
Addressing the Challenges of Federated Learning
Pietro Cagnasso

Politecnico di Torino
pietro.cagnasso@studenti.polito.it

Giuseppe Galilei
Politecnico di Torino

giuseppe.galilei@studenti.polito.it

Nicolò Vergaro
Politecnico di Torino

nicolo.vergaro@studenti.polito.it

Abstract—This project aims to analyze the growing scenario of
Federated Learning and to address some of its main challenges,
which are statistical heterogeneity, systems heterogeneity, and
privacy. To do so, we tested some of the most relevant algorithms:
FedAVG, FedGKT, and FedDyn in the case of i.i.d. balanced, non-
i.i.d. balanced, and non-i.i.d. unbalanced data distribution. Then,
we moved to a privacy analysis of Federated Learning, trying the
gradient attack method to recover original data from gradient
information.

I. INTRODUCTION

Federated Learning is a machine learning scenario intro-
duced by Google in 2017. The aim is to train a model in a
non-centralized way as the result of a collaboration between
several devices (or clients), each of which maintains exclusive
ownership of its data, granting higher privacy levels. In the
standard setting for this scenario, each client trains the model
on its local data, then shares only the model’s parameters
(or gradients) with a central server which aggregates the
information received from active clients, producing a new
model. Finally the resulting model’s parameters are sent from
the server to the clients, so that a new training round can start.

In this report, we will document our journey in Federated
Learning and address some of its challenges 1. We started by
training a typical centralized model to set an upper bound for
the federated scenario. Then we implemented the first-ever
federated algorithm to set a baseline for comparisons with
other federated algorithms. After, we addressed some real-
world challenges of Federated Learning:

• Statistical heterogeneity of data, by simulating different
kinds of data distributions, specifically non-i.i.d. balanced
and non-i.i.d. unbalanced.

• System heterogeneity, by implementing an algorithm that
allows different model complexities at the edge and on
the server to work together.

• Privacy preservation, by implementing a gradient inver-
sion attack which tries to reconstruct original private data
by using gradients of the model trained at the edge and
shared with the server.

Finally, we focused on a recently introduced algorithm that
promises better performances than existing Federated Learning
methods. We tried to evaluate and verify the claims reported
in the original paper.

1Code available in this repository.

Related Works

FedAVG was proposed by McMahan et al. [1] in 2016 and
is the first-ever introduced method in Federated Learning.

Other methods that improved FedAVG’s performances have
been proposed, such as FedGKT [2] and FedDyn [3], which
we worked with in this project. Other proposed methods that
we did not implement are SCAFFOLD [4], FedProx [5], and
FairAVG [6].

Thanks to its improvements in privacy, Federated Learn-
ing can also be exploited in activities using highly sensible
data like healthcare [7]. However, even if FL grants better
assurances for sensible data, it is not safe from any attack, as
proved by [8], [9]. Gradients sent on the network can be indeed
exploited to extract information about the data that originated
them.

II. METHODS

A. Federated Averaging

FedAVG is a federated learning algorithm introduced by
McMahan et al. in 2017 [1]. This algorithm assumes the same
network architecture on the server and the client. It works
iteratively in communication rounds. In the first round, some
active clients are selected. Each client trains its model on its
data and sends the obtained model’s parameters to the server.
The server averages the received parameters weighting the
contribution of each client on the fraction of data it owns.
The server then sends the updated parameters to clients. In
the following rounds, newly selected active clients will start
their training with the updated model received from the server.

The authors showed that this method is very effective; in
the i.i.d. case, given an adequate number of communication
rounds, it can achieve similar performance to centralized
training. Moreover, they showed that this method requires a
reasonable amount of time, even when training large models.

B. Group Knowledge Transfer

FedGKT is an alternative to FedAVG proposed by He et al.
[2] in 2020. The main aim is to allow federated learning to
happen in a scenario where clients and server do not have the
same computational power. The idea is to train small CNNs on
low-powered edge devices and periodically transfer knowledge
to a bigger CNN on the server. The smaller network consists
of just a feature extractor layer and a simple classifier. The
larger one is characterized by lacking only the first layer that
performs feature extraction, it will be indeed trained using as

https://github.com/GiuseppeGalilei/MLDLproject

input the features extracted from the edge-side model’s first
layer.

