
GUIDE

The Guide to Integration
Security for B2B SaaS

Table of Contents
Introduction ...1

Section 1: Overview of integration security ...2

What is an integration? ...2

What is integration security? ...2

Integrations are critical for the current technological landscape3

Section 2: Understand integration security threats and risks5

Integrations are subject to many common security threats5

Integration security failures can have a huge impact ...7

Section 3: Implement integration security best practices ..9

Security for integrations starts with design principles ...9

Protecting integration data integrity is foundational ... 12

Integration authentication and authorization are crucial 13

Legal and regulatory compliance must be included .. 15

Error handling and logging enable efficient issue resolution 19

Conclusion .. 22

Additional resources and references ... 23

About the author .. 24

1

Introduction
Welcome to our guide to integration security for B2B SaaS products!

This guide is for product leaders, engineering leaders, and security officers at B2B
SaaS companies that provide integrations connecting their products to the other
products their customers use.

You'll find it helpful whether you're preparing to build your product's first
integrations, are reexamining your existing integration strategy through a
security lens, or are considering implementing an embedded integration platform
(embedded iPaaS) to accelerate your integration roadmap.

Product integrations are challenging to get right because of many complexities.
Undoubtedly, security is one of the most inherently difficult – and most important.

Many of these security principles may be familiar to you from a general software
or SaaS context – after all, integrations are software. However, it is still too
common for integrations to not receive the same care and focus as your primary
SaaS product. We believe that integrations should be first-class citizens within
your product portfolio.

Every integration is different, and so are its security needs. In a guide like this, we
can't get into much detail on specific integrations, but we hope that this overview
helps you and your team ask the right security questions as you plan and build
your integrations.

As the team behind the industry-leading embedded integration platform
(embedded iPaaS), we at Prismatic are excited to share this with you.

In this guide, you will learn:

 ✓ The importance of security for integrations

 ✓ Common integration security threats and their impacts

 ✓ Best practices you can implement to mitigate security risks

2

Section 1: Overview of integration security
What is an integration?
An integration is the code allowing one system to transfer data to or from another.
Most integrations work with an application programming interface (API) on at least
one end of the integration. APIs are crucial tools in software development, allowing
users and applications to interact with software without understanding its inner
workings.

APIs have different patterns, such as REST, RPC, GraphQL, Polling, WebSockets,
and webhooks. API integrations power processes throughout most businesses to
keep data in sync, enhance productivity, and drive revenue.

Since most software development now happens in a SaaS context, an increasing
number of integrations are SaaS integrations, connecting SaaS apps to other
SaaS apps or connecting SaaS apps to on-premise apps. We'll use the terms SaaS
integrations and integrations interchangeably throughout this guide.

What is integration security?
Integration security refers to the measures and practices that ensure the safe
exchange of data and the secure operation of interconnected systems in a
digital environment. This concept is especially critical when different software
applications are linked to work as a cohesive unit. The primary goal of integration
security is to protect the integrity, availability, and confidentiality of data as it
moves between systems.

Several key elements of integration security are:

1. Data integrity and protection: Ensuring that data transferred between
systems is protected against unauthorized access, manipulation, and loss.
This involves using encryption during data transmission and, often, while
data is at rest.

2. Authentication and authorization: Verifying that only legitimate users and
systems can access and interact with integrated systems. This can involve
various authentication mechanisms, such as passwords, tokens, or more
sophisticated methods like OAuth.

3

3. Secure APIs: Since most integrations involve APIs, ensuring that these
APIs are secure is crucial. This includes implementing rate limiting, logging,
and regular security assessments to prevent common vulnerabilities like
injections and data breaches.

4. Compliance with regulations: Adhering to relevant legal and regulatory
requirements such as GDPR, HIPAA, or CCPA, which dictate how data should
be handled and protected, particularly personal and sensitive information.

5. Error handling and logging: Properly managing how integration errors are
handled and logged prevents the leakage of sensitive information through
error messages and ensures that operational issues can be traced and
rectified efficiently.

6. Monitoring and detecting anomalies: Continuously monitoring the integrated
systems for any unusual activity that could indicate a security breach or
operational malfunction. This involves setting up system alerts and having a
response plan in place.

7. Network security: Securing the network channels through which the
integrated systems communicate. This can include using VPCs and security
groups to control network traffic.

