e

e T e e T TR B YT PR o

Wt

Strictly According to the Revised Syllabus of

MUMBAI UNIVERSITY - 2001 Course | |

Computer
Graplucs

SRR At S
Semester - VI (Computer Engmeermg)

Atul P. Godse

M. 8. Software Systems (BITS Pilani)
B.E. Industrial Eiectronics
Formerly Lecturer in Department of Electronics Engg.
Vishwakarma Institute of Technology
Pune

L

Mrs. Deepali A. Godse

B.E. Industrial Electronics, M. E. {Computer)
Assistant Professor in Bharati Vidyapeeth's
Women's College of Engineering
Pune

Price Rs. 190/-

Visitus at ;. www.vtubooks.com
@

Technical Publications pune’

(1}

Syllal

Distributors & Booksellers ' 1. Introc
.) Application
Krishna Book Collection Mahavir Market, Bhandarkar Road, 24011903 / 24099080 ; disolay; Col
Matunga {East) Mumbai-400019 k
Pragati Books Pvt. Lid, 385, 8.V.P. Road, Rasdhara Co-op. Society, 23869976 f 23856339 2. Basic
. Girgaum, Mumbai - 400 004 Output char
Pragati Book Corner Indira Niwas,1 11-A, Bhavani Shankar Road, 24223526 Bresenham
| | Dadar (W), Mumbai - 400 028 algorithrm: A
€= Pragati Book Slore iprop. 1. P.Shamy ~ Matunga (C*Rly) . 56065739,'24103078 test: Boun d-:-
€2 Students Agencies Tardeo, - : 235133347506 '
& Vidyanhi Sales Agencies Girgaom = 23867279 / 23829330)
€2 Bharat Sales Agencies Girgaum 23819359 / 56390580 3.22DG
e Agrav.ut Book Depot Goregaon (W) 28722452/ 28760321 Window an
§ =2 Navrang Book Supplier Thane 25381554 - co-ordinate:
f = Bhavik Book Centre Vasai Road (W) 95250-2334280 Scaling. Ott
£ Sudent Book Depot Girgaum 23853708
£ MK. Book Depot Thane 25395258 4. 2-DV
| = Mahaveer Book Depot Dombivli (W) 95251-2488386 Window to
& Union Book Stall - Dadar (W) 24223069 algorithm, L
& Bhavans Book Store Andheri (W) 26243410 '
ea Parla Book Centre Vile Parle 26140981
e Parla Book Depot Vile Parle 26145984 5.3DC
= Saraswati Book Depot Thane 25367777 3-D display
ea Jagdish Book Depot Thane 24374682 transformat
£ Bhavesh Stores Goregaon (W) 56998187 Composite
3 Swdent Book Stores Vashi 27662724
a8 Milan Book Depot Vashi 27662002 6. Hidde
& Ambika Book Center Vasai Road (W) 95250-2331365 Backface d
e Shri Ganesh Book Center Borivali (W) 28051251
& Ambika Book Depot Kandival 30956454
& Nandu Book House Chembur 25211441 7. Curve
& Deceni Typesetters Malad (W) - 28803165 Spline repre
8. Light
| Available at all leading book shops llumination
Halftoning 1

2

e Syllabus | i

1. Introduction [Chapter - I]

E Application areas, Input and output devices, Video display devices: Refresh CRT: Raster scan
14099080 display; Color CRT menitor; Flat panel display; Co-ordinate representation.

13856339 : 2. Basic Raster Gaphics Algorithm for drawing 2-D primitives [Chapter - 2,3]

: dutput charactefistics: Aspect ratio; Alising and Anti-alising, Line drawing algorithms: DDA algorithm;
Bresenham's algorithm. Circle generation algorithm: Midpoint circle algorithm. Ellipse generation
algorithm: Mid-point ellipse algorithm. Area filling: Scan line polygon filling algorithm; Inside-outside

4103078 test; Boundary fill algorithm; Flood-fill algorithm.

