 19, 20].

We now discuss methods for solving (the stochastic version of) problem (1). Methods for solving
(1) when f can be computed exactly (e.g., ξ is a discrete random vector with small support) have
been discussed for example in [3, 4] and are usually based on solving a deterministic (but large-scale)
reformulation of (1), using decomposition (such as the L-shaped method [33]) possibly combined
with regularization as in [12, 13].

Solution methods for problem (1) in which ξ has a continuous distribution are basically based
on one of the following three ideas: i) a single (usually expensive) approximation of (1) where
f is approximated by a Monte Carlo average HN (x) :=

∑N
i=1 F (·, ξi)/N for a large i.i.d. sample

(ξ1, . . . , ξN ) of ξ is constructed at the beginning of the method and is then solved to yield an
approximate solution of (1) (SAA-type methods); see for instance [11, 14, 16, 31, 35] and also
Chapter 5 of [32] for their complexity analysis; ii) simple approximations of (1) are constructed at
every iteration based on a small (usually a single) sample and their solutions are used to obtain an
approximation solution of (1) (SA-type methods); SA-type methods have been originally proposed
in [29] and further extended in [9, 10, 22, 23, 25, 27, 28]; and iii) hybrid type methods which sit
in between SAA and SA-type ones in that they use partial Monte Carlo averages Hk(·) (and their
expensive subgradients) for increasing iteration indices k [13].

Contributions. Although the cutting plane methodology can be used in the context of SAA
methods to solve single approximations of (1) generated at their outset, such methodology has not
been used in the context of SA-type methods. This paper partially addresses this issue by developing
regularized aggregated cutting plane methods for solving (1) where some of the most recent (linear
approximation) cuts (in expectation) are combined, i.e., a suitable convex combination of them is
chosen, so that a single aggregated cut (in expectation) is obtained. Two SCPB variants based
on the aforementioned aggregated one-cut scheme are proposed which can be viewed as natural
extensions of the one-cut variant developed in [20] (based on the analysis of [19]) for solving the
deterministic version of (1). More specifically, at every iteration, these SCPB variants solve the
prox bundle subproblem

x = argmin
u∈Rn

{
Γ(u) +

1

2λ
∥u− xc∥2

}
(3)

where λ > 0 is the prox stepsize, xc is the current prox-center, and Γ is the current bundle
function in expectation, i.e., it satisfies E[Γ(·)] ≤ ϕ(·). The prox-center remains the same for several
consecutive iterations which are referred to as a cycle. In the beginning of a cycle, the prox-center
is updated to xc ← x and the bundle function Γ is chosen to be the composite linear approximation
F (x, ξ) + ⟨s(x, ξ), · − x⟩+ h(·) of the function F (·, ξ) + h(·) at x for some new independent sample
ξ. For other iterations of the cycle, the prox-center remains the same but Γ is set to be a convex
combination of the previous bundle function and the most recent composite linear approximation
as constructed above. It is then shown that both SCPB variants obtain a stochastic iterate y ∈ Rn

(determined by some of the above generated x’s) such that E[ϕ(y)]− ϕ∗ ≤ ε, where ϕ∗ is as in (1),
in O(ε−2) iterations/resolvent evaluations. To our knowledge, these are the first SA-type SCPB
methods for solving SCCO problems where ξ can have either a discrete or continuous distribution.
Finally, it is shown that the robust stochastic approximation (RSA) method of [22] is a special case
of SCPB with a relatively small prox stepsize.

Organization of the paper. Subsection 1.1 presents basic definitions and notation used
throughout the paper. Section 2 formally describes the assumptions on the SCCO problem (1),
presents the SCPB scheme, and two cycles rules for determining the length of the cycles in SCPB.
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Section 3 presents various convergence rate bounds for the SCPB variant based on the first cycle
rule and discusses the relationship between SCPB and RSA. Section 4 provides convergence rate
bounds for the SCPB variant based on the second cycle rule. Section 5 collects proofs of the main
results in Sections 3 and 4. Section 6 reports the numerical experiments. Finally, Section 7 presents
some concluding remarks and possible extensions.

1.1 Basic definitions and notation

Let N++ denote the set of positive integers. The sets of real numbers, non-negative and positive real
numbers are denoted by R, R+ and R++, respectively. Let Rn denote the standard n-dimensional
Euclidean space equipped with inner product and norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively.

Let ψ : Rn → (−∞,+∞] be given. The effective domain of ψ is denoted by domψ := {x ∈
Rn : ψ(x) < ∞} and ψ is proper if domψ ̸= ∅. For ε ≥ 0, the ε-subdifferential of ψ at z ∈ domψ
is denoted by ∂εψ(z) := {s ∈ Rn : ψ(u) ≥ ψ(z) + ⟨s, u− z⟩ − ε, ∀u ∈ Rn}. The subdifferential of
ψ at z ∈ domψ, denoted by ∂ψ(z), is by definition the set ∂0ψ(z). Moreover, a proper function
ψ : Rn → (−∞,+∞] is µ-strongly convex for some µ ≥ 0 if

ψ(αz + (1− α)u) ≤ αψ(z) + (1− α)ψ(u)− α(1− α)µ
2

∥z − u∥2

for every z, u ∈ domψ and α ∈ [0, 1]. Note that we say ψ is convex when µ = 0. We use the notation
ξ[t] = (ξ0, ξ1, . . . , ξt) for the history of the sampled observations of ξ up to iteration t. Define

ln+0 (·) := max{0, ln(·)}. Define the diameter of a set X to be DX := sup{∥x−x′∥ : x, x′ ∈ domX}.

2 Assumptions and two SCPB variants

This section presents the assumptions made on problem (1) and states two SCPB variants for
solving it.

2.1 Assumptions

Let Ξ denote the support of random vector ξ and assume that the following conditions on (1) are
assumed to hold:

(A1) f and h are proper closed convex functions satisfying dom f ⊃ domh;

(A2) for almost every ξ ∈ Ξ, a functional oracle F (·, ξ) : domh→ R and a stochastic subgradient
oracle s(·, ξ) : domh→ Rn satisfying

f(x) = E[F (x, ξ)], f ′(x) := E[s(x, ξ)] ∈ ∂f(x)

for every x ∈ domh are available;

(A3) M̄ := sup{E[∥s(x, ξ)∥2]1/2 : x ∈ domh} <∞;

(A4) the set of optimal solutions X∗ of (1)-(2) is nonempty.

We now make some observations about the above conditions. First, as in [22], condition (A2)
does not require F (·, ξ) to be convex. Second, condition (A3) implies that

∥f ′(x)∥ = ∥E[s(x, ξ)]∥ ≤ E[∥s(x, ξ)∥] ≤
(
E[∥s(x, ξ)∥2]

)1/2 ≤ M̄ ∀x ∈ domh. (4)
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Third, defining for every ξ ∈ Ξ and x ∈ domh,

Φ(·, ξ) = F (·, ξ) + h(·), ℓ(·;x, ξ) = f(x) + ⟨s(x, ξ), · − x⟩+ h(·), (5)

it follows from (A2), the second identity in (5), and the convexity of f by (A1), that

E[Φ(·, ξ)] = ϕ(·) ≥ f(x) + ⟨f ′(x), · − x⟩+ h(·) = E[ℓ(·;x, ξ)] (6)

where ϕ(·) is as in (1). Hence, ℓ(·;x, ξ) is a stochastic composite linear approximation of ϕ(·) in
the sense that its expectation is a true composite linear approximation of ϕ(·). (The terminology
“composite” refers to the function h which is included in the approximation ℓ(·;x, ξ) as is.)

2.2 Description of the two SCPB variants

Before describing the two SCPB variants, we motivate them by interpreting them as inexact im-
plementations of the (theoretical) proximal point method for solving (1).

Their k-th cycle of iterations performs a finite number of iterations to solve the prox subproblem

min
u∈Rn

{
ϕ(u) +

1

2λ
∥u− x̂k−1∥2

}
where x̂k−1 denotes the prox-center during the cycle. Each iteration within the cycle solves a
subproblem of the form

x = argmin
u∈Rn

{
A(u) + h(u) +

1

2λ
∥u− x̂k−1∥2

}
(7)

where A(·) is an affine bundle for f in expectation, i.e., an affine function such that E[A(·)] ≤ f(·).
(This type of bundle has been considered in the inexact proximal point approach considered in
[20] where it is referred to as a one-cut bundle for f .) The bundle A+ for the next subproblem in
the cycle is then taken to be a linear combination of the current bundle A and a newly generated
stochastic linear approximation of f of the form F (x, ξ)+⟨s(x, ξ), ·−x⟩. Moreover, the first iteration
of every cycle starts by setting the prox-center to the most recently generated x as in (7) and the
bundle to the most recently generated stochastic linear approximation of f at x.

Both SCPB variants are based on the SCPB scheme described below. As stated below, the
scheme is not a completely specified algorithm since its step 2 does not describe how to select the
index jk. Two rules for doing so, and hence the complete description of the two aforementioned
SCPB variants, are then given following the statement of the scheme.

At every iteration j ≥ 1, the SCPB scheme samples an independent realization ξj−1 of ξ.

SCPB

Input: Scalars λ, θ > 0, integer K ≥ 1, and initial point x0 ∈ domh.