Integration security is a complex field that encompasses a range of technologies
and strategies to ensure that as systems become more interconnected, they do
not become more vulnerable to attacks or operational issues. It is a critical part of
any B2B SaaS organization's broader IT security and risk management strategy.

Integrations are critical for the current technological
landscape
Integrations play a critical role in the current technological landscape, especially as
businesses increasingly rely on an array of cloud-based software applications to
operate efficiently.

If you are a product leader, you are well aware of how critical integrations are
for your SaaS product. However, if you have a different role where you’re not as
familiar with integrations, you may be wondering why we are putting such an
emphasis on them. If so, this section is for you.

4

Here are some of the ways integrations contribute to business practices:

1. Enhanced efficiency and automation: Integrations allow different software
systems to communicate and share data, automating workflows that
would otherwise require manual intervention. This automation speeds up
processes and reduces the likelihood of errors, improving overall operational
efficiency.

2. Improved data accessibility and management: Integrations link systems
and ensure that data flows freely across different parts of a business.
This connectivity helps organizations maintain up-to-date, consistent, and
accurate data across all systems, improving decision-making and data
management practices.

3. Scalability: As businesses grow, their needs become more complex.
Integrations allow for scalability by enabling businesses to add new tools
and technologies without disrupting existing systems. This adaptability is
crucial for growth and expansion in a fast-paced business environment.

4. Enhanced customer experience: Integrations facilitate a smoother, more
cohesive user experience by connecting various customer service apps,
CRM systems, and marketing tools. This connectivity ensures that customer
interactions are consistent and informed across all touchpoints, enhancing
customer satisfaction and loyalty.

5. Cost reduction: Integrations can significantly reduce costs by eliminating
the need for multiple standalone systems and reducing reliance on manual
processes. Businesses can lower operational costs and improve the bottom
line by streamlining operations and reducing inefficiencies.

6. Innovation and competitive advantage: Integrations enable businesses to
leverage the best capabilities of each software tool. By integrating cutting-
edge technologies and systems, companies can stay ahead of the curve,
innovate more effectively, and maintain their competitive edge.

7. Compliance and security: With increasing regulatory demands concerning
data privacy and security, integrations help ensure that data handling across
systems complies with legal and regulatory requirements. Appropriate
integrations can help safeguard sensitive information and reduce the risk of
data breaches.

5

Section 2: Understand integration security
threats and risks
Integrations are subject to many common security
threats
Integrations and integration infrastructure, while essential for facilitating seamless
data exchange and system communication, are also susceptible to various
security vulnerabilities.

Let's look at these common security threats in more detail:

1. Insecure APIs: Since integrations frequently rely on APIs, vulnerabilities in
API security can expose sensitive data and system functions to unauthorized
access. Common issues include inadequate input validation, insufficient
authentication, and insecure data transmission.

2. Misconfigurations: Integrations can be complex to configure correctly,
and misconfigurations can inadvertently expose endpoints, data, or
functionalities that should be restricted, leading to potential security
breaches.

3. Insufficient authentication and authorization: Weak auth processes can
allow unauthorized users to access integrations. Inadequate authorization
checks can let users perform actions beyond their permissions.

6

4. Data leaks and exposure: Poorly designed integrations can lead to
unintended data exposure. For instance, sensitive information might be
logged improperly or transmitted in plaintext, which could be intercepted
during transmission.

5. Man-in-the-middle (MitM) attacks: If data is not properly encrypted during
transmission between integrated systems, it can be vulnerable to
interception and alteration by attackers, potentially leading to data theft or
manipulation. Improper handling of integration sessions or exposing user
browser cookies to attackers can also lead to MitM attacks.

6. Injection flaws: SQL injection, command injection, and other types of
injection flaws can occur when an attacker sends malicious data as part of
a command or query. Integrations that do not properly sanitize input can be
vulnerable to these attacks.

7. Broken access control: Insufficient restrictions on what authenticated users
are allowed to do can lead to unauthorized access to functions and data
they should not have access to, potentially allowing them to perform actions
detrimental to the integration’s integrity.

8. Service downtime and denial of service (DoS) attacks: Overloading
integration infrastructure with a high volume of requests, or exploiting
specific vulnerabilities to disrupt service, can lead to a denial of service for
legitimate users.