6
13829330
16390580
18760321

3. 2-D Geometric Transformation { Chapter - 4]

Window and Viewport: Window and Viewport relationship; World co-ordinates; Normalised idevice
co-ordinates and Homogenous co-ordinates. Basic transformations: Translation: Rotation and
Scaling. Other transformation: Reflection and Shear. Composite ; Transformation,

AT -

280

R L

4. 2-D Viewing and Clipping { Chapter - 5)

Window to viewport co-ordinate transformation. Clipping: Point clipping; Line: Cohen; Sutherland
algorithm, Liang barsky clipping, Mid-point subdivision; Polygon: Sutherdand hodgman algorithm.

386

5. 3-D Concepts [Chapter - 6,7]

3-D display methods: Paraliel and Perspective projections; Depth cueing. 3-D transformation; Basic
transformations: translation, rotation and scaling; Other transformation: reflection and shear:
Composite transformation. 3-D Viewing and Clipping

6. Hidden Surface Elimination Methods [Chapter - 8]

65 Backface detection, Depth or Z-buffer method, Scan line method, Area subdivision

7. Curves [Chapter - 9]
Spline representation, Bezier curves, B-spline

8. Light Shading [Chapter - 10]
lMumination model. Shading: Constant Intensity shading; Gouraud shading; Phong shading

/ Halftoning ray tracing.

3)

Table of Contents :

Chapter - 1 Introduction to Computer Graphics {110 44)
Chapter -2 Raster Graphics Algorithms for Drawing 2-D Primitives {45 10 87)
Chapter-3 Area Filling (88 to 109)
Chapter -4 2-D Geometric Transformation (110 to 146)
Chapter-5 2-D Viewing and Clipping {147 to 197)
Chapter-6 3-D Concepts (198 to 220)
Chapter-7 Three Dimensional Viewing, Projection and Clipping (221 to 247}
Chapter -8 Hidden Surface Elimination Methods {248 to 264)
Chapter-9 Curves (265 to 287)
Chapter - 10 Light Shading (288 to 222)

Best of Technical Publications

As per revised syllabus of Mumbai University - 20601 Course
Semester VI [Computer Engineering]

v Q& Qi

Systems Programming
Web Technology
Computer Graphics

I. A. Dhotre, A. A. Puntambekar

A. P Godse, D. A. Godse

Vijaylaxmi, Gotmare

(4)

(110 44)
(45 to 87)
(88 to 109)
110 to 146)
147 to 197)
198 to 220)
22110 247)
248 10 264)
265 to 287)
288 t0 222)

mbekar
otmare
Godse

Sem eé’t,oz.

Computer
Graphics

AN

Atul P. Godse

M. S. Software Systems (BITS Pilani)
B.E. Industrial Electronics

Formerly Lecturer in Department of Electronics Engg.

Vishwakarma Institute of Technology
Pune

Mrs. Deepali A. Godse

B.E. Industrial Electronics, M. E. (Computer)'

Assistant Professor in Bharati Vidyapeeth's
Women's College of Engineering
Pune

Visit us at : www.vtubooks.com

@

=

Techmcal Publlcatlons Pune.

Computer Graphics
First Edition : August 2001
Second Revised Edition : February 2004

Second Reprint : January 2007

Al rights reserved with Technical Publications. No part of this book should be
reproduced in any form, Electronic, Mechanical, Photocopy or any information storage and
relrieval system withdut prior permission in writing, from Technical Publications, Pune.

ISBN 81 - 89411-58-6
Published by :

. N ; ®
Technical Publications Pune
#1, Amit Residency, 412, Shaniwar Peth, Pune - 411 030, India.

TECHMCAL
PUBLICATIONS
PUNE

Printer .