This method works as follows: each client trains his model
on its own data and sends the extracted features, logits, and
labels to the server. Then, the server starts training using as
input the received features. It optimizes a loss computed using
the received labels and logits, then sends its predicted labels
and logits back to clients. Finally, each client incorporates the
server’s information into the loss used to train its model.

This algorithm obtains comparable results to FedAVG while
having the following advantages: reduced demand for edge
computation, because a smaller CNN is used; lower commu-
nication bandwidth, because feature maps are sent instead of
a whole model; asynchronous training, because the server can
start training as soon as it receives any input.

C. Dynamic Regularization

FedDyn is a federated learning algorithm firstly introduced
by Acar et al. in 2020 [3]. Its aim is to increase the amount
of computation performed by client devices in each round and
reduce the overall number of communication rounds required
to reach similar results compared to FedAVG.

The increased computation would be especially beneficial
in the non-i.i.d. setting, where each client optimizes on a data
distribution that may not be representative of the global one,
causing clients to struggle to align their local objective to the
global one.

FedAVG mitigates this problem by limiting the number
of epochs on local devices, which prevents clients from
overfitting their data and ruining the global model; this is the
phenomenon of ”client-drift”.

Feddyn instead solves the problem by modifying the client’s
loss function so the optimization done at the client level is
coherent with the global one. This novel loss function adds
two terms to the standard loss:

• A linear penalty term dependant on the local state, that
debiases the effect of local losses ensuring the alignment
of stationary points between local and global losses.

• A quadratic penalty term, that ensures convergence in the
long run by controlling the similarity between the local
and global model.

One of FedDyn’s novelties is the use of local states for both
server and clients.

The algorithm works like follows: each active client exe-
cutes one or more local epochs to find its local optimum, then
it updates its local state (the gradient of the loss function)
and sends the model to the server. The server first updates its
state: a linear combination of models from active devices in
current and previous communication rounds. Then it updates
the global model averaging active devices’ models without
weighting their contribution and exploiting its local state. In
the following communication rounds, active clients will start
their training with the updated model computed by the server.

This algorithm uses only the hyperparameter α and has been
proven to converge with a rate of O(1/T), where T is the
number of communication rounds.

It’s worth noting that the choice of using internal states does
not increase the communication cost since internal states are
not shared; this is an advantage against similar approaches like
SCAFFOLD [4].

III. EXPERIMENTS AND RESULTS

To ensure better comparability and reliability of results, we
carried out all our tests within this framework:

1) Run all the experiments for 50 epochs (centralized
training) or rounds (federated scenario).

2) Perform all the experiments with three different seeds
(0, 128, 479) and average the results; this allowed for
smoother trends and more precise accuracy.

3) Use CIFAR10 as dataset, partitioned using the sampling
strategy described below.

4) Run all three typical cases of the federated scenario:
i.i.d. balanced (hereafter i.i.d.), non-i.i.d. balanced, and
non-i.i.d. unbalanced.

5) All experiments in the federated case were performed
with 100 available clients, of which only 10% were
active in each round.

6) Experiments, other than those just aiming to prove the
functionality of our implementation, make use of a
ResNet [10] with Batch Normalization [11] and Group
Normalization [12] layers.

As a sampling strategy, we adopted the same proposed by
McMahan et al. [1] which can be described as follows:

• i.i.d.: shuffle the dataset and then split it into equal parts
between all the clients.

• non-i.i.d.: sort the data based on its label and split it
into shards of equal size. In the balanced case we assign
the same number of shards to each client, while in the
unbalanced one we assign a random number to each client
with each having at least one shard.

In the i.i.d. case each client is able to see all the classes. For
both non-i.i.d. cases we chose to create 200 shards, to ensure
that a similar average number of classes is seen by each client
in both balanced and unbalanced cases. Using this sampling
strategy each client sees a number of classes as reported in
Table I, while Fig.7 graphically shows data distribution across
devices.

TABLE I
MEAN AND STANDARD DEVIATION OF CLASSES SEEN BY EACH CLIENT IN

THE THREE MAIN CASES.