0. Set j = k = 1, j0 = 0, and

τ =
θK

θK + 1
; (8)

1. take a sample ξj−1 of r.v. ξ independent from the previous samples ξ0, . . . , ξj−2 and compute

xcj =

{
xjk−1

, if j = jk−1 + 1,
xcj−1, otherwise,

(9)
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Sj =

{
s(xjk−1

, ξjk−1
), if j = jk−1 + 1,

(1− τ)s(xj−1, ξj−1) + τSj−1, otherwise,
(10)

xj = argmin
u∈Rn

{
h(u) + ⟨Sj , u⟩+

1

2λ
∥u− xcj∥2

}
, (11)

and
yj =

{
xj , if j = jk−1 + 1,
(1− τ)xj + τyj−1, otherwise;

(12)

2. if j = jk−1 + 1, then choose an integer jk such that

jk ≥ jk−1 + 1;

if j < jk, then set j ← j + 1 and go to step 1; else, set ŷk = yjk , and go to step 3;

3. if k < K, then set k ← k + 1 and j ← j + 1, and go to step 1; otherwise, compute

ŷaK =
1

⌈K/2⌉

K∑
k=⌊K/2⌋+1

ŷk (13)

and stop.

Output: ŷaK .

We first discuss the roles played by the two index counts j and k used by SCPB. First, j counts
the total number of iterations/resolvent evaluations performed by SCPB since it is increased by
one every time SCPB returns to step 1. Second, defining the k-th cycle as the iteration indices j
lying in

Ck := {ik, . . . , jk}, where ik := jk−1 + 1, (14)

it immediately follows that k counts the number of cycles generated by SCPB. Third, step 1
determines two types of iterations depending on whether j = jk (serious iteration) or j ∈ Ck \ {jk}
(null iteration). Hence, the last iteration of a cycle is a serious one while the others are null ones.

We now make several basic remarks about SCPB. First, every execution of step 1 involves
one resolvent evaluation of ∂h, i.e., an evaluation of the point-to-point operator (I + α∂h)−1(·)
for some α > 0. Second, SCPB generates three sequences of iterates, namely, the sequence of
prox-centers {xcj} computed in (9), the sequence {xj} determined by (11), and the sequence {yj}
given by (12). Third, it follows from (9) that xcj = xjk−1

for every j ∈ Ck. Hence, the prox-center
xcj remains constant between consecutive iterations within a cycle and (possibly) changes only at
the beginning of the first iteration of the following cycle. Fourth, {ŷk} is the subsequence of {yj}
consisting of all the last cycle iterates yjk generated by SCPB. Fifth, the convergence rates for the
two specific variants of the SCPB scheme described below are with respect to the average of the
iterates ŷ⌊K/2⌋+1, . . . , ŷK , namely, the point ŷaK as in (13) (see Theorems 3.1 and 4.1 below).

As already mentioned in the second paragraph preceding the description of SCPB, the scheme
is not completely specified since its step 2 does not describe how to select jk. We now describe two
cycle rules for doing so which depend on a pre-specified parameter R > 0, namely:

(B1) for every k ≥ 1, let jk be the smallest integer ≥ ik such that λkτ jk−ik ≤ R;
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(B2) for every k ≥ 1, let jk be the smallest integer ≥ ik + 1 such that

λkτ jk−ik

(
F (xik , ξik)− ℓ̃k(xik)−

1

2λ
∥xik − x

c
ik
∥2
)
≤ R (15)

where ik is as in (14) and

ℓ̃k(·) := F (xik−1, ξik−1) + ⟨s(xik−1, ξik−1), · − xik−1⟩. (16)

We make the following remarks about cycle rules (B1) and (B2). First, the sequence {jk}
determined by the cycle rule (B1) is deterministic, while the one determined by (B2) is stochastic
since the sequence {xik} used in (15) is stochastic. Second, another difference between the two
cycle rules is that (B1) allows jk = ik, while jk in (B2) is at least ik + 1. In other words, the cycle
length for (B1) may be equal to one, but the one for (B2) is at least two. Third, the length of cycle
Ck for both rules above depends on the cycle index k. Hence, even though (B1) is deterministic,
the length of the cycles generated by it changes with k.

Throughout our presentation, SCPB based on cycle rule (B1) (resp., (B2)) is referred to as
SCPB1 (resp., SCPB2).

3 Complexity results for SCPB1

This section presents the main complexity results for SCPB1 under various assumptions and dis-
cusses the relationship between SCPB1 and RSA.

3.1 Convergence rate bounds of SCPB1 with bounded domh

The following result states a general convergence rate result for SCPB1 that holds for bounded
domh and for any choice of input (λ, θ,K) in SCPB1 and constant R as in (B1). The proof is
postponed to Subsection 5.2.

Theorem 3.1. Assume that conditions (A1)-(A4) hold and domh has a finite diameter Dh ≥ 0.
Then, for any given (λ, θ,K) ∈ R2

++ × N++ and R > 0, SCPB1 with any input (λ, θ,K) and
constant R in (B1) satisfies the following statements:

a) the number of iterations within the k-th cycle Ck (see (14)) is bounded by⌈
(θK + 1) ln+0

(
λk

R

)⌉
+ 1; (17)

b) we have

E[ϕ(ŷaK)]− ϕ∗ ≤
1

K

(
D2

h

λ
+

6Rmin{λM̄2, M̄Dh}
λ

+
2λM̄2

θ

)
(18)

where Dh is the diameter of domh.

We now make some remarks about Theorem 3.1. First, its overall iteration complexity is given
by K, which is its outer iteration complexity, times its inner iteration complexity given in (17).
Second, (18) gives a bound on the expected primal gap E[ϕ(ŷaK)] − ϕ∗ in terms of K, and hence
provides a sufficient condition on how large K should be chosen for SCPB1 to generate a desired
approximate solution.
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Even though Theorem 3.1 holds for the general case in which domh is unbounded, all its
corollaries stated in this subsection and Subsection 3.3 assume that domh is bounded. For any
given (λ,K), the following result describes a convergence rate bound for SCPB1 with a specific
choice of (θ,R).

Corollary 3.2. Assume that conditions (A1)-(A4) hold and domh has a finite diameter Dh > 0.
Let a pair (λ,K) be given and consider SCPB1 with input (λ, θ,K) and R in (B1) given by

θ =
2λ2M2

D2
, R =

D

6M
(19)

where (D,M) is an estimate for the (usually unknown) pair (Dh, M̄). Then, the following state-
ments hold:

a) we have

E[ϕ(ŷaK)]− ϕ∗ ≤
3D2

2λK
(κD + κM )

where

κD :=
D2

h

D2
, κM :=

M̄2

M2
; (20)

b) its expected overall iteration complexity (up to a logarithmic term) is

O
(
λ2M2K2

D2
+K

)
. (21)

Proof: a) Using (18), the definitions of κD and κM in (20), and the definitions of θ and R in (19),
we get

E[ϕ(ŷaK)]− ϕ∗ ≤ 1

K

(
κDD

2

λ
+
Dmin{λM̄2, M̄Dh}

λM
+
κMD

2

λ

)
≤ D2

λK
(κD + κM +

√
κDκM )

≤ 3D2

2λK
(κD + κM ) ,

where in the second inequality we have used min{λM̄2, M̄Dh} ≤ M̄Dh and the definitions of κD
and κM while in the last inequality we have used the relation

√
ab ≤ (a+ b)/2 for every a, b ≥ 0.

b) It follows from Theorem 3.1(a) that the overall complexity (up to a logarithmic term) is
O(θK2 +K), which in turn is (21) in view of θ as in (19).

We now argue that the overall iteration (and sample) complexity of the SCPB1 variant of
Corollary 3.2 for finding an ε-solution x of (1), i.e., one that satisfies E[ϕ(x)]− ϕ∗ ≤ ε, is optimal
for a large range of prox stepsizes. Indeed, setting K = ⌈Tε⌉ where

Tε :=
3D2

2λε
(κD + κM ) ,

it follows from the above result that E[ϕ(ŷaK)]− ϕ∗ ≤ ε. Since K ≤ Tε + 1, we conclude from (21)
that the expected overall iteration complexity of SCPB1 is bounded by

O
(
λ2M2(Tε + 1)2

D2
+ Tε + 1

)
= O

(
M2D2

ε2
[
κ2D + κ2M

]
+
λ2M2

D2
+
D2

λε
[κD + κM ] + 1

)
.

7



In particular, if D ≥ Dh and M ≥ M̄ , or equivalently, κD ≤ 1 and κM ≤ 1, then the above
complexity reduces to

O
(
M2D2

ε2
+
λ2M2

D2
+
D2

λε
+ 1

)
.

Moreover, under the assumption that the prox stepsize λ lies in the interval [ε/M2, D2/ε], the above
complexity bound further reduces to O(M2D2/ε2), which is known to be the optimal complexity
of finding an ε-solution for any instance of (1) such that its corresponding pair (Dh, M̄) satisfies
the condition that D ≥ Dh and M ≥ M̄ (e.g., see [24]).

3.2 Relationship between SCPB1 and the RSA method of [22]

We argue in this subsection that RSA can be viewed as a special instance of SCPB1 where every
cycle Ck contains only one index (or equivalently, an instance for which every iteration is serious).