Alert DTPrinters
Sr.no. 10/3,Sinhagad Road,
Pune - 411 041

Head office -
- (Punc - Maharashtraj L
- # 1, Amit Resideaty; 412; Shaniwar Peft
" +01 {020) 24495496, Tele/Fax ; 491 {
“Email : technical@viubooks.com |

Branches
Bangalore (Karataka

* Hyderabad @r) -

Chenna any

s

Wholesale Distribution

Pune Mumbai
Pragati Books Pvt. Lid. Pragati Books Pvi. Ltd.
114, Budhwar Peih, Jogeshwari Mandir lana, 385, $.V.P. Road, Rasdhara, Co-op. Sociely, Girgaum,
Pune - 411 002, Incia Mumbai - 400 904 tndia.
Phone : (020) 24452044 Phone : (022) 23860976, 2365633¢
Bangalore Chennai

Pragati Book House Pragati Books
Moni .

1676-14th, Main Road. Prakash Nagar, # o “"“'.;:n?.?fe "gﬁ,";ﬁi;“"&mﬁ;’

Bangalore - 560021, India - N -)

o a0, 5304097 Fax : 23924848 India. Ph. - {044) 6518 3535 Moblle - 94440 01782

Chennai Hyderabad

Technical Books Distributor Nirali Book House
B - Ground floar, ‘GUANTA ANNAM 24th Streat, H-3657066, 22, Shivam Enclave, 4-5 - 947, Badi Chavadi,

Opp. U C WAS Anna Nagar (W} Chennai - 600040, Hyderabad - 500005
Indka. MobHe :

Computer gra
an extremely ¢
can understar
faster than it

development

cost of such |
computer gra|

This book hi
technigues us
and practical

clear and wel

Contents

Chapter 1 ex|
graphics and
output devic
representatic

Chapter 2 &
explains the

Chapter 3 is
polygon. It al

Chapter 4 ¢
transiation, r

Chapter 5 ir
explains vari

Chapter 6 ¢
trans!ation, r
plane.

Chapter 7 d
perspective

Chapter 8 ¢

Chapter 9 te
and B-spline

nter :

'rinters
Road,
1 041

Preface |

Computer graphics is one of the most exciting and rapidly growing computer field. it is also
an extremely effective medium for communication between man and computer; the human
can understand the information content of a displayed diagram or perspective view much
faster than it can understand a table of numbers. Knowing this thing, there is a lots of
development in hardware and software required to generate images, and now-a-days the
cost of such hardware and software is also dropping rapidly. Due {o this the interactive
computer graphics is becoming available to more and more people.

This book has been written to help the students in learning basic algorithms and
techriques used in interactive computer graphics. It provides a thorough, comprehensive
and practical coverage of computer graphics, its algorithms, programs and applications in
clear and well-illustrated format.

Contents and Organisation

Chapter 1 explains advantages of interactive computer graphics, applications of computer
graphics and gives classification of applications. It also introduces input devices and
output devices. Later part of this chapter introduces coordinate systems and its
representations.

Chapter 2 explains the various algorithms to generate line, circle and ellipse. It also
explains the concept of aliasing and antialiasing.

Chapter 3 is devoted to polygons. It explains the types and representation techniques for
polygon. It alse explains the methods used to entering and filling the polygons.

Chapter 4 deals with two dimensional transformations. The ftransformations include
translation, rotation, scaling, shearing, reflection and rotation about an arbitrary point.

Chapter 5 introduces the concepts of clipping. Starting with viewing transformations, it
explains various algorithms used for line clipping and polygon clipping in 2-D.

Chapter 6 deals with three dimensional transformations. The transformations inciude
translation, rotation, scaling, rotation about an arbitrary axis and rotation about an arbitrary
plane.

Chapter 7 deals with three dimensional viewing. it explains the concepts of parallel and
perspective projections. It also explains three dimensional clipping algorithms.

Chapter 8 considers hidden surface and line removal. It explains algorithms related to it.