Case Classes seen
i.i.d. 10 ± 0

non-i.i.d. balanced 1.94 ± 0.24
non-i.i.d. unbalanced 1.84 ± 1.1

A. Find a Comparison Term: Centralized Training

First of all, we need a comparison term to be able to
evaluate federated algorithms’ performance. Since the goal
of the project is to evaluate algorithms in the federated
domain, a natural choice is centralized training, whose results

will be the upper bound for the various algorithms in the
federated scenario. Another goal of this step is to identify
some hyperparameters we can use in the federated scenario.

We trained the ResNet50 from scratch because the imple-
mentation in the framework did not provide a direct way to
change the normalization layer using the pre-trained version.
The hyperparameters on which we tuned our model are
learning rate, weight decay, and momentum. To identify the
best ranges for those hyperparameters we performed a random
search using logarithmic distribution for the first two, and
uniform distribution for the latter. Based on these results we
selected some values (Table II) to do a complete grid search
on 20 epochs.

We also tested:
• Different batch sizes: 32, 64, and 128. We ended up

choosing 128, aiming to reduce the time required by the
model to be trained. This choice may have disadvantaged
Group Normalization since its advantage over Batch
Normalization is only visible when dealing with small
batch sizes.

• Both SGD and Adam as optimizers. We found the choice
of the optimizer to be less relevant than all other hyperpa-
rameters. Therefore, to have results directly comparable
with the ones reported in most of the papers, we preferred
SGD.

The best configuration selected from the grid search turned
out to be: lr=1e-2, weight_decay=1e-5, momentum=0.9.
We trained the model for 50 epochs using this configuration
and a learning rate scheduler that reduced it to one-third
at epochs 20, 30, and 40. The best accuracies achieved are
92.28% and 88.18% for Batch Normalization and Group
Normalization, respectively; Fig. 1 and 8.

TABLE II
HYPERPARAMETERS USED DURING GRID SEARCH TUNING

Hyperparameter Values
lr [1e-2, 1e-3]

weight_decay [1e-4, 1e-5, 0]
momentum [0.5, 0.7, 0.9]

B. Federated Baseline: FedAVG

The de facto standard as a federated scenario baseline is
FedAVG since it is the first federated algorithm ever intro-
duced. Executing this algorithm, we opted for only one local
epoch in each client. We first tried to use the hyperparameters
found by the grid search in centralized training. We noticed
bad performance, especially in the non-i.i.d. case; Fig. 9.

To solve this inconvenience we tried to set up the opti-
mizer using some of the best-performing configurations in
centralized training. This step can be interpreted as a quick
hyperparameter tuning. We found out that the configuration
lr=1e-2, weight_decay=0, momentum=0.5 grants overall
better trends and accuracies in i.i.d. as well as in non-i.i.d.
cases. This optimizer’s configuration in centralized training

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Centralized training

norm
BN
GN

Fig. 1. Test accuracy with the best configuration found. BN = Batch
Normalization, GN = Group Normalization.

lowers the accuracy by less than 2.5% from the best one; Fig.
8.

The best accuracies we got running this experiment in the
three cases with both types of normalization layers are reported
in Table III, accuracy trends and the comparison between the
three cases are shown in Figures 2 and 10. The i.i.d. trend at
round 50 is in line with the results reported in the original
paper. Since it has not reached the plateau yet, this suggests
that running it for more communication rounds would result in
accuracies closer to the ones registered in centralized training.

TABLE III
FEDAVG ACCURACY BY SCENARIO AND NORMALIZATION LAYER.

Normalization i.i.d. non-i.i.d. balanced non-i.i.d. unbalanced
BN 55.217% 19.577% 32.867%
GN 32.000% 20.557% 25.587%

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

FedAVG, scenarios comparison

norm
BN
GN

scenario
iid balanced
noniid balanced
noniid unbalanced

Fig. 2. Comparison between the three scenarios in which we tested FedAVG.

C. Simulate System Heterogeneity: FedGKT

To perform these experiments, we used the same hyper-
parameters used to test the federated baseline. The CNNs
we used in our experiments are ResNet-8 on the clients and
ResNet-49 on the server. The advantage of using the lighter
ResNet on the clients can also be seen from the number of
parameters, in fact it has ∼ 2200 times less parameters than
the ResNet on the server (23.5M vs 10.5k).