Recall that the RSA method of [22], which is developed under the assumption that h is the
indicator function of a nonempty compact convex set X, with a given initial point x0 ∈ X and
constant prox stepsize λ > 0 recursively computes its iteration sequence {xj}Nj=1 according to

xj = argmin
u∈X

{
⟨s(xj−1, ξj−1), u⟩+

1

2λ
∥u− xj−1∥2

}
∀j = 1, . . . , N. (22)

For the purpose of reviewing the iteration complexity of RSA, assume that D is an upper bound
on the diameter of X and M is an upper bound on M̄ . For 1 ≤ i ≤ N , let x̃Ni denote the average
of the iterates {xj}Nj=i, i.e.,

x̃Ni =
1

N − i+ 1

N∑
j=i

xj . (23)

It is shown in equation (2.24) of [22] that if the stepsize λ > 0 is chosen as

λ =
αD

M
√
N

(24)

for some fixed scalar α > 0, then the ergodic iterate x̃Ni with i = ⌊N/2⌋+ 1 satisfies

E[ϕ(x̃N⌊N/2⌋+1)]− ϕ∗ ≤ max{α, α−1}9DM
2
√
N
. (25)

Hence, for a given tolerance ε > 0, the smallest N satisfying E[ϕ(x̃N⌊N/2⌋+1)] − ϕ∗ ≤ ε has the
property that

N = O
(
max{α2, α−2}M2D2

ε2

)
. (26)

It turns out that RSA is a special case of SCPB1 with R in (B1) given by

R =
αD
√
K

M
.

Indeed, it follows from the above choice of R and λ as in (24) with N replaced by K that

R

λk
≥ R

λK
= 1

and hence that jk = ik satisfies (B1). Thus, every cycle only performs one iteration, i.e., its only
serious iteration. Moreover, every iteration of this SCPB1 variant is a serious one and K is its total
number of iterations.
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3.3 A practical SCPB1 variant

From a computational point of view, the choice of θ in Corollary 3.2 usually results in the quantity
θK, and hence the inner complexity bound (17), being large. The following result provides a
practical variant of SCPB1 with an alternative choice for θ and R which partially remedies the
above drawback by forcing θK to be constant. A nice feature of this variant is that it is able to
choose large prox stepsizes without loosing the optimality of its overall iteration complexity.

Corollary 3.3. Assume that conditions (A1)-(A4) hold and domh has a finite diameter Dh > 0.
Let positive integer K and constant C ≥ 1 be given, and define

θ =
C

K
, R =

D

M
, λ =

√
CD

M
√
K

(27)

where (D,M) is an estimate for the pair (Dh, M̄). Then, the following statements about SCPB1
with input (λ, θ,K) and R as above hold:

a) we have

E[ϕ(ŷaK)]− ϕ∗ ≤
(4κD + 5κM )DM√

CK
(28)

where κD and κM are as in (20);

b) the number of iterations within the k-th cycle Ck is bounded by⌈
(C + 1) ln+0

(√
Ck√
K

)⌉
+ 1,

and hence, up to a logarithmic term, is O(C);

c) its expected overall iteration complexity, up to a logarithmic term, is O(CK).

Proof: a) Using (18), the definitions of κD and κM in (20), and the definitions of θ and R in (27),
we get

E[ϕ(ŷaK)]− ϕ∗ ≤
1

K

(
κDD

2

λ
+

6Dmin{λM̄2, M̄Dh}
λM

+
2λKM̄2

C

)
≤ 1

λK

(
κDD

2 +
6DM̄Dh

M

)
+

2λM2κM
C

=
D2

λK
(κD + 6

√
κMκD) +

2λM2κM
C

, (29)

where in the second inequality we have used min{λM̄2, M̄Dh} ≤ M̄Dh and the definition of κM .
It follows from (29) and the fact that

√
κMκD ≤ (κM + κD)/2 that

E[ϕ(ŷaK)]− ϕ∗ ≤
(4κD + 3κM )D2

λK
+

2κMλM
2

C
.

Finally, the above bound with λ as in (27) implies (28).
b) This statement immediately follows from Theorem 3.1(a) with θ, R, and λ as in (27).
c) This statement follows from (b) and the fact that SCPB1 has K cycles.
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We now make two remarks about the practical SCPB1 variant of Corollary 3.3. First, although
θ in (27) depends neither on M nor D, the choice of R depends on both of these estimates. On
the other hand, SCPB2 will be analyzed in Section 4 where θ depends neither on M nor D, and R
depends on D but not M . Second, Corollary 3.3 (see its statement (b)) implies that the number
of iterations within a cycle of SCPB1 is bounded (up to a logarithmic term) by the a priori (user
specified) constant C. Thus, the SCPB1 variant of Corollary 3.3 can be viewed as an extended
version of RSA where the number of iterations within a cycle can be larger than one, instead of
being equal to one as in RSA (see the discussion in the second paragraph of Subsection 3.2).

In the remaining part of this subsection, we compare the performance of RSA and SCPB1 when
both use the prox stepsize λ as in (27) for some relatively large scalar C ≥ 1. For this discussion, we
assume that their performance measure is the overall iteration complexity (or sample complexity)
for finding an ε-solution of (1). For simplicity, we assume as in Subsection 3.2 that h is the indicator
function of a nonempty closed convex set and that the estimation pair (D,M) satisfies D ≥ Dh

and M ≥ M̄ , or equivalently, κD ≤ 1 and κM ≤ 1.
We first consider the performance (see the previous paragraph) of SCPB1. It follows from

Corollary 3.3(a) that there exists K = O(D2M2/(Cε2)) such that ŷaK is an ε-solution of (1). Hence,
it follows from Corollary 3.3(c) that the performance of SCPB1 is O(M2D2/ε2). In conclusion,
SCPB1 with the above choice of K is able to choose a prox stepsize λ as in (27) with a large
constant C while preserving its optimal performance. We now consider the performance of RSA.
It follows from (24) and (26) with α =

√
C that the performance of RSA is O

(
CD2M2/ε2

)
. In

conclusion, while both RSA and SCPB1 with prox stepsize λ as in (27) have their own performance
guarantee, the one for RSA becomes worse than that of SCPB1 as C becomes large.

Finally, although the SCPB1 variant of Corollary 3.3 chooses λ as in (27), our numerical exper-
iments uses a more aggressive prox stepsize, i.e.,

λ = β1

√
CD

M
√
K

where β1 = 10. It is interesting that SCPB1 with this aggressive choice of λ substantially outper-
forms RSA on the (relatively small number of) instances considered in our experiment.

4 Complexity results for SCPB2

This section provides the main complexity results for SCPB2.
The following result is an analogue of Theorem 3.1 and describes the convergence rate bound

for the SCPB2 without imposing any condition on its input (λ, θ,K) and the constant R in (B2).
The proof is postponed to Subsection 5.3.

Theorem 4.1. Assume that conditions (A1)-(A4) hold and domh has a finite diameter Dh > 0.
Then, SCPB2 satisfies the following statements:

a) the expected number of iterations within the k-th cycle Ck (see (14)) is bounded by⌈
(θK + 1) ln+0

(
2M̄2λ2k

R

)⌉
+ 1; (30)

b) we have

E[ϕ(ŷaK)]− ϕ∗ ≤
1

K

(
3R+D2

h

λ
+

2λM̄2

θ
+

2λM̄2

θ2K

)
.
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Following a similar argument as in the paragraph following Corollary 3.2, it can be shown that
SCPB2 has optimal iteration complexity (up to a logarithmic term) for finding an ε-solution of (1)
for a large range of prox stepsizes.

The following result is the analogue of Corollary 3.3 when SCPB2 is implemented using cycle
rule (B2) instead of (B1). As in Corollary 3.3, it forces the quantity θK to be constant but, in
contrast to the choice of R of Corollary 3.3, its choice for R does not depend on an estimate M for
M̄ .

Corollary 4.2. Assume that conditions (A1)-(A4) hold and domh has a finite diameter Dh > 0.
Let positive integers K and constant C ≥ 1 be given, and define

θ =
C

K
, R = D2, λ =

√
CD

M
√
K

(31)

where D is an estimate for Dh and M is an estimate for M̄ . Then, the following statements for
SCPB2 with input (λ, θ,K) based on cycle rule (B2) with R, θ, and λ as above hold:

a) we have

E[ϕ(ŷaK)]− ϕ∗ ≤
(3 + κD + 4κM )DM√

CK
(32)

where κD and κM are as in (20);

b) the expected number of iterations within the k-th cycle Ck is bounded by⌈
(C + 1) ln+0

(
2κMCk

K

)⌉
+ 1,

and hence, up to a logarithmic term, is O(C);

c) its expected overall iteration complexity, up to a logarithmic term, is O(CK).

Proof: a) Using Theorem 4.1(b) with θ and R as in (31) and the definitions of κD and κM in (20),
we have

E[ϕ(ŷaK)]− ϕ∗ ≤
(3 + κD)D

2

λK
+

4κMλM
2

C
,

which together with λ in (31) implies (32).
b) This statement follows from (30) with θ, R, and λ as in (31) and the definition of κM in (20).
c) This statement follows from (b) and the fact that SCPB2 has K cycles.

5 Proofs of main results in Sections 3 and 4

This section contains three subsections. The first one presents some technical results that apply to
the SCPB scheme regardless of how the index jk is chosen in step 2. The second and third ones
are then devoted to the proofs of Theorems 3.1 and 4.1, respectively.
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5.1 Proofs of some technical results

We assume (A1)-(A4) hold throughout this subsection. Recall that for every j ≥ 0

ξ[j] = (ξ0, ξ1, . . . , ξj)

and for p ≤ q positive integers we denote by ξ[p:q] the portion ξ[p:q] = (ξp, ξp+1, . . . , ξq) of realizations
of the r.v. ξ over the iterations p, p+ 1, . . . , q. For convenience, in what follows we set

sj := s(xj , ξj). (33)

For every k ≥ 1 and j ∈ Ck, define

uj :=

{
Φ(xik , ξik), if j = ik,
(1− τ)ϕ(xj) + τuj−1, otherwise,

(34)

and

Γj(·) :=
{
ℓ̃k(·) + h(·), if j = ik,
(1− τ)ℓ(·;xj−1, ξj−1) + τΓj−1(·), otherwise,

(35)

where Φ(·, ξ) and ℓ(·;x, ξ) are as in (5) and and ℓ̃k(·) is as in (16). It is easy to see from (10), (11),
and the above definition of Γj that

xj = argmin
u∈Rn

{
Γλ
j (u) := Γj(u) +

1

2λ
∥u− xcj∥2

}
. (36)

The first result below provides some basic relations which are often used in our analysis.