9. Third-party vulnerabilities: Integrations often connect multiple third-party
systems, and vulnerabilities in any one of these systems can potentially
compromise the security of every connected system.

10. Cross-site scripting (XSS): If the integration involves a web-based
management UI, it could be susceptible to XSS attacks, in which malicious
scripts are injected into web pages viewed by other users.

7

Integration security failures can have a huge impact
The impact of security vulnerabilities on companies providing or using SaaS
integrations can be significant and multifaceted. Since SaaS integration solutions
typically manage data flow between cloud-based and on-premises applications,
the implications of these security threats can extend across the entire enterprise.

Here are several key impacts:

1. Operational disruption: Security incidents such as service downtime or
data breaches can lead to significant operational disruptions. For instance,
a successful DoS attack on SaaS integration infrastructure could halt all
integration services, impact all dependent business processes, and lead to
productivity losses.

2. Reputational damage: Data breaches can severely damage a company's
reputation. For example, a breach that exposes sensitive customer data due
to inadequate API security could lead to negative publicity, customer churn,
and a decreased competitive edge.

3. Financial loss: Direct costs may include expenses related to incident
response, forensic investigations, system repairs, and data recovery.
For example, recovery from a denial of service (DoS) attack can require
substantial investment in both infrastructure and manpower to mitigate
the attack and prevent future occurrences. Indirect costs might include
legal fees, fines for non-compliance with regulations, and compensation to
affected customers or partners.

4. Legal and regulatory consequences: Non-compliance with legal and
regulatory standards can result in hefty fines and legal actions. Failure to
secure SaaS integrations for businesses operating under regulations like
GDPR, HIPAA, or CCPA can lead to legal repercussions and mandatory
breach reporting, further tarnishing a company's image.

5. Compromise of sensitive data: Vulnerabilities like insecure APIs and
injection flaws can lead to unauthorized access and theft of sensitive data,
including personal information, intellectual property, and business secrets.
The impact extends beyond immediate financial losses to long-term
intellectual property theft or strategic disadvantage.

8

6. Loss of intellectual property: Security breaches can lead to the loss of
intellectual property, which can be particularly damaging for businesses
that rely on proprietary technologies or business processes. This not only
impacts competitive advantage but can also affect future revenue streams.

7. Strategic setbacks: A security incident can force a business to reconsider
or modify its digital transformation strategies, potentially delaying important
innovations or enhancements that rely on secure integration functionalities.

8. Resource drain: Addressing security vulnerabilities often requires allocation
of additional resources for emergency response and long-term security
enhancements. This diversion of resources can affect other business areas
by delaying projects, increasing operational costs, and placing additional
strain on personnel.

9

Section 3: Implement integration security best
practices
Security for integrations starts with design principles
Secure design principles are guidelines that help devs build software that is robust
against attacks, protects data integrity, and ensures user privacy. Adhering to
these principles during the software development lifecycle for integrations can
significantly mitigate security risks.

Here are secure design principles and controls, including aspects of code
versioning and control, which integration devs and DevOps should implement:

Principle of least privilege
 Description: Ensure that every integration module, such as a process, a user,

or a program, has access only to the information and resources necessary
for its legitimate purpose.

 Implementation: Apply this principle to system processes and integration
functionalities, ensuring services have only the minimum permissions they
need to perform their intended functions.

Fail-safe defaults
 Description: Base access decisions on permission rather than exclusion,

meaning if the condition isn't explicitly allowed, it should be denied by
default.

 Implementation: Design integration components so that if a security
decision point fails, the default result is a denial of access. Configure
systems to automatically default to secure settings.

Economy of mechanism
 Description: Keep the design as simple and small as possible. Complex

designs increase the chance of errors, failures, and security breaches.

 Implementation: Break down large,complex integrations into smaller,
manageable functions to simplify security implementation and make it
easier to find and fix security bugs.

10

Complete mediation
 Description: Every access to every object must be checked for authority,

ensuring all accesses are authorized, monitored, and controlled.

 Implementation: Implement checks at every integration access point,
including validating user input at both client-side and server-side to prevent
SQL injection and other injection flaws.

Open design
 Description: The design should not be secret; security should not rely on

obscurity but on the possession of specific, more easily protected keys or
passwords.