Chapter 9 tells how to generate curves. It explains spline representations, Bezier curves
and B-spline curves.

(iii}

Chapter 10 is devoted to light, colour and shading. It explains topics such as diffuse
fllumination, point source illumination, specular reflection, shading algorithms,
transparency and ray tracing. It also explains the significance of CIE chromaticity diagram
and introduces various colour models such as RGB, CMY, HSV and HLS.

Acknowledgements|

Thanks to thie professors, students and authors of variou's technical books and articles for
their overwhelming response to our books. The feedback and the response we received,
encouraged us to write this book.

We wish to express our profound thanks to all those who helped in making this book a
reality. Much needed moral support and encouragement is provided on numerous
occasions by our whole family,

We are specially gratefu! to the great teacher Prof. A.V. Bakshi for his time to time, much
needed, valuable guidance. Without the full support and cheerful encouragement of
Mr. Uday Bakshi the book would not have been completed in time.

Finally, we wish to thank Mr. Avinash Wani, Mr. Ravindra Wani and the entire team of
Technical Publications who have taken immense pain to get the quality printing in time.

Any suggestions for the improvement of the book will be acknowledged and appreciated.

Atul Godse
Deepali Godse

.z)ec{icafea[to

Welm 59) /é utumj

i)

Chapter 1

1.1 Int
1.2 Im:
1.3Th
per
1.5 Ck
1.6 Inj
o o
1€

1€

1.

1.t

1.t

14

14

1.
1.70
1.

ach as diffuse
g algorithms,
ticity diagram

ind articles for' '

.3 we received,

ing this book a
on nuUMerous

2 to time, much
ouragement of

entire team of
inting in time.

1d appreciated.

Atul Godse
Deepali Godse

Table of Contents
Chapter 1 Introduction to Computer Graphics 1
.1 IOTOAUCTION .ot erreaaee e e e cer e e s ee s e s s a bbb bbbt e b e eeveeaannssesns 1
1.2 Image Processing as Picture ANalYSIScccveiiiiiiiininiins 2
1.3 The Advantages of Interactive GraphiCs ..o 3
/14 Applications of Computer Graphics ... 4
1.5 Classification of Applicationscccovv v 4
1.6 INPUE DBVICES ... eereeaseseeess s esecsesssecsseesnsescenssns s 5
ABAKEYDOAMol .5
t82Mouse O R TRE RS 6
1.6.3 Trackball and Spaceball i 7
164 JoystickSo e 7
1B DAt GlOVE. - . ottt 8
1.6.6 Digitizer/Graphical TADIBL\ oeeeee e e e 8
1.8.7IMAGE SCANMEISt e ettt e 9
1B B TOUCH PaNElS. . . .ottt e 10
1B OLIGM PENS 11
1B A0 VOICE SYSIBMS. . .o v 11
1.7 OUIPUE DBVICES ..coviiiiiiiiiiir e 12
1.7.1 Video Display DEVICES.t 12
t17.1.1Cathode-Ray-Tubeso 12
\ 1.2 Vector Scan/Random Scan Display o T4
AT A3RasterScanDisplay 15
1.7.14 Colour CRT Monitors, e e e e e e 22
1.7.1.5Direct-view Storage Tubeso 24
17.16FlatPanelDisplays 25
174 7PlasmaPanel Display . . . -o 25
17.18Liguid Crystal Monitorso 26
1.7.1.9 Important Characteristics of Video Display Devices 27
1.7.2Hardoopy DEVICESo oo e 28
1.7.2.1 Important Characteristics of Hardcopy Devices. 28

v}

TT22PHMEIS © . o o o o o e e e e e e e e e e 29
TT2BPIOREIS . - o o« o o o e e e e e e e e e e 34