Lemma 5.1. For every j ≥ 1, we have

E[Φ(xj , ξj)] = E[ϕ(xj)], (37)

E[ϕ(yj)] ≤ E[uj ], (38)

E[Γj(x)] ≤ ϕ(x) ∀x ∈ domh. (39)

Proof: Observe that xj is a function of ξ[j−1] and not of ξj . Hence, xj is independent of ξj in
view of the fact that ξj is chosen in step 1 of SCPB to be independent of ξ[j−1]. Using the relation
f(x) = E[F (x, ξ)] (see (A2)), it follows that

E[Φ(xj , ξj)] = Eξ[j] [F (xj , ξj) + h(xj)] = Eξ[j−1]
[Eξj [F (xj , ξj) + h(xj)|ξ[j−1]]]

= Eξ[j−1]
[f(xj) + h(xj)] = E[ϕ(xj)],

which is identity (37). It then suffices to show that, for any given k ≥ 1, (38) and (39) hold for
every j in the k-th cycle, i.e., j ∈ Ck. We show this by induction on j where j is the iteration count.
If j = ik, then it follows from (12), (34), and (37) that

E[uj ]
(34)
= E[Φ(xj , ξj)]

(37)
= E[ϕ(xj)]

(12)
= E[ϕ(yj)],

and from (35) with j = ik, (16), and assumptions (A1)-(A2) that for every x ∈ domh,

E[Γj(x)]
(35)
= E[ℓ̃k(x) + h(x)]

(16),(A2)
= f(xik−1) + ⟨f ′(xik−1), x− xik−1⟩+ h(x)

(A1)

≤ ϕ(x).

12



Let j be such that j > ik and (38) and (39) hold for j. Then, it follows from (12), (34), the fact
that (38) holds for j, and the convexity of ϕ, that

E[uj+1]
(34),(38)

≥ (1− τ)E[ϕ(xj+1)] + τE[ϕ(yj)] ≥ E[ϕ((1− τ)xj+1 + τyj)]
(12)
= E[ϕ(yj+1)],

and from (6), (35) and the fact that (39) holds for j, that

E[Γj+1(x)]
(35)
= τE[Γj(x)] + (1− τ)E[ℓ(x;xj , ξj)]

(6),(39)

≤ τϕ(x) + (1− τ)ϕ(x) = ϕ(x).

We have thus shown that (38) and (39) hold for every j ∈ Ck.
It is worth noting that the proof of (39) is strongly based on the fact that Γj is a convex

combination of affine functions whose expected values are underneath ϕ. Moreover, this inequality
would not necessarily be true if Γj were for example the maximum of functions as just described.

The next result provides a useful estimate for the quantity ϕ(xj , ξj)− ℓ(xj ;xj−1, ξj−1).

Lemma 5.2. For every j ∈ Ck such that j ≥ ik, we have:

ϕ(xj)− ℓ(xj ;xj−1, ξj−1) ≤ (M̄ + ∥sj−1∥)∥xj − xj−1∥. (40)

Proof: Using the definitions of ϕ and ℓ(·;x, ξ) in (1) and (5), respectively, we have

ϕ(xj)− ℓ(xj ;xj−1, ξj−1) = f(xj)− f(xj−1)− ⟨sj−1, xj − xj−1⟩ ≤ ⟨f ′(xj)− sj−1, xj − xj−1⟩

where the inequality is due to the convexity of f . The above inequality, the Cauchy-Schwarz
inequality, the triangle inequality and (4) then imply (40).

The technical result below introduces a key quantity, namely, scalar tj below, and provides a
useful recursive relation for it over the iterations of the k-th cycle. This recursive relation will then
be used in Proposition 5.6 to show that the tj at the end of the k-th cycle, namely tjk , is relatively
small in expectation.

Lemma 5.3. For every j ≥ 1, define

tj := uj − Γλ
j (xj), bj+1 :=

λ(M̄2 + ∥sj∥2)
θK

(41)

where λ, θ, and K are as in step 0 of SCPB, and sj is as in (33). Then, for every j ∈ Ck such that
j ≥ ik + 1, we have

tj ≤ τtj−1 + (1− τ)bj (42)

where τ is as in (8), and hence

tj ≤ τ j−iktik + (1− τ)
j∑

i=ik+1

τ j−ibi. (43)

Proof: Let j ∈ Ck with j ≥ ik + 1 be given. It follows from the definitions of Γj and Γλ
j in (35)

and (36), respectively, that

Γλ
j (xj) = (1− τ)ℓ(xj ;xj−1, ξj−1) + τΓj−1(xj) +

1

2λ
∥xj − xcj∥2

≥ (1− τ)ℓ(xj ;xj−1, ξj−1) + τ

[
Γj−1(xj) +

1

2λ
∥xj − xcj−1∥2

]
= (1− τ)ℓ(xj ;xj−1, ξj−1) + τΓλ

j−1(xj)

≥ (1− τ)ℓ(xj ;xj−1, ξj−1) + τ

[
Γλ
j−1(xj−1) +

1

2λ
∥xj − xj−1∥2

]
, (44)
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where for the first inequality we used the fact that τ < 1 and xcj = xcj−1 for j ∈ Ck with j ≥ ik + 1

while for the second inequality is due to the facts that Γλ
j is (1/λ)-strongly convex and xj−1 is the

minimizer of Γλ
j−1 (see (36)). Using (8), (40) and (44), we have

Γλ
j (xj)− τΓλ

j−1(xj−1)
(8),(44)

≥ (1− τ)
[
ℓ(xj ;xj−1, ξj−1) +

θK

2λ
∥xj − xj−1∥2

]
(40)

≥ (1− τ)ϕ(xj) + (1− τ)
[
θK

2λ
∥xj − xj−1∥2 − (M̄ + ∥sj−1∥)∥xj − xj−1∥

]
≥ (1− τ)ϕ(xj)− (1− τ)λ(M̄ + ∥sj−1∥)2

2θK

where the last inequality is obtained by minimizing its left hand side with respect to ∥xj − xj−1∥.
The above inequality, the fact that (α1 +α2)

2 ≤ 2α2
1 +2α2

2 for every α1, α2 ∈ R, and the definition
of bj in (41) imply that

Γλ
j (xj)− τΓλ

j−1(xj−1) ≥ (1− τ)ϕ(xj)− (1− τ)λ(M̄
2 + ∥sj−1∥2)
θK

(41)
= (1− τ)ϕ(xj)− (1− τ)bj .

Rearranging the above inequality and using the definition of tj in (41), identity (34), and the fact
that j ≥ ik + 1, we then conclude that

Γλ
j (xj) + (1− τ)bj ≥ τΓλ

j−1(xj−1) + (1− τ)ϕ(xj)
(41)
= τ(uj−1 − tj−1) + (1− τ)ϕ(xj)

(34)
= uj − τtj−1,

which, in view of the definition of tj in (41), implies (42). Inequality (43) follows immediately from
(42) and an induction argument.

The following technical result provides some useful bounds on bj .

Lemma 5.4. For every ℓ ≥ 0 and j ≥ ℓ+ 2, we have

E[bj |ξ[ℓ]] ≤
2λM̄2

θK
, E[bj ] ≤

2λM̄2

θK
. (45)

Proof: We first show that for every j ≥ 1 and ℓ ≤ j − 1,

E[∥sj∥2 | ξ[ℓ]] ≤ M̄2. (46)

Fix j ≥ 1. Since xj becomes deterministic when ξ[j−1] is given, it follows from (A3) with x = xj
and the definition of sj in (33) that

Eξj [∥sj∥
2 | ξ[j−1]] ≤ M̄2.

Now, if ℓ ≤ j − 2, then the above relations together with the law of total expectation imply that
and

E[∥sj∥2 | ξ[ℓ]] = Eξ[ℓ+1:j]
[∥sj∥2 | ξ[ℓ]] = Eξ[ℓ+1:j−1]

[Eξj [∥sj∥
2 | ξ[j−1]]] ≤ M̄2.

We have thus shown that (46) holds for any ℓ ≤ j − 1.
The first inequality in (45) then follows from the definition of bj in (41). The second inequality

in (45) follows from the first one and the law of total expectation.
The next technical result provides a bound on the initial tj for the k-th cycle, namely tik , in

expectation.
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Lemma 5.5. For every k ≥ 1, we have E[tik ] ≤ 2min{λM̄2, M̄Dh} where ik and tj are as in (14)
and (41), respectively.