 Implementation: Where possible, use well-known and tested security
algorithms and open standards for integrations, ensuring that the security
mechanisms are public and robust.

Defense in depth
 Description: Employ multiple layers of security controls (defense) throughout

the software to create a layered defense.

 Implementation: Combine various security measures like firewalls, anti-
virus software, and intrusion detection systems with application-specific
measures like input validation and encryption.

Least common mechanism
 Description: Minimize the amount of mechanisms common to more than

one user and depended on by all users.

 Implementation: Reduce shared integration resources among users to limit
the chances of a security breach affecting multiple parties.

11

Psychological acceptability
 Description: Security mechanisms should not make the resource more

difficult to access than if the security mechanisms were not present.

 Implementation: Make integration security user-friendly, such as
implementing easy-to-use yet secure user authentication procedures.

Secure defaults
 Description: Systems should be secure by default, requiring users to actively

disable security features if they choose to operate with less security.

 Implementation: Deploy integrations with the most secure configuration as
the default option, disabling all non-essential services and settings.

Code versioning and control
 Description: Code versioning and control involve managing changes to code

with version control systems to track modifications, prevent conflicts, and
maintain the integrity and history of integration code.

 Implementation:

 - Use version control systems (VCS): Implement tools like Git to manage
integration code repositories. This allows developers to track revisions,
branch out, and merge code changes efficiently.

 - Branch management: Define a clear branch strategy (e.g., GitFlow) to
manage features, hotfixes, and releases, ensuring that changes are
isolated in development and then merged systematically into main
branches.

 - Code review process: Enforce an integration code review process where
peers review each other's code for security flaws and bugs before
merging changes, enhancing code quality and security.

 - Automated build and integration: Integrate continuous integration/
continuous deployment (CI/CD) pipelines to automate building and
testing of integration changes, ensuring that new commits do not
introduce security issues or bugs.

12

 - Access control: Restrict access to integration code repositories and
ensure that only authorized personnel can change critical parts of the
codebase, aligning with the principle of least privilege.

Protecting integration data integrity is foundational
Protecting the integrity of data passed via integrations involves ensuring that the
data is not altered or tampered with during transmission or storage.

Some key strategies and techniques commonly used to protect data integrity
within integrations and related infrastructure are:

1. Encryption: Encrypting data both in transit and at rest is fundamental to
protecting its integrity. Encryption ensures that even if data is intercepted,
it cannot be read or altered without the decryption key. Common protocols
for encrypting data in transit include TLS (Transport Layer Security) and SSL
(Secure Sockets Layer). You'll want to ensure your integration infrastructure
provides you with at least TLS 1.2 or greater for data in transit. Some of the
cyphers in TLS 1.2 are considered weak, so making sure your browsers and
access clients use TLS 1.3 is best. Employing encryption algorithms such as
AES (Advanced Encryption Standard) for data at rest is common practice.

2. Data validation and sanitization: Implement robust input validation to
ensure only properly formatted data is processed and stored. This helps
prevent malicious data from being injected into the system, which could
compromise data integrity. Sanitizing data inputs to remove or encode
potentially hazardous data can also prevent injection attacks such as SQL
injection, XSS, or command injection.

3. Hashing and digital signatures: Use cryptographic hash functions to verify
data integrity. A hash function converts data into a fixed-size string of bytes
(the hash) that acts as a data fingerprint. Any change in data changes the
hash. Digital signatures go a step further by allowing the verification of the
data's integrity and sender's identity, providing non-repudiation.

4. Access controls: Implementing strict access controls ensures only
authorized users and systems can read or modify integration data. This
includes using role-based access control (RBAC) systems to enforce the
principle of least privilege, minimizing each user's access to the minimal
level of data and actions needed for their role.

13

5. Audit trails: Maintain comprehensive logs of data access and changes to
integrations. Audit trails help identify and rectify unauthorized or accidental
data changes, providing a mechanism for accountability and recovery.

6. Regular updates and patch management: Keeping integration infrastructure
up to date with the latest security patches is crucial. Many data breaches
and integrity issues stem from exploiting vulnerabilities in outdated software.
Further, making sure your integration code doesn't have vulnerabilities is also
crucial. Vulnerable code and systems lead to an exploited integration and
ultimately data compromise.