1724 CAMBIAS . . . o 4 o e e e e e e e e e e 30

1.7.2.5 Comparison of Various Monochsome Hardcopy DeviceS. . . . « - + « « = -« 36

1.7.2.6 Comparison of Various Colour Hardcopy Devices - - - -~ - - 37

1.8 Coordinate SYSIEMS. ...c..cciiiriiiriereririres s 37
18 1 Two Dimensional Carlesian Reference System 37

1.8.2 Three Dimensional Cartesian Reference Systemcocvvvvvneenenes 38

1.8.3 Polar Coordinate SYSIBIM.o ov e e 39

1.9 Coordinate Representations ...t 40
SOIVEA EXAMPIES .ouevervecemiaraeressssessiacs st bt s s 41
REVIEW QUUESHIONS -...vviveieereeieeiieearresirrrereeesins s tssabr s sasesa s st st 42
UNIVETSity QUESHIONS ..c.vovivririreieieseri sttt 43
Chapter 2 Raster Graphics Algorithms for Drawing 2-D Primitives " 45
D INEFOAUCHON o ceveeieeieveerreesiecerris s ast et sy s bbb 45
2.2 Basic Concepts in Line Drawihg ... 45
D3 Line Drawing AIGOHIMScrermrirrsiererisssisssssssssssssscassennes 46
_2.3.1 Digital Differential ARGIYZET oovvr i 47
£.3.2 Bresenham's Line Algorithm 53
2.4 ANBANIASING Of LINES ccccovevrrverrrrssrrsssssssssssrsscecesssssssmsssssssssssss s 59
2.5 Methods of ANHBNIASINGooeevviier e 59
251 Increasing RESOILONo vvrviin i 59

2.5.2 Unweighted Area Sampling. coovoiiiieierii e 60

2.5.3 Weighted Area Sampling.o 60

2.6 THiCK LIiNg SEGMENLScoovvvimiririrres s 61
2.7 Basic Concepts in Circle Drawing.........coveeniiinmrienes 63
2.8 Representation of @ CIFCI@ ..o s 64
2.8.1 Polynomial Methodooooieriiiiii 64
2.8.2 Trigonometric Methodo niver e 64
2.9 Circle Drawing AIGOTtRMS.........oveeeenimni s 65
" 201 DDA Circle Drawing AIGORNIML\ eeeeraeeenceeece e 65
2 9.2 Bresenham's Circle Drawing Algorithm cooovivinivvieinners 67

(v}

,
/2.1 OtL
Solve
Revie
Unive

Chapter 3

3.11n
32T
33R
34 E
35A
36 P
3.

3.
Solve
Revie
Unive

Chapter 4

4.1 1r
42T

‘‘‘‘ 29 I ' /29,3MidpointCircIeDrawingAIgorithm‘.,‘..‘.,.,.,,....,.M.,.,...,,.........?1