We run 10 epochs on the server and 1 epoch on the clients
for each communication round. Following the paper’s experi-
ments, we tested two different losses scenarios. In particular,
we kept the same loss on the client, that is a combination of
both the CE and KD loss with parameter α = 0.5. On the
server we tried to use the CE loss alone and both the CE
loss and KD loss with the same α parameter. We can see
results in Table IV and Fig. 3. More extensive comparisons
and respective losses are illustrated in Fig. 11 (CE loss) and
Fig. 12 (CE+KD loss).

During the implementation, we faced memory issues due to
limitations on the amount of available memory in both Google
Colab and Kaggle. To address these issues we stored for each
client the extracted features, labels and logits, while for the
server we store the logits. We then remove all this information
at the end of each communication round, otherwise they would
accumulate and make us quickly run out of memory.

TABLE IV
FEDGKT ACCURACY BY SCENARIO, NORMALIZATION AND LOSSES

Loss Normalization i.i.d. non-i.i.d. bal. non-i.i.d. unbal.

CE BN 76.789% 21.180% 26.392%
GN 74.883% 31.455% 31.224%

CE+KD BN 51.950% 28.283% 26.351%
GN 51.053% 23.650% 26.824%

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

FedGKT CE, scenarios comparison

norm
BN
GN

scenario
iid balanced
noniid balanced
noniid unbalanced

Fig. 3. Comparison between the three scenarios in which we tested FedGKT
using only CE loss in the server.

D. Maintaining Privacy: Gradient Inversion Attack

Data privacy is one of the most important benefits of using
federated learning, however, even if data never leaves client
devices, it has been demonstrated the possibility of recovering
it from the model parameters (or gradients) which are sent
to the server. Several of these ”Gradient Inversion” attacks
exist, they have been studied and evaluated in the literature.
Generally their performance depends strongly on meeting
certain conditions, such as knowing the batch size and the
target label of data.

We reproduced the ”inverting gradients” attack introduced
by Geiping et al. [8], which assumes both the conditions
above. This attack is performed by a ”honest but curious
server” which does not interfere with the training process,
but has access to gradients and uses them to reconstruct data.
The gradients here are not interesting for their magnitude
(which is just a signal of the state of training), but for their
”high-dimensional” dimension (the direction), so the objective
becomes finding images that lead to similar changes in model
prediction as the original data.

To perform this experiment we trained a ResNet50 using
FedAVG for 100 communication rounds, then we computed
the gradients as if they were computed by a client that received
the trained model from the server. We let the gradient attack
run for 3000 iterations, obtaining understandable results in all
four tested images from different categories as we can see in
Figures 4 and 13. In the reconstructed images we can clearly
understand which one are the main subjects: truck, deer, dog,
and horse; and even their correct color for the large part of
the image.

Original Reconstructed

Fig. 4. Comparison between the original image and the reconstructed one.
This is the result of 3000 iterations of the algorithm.

E. FedDyn

Our implementation of FedDyn makes use of 5 local epochs,
which seemed to us to be the right compromise between
performance and execution time. We initially tested it with
the same parameters used with the other methods, however
we obtained only invalid values for loss (NaN). We then tested
a configuration of parameters proposed in the original paper:
α=0.01 lr=0.1, weight_decay=1e-3, and momentum=0.
This configuration allowed us to obtain valid values at least in
part of the plot; however, we were not able to obtain similar

results as in the original paper, particularly in the non-i.i.d.
case, as we can observe in Figures 5 and 16, Table VI.

Later, we figured that the proposed CNN in the original
paper is much simpler than a ResNet50, in fact it has ∼ 30
times less parameters than the ResNet50 (23.5M vs 800K). We
tried to perform a hyperparameter tuning on it, with the goal
of finding a better set of parameters(Table V). This operation
allowed us to choose a new set of parameters: α=0.1 lr=1e-2,
weight_decay=5e-3, momentum=0.9, which led to results
observable in Figure 15. By exploiting this configuration with
the ResNet50, we obtained the results in Figures 5 and 17,
Table VI. It can be seen that the configuration obtained by
tuning on the simpler CNN was not effective on the ResNet
with batch normalization layers, in fact we still obtained
invalid loss results in almost all rounds. This was, however,
very effective with the group normalization layers, obtaining
an increase of almost 20% in i.i.d. and almost doubling our
previous results in both non-i.i.d. cases.