7. Data redundancy and backup: Implementing data redundancy and regular
backups can ensure integration data integrity and availability. Backups are a
reliable recovery solution in case data is corrupted or lost. It's important to
secure and regularly test backups to ensure they are up to date and effective.

8. Network and system security: Secure the network infrastructure using
firewalls, security groups, access control lists, intrusion detection systems
(IDS), intrusion prevention systems (IPS) to prevent unauthorized access
and mitigate potential data integrity threats. Continuously monitoring for
anomalies and knowing what is normal vs abnormal, creating security
alerts around abnormal situations, and getting those alerts to the correct
security personal so they can triage them and perform incident response
if necessary. Using a post incident analysis procedure to discover root
cause with digital forensics and leveling up the whole security detection and
response process is critical in today's threat atmosphere.

9. End-to-end integrity checks: Conduct regular end-to-end integrity checks
within the integration process. This can involve periodically verifying that
data in your databases matches securely generated hashes or checksums.

Integration authentication and authorization are crucial
Robust authentication and authorization mechanisms are crucial to ensure secure
access and operations. Here are some key components and strategies to consider
when implementing authentication and authorization for SaaS integrations:

1. Multi-factor authentication (MFA): This security system requires more than
one method of authentication from independent categories of credentials to
verify the user's identity for a login or other transaction. MFA could include

14

something the user knows (password), something the user has (security
token), and something the user is (biometrics).

2. OAuth 2.0: OAuth is an open standard for access delegation. It is commonly
used by internet users to grant websites or applications access to their
information on other websites without giving them the passwords. This is
particularly useful with integrations for authorizing interactions between
applications without exposing user credentials.

3. Role-based access control (RBAC): RBAC restricts system access to
authorized users. For SaaS integrations, roles can be defined for different
types of users (e.g., admin, developer, end-user) to control access to
functions within the integration or integration infrastructure based on those
roles.

4. JWT (JSON web tokens): JWTs are an open standard (RFC 7519) that
defines a compact and self-contained way for securely transmitting
information between systems as a JSON object. This information can be
verified and trusted because it is digitally signed. JWTs can be signed using
a secret (with the HMAC algorithm) or a public/private key pair using RSA
or ECDSA.Secure token service (STS): An STS issues security tokens that
authenticate a user's identity and authorize their access level. This service
can also renew and validate tokens, ensuring authentication is secure and
current.

5. API gateways with authentication: An API gateway can act as a control point
for authentication and authorization, ensuring that only valid and authorized
requests access integration services. It can handle OAuth tokens, API keys,
JWTs, and other authentication and authorization checks.

6. Attribute-based access control (ABAC): This approach defines access
rights based on attributes associated with user accounts, allowing for a
more granular and context-specific access control than RBAC. This can
help integrations manage dynamic and complex permissions for different
integration flows and services.

7. API keys: Although less secure than methods like OAuth, API keys are a
simple way to control access to APIs for integrations. For enhanced security,
API keys should always be used with other security measures, such as
HTTPS, to ensure that the keys are transmitted securely. Keys should also

15

be rotated every 90 days, at a minimum, in case they are compromised or
discovered.

8. Session management: Proper management of integration session lifetimes,
ensuring that sessions are securely established and terminated, can prevent
unauthorized access. This includes setting timeouts for sessions and
regularly re-authenticating users. Poor session expiration can lead to man-
in-the-middle attacks that gain access to a session and masquerade as the
proper session owner.

9. Audit trails and monitoring: Keeping detailed logs of authentication and
authorization events can help detect and respond to integration security
incidents more effectively. Monitoring these logs for abnormal access
patterns or unauthorized access attempts is critical for maintaining security.

Legal and regulatory compliance must be included
Ensuring compliance with legal and regulatory requirements is crucial for any
organization, particularly those handling sensitive and personal data. Adhering
to established security and privacy frameworks not only helps in meeting these
requirements but also in building trust with customers and partners.

Below, we'll explore key security and privacy frameworks and discuss their
relevance.

16

Security frameworks

There are nearly as many security frameworks as programming languages. We'll
highlight a few of the big ones pertaining to integrations.

1. SOC 2 (Service Organization Control 2)

 - URL: https://www.aicpa-cima.com/topic/audit-assurance/audit-and-
assurance-greater-than-soc-2

 - Purpose: Designed for service providers storing customer data in the
cloud, SOC 2 focuses on five trust service principles: security, availability,
processing integrity, confidentiality, and privacy.