Proof: Let
∆j = Φ(xj , ξj)− ϕ(xj) = F (xj , ξj)− f(xj). (47)

Using the definitions of tj and Γλ
j in (41) and (36), respectively, (34) with j = ik = jk−1 + 1 (see

(14)), we have

tik
(41)
= uik − Γλ

ik
(xik)

(34),(35)
= Φ(xik , ξik)−

[
F (xjk−1

, ξjk−1
) + ⟨sjk−1

, xik − xjk−1
⟩+ h(xik)

]
− 1

2λ
∥xik − xjk−1

∥2

= ∆ik −∆jk−1
+ ϕ(xik)− ℓ(xik ;xjk−1

, ξjk−1
)− 1

2λ
∥xik − xjk−1

∥2

≤ ∆ik −∆jk−1
+
(
M̄ + ∥sjk−1

∥
)
∥xik − xjk−1

∥ − 1

2λ
∥xik − xjk−1

∥2 (48)

where the inequality is due to Lemma 5.2. Maximizing the right hand side of the last inequality
above with respect to ∥xik − xjk−1

∥ and using the relation (a+ b)2 ≤ 2a2 + 2b2 for every a, b ∈ R,
we obtain

tik ≤ ∆ik −∆jk−1
+
λ

2

(
M̄ + ∥sjk−1

∥
)2 ≤ ∆ik −∆jk−1

+ λ
(
M̄2 + ∥sjk−1

∥2
)
. (49)

Moreover, (48) and the fact that ∥xik − xjk−1
∥ ≤ Dh also imply that

tik ≤ ∆ik −∆jk−1
+
(
M̄ + ∥sjk−1

∥
)
Dh. (50)

It follows from (33), (47), and conditions (A2) and (A3) that

E[∆ik ] = 0, E[∆jk−1
] = 0, E[∥sjk−1

∥2] ≤ M̄2.

Hence, the lemma follows by taking expectations of (49) and (50) and using the above three
relations.

We emphasize that all results developed in this subsection hold regardless of the way jk is chosen
in step 2. On the other hand, the results in the following two subsections strongly use the fact that
jk is chosen according to either (B1) or (B2).

5.2 Proof of Theorem 3.1

This subsection is devoted to the proof of Theorem 3.1. The following result derives a bound in
expectation for tjk when jk is chosen according to cycle rule (B1).

Proposition 5.6. In addition to conditions (A1)-(A4), assume also that (B1) holds. Then, for
every k ≥ 1, we have

E[tjk ] ≤
2Rmin{λM̄2, M̄Dh}

λk
+

2λM̄2

θK
(51)

where tj is as in (41).
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Proof: Fix k ≥ 1. It follows from cycle rule (B1) and inequality (43) with j = jk that

tjk ≤ τ
jk−iktik + (1− τ)

jk∑
i=ik+1

τ jk−ibi. (52)

In view of (B1) and (14), it follows that jk and ik are both deterministic. Hence, taking expectation
of the above inequality and using the last inequality in (45), cycle rule (B1), and Lemma 5.5, we
conclude that

E[tjk ] ≤ τ
jk−ikE[tik ] + (1− τ)

jk∑
i=ik+1

τ jk−iE[bi]

≤ 2Rmin{λM̄2, M̄Dh}
λk

+ (1− τ)2λM̄
2

θK

jk∑
i=ik+1

τ jk−i,

and hence that (51) holds.
It is worth noting that rule (B1) plays an important role in showing that the expectation of the

first term on the right-hand side of (52) is O(1/k). On the other hand, the proof of the O(1/K)
bound for the expectation of the second term on the right-hand side of (52) does not depend on
rule (B1) but on the fact that the expectation of bj is small, namely, O(1/K) (see (45) and its
definition in (41)). In conclusion, rule (B1) provides a way to estimate the magnitude of E[tjk ], a
quantity which by itself is intractable to compute exactly.

In the remaining part of this subsection, we analyze the behavior of the “outer” sequence of
iterations {ŷk} = {yjk} ⊂ Rn generated in step 2 of SCPB. For this purpose, define

Γ̂k := Γjk ∀k ≥ 1 (53)

and
x̂k := xjk , ûk := ujk . (54)

In what follows, we make some remarks about the above “outer” sequences which follow as
immediate consequences of the results developed above. In view of the above definitions, relation
(36) with j = jk, and the way the prox-centers xcj are updated in (9), we have that

x̂k = argmin
x∈Rn

{
Γ̂k(x) +

1

2λ
∥x− x̂k−1∥2

}
∀k ≥ 1. (55)

Moreover, it follows from (38) and (39) with j = jk that

E[ϕ(ŷk)] ≤ E[ûk] (56)

and
E[Γ̂k(z)] ≤ ϕ(z) ∀z ∈ domh. (57)

The following result describes an important recursive formula for the outer sequence {ŷk} gen-
erated by SCPB.

Lemma 5.7. In addition to conditions (A1)-(A4), assume also that (B1) holds. Then, for every
k ≥ 1 and z ∈ domh, we have

2Rmin{λM̄2, M̄Dh}
λk

+
2λM̄2

θK
+

1

2λ
[dk−1(z)]

2 − 1

2λ
[dk(z)]

2 ≥ E[ϕ(ŷk)]− ϕ(z)

where
dk(z) :=

(
E[∥x̂k − z∥2]

)1/2
. (58)
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Proof: First observe that (53), (54), and the definitions of Γλ
j and tj in (36) and (41), respectively,

imply that (51) is equivalent to

E
[
ûk − Γ̂k(x̂k)−

1

2λ
∥x̂k − x̂k−1∥2

]
≤ 2Rmin{λM̄2, M̄Dh}

λk
+

2λM̄2

θK
. (59)

It follows from (55) and the fact that the objective function of (55) is (1/λ)-strongly convex that
for every z ∈ domh,

Γ̂k(x̂k) +
1

2λ
∥x̂k − x̂k−1∥2 ≤ Γ̂k(z) +

1

2λ
∥z − x̂k−1∥2 −

1

2λ
∥z − x̂k∥2,

and hence that

ûk − Γ̂k(x̂k)−
1

2λ
∥x̂k − x̂k−1∥2 +

1

2λ
∥x̂k−1 − z∥2 ≥ ûk − Γ̂k(z) +

1

2λ
∥x̂k − z∥2.

Taking expectation of the above inequality and using (58) and (59), we conclude that

2Rmin{λM̄2, M̄Dh}
λk

+
2λM̄2

θK
+

1

2λ
[dk−1(z)]

2 ≥ E[ûk]− E[Γ̂k(z)] +
1

2λ
[dk(z)]

2

which, in view of (56) and (57), immediately implies the conclusion of the lemma.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1: a) This statement directly follows from (8), cycle rule (B1), the definition
of ln+0 , and the facts that |Ck| = jk − ik + 1 and ln τ−1 ≥ 1− τ .

b) Using the definition of ŷaK in (13), Lemma 5.7 with z = x∗ ∈ X∗, and the facts that
⌈K/2⌉ ≥ K/2 and

K∑
k=⌊K/2⌋+1

1

k
≤
∫ K

⌊K/2⌋

1

x
dx = ln

K

⌊K/2⌋
≤ ln

K

K/4
= ln 4 ≤ 3

2
∀K ≥ 2,

we then conclude that for every K ≥ 2,

E[ϕ(ŷaK)]− ϕ∗ ≤
1

⌈K/2⌉

K∑
k=⌊K/2⌋+1

(E[ϕ(ŷk)]− ϕ∗)

≤ 1

⌈K/2⌉

K∑
k=⌊K/2⌋+1

(
2Rmin{λM̄2, M̄Dh}

λk
+

2λM̄2

θK
+

1

2λ
[dk−1(x

∗)]2 − 1

2λ
[dk(x

∗)]2
)

≤ 6Rmin{λM̄2, M̄Dh}
λK

+
2λM̄2

θK
+

[
d⌊K/2⌋(x

∗)
]2

λK
(60)

where the first inequality is due to the convexity of ϕ. It is also easy to see from Lemma 5.7 that
(60) holds for K = 1. Then (18) follows from (60) and the fact that d⌊K/2⌋(x

∗) ≤ Dh. ■

The above result strongly uses the fact that domh is bounded in view of the last inequality of
its proof.

We end this subsection by describing a complexity bound for a slightly modified SCPB1 variant
which is derived without assuming that domh is bounded. We start by describing the two changes
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one needs to make to SCPB1 in order to obtain the aforementioned variant. First, instead of the
point ŷaK as in (13), it outputs

ȳaK =
1

K

K∑
k=1

ŷk. (61)

Second, instead of computing jk as in (B1), it sets jk as the smallest integer greater than or equal
to ik such that λKτ jk−ik ≤ R.

Theorem 5.8. Assume that conditions (A1)-(A4) hold and let d0 denote the distance of the initial
point x0 to the optimal set X∗, i.e.,

d0 := ∥x0 − x∗0∥, where x∗0 := argmin {∥x0 − x∗∥ : x∗ ∈ X∗}. (62)

Then, the aforementioned SCPB1 variant satisfies the following statements:

a) the number of iterations within each cycle is bounded by⌈
(θK + 1) ln+0

(
λK

R

)⌉
+ 1;

b) there holds

E[ϕ(ȳaK)]− ϕ∗ ≤
1

K

(
d20
2λ

+ 2RM̄2 +
2λM̄2

θ

)
.

Proof: (a) The proof of (a) is similar to that of Theorem 3.1(a).
(b) First note that the new way of choosing jk and slightly different arguments than the ones

used in the proofs of Proposition 5.6 and Lemma 5.7 imply that for every z ∈ domh,

2RM̄2

K
+

2λM̄2

θK
+

1

2λ
[dk−1(z)]

2 − 1

2λ
[dk(z)]

2 ≥ E[ϕ(ŷk)]− ϕ(z).

Using the fact that ϕ is convex and the definition of ȳaK in (61), and summing the above inequality
from k = 1 to K, we conclude that for every z ∈ domh,

E[ϕ(ȳaK)]− ϕ(z) ≤ 1

K

K∑
k=1

[E[ϕ(ŷk)]− ϕ(z)]

≤ 1

K

K∑
k=1

(
2RM̄2

K
+

2λM̄2

θK
+

1

2λ
[dk−1(z)]

2 − 1

2λ
[dk(z)]

2

)
≤ 2RM̄2

K
+

2λM̄2

θK
+

[d0(z)]
2

2λK
.