TABLE V
HYPERPARAMETERS USED DURING GRID SEARCH TUNING FOR THE CNN

Hyperparameter Values
α [0.1, 1e-2, 1e-3]
lr [0.1, 1e-2]

weight_decay [5e-3, 1e-3, 5e-4]
momentum [0, 0.5, 0.9]

TABLE VI
FEDDYN ACCURACY BY SCENARIO, NORMALIZATION AND

HYPERPARAMETERS.

HP Normalization i.i.d. non-i.i.d. bal. non-i.i.d. unbal.

paper BN 75.693% 10.033% 10.080%
GN 35.880% 11.157% 11.227%

CNN tuned BN 10.000% 10.001% 9.663%
GN 53.570% 17.860% 14.897%

IV. CONSIDERATIONS

Why non-i.i.d. unbalanced results are better than balanced in
FedAVG?

In the non-i.i.d unbalanced case, the results are better than
the balanced counterpart. This result was already highlighted
in the original paper. We can assume that this behavior is in
part explained by the dataset splitting strategy proposed in the
original paper: in the unbalanced setting, clients who receive
more shards of data see on average more classes as well. So,
since FedAVG aggregates results by a weighted average, it
rewards more the contribution of clients with more data which
can, on average, generalize better.

Letting FedAVG locally optimize more: closer to FedDyn?

For FedAVG experiments, we used only one local epoch.
However, more local epochs could speed up learning, espe-
cially in the i.i.d. setting. On the other hand, for the non-i.i.d.

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

FedDyn paper, scenarios comparison

norm
BN
GN

scenario
iid balanced
noniid balanced
noniid unbalanced

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

FedDyn cnn tuned, scenarios comparison

Fig. 5. Above: FedDyn using hyperparameters from the paper; Below:
FedDyn after hyperparameters tuning

setting we would risk overfitting the data we have locally and
experience ”client drift”.

We experimented in the i.i.d. case with Batch Normalization
using 5 local epochs, achieving up to 60.100% accuracy,
meaning 4.883% increase compared to the result previously
obtained with only one local epoch; Fig. 6.

This test is helpful to give a more fair comparison with
FedDyn, by equalizing the amount of computation at the
edge. We can observe that even though FedAVG improved,
it remains below FedDyn by about 10% accuracy. From this,
we deduce that FedDyn appears more effective at generalizing
and aggregating individual clients’ results.

Which loss should we use in FedGKT?

We compared cases of CE and CE+KD losses and obtained
that our result aligns with the paper. The authors found that, in
the server, using CE loss only performed better than CE+KD
for smaller datasets, such as CIFAR-10, while CE+KD results
were more helpful when dealing with more difficult datasets,
such as CIFAR-100.

Some further observations about losses:
• Even if the CE loss brings improvements accuracy-wise,

the loss’ trends are much less ”smooth” than with CE+KD
loss (Fig. 11 and 12).

• We can see that, for CE loss, the non-i.i.d balanced case
is the only case in which Group Normalization is better
than Batch Normalization.

• The non-i.i.d balanced case is the only case in which
CE+KD loss outperforms CE loss in the Batch Normal-
ization case.

Is there a Group Normalization advantage in FedDyn?

Although we could not extensively test many parameter
configurations, an interesting pattern emerged: the ResNets
with Batch Normalization layers seem to have an unstable
behavior with FedDyn. In fact, in at least 20 rounds, we
obtained losses equal to NaN using the configuration proposed
by the paper (which is the only one that reached valid results
with Batch Normalization). At the same time, ResNets with
Group Normalization layers seemed much more stable and
did not result in any loss equal to NaN. Furthermore, using
ResNets with Group Normalization allegedly allows perform-
ing tuning on simpler networks while achieving remarkable
improvements on the ResNets themselves.

FedDyn: why non-i.i.d. cases systematically perform worse
than results reported the paper?