 - Relevance: Provides a benchmark for managing data based on
structured criteria that ensure security, availability, and confidentiality.
Compliance helps reassure clients that a service provider manages data
flowing through its systems with high integrity and security.

2. NIST (National Institute of Standards and Technology) Cybersecurity
Framework

 - URL: https://www.nist.gov/cyberframework

 - Purpose: Provides a policy framework of computer security guidance for
how private sector organizations in the U.S. can assess and improve their
ability to prevent, detect, and respond to cyber attacks.

 - Relevance: It offers comprehensive guidance for digital security, including
tools, standards, and best practices for managing cybersecurity-related
risk. Its flexible nature allows it to be implemented according to the
organization's specific needs and risk profile.

https://www.aicpa-cima.com/topic/audit-assurance/audit-and-assurance-greater-than-soc-2
https://www.aicpa-cima.com/topic/audit-assurance/audit-and-assurance-greater-than-soc-2
https://www.nist.gov/cyberframework

17

3. ISO 27001 (International Standards Organization)

 - URL: https://www.iso.org/standard/27001

 - Purpose: ISO 27001 is an international standard for managing
information security. It specifies requirements for establishing,
implementing, maintaining, and continually improving an Information
Security Management System (ISMS). The standard is designed to help
organizations secure their information assets.

 - Relevance: ISO 27001 provides a systematic approach to managing
sensitive company information so that it remains secure. It includes
people, processes, and IT systems by applying a risk management
process. Compliance with this standard helps organizations protect their
information systematically and cost-effectively, based on confidentiality,
integrity, and availability principles. It is particularly relevant in sectors
where the protection of information is critical, such as finance, health,
public, and IT sectors.

4. CCM (Cloud Controls Matrix)

 - URL: https://cloudsecurityalliance.org/research/cloud-controls-matrix

 - Purpose: Developed by the Cloud Security Alliance (CSA), the CCM is a
cybersecurity control framework for cloud providers and consumers. It
serves as a comprehensive tool for assessing a cloud provider's overall
security risk. The CCM provides a detailed understanding of security
concepts and principles aligned to the Cloud Security Alliance guidance
in 13 domains.

 - Relevance: The CCM is designed to provide fundamental security
principles to guide cloud vendors and to assist prospective cloud
customers in assessing the overall security risk of a cloud provider. The
matrix spans important domains such as compliance, data governance,
facility security, human resources, information security, legal issues,
operations management, risk management, release management,
resilience, security architecture, and identity and access management.
These domains are addressed by specific controls that align with
industry-accepted security standards, regulations, and controls
frameworks, such as ISO 27001/27002, ISACA COBIT, PCI, NIST, and

https://www.iso.org/standard/27001
https://cloudsecurityalliance.org/research/cloud-controls-matrix

18

HIPAA. This makes the CCM a versatile and widely applicable framework
that can be used across various cloud models, including IaaS, PaaS, and
SaaS, providing a thorough mechanism for ensuring that cloud services
are secure and compliant with global standards.

Privacy frameworks

Privacy frameworks are becoming more common as jurisdictions sign them into
law. Here are a couple of the main ones for integrations:

1. GDPR (General Data Protection Regulation)

 - URL: https://gdpr.eu/

 - Purpose: Regulates data protection and privacy in the European Union
and the European Economic Area, but it also addresses the transfer of
personal data outside the EU and EEA.

 - Relevance: Sets guidelines for the collection and processing of personal
information of individuals.It emphasizes transparency, security, and
accountability by data processors and controllers, giving individuals
control over their personal data.

2. HIPAA (Health Insurance Portability and Accountability Act)

 - URL: https://www.hhs.gov/hipaa/for-professionals/index.html

 - Purpose: U.S. legislation that provides data privacy and security
provisions for safeguarding medical information.

 - Relevance: Protects sensitive patient health information from being
disclosed without the patient's consent or knowledge, thus securing
personal health information both in paper and electronic forms.

https://gdpr.eu/
https://www.hhs.gov/hipaa/for-professionals/index.html

19

General data security and privacy considerations
When dealing with data security and privacy, the following considerations must be
top of mind:

1. Data minimization: Collect only the data necessary for the specified purpose.
This limits the risk of exposure.

2. Data encryption: Use strong encryption standards in transit and at rest to
protect sensitive data from unauthorized access.