The statement now follows from the above inequality with z = x∗0 where x∗0 is as in (62).

5.3 Proof of Theorem 4.1

The following result, which is an analogue of Proposition 5.6 with cycle rule (B1) replaced by (B2),
derives a bound on tjk in expectation.
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Proposition 5.9. In addition to conditions (A1)-(A4), assume also that cycle rule (B2) is used.
For every k ≥ 1, we have

E[tjk ] ≤
R

λk
+

2λM̄2

θK
+

2λM̄2

θ2K2
. (63)

Proof: Using (43) with j = jk, we conclude that

tjk − (1− τ)
jk∑

i=ik+2

τ jk−ibi
(43)

≤ τ jk−iktik + (1− τ)τ jk−ik−1bik+1

(B2)

≤ R

λk
+ (1− τ)bik+1 (64)

where the second inequality is due to cycle rule (B2), the observation that (B2) is equivalent to
λkτ jk−iktik ≤ R, and τ ∈ (0, 1) in view of (8). Noting that jk becomes deterministic once ξ[ik] is
given, taking expectation of the above inequality conditioned on ξ[ik], rearranging the terms, and
using the first inequality in (45), we have

E
[
tjk |ξ[ik]

]
− R

λk
− (1− τ)E[bik+1|ξ[ik]] ≤ (1− τ)

jk∑
i=ik+2

τ jk−iE[bi|ξ[ik]]

(45)

≤ (1− τ)

 jk∑
i=ik+2

τ jk−i

 2λM̄2

θK
≤ 2λM̄2

θK
.

Taking expectation of the above inequality with respect to ξ[ik], rearranging the terms, and using
the second inequality (45) and the fact that 1− τ ≤ 1/(θK) by (8), we conclude that

E[tjk ] ≤
R

λk
+ (1− τ)E[bik+1] +

2λM̄2

θK

≤ R

λk
+

1

θK

2λM̄2

θK
+

2λM̄2

θK
,

and hence that (63) holds.
It is worth noting that rule (B2) plays an important role in showing that the first term on the

right-hand side of the (64) is O(1/k).
The following result is an analogue of Lemma 5.7 with (B1) replaced by (B2).

Lemma 5.10. In addition to conditions (A1)-(A4), assume also that cycle rule (B2) is used. Then,
for every z ∈ domh and k ≥ 1, we have

R

λk
+

2λM̄2

θK
+

2λM̄2

θ2K2
+

1

2λ
[dk−1(z)]

2 − 1

2λ
[dk(z)]

2 ≥ E[ϕ(ŷk)]− ϕ(z)

where dk(z) is as in (58).

Proof: First observe that the definitions of Γλ
j and tj in (36) and (41), respectively, imply that

(63) is equivalent to

E
[
ûk − Γ̂k(x̂k)−

1

2λ
∥x̂k − x̂k−1∥2

]
≤ R

λk
+

2λM̄2

θK
+

2λM̄2

θ2K2
. (65)

The remaining part of the proof is now similar to that of Lemma 5.7 except that (65) is used in
place of (59).

19



We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1: a) Using (8), (15), the definition of ln+0 , and the facts that |Ck| = jk−ik+1
and ln τ−1 ≥ 1− τ , we have

|Ck| ≤
1

1− τ
ln+0

(
tikλk

R

)
+ 1 = (θK + 1) ln+0

(
tikλk

R

)
+ 1.

Taking expectation of the above inequality, and using the Jensen’s inequality and the fact that lnx
is a concave function, we then conclude that

E[|Ck|] ≤ (θK + 1)E
[
ln+0

(
tikλk

R

)]
+ 1 ≤ (θK + 1) ln+0

(
E[tik ]λk

R

)
+ 1

≤ (θK + 1) ln+0

(
2M̄2λ2k

R

)
+ 1,

where the last inequality is due to Lemma 5.5.
b) This statement follows from the same argument as in the proof of Theorem 3.1(b) except

that Lemma 5.10 is used in place of Lemma 5.7. ■

6 Numerical experiments

In this section, we report the results of numerical experiments where we compare the performance
of RSA and our two variants of SCPB on three stochastic programming problems, namely: a
stochastic utility problem given in Section 4.2 of [22] and the two two-stage nonlinear stochastic
programs considered in the numerical experiments of [10]. These three problems are of form (1)-
(2) with h the indicator function of a convex compact set X with diameter DX . Therefore, the
problems can be written as

min{f(x) := E[F (x, ξ)] : x ∈ X}. (66)

The implementations are coded in MATLAB, using Mosek optimization library [1] to generate
stochastic oracles F (x, ξ) and s(x, ξ), and run on a laptop with Intel i7, 1.80 GHz processor. For
solving subproblem (11), we do not use Mosek but implement algorithms for projection onto X. In
particular, we follow [36] to implement an exact algorithm for projection onto the unit simplex.

Parameters for Robust Stochastic Approximation. Robust Stochastic Approximation,
denoted by E-SA (Euclidean Stochastic Approximation) in what follows, is described in Section 2.2
of [22] (as explained in [22], in terms of Section 2.3 of [22], this is mirror descent robust SA with

Euclidean setup). In the notation of [22], for E-SA run for N iterations, we output x̃N1 =
1

N

N∑
i=1

xi

(this is x̃Ni given by (23) with i = 1 and corresponds to the usual output of RSA) where xi is
computed at iteration i taking the constant steps given in (2.23) of [22] by

γt =
θDX

M
√
N

where DX is the diameter of the feasible set X in (66).1 As in [22], we take θ = 0.1 which was
calibrated in [22] using an instance of the stochastic utility problem. For each problem, the value of

1Parameter M is denoted by M∗ in [22].
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M is estimated as in [22] taking the maximum of ∥s(·, ·)∥ over 10,000 calls to the stochastic oracle
at randomly generated feasible solutions.

Remark: In [22], E-SA generates approximately log2(N) candidate solutions x̃Ni = 1
N−i+1

∑N
k=i xk

with N − i+ 1 = min[2k, N ], k = 0, 1, . . . , log2(N) and an additional sample was used to estimate
the objective at these candidate solutions in order to choose the best of these candidates. In [22],
the computational effort required by this postprocessing is not reflected in the experiments. How-
ever, we believe that for a fair comparison of E-SA using this set of candidate solutions and SCPB,
this computational effort should be taken into account and without this additional computational
bulk, SCPB is already faster than E-SA in our experiments.

Parameters for SCPB1. SCPB1 uses parameters θ, τ , R, and λ given by

θ =
C

K
, τ =

θK

θK + 1
, R =

DX

M
, λ = β1

√
CDX

M
√
K

where constant C = 9 and constant β1 was calibrated with the stochastic utility problem, see
below. We take β1 = 10 in all our experiments. Constant M was estimated as for RSA taking
the maximum of ∥s(·, ·)∥ over 10,000 calls to the stochastic oracle at randomly generated feasible
solutions.

Parameters for SCPB2. SCPB2 uses parameters θ, τ , R, and λ given by

θ =
C

K
, τ =

θK

θK + 1
, R = D2

X , λ = β2

√
CDX

M
√
K

where constant C = 9 and constant β2 was calibrated with the stochastic utility problem, see be-
low. We take β2 = 10 in all our experiments. Constant M was again estimated as for RSA taking
the maximum of ∥s(·, ·)∥ over 10,000 calls to the stochastic oracle at randomly generated feasible
solutions.

Notation in the tables. In what follows, we denote by

• n the design dimension of an instance;

• N the sample size used to run the methods; this is also the number of iterations of E-SA;

• K the number of SCPB outer iterations;

• Obj the empirical mean

F̂T (x) :=
1

T

T∑
i=1

F (x, ξi) (67)

of F at x based on a sample ξ1, . . . , ξT of ξ of size T , which provides an estimation of f(x).
The empirical means are computed with x being the final iterate output by the algorithm
and T = 104;

• CPU the CPU time in seconds.
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6.1 A stochastic utility problem

Our first set of experiments was carried out with the stochastic utility problem given by

min
x∈X

E

[
ϕ

(
n∑

i=1

(
i

n
+ ξi

)
xi

)]

where

X =

{
x ∈ Rn :

n∑
i=1

xi = 1, x ≥ 0

}
, (68)

ξi ∼ N (0, 1) are independent and ϕ(t) = max(v1 + s1t, . . . , vm + smt) is piecewise convex with 10
breakpoints, all located on [0, 1]2.

Calibration of β1 and β2. We run SCPB1 and SCPB2 with 7 values of β1 and β2 on four
instances of the stochastic utility problem for K = 1000 outer iterations (i.e., cycles) and n = 500,
n = 1000, n = 2000, and n = 5000. For this experiment, the values of β1, β2, the corresponding
values of stepsize λ, and the optimal values computed by SCPB1 and SCPB2 are reported in Table
1. We found out that β1 = 10 slightly outperforms other choices of β1 for SCPB1. Surprisingly,
SCPB2 was not affected by changes in β2 and all tested values allowed us to obtain with similar
CPU times a good approximate optimal value. This value β1 = 10 and the same value β2 = 10 will
be chosen for all runs of SCPB and all the problem instances (the stepsizes in [22] were calibrated
similarly, on the basis of an instance of the stochastic utility problem).