In the non-i.i.d. cases, we could not obtain results com-
parable to those proposed in the original paper ([3]), even
using the same model. To find a possible justification for this
behavior, we tested the worst non-i.i.d. case sampling used in
the original paper: Dirichlet(0.3). Analyzing the distribution
of classes obtained by this type of sampling, we noticed that
each client sees on average 8.15 classes (Fig. 14). With our
sampling, instead, each client sees 4 times less classes (Fig.7).
This remarkable difference allowed each client in the original
paper to generalize much more effectively, thus providing that
performance.

V. CONCLUSION

Looking at Figures 6 and 18, in which we compare all
tested methods, we can conclude our journey with Federated
Learning:

• In the i.i.d case, FedDyn and FedGKT obtain comparable
results, much higher than all other methods. It would be
interesting to perform an extensive comparative analysis
on both to understand their capabilities.

• Our sampling is more difficult to work with than the
Dirichlet sampling used in other papers. As explained,
this is why our results are worse than the ones proposed
by the authors of FedDyn. We think the community
should settle on some standard sampling techniques to
have comparable and also reproducible results.

• With great Resnets comes great responsibility. Heavier
Resnets are obviously more powerful than simple CNNs.

An interesting direction of research could be to under-
stand if it is possible to tune hyperarameters on smaller
networks and adapt the configuration to perform well on
bigger networks. In this way, we could save time and
obtain optimal results.

• The scenario in which we performed the gradient inver-
sion attack is, in our opinion, very optimistic. Several
conditions had to be met, such as knowing the batch size
and the original labels. However, privacy is one of the
founding elements of federated learning, so we think that
newly proposed algorithms should at least consider the
possibility of introducing security measures or perform
an analysis of possible threats.

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

BN i.i.d. comparison

fedavg
fedgkt CE
fedgkt CE+KD
feddyn paper
feddyn cnn tuned
fedavg 5

Fig. 6. Comparison between the runs using Batch Normalization in the i.i.d.
case.

REFERENCES

[1] H. Brendan McMahan et al. Communication-Efficient Learning of Deep
Networks from Decentralized Data, Feb. 2016

[2] Chaoyang He et al. Group Knowledge Transfer: Federated Learning of
Large CNNs at the Edge, Jul. 2020

[3] Durmus Alp Emre Acar et al. Federated Learning Based on Dynamic
Regularization, Sep. 2020

[4] Sai Praneeth Karimireddy et al. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning, Oct. 2019

[5] Tian Li et al. Federated Optimization in Heterogeneous Networks, Dec.
2018

[6] Umberto Michieli et al. Are All Users Treated Fairly in Federated
Learning Systems?, Jun. 2021

[7] Praneeth Vepakomma et al. Split learning for health: Distributed deep
learning without sharing raw patient data, Dec. 2018

[8] Jonas Geiping et al. Inverting Gradients - How easy is it to break privacy
in federated learning?, Mar. 2020

[9] Yangsibo Huang et al. Evaluating Gradient Inversion Attacks and
Defenses in Federated Learning, Dec. 2021

[10] Kaiming He et al. Deep Residual Learning for Image Recognition, Dec.
2015

[11] Sergey Ioffe et al. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, Feb. 2015

[12] Yuxin Wu et al. Group Normalization, Mar. 2018

APPENDIX

0 20 40 60 80
Client

0

200

400

600

800

1000

C
ou

nt

i.i.d.
Classes seen: 10.0+-0.0

0 20 40 60 80
Client

0

200

400

600

800

1000

C
ou

nt

non-i.i.d. balanced
Classes seen: 1.94+-0.24

0 20 40 60 80
Client

0

200

400

600

800

1000

C
ou

nt

non-i.i.d. unbalanced
Classes seen: 1.84+-1.1

Data distributions

airplane autombile bird cat deer dog frog horse ship truck

Fig. 7. Data distribution in the three cases using the sampling technique proposed in McMahan et al.

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Centralized training

norm
BN
GN

type
used
best

0 10 20 30 40 50
Epoch

0.5

1.0

1.5

2.0

Lo
ss

norm
BN
GN

type
used
best

Fig. 8. Test accuracy and loss comparison between the best configuration and
the one used for FedAVG in centralized training.