3. Access controls: Implement stringent access controls and authentication
mechanisms to ensure only authorized personnel can access sensitive data.

4. Regular audits: Conduct regular audits and assessments to ensure
compliance with security policies and regulatory requirements.

5. Incident response plans: Develop and maintain an effective incident
response plan to quickly address any data breach or security incident.

6. Training and awareness: Regularly train employees on data protection
practices, emphasizing the importance of securing personal and sensitive
information.

7. Data integrity and availability: Implement data integrity checks and ensure
data availability through proper backup and disaster recovery processes.

Error handling and logging enable efficient issue
resolution
Error handling and logging are crucial for robust integration security, particularly
for a SaaS integration environment where multiple systems interact. Properly
managing error handling and logging ensures the prevention of sensitive
information leakage and the ability to trace and rectify issues efficiently.

Errors to monitor and log for SaaS integrations
1. Authentication and authorization failures: Log all failed authentication

attempts, including timestamp, source IP, and the user ID attempted. This
can help identify potential brute-force attacks or unauthorized access
attempts. Authorization failures should also be logged to detect any

20

attempts to access resources beyond a user's permissions, which could
indicate a misconfiguration or a malicious insider.

2. Data validation errors: Any data that fails to meet predefined schemas or
validation rules should be logged. This includes type mismatches, format
errors, and size limitations which could indicate incorrect or potentially
malicious input.

3. Service downtime and availability issues: Any service disruptions or
performance degradations. This includes timeouts, service unreachable
errors, and unexpectedly long response times, which can indicate a system
overload or a denial-of-service attack.

4. Integration flow errors: Processing logic errors, such as failed
transformations or routing errors, should be logged with detailed information
about the workflow step and data involved (without logging sensitive data).

5. Configuration changes: Any configuration changes, especially those related
to security settings or integration flows, should be logged to track who
made the change and what was changed. This is crucial for auditing and
understanding the impact of the changes.

6. API rate limiting violations: Log any exceedance events if your integration
enforces API rate limits. These could signal attempts to flood services with
too many requests or misconfigurations in connected applications.

Strategies for effective error handling and logging
1. Use structured logging: Implement structured logs that make searching

and analyzing data easier. Use a consistent format with key-value pairs that
include necessary metadata for each event.

2. Sensitive data masking: Ensure that logs do not contain sensitive
information. Mask or tokenize personal data and credentials before they are
written to logs to prevent data leakage.

3. Centralized logging: Use a centralized logging system that aggregates
logs from all services and components of your integrations. This simplifies
monitoring and analysis, making it easier to correlate events across different
parts of the system.

21

4. Real-time alerting: Set up real-time alerts based on specific log events, such
as repeated authentication failures or configuration changes. Use monitoring
tools to analyze log streams and trigger alerts when certain thresholds or
patterns are detected.

5. Regular audits of logs and alerts: Periodically review logs and the alerting
system to ensure they capture the necessary information and that the alert
logic aligns with current threat patterns and business needs.

6. Access controls for logs: Restrict log access to only those roles that need
it. Logs can contain sensitive information, and access to them should be
guarded as carefully as access to the live data.

7. Retention policies: Define and enforce data retention policies for logs to
comply with legal and regulatory requirements while ensuring that old logs
do not accumulate unnecessarily, creating security and operational risks.

22

Conclusion
In this guide, we've laid out what it takes to safeguard SaaS integrations and the
data flowing through them.

We've emphasized the importance of robust authentication methods like OAuth
and API keys, comprehensive input validation, and diligent management of
credentials and connections to prevent unauthorized access and data breaches.

We've also underscored the necessity of adhering to regulatory standards such as
GDPR and HIPAA, which are crucial for ensuring data privacy and security.

Additionally, we have highlighted the critical role of comprehensive logging and
monitoring systems that enable the swift detection and remediation of security
incidents.

Even though this guide is an overview, it's still a lot to take in. It may even seem
overwhelming if you are new to security (or integrations). Addressing all the
security concerns as you define the infrastructure for your integrations and then
keeping them in mind as you build, deploy, and manage those integrations could
be a full-time job for several people.