β1, β2 0.01 0.1 1 10 50 150 1000

λ, n = 500 1.70×10−5 1.70×10−4 0.0017 0.017 0.09 0.26 1.7

Obj1, n = 500 14.2795 10.6439 10.1819 10.1811 10.1811 10.1838 10.1937

Obj2, n = 500 10.1937 10.1937 10.1937 10.1937 10.1937 10.1937 10.1937

λ, n = 103 1.17×10−5 1.17×10−4 0.0012 0.012 0.0585 0.18 1.17

Obj1, n = 103 14.6307 11.1325 10.0510 10.0504 10.0509 10.0523 10.0710

Obj2, n = 103 10.0710 10.0710 10.0710 10.0710 10.0710 10.0710 10.0710

λ, n = 2×103 8.36×10−6 8.36×10−5 8.36×10−4 0.0084 0.0418 0.1255 0.8364

Obj1, n = 2×103 13.7451 11.0836 10.0365 10.0363 10.0364 10.0375 10.0613

Obj2, n = 2×103 10.0613 10.0613 10.0613 10.0613 10.0613 10.0613 10.0613

λ, n = 5×103 7.93×10−6 7.93×10−5 7.93×10−4 0.0079 0.0397 0.119 0.793

Obj1, n = 5×103 14.0830 11.3370 10.0228 10.0228 10.0231 10.0237 10.0540

Obj2, n = 5×103 10.0540 10.0540 10.0540 10.0540 10.0540 10.0540 10.0540

Table 1: Selecting parameters β1 and β2 of SCPB1 and SCPB2. Framework: SCPB, K = 1000
outer iterations, four instances of the stochastic utility problem with n = 500, 1000, 2000, and
5000. Obj1 (resp., Obj2) is the approximate optimal value with SCPB1 (resp., SCPB2).

We now run E-SA, SCPB1, and SCPB2 on three instances L1, L2, and L3 of the stochastic
utility problem with n = 2000, 5000, and 105 respectively. For SCPB1 and SCPB2, we used

2Although the same problem class and a similar procedure to build ϕ was used in the experiments of Section 4.2
in [22], we could not find in this reference the precise choices of vk, sk and the optimal values of our instances differ
from the optimal values of the instances in [22]. Also, contrary to [22], we use the same function ϕ for all instances.
The instances differ for the problem dimension n.
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K = 1000 outer iterations. The results are reported in Table 2. Several comments are now in order
for the results reported in this table.

• For SCPB, approximate solutions can only be computed at the end of every cycle. Namely,
at the end of L-th cycle at iteration jL we can compute the approximate solution

1

⌈L/2⌉

L∑
ℓ=⌊L/2⌋+1

ŷℓ =
1

⌈L/2⌉

L∑
ℓ=⌊L/2⌋+1

yjℓ .

For a given value of N in Table 2, the approximate objective value Obj we report for E-SA is
the empirical mean of F (x, ξ) at the approximate solution 1

N

∑N
i=1 xi (where xi’s are computed

along iterations of E-SA) while for SCPB the approximate value Obj is the empirical mean

of F (x, ξ) at the approximate solution 1
⌈L(N)/2⌉

∑L(N)
ℓ=⌊L(N)/2⌋+1 ŷℓ where

L(N) = min{k : jk ≥ N}

(since a cycle may not end at iteration N).

• Each iteration of E-SA and SCPB takes a similar amount of time (in both cases we evaluate
an inexact prox-operator at some point) and therefore for a given sample size N the CPU
time for E-SA and SCPB is similar.

• For all instances, SCPB computes a good approximate optimal value much quicker than E-SA
and the decrease in the objective function value is much slower with E-SA. We also refer to
Table 7 which reports for L1 and L2 the distance between SCPB approximate optimal value
and E-SA approximate value as a percentage of SCPB decrease in the objective for several
sample sizes. This table confirms the slower convergence of E-SA in these instances.

23



- L1 : n = 2000 L2 : n = 5000 L3 : n = 105

ALG. N Obj CPU Obj CPU Obj CPU

E-SA 10 14.6449 0.001 14.6892 0.05 15.4 0.05
50 14.6322 0.006 14.6813 0.07 14.7 0.35
100 14.6169 0.01 14.6725 0.1 14.6 0.74
200 14.5880 0.03 14.6574 0.2 14.6 1.44
1000 14.3992 0.1 14.5604 0.5 14.3 17.2
104 12.9656 1.28 12.7410 3.7 14.2 80.3
105 - - - - 13.2 860.1

SCPB1 10 13.9539 0.003 13.7763 0.008 14.7 0.08
50 13.6527 0.01 13.4672 0.02 14.4 0.39
100 13.5986 0.02 13.5346 0.05 14.2 0.9
200 13.5349 0.03 13.4686 0.08 14.3 1.6
1000 13.0370 0.2 12.8376 1.6 14.2 12.5
104 - - - - 12.7 72.3

SCPB2 10 13.5968 0.002 13.7777 0.01 14.2 0.06
50 12.9421 0.008 12.6959 0.05 13.2 0.7
100 12.1317 0.02 11.7614 0.09 12.2 1.5
200 11.3640 0.03 11.3698 0.2 11.6 3.4
1000 11.5681 0.1 11.5572 0.9 11.2 25.4

Table 2: E-SA versus two variants of SCPB on the stochastic utility problem run with K = 1000
outer iterations.

6.2 A first two-stage stochastic program

Our second test problem is the nonlinear two-stage stochastic program{
min cTx1 + E[Q(x1, ξ)]
x1 ∈ Rn : x1 ≥ 0,

∑n
i=1 x1(i) = 1

(69)

where the second stage recourse function is given by

Q(x1, ξ) =


min
x2∈Rn

1

2

(
x1
x2

)T (
ξξT + γ0I2n

)( x1
x2

)
+ ξT

(
x1
x2

)
s.t. x2 ≥ 0,

n∑
i=1

x2(i) = 1.

(70)

Problem (69)-(70) is of form (1)-(2) where F (x, ξ) = cTx +Q(x, ξ) with Q given by (70) and
where h is the indicator function of set X where X given by (68) is the unit simplex. For problem
(69) we refer to Lemma 2.1 in [8] for the computation of stochastic subgradients s(x, ξ). We take
γ0 = 2 and consider a Gaussian random vector in R2n for ξ. We consider two instances of problem
(69) with n = 50 and n = 100. For each instance, the components of ξ are independent with
means and standard deviations randomly generated in respectively intervals [5, 25] and [5, 15]. The
components of c are generated randomly in interval [1, 3].

We run E-SA, SCPB1, and SCPB2 on our two instances A1 and A2 with n = 50 and n = 100,
respectively. For SCPB1 and SCPB2, we used K = 1000 outer iterations. The results are reported
in Table 3. The conclusions are similar to the experiments on the stochastic utility problem: SCPB
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computes a good approximate optimal value much quicker than E-SA and the decrease in the
objective function value is much slower with E-SA. We again refer to Table 7 which reports the
distance between SCPB approximate optimal value and E-SA approximate value as a percentage
of SCPB decrease in the objective for several sample sizes. This percentage is again above 90% for
almost all instances and sample sizes.

- A1 : n = 50 A2 : n = 100

ALG. N Obj CPU Obj CPU

E-SA 10 24.3477 0.13 7.5134 0.5
50 24.2378 0.6 7.5018 2.5
100 24.0816 1.2 7.4868 5.0
200 23.7947 3.0 7.4566 10.1
500 22.9185 8.8 7.3790 25.9
1000 21.5328 24.6 7.2587 55.5
2×104 8.5482 377 5.1339 1282
105 5.7358 1555.6 3.9193 6147

SCPB1 10 11.5047 0.2 3.0063 1.3
50 9.2959 0.6 2.7269 3.2
100 7.2031 1.5 2.4914 6.9
200 6.4626 2.9 2.2899 13.0
500 5.3700 7.5 2.0635 39.2
1000 5.0582 15.1 1.9609 70.4

SCPB2 10 8.6325 0.15 3.3113 0.6
50 7.8378 0.7 2.2478 3.2
100 7.8602 1.5 2.1929 6.4
200 6.5839 3.0 2.2913 13.4
500 6.0361 7.4 1.9974 33.7
1000 6.1989 14.9 1.8058 65.1

Table 3: E-SA versus two variants of SCPB on the two-stage stochastic program (69)-(70)

Table 4 reports the impact of overestimatingM (takingM 10 times the Monte Carlo estimation
M e) and underestimating M (taking M 10 times smaller than the Monte Carlo estimation M e).
In this experiment, SCPB is essentially not affected by a bad estimation of M while E-SA converge
much slower when M is overestimated. Additionally, Table 5 reports the computational results for
all methods applied to a variant of two-stage stochastic program (69)-(70) of size n = 50 where
the feasible set of the first stage problem is replaced by the larger simplex set {x1 ∈ Rn : x1 ≥
0,
∑n

i=1 x1(i) = 100}. These results show that the SCPB variants are more efficient that E-SA on
this specific instance. Also SCPB is not much affected by an overestimation of the diameter DX .

- M =M e M = 10M e M = 0.1M e

ALG. N Obj CPU Obj CPU Obj CPU

E-SA 2000 9.8 29.7 22.1 32.5 10.5 36.2

SCPB1 2000 5.1 36.3 5.2 33.8 5.1 42.2

SCPB2 2000 5.5 31.2 4.6 33.5 5.6 37.2

Table 4: E-SA versus two variants of SCPB on the two-stage stochastic program (69)-(70) with
overestimated and underestimated values of M on an instance with n = 50.
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- D = D D = 5D

ALG. N Obj CPU Obj CPU

E-SA 2000 1.0338×106 33.6 1.0365×106 33.8
10000 8.894×105 155.5 1.0055×106 160.8

SCPB1 2000 2.894×105 35.4 3.029×105 35.6

SCPB2 2000 2.889×105 34.2 3.003×105 30.8

Table 5: E-SA versus SCPB1 and SCPB2 on a variant of the two-stage stochastic program (69)-(70)
of size n = 50 where the simplex feasible set of the first stage problem is replaced by the larger
feasible set {x1 ∈ Rn : x1 ≥ 0,

∑n
i=1 x1(i) = 100}. Exact value D = DX = D of the diameter

used to solve the first instance and overestimated value D = 5D = 5DX used to solve the second
instance.