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

FedAVG i.i.d.

type
used
best

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

0.6
Ac

cu
ra

cy

FedAVG non-i.i.d. balanced

type
used
best

Fig. 9. Difference in accuracy between the 2 configurations. The one we
switched to, shows higher accuracy and more stable trends.

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAVG, i.i.d.

norm
BN
GN

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAVG, non-i.i.d. balanced

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAVG, non-i.i.d. unbalanced

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

Fig. 10. Test accuracy and loss complete comparison of all the scenarios in FedAVG. The i.i.d. scenario is directly compared to the centralized training since
they are the more similar.

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedGKT CE v FedAVG, i.i.d.

norm
BN
GN

method
fedavg
fedgkt CE

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedGKT CE v FedAVG, non-i.i.d. balanced

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedGKT CE v FedAVG, non-i.i.d. unbalanced

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

Fig. 11. Test accuracy and loss of all the scenarios in FedGKT using only CE loss in the server compared to FedAVG.

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedGKT CE+KD v FedAVG, i.i.d.

norm
BN
GN

method
fedavg
fedgkt CE+KD

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedGKT CE+KD v FedAVG, non-i.i.d. balanced

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedGKT CE+KD v FedAVG, non-i.i.d. unbalanced

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

Fig. 12. Test accuracy and loss of all the scenarios in FedGKT using both CE and KD losses in the server compared to FedAVG.

O
rig

in
al

R
ec

on
st

ru
ct

ed

Fig. 13. Gradient attack results compared to the image that originated the gradient on which the algorithm worked. These results are the product of 3000
iterations of the algorithm.

0 20 40 60 80
Client

0

100

200

300

400

500

C
ou

nt

Dirichlet(0.3)
Classes seen: 8.15+-1.2

Acar et al. non-i.i.d. balanced data distribution

airplane
autombile

bird
cat

deer
dog

frog
horse

ship
truck

Fig. 14. Data sampling distribution used in the training step for FedDyn’s
original paper.

0 10 20 30 40 50
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

FedDyn with paper's CNN

scenario
feddyn iid balanced
feddyn noniid balanced
feddyn noniid unbalanced

Fig. 15. FedDyn results using the same CNN proposed in the original paper.

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDyn paper v FedAVG, i.i.d.

norm
BN
GN

method
fedavg
feddyn paper

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDyn paper v FedAVG, non-i.i.d. balanced

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDyn paper v FedAVG, non-i.i.d. unbalanced

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

Fig. 16. Test accuracy and loss of all the scenarios in FedDyn, using the original paper’s parameters, compared to FedAVG.

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDyn cnn tuned v FedAVG, i.i.d.

norm
BN
GN

method
fedavg
feddyn cnn tuned

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDyn cnn tuned v FedAVG, non-i.i.d. balanced

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDyn cnn tuned v FedAVG, non-i.i.d. unbalanced

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

0 10 20 30 40 50
Round

1

2

3

4

5

Lo
ss

Fig. 17. Test accuracy and loss of all the scenarios in FedDyn, after hyperparameter tuning, compared to FedAVG.

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

BN
, A

cc
ur

ac
y

i.i.d.

fedavg
fedgkt CE
fedgkt CE+KD
feddyn paper
feddyn cnn tuned

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

BN
, A

cc
ur

ac
y

non-i.i.d. balanced

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

BN
, A

cc
ur

ac
y

non-i.i.d. unbalanced

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

G
N

, A
cc

ur
ac

y

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

G
N

, A
cc

ur
ac

y

0 10 20 30 40 50
Round

0.2

0.4

0.6

0.8

G
N

, A
cc

ur
ac

y

Fig. 18. Comparison of all tested methods in all scenarios with batch (above) and group (below) normalizations.

	Introduction
	Methods
	Federated Averaging
	Group Knowledge Transfer
	Dynamic Regularization

	Experiments and Results
	Find a Comparison Term: Centralized Training
	Federated Baseline: FedAVG
	Simulate System Heterogeneity: FedGKT
	Maintaining Privacy: Gradient Inversion Attack
	FedDyn

	Considerations
	Conclusion
	References