The good news is that using an embedded iPaaS designed in accordance with
security best practices can remove much of the integration security burden from
your team, allowing them to focus on everything else your customers need in their
integrations.

To learn about Prismatic's industry-leading embedded iPaaS, visit prismatic.io.

We'd love to hear from you if you have questions on integration security as
you prepare to build your product's first integrations, reexamine your existing
integration strategy through a security lens, or consider implementing an
embedded iPaaS to get things moving more quickly.

https://prismatic.io
https://prismatic.io/contact/

23

Additional resources and references
To learn more about integration security and related topics, here are some
resources we recommend.

1. White papers and technical reports:

 - Cloud Security Alliance (CSA) (https://cloudsecurityalliance.org/): CSA
offers multiple research artifacts that discuss security best practices
for cloud environments, including the Cloud Controls Matrix (CCM) and
security guidance for critical areas of focus in cloud computing.

 - SANS Institute InfoSec Reading Room (https://www.sans.org/security-
resources/): Contains white papers on various cybersecurity topics that
are practical and detailed for technical implementation.

2. Technology blogs and industry articles:

 - AWS Security Blog (https://aws.amazon.com/blogs/security/) and
Microsoft Security Blog (https://www.microsoft.com/en-us/security/
blog/): Provide insights into security practices, case studies, and
innovations in cloud security pertinent to integrations.

 - Google Cloud Blog (https://cloud.google.com/blog/): Offers articles
on security trends and best practices in the cloud, which can be directly
applicable to managing security in SaaS integration environments.

 - BuzzSec Security and Threat Intelligence Blog Collection (https://
buzzsec.blogspot.com/) One-stop-shop for information security and
threat intelligence news.

3. Professional and technical forums:

 - Stack Overflow (https://stackoverflow.com/) and GitHub Discussions
(https://github.com/orgs/community/discussions/): For practical,
community-driven advice and troubleshooting on security issues.

 - Security Pillar - AWS Well-Architected Framework (https://docs.aws.
amazon.com/wellarchitected/latest/security-pillar/welcome.html): For
detailed guidance on designing and operating reliable, secure systems on
AWS.

https://cloudsecurityalliance.org/
https://www.sans.org/security-resources/
https://www.sans.org/security-resources/
https://aws.amazon.com/blogs/security/
https://www.microsoft.com/en-us/security/blog/
https://www.microsoft.com/en-us/security/blog/
https://cloud.google.com/blog/
https://buzzsec.blogspot.com/
https://buzzsec.blogspot.com/
https://stackoverflow.com/
https://github.com/orgs/community/discussions/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html

24

About the author
Buzz Hillestad is a seasoned IT and cybersecurity professional with a career
spanning nearly three decades. Since pivoting to a specialized focus on security in
2004, Hillestad has become a leading authority in the field.

He currently serves as the Information Security Officer (ISO) at Prismatic, where
he concentrates on orchestrating and overseeing the organization's robust
cybersecurity strategies for the company’s market-leading embedded integration
platform. In addition to his undergrad degree in Computer Information Systems in
Business, he is also certified as a GIAC Certified Forensics Examiner (GCFE).

https://www.linkedin.com/in/buzzhillestad/

prismatic.io

(888) 305-5453

info@prismatic.io

Prismatic is the leading embedded iPaaS, enabling B2B SaaS teams to
ship product integrations faster and with less dev time. The only
embedded iPaaS that empowers both developers and non-developers
with tools for the complete integration lifecycle, Prismatic includes
low-code and full-code building options, deployment and management
tooling, and self-serve customer tools. Prismatic's unparalleled
versatility lets teams deliver any integration from simple to complex in
one powerful platform. SaaS companies worldwide, from startups to
Fortune 500s, trust Prismatic to help connect their products to the other
products their customers use.

Ship integrations faster and
with less dev time

	Introduction
	Section 1: Overview of integration security
	What is an integration?
	What is integration security?
	Integrations are critical for the current technological landscape

	Section 2: Understand integration security threats and risks
	Integrations are subject to many common security threats
	Integration security failures can have a huge impact

	Section 3: Implement integration security best practices
	Security for integrations starts with design principles
	Protecting integration data integrity is foundational
	Integration authentication and authorization are crucial
	Legal and regulatory compliance must be included
	Error handling and logging enable efficient issue resolution

	Conclusion
	Additional resources and references
	About the author