Finally, we report the length of SCPB cycle along iterations in the left plot of Figure 1. A few
comments are now in order on the length of the cycles with SCPB1 and SCPB2:

• We observe that the length of the cycles is much larger with SCPB1.

• For SCPB1, sequence {jk} (and therefore the length of the cycles) can be computed inde-
pendently of sequence {xk}, before running SCPB, once constant R is known. It is worth
mentioning that we have an analytic expression for jk as a function of λ, R, τ , and k, namely
jk − ik = 0 if R ≥ λk and

jk − ik =

⌈
log
(
R
λk

)
log (τ)

⌉
otherwise. Therefore, the cycle length with SCPB1 is a piecewise constant nondecreasing
function of outer iteration k and the cardinality of the set of consecutive iterations with
constant cycle length increases along the cycles.

• For SCPB2, the length of the cycles is in general small with small variability, with an average
cycle length of 2.2 for the instance with n = 50 and an average cycle length of 2.1 for the
instance with n = 100.
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Figure 1: Cycle length for SCPB1 and SCPB2 applied to two-stage stochastic program (69)-(70)
(left figure) and two-stage stochastic program (71)-(72) (right figure).
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6.3 A second two-stage stochastic program

Our third test problem is the nonlinear two-stage stochastic program{
min cTx1 + E[Q(x1, ξ)]
x1 ∈ Rn : ∥x1 − x0∥2 ≤ 100

(71)

where cost-to-go function Q(x1, ξ) has nonlinear objective and constraint coupling functions and is
given by

Q(x1, ξ) =

 min
x2∈Rn

1

2

(
x1
x2

)T (
ξξT + γ0I2n

)( x1
x2

)
+ ξT

(
x1
x2

)
s.t. ∥x2 − y0∥22 + ∥x1 − x0∥22 −R2 ≤ 0.

(72)

Problem (71)-(72) is of form (1)-(2) where F (x, ξ) = cTx+Q(x, ξ) with Q given by (72) and where
h is the indicator function of set

X = {x ∈ Rn : ∥x− x0∥2 ≤ 100}.

For problem (71), we again refer to Lemma 2.1 in [8] for the computation of stochastic subgradients
s(x, ξ). We take γ0 = 2 and consider for ξ a Gaussian random vector in R2n with the components
of ξ independent with means and standard deviations randomly generated in respectively intervals
[−5, 5] and [0, 10]. The components of c are generated randomly in interval [−1, 1] and we take
R = 200, x0(i) = 10 and y0(i) = 1 for i = 1, . . . , n.

We run E-SA, SCPB1, and SCPB2 on two instances B1 and B2 with n = 50 and n = 100,
respectively. For SCPB1 and SCPB2, we used K = 1500 outer iterations. The results are reported
in Tables 6 and 7. The conclusions are similar to the experiments on the stochastic utility problem:
it still takes much longer for E-SA to compute a solution with given accuracy. We also report in the
right plot of Figure 1 the evolution of the length of the cycles along outer iterations. The behavior
of the length of these cycles is similar to what was observed for the previous problem (69)-(70).
For SCPB2 the length of the cycles is still small on all iterations and almost constant.

- B1 : n = 50 B2 : n = 100

ALG. N Obj CPU Obj CPU

E-SA 10 15182 0.2 18571 0.6
50 15108 0.9 18497 4.0
100 15017 0.9 18405 7.4
200 14836 1.8 18222 13.9
1000 13481 3.4 16830 63.8
105 99.8 16.2 177.5 6275

SCPB1 10 2981.5 0.2 4914 0.8
50 761.2 0.8 1574 2.8
100 288.1 1.7 679 5.7
200 64.8 2.9 191 10.2
1000 -4.38 14.3 -7.87 55.5

SCPB2 10 1400.9 0.13 2766 0.5
50 0.45 0.5 17.5 2.1
100 -4.38 1.0 -7.88 4.1
200 -4.38 1.9 -7.95 8.1
1000 -4.38 9.0 -7.95 42.2

Table 6: E-SA versus two variants of SCPB on the two-stage stochastic program (71), (72)
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6.4 Summarizing performance indicators

The computational results reported in Subsections 6.1-6.3 show that SCPB computes a good ap-
proximate solution quicker than E-SA. To properly quantify the speed-up over a fixed number of
iterations N , we compute the quantity

100
Obj(E-SA)− Obj(SCPBi)

F̂T (x0)− Obj(SCPBi)
(73)

associated with SCPBi, where F̂T (x0) is the empirical mean (see (67)) of F with T = 104 and
x equal to the initial point x0, and Obj(E-SA), Obj(SCPB1), and Obj(SCPB2) are the empirical
means of F with T = 104 and x equal to the final iterates output by E-SA, SCPB1, and SCPB2,
respectively. We see that after N = 1000 iterations this percentage is above 90% for most instances,
which clearly shows that both variants of SCPB are faster than E-SA.

Sample size N 10 50 100 200 1000

L1, SCPB1 95.0 95.2 94.1 91.9 82.8

L1, SCPB2 96.6 97.2 97.5 97.2 90.9

L2, SCPB1 92.1 93.3 92.3 91.5 77.7

L2, SCPB2 92.1 95.8 96.8 96.7 93.5

A1, SCPB1 99.5 98.8 98.1 96.6 85.1

A1, SCPB2 99.6 99.0 98.0 96.5 84.2

A2, SCPB1 99.8 99.6 99.3 98.8 95.0

A2, SCPB2 99.8 99.6 99.3 98.8 95.4

B1, SCPB1 99.8 99.4 98.8 97.6 88.7

B1, SCPB2 99.9 99.4 98.8 97.6 88.7

B2, SCPB1 99.9 99.4 99.0 98.0 90.5

B2, SCPB2 99.9 99.5 99.0 98.0 90.5

Table 7: Percentages (73) for SCPB1 and SCPB2

7 Concluding remarks

This paper proposes two single-cut stochastic composite proximal bundle variants, called SCPB,
for solving SCCO problem (1)-(2) where at each iteration a problem of form (3) is solved. The two
SCPB variants, which differ in the way their cycle lengths are determined, are analyzed in Sections
3 and 4, respectively. More specifically, it is shown that both variants of SCPB with properly chosen
parameters have optimal iteration complexity (up to a logarithmic term) for finding an ε-solution
of (1) for a large range of prox stepsizes. Practical variants of SCPB which keep their cycle lengths
bounded are also proposed and numerical experiments demonstrating their excellent performance
against the RSA method of [22] on the instances considered in this paper are also reported.

Comparison with other methods: First, we have shown in Subsection 3.2 that RSA is a
special case of SCPB1 which performs only one iteration per cycle. Second, it is worth noting that
SCPB has a slight similarity with the stochastic dual averaging (SDA) method discussed in [25, 38]
since both methods explore the idea of aggregating cuts into a single one. However, there are
essential differences between the two methods, namely: 1) while SCPB updates the prox-centers
whenever a serious iteration occurs, SDA uses a fixed prox-center, and hence only performs null
iterations; and 2) SDA uses variable stepsizes which have to grow sufficiently large, while SCPB

28



uses constant prox stepsizes. In summary, from the viewpoint of this paper, SDA is closest to the
special case of SCPB with a single cycle and a sufficiently large prox stepsize; the difference between
the latter two methods is that SDA allows the prox stepsizes within its single cycle to gradually
become sufficiently large.

In summary, while RSA (resp., SDA) performs only serious (resp., null) iterations, SCPB per-
forms a balanced mix of serious and null iterations. Hence, it is reasonable to conclude that SCPB
lies between RSA and SDA.

Extensions. We finally discuss some possible extensions of our analysis in this paper. A first
question is how to extend SCPB and the corresponding complexity analysis if instead of condition
(A3) we use the assumption that for every u, v ∈ domh, we have

∥f ′(u)− f ′(v)∥ ≤ 2M + L∥u− v∥,

which is called a uniform (M,L)-condition in [20]. A second natural question is how to extend SCPB
and its complexity analysis when either the prox stepsize λ and parameter θ are allowed to change
with the iteration count k. Recalling that the prox stepsize is the only ingredient of the second
variant of SCPB that depends on an estimate M of M̄ , a third natural question is whether it is
possible to develop a SCPB variant which adaptively chooses a (variable) prox stepsize without the
need of knowing M . A fourth question is whether it is possible to establish global convergence rate
guarantees for proximal bundle methods based on two-cut or multiple-cut bundle models instead
of the single-cut bundle models considered in this paper. Finally, SCPB is able to solve two-stage
convex stochastic programs with continuous distributions, under the assumption that the second-
stage subproblems can be exactly solved (e.g., see Subsections 6.2 and 6.3). It would be interesting
to extend it to the setting of multistage stochastic convex problems with continuous distributions.
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via approximate p-efficient points and bundle methods. Computers & Operations Research,
77:177–193, 2017.

[35] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. The sample aver-
age approximation method applied to stochastic routing problems: a computational study.
Computational Optimization and Applications, 24(2-3):289–333, 2003.

[36] W. Wang and M. A. Carreira-Perpinán. Projection onto the probability simplex: An efficient
algorithm with a simple proof, and an application. Available on arXiv:1309.1541, 2013.

[37] P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable functions. In
Nondifferentiable optimization, pages 145–173. Springer, 1975.

[38] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11(88):2543–2596, 2010.

31