_____ w | __2.10 Eflipse Drawing AIGOMtMcccoevccvvvrnccrivnrssicmnrnsissconssonn 75
a3 Solved Examples et eee ettt eeee i taaeeee et raeeaee i bbbatsrteinnnberaae s eaaaneenes 82
____ " F RevieW QUESHIONSooivieiiiiiiiitieeins e ae e eiveae e sneeeeesine s O
‘‘‘‘ 27 University QUESHIONSoocvieiieiieeier e eie et e 5O
--------------- 37 Chapter 3 Area Filling 88
--------- 3 B INEOAUCHION oot e e eee e eeetaaeeeenrraes s eiesaeseias a0 B0
---------- 8 3.2 Types of POIYGONS ..ou.civrci ettt ne i B8
""""""" 39 3.3 Representation of Polygons..............ccoccovviivvnninnicniniincnenn. .89
------------ 40 3.4 Entering POIYGONSoveviiveiiirrevcrecteecerere e reenneeeenee e e enenn . 30
--------------- H 3.5 AN INSIE TESt ... ovvooeererereeoeeeeeveeeeoseeereceesseseeesesseseerereeennssenerssrn 91
"""""""""" 42 3.6 POIYGON FIlliNG......cvvooeeeeeeicerieiereecss e 93
------------ 43 36A8BdFil oW
" 45 3.6.1.1 Boundary Fill Agorithm Lo 93
45 368.12Flood Fill Algorithm o 95
________________ 45 3.6.2 Scan Ling AIGOMMNM.\ttt 96
_______________ 46 Solved EXample ... 108
__________ 47 ReVIEW QUESHIONS ... v ciireea s eseeeeeeeseaeeeinrsesaanreesennnneee e VDT
___________ 53 UNIversity QUESHIONScveveierieriiieeeceeeernree e esiasesiaesinesannesiconcnsennens 108
"""""""" 59 Chapter4 2-D Geometric Transformation 110
"""""""" 59 4.1 INrOAUCHON ..o 110
U ttt 23 4.2 Two Dimensional Transformationsccoccovven i 110
.......... 60 A2 A Translation. ... oo e 11D
............... 61 4.2.2R0tation.‘,‘.,.,..‘..‘.........,m.m....,.,....‘.,,‘.,.‘I‘.‘.‘..,.111
"""""""""" 63 4238caling. e 1B
............ 64 4.3 Homogeneous Coordinatescccceoovevnnenncnivencivceieeenn 115
......... 64 4.3.1 Homogeneous Coordinates for Translation.116
........ " 4.3.2 Homogeneous Coordinates for Rotation 116
................ 65 4.3.3 Homogeneous Coordinates for Scaling.o. 31T
4.4 Composition of 2D Transformations ... 121
gi 4.4.1 Rotation About an Arbitrary Point e 121
{vii)

-

4.5 Other Transformations ...t sierrr e 123
48 ReeClON. .. o 123
B O, . e e e e 125

4521Xshear e e e 125
4522Yshear 125
4.5.2.3 Shearing Relative to Other Reference Line. 126

4.6 Inverse Transformationscccccoev v e e e e e e aearaaares 130

Solved EXamplescooiiiii s 131

Review QUESHIONS ..o PR 143

University QUESTIONSoeiiiiiiree e crrenes e receeeeeeeess et 144

Chapter 5 2-D Viewing and Clipping 147
5.1 INFOAUCHION ..o e e et 147
2.2 Viewing Transformationccoovvevvriiiicvneecnnn. e e 147
.5.2.1 Normalization Transformation™. i 148

.5.2.2 Workstation Transformation. 149

5.3 2D ClIPPING vttt eee e eeee e e e eeene e e s e s reeeseseaanne 1562
5.3 PoINt ClppINg .. . e 153
5.3.2 Line ClpPINg ..o e e e 153

 5.3.2.1 Sutherland and Cohen Subdivision Line Clipping Algorithm 153
5.3.2.2 Midpoint Subdivision Algorithm oL oL oL 162
5.3.2.3 Generalized Clipping with Cyrus-Beck Algorithm 167

. 5.3.24 Liang-Barsky Line Clipping Algorithm 173

5.4 Polygon ClIPPINGooiiiiiieeeece e reeeer e e e e e e 178

5.5 Sutheriand - Hodgeman Polygon Clippingccoweeomeeecerreeereenn. 179

5.6 Weiler-Atherton AIGorithm ... e s 191

5.7 Generalized ClPPING.......ccoiiiiriiiiiiiiec et treeitcc e 192

5.8 Interior and Exterior ClippINgcccvvvveriviiimmniiiriinieccn s recaeceene e 193

Solved EXAMPIES ...cccevirieeeiiiiriiree et en st e e et re e s seeranaeae e 193

Review QUESTIONScccccv it seeecn s asacs e oo eaae s 195

University QUESHONSuvvririrriie e eeeecre e re e 195

(viii)

Chapter ¢

ﬁ.‘l h
B.2T
6:3 ¢
0.4 F
L65F
6.6 F
6

6
Solve
Revid
Unive

Chapter 7
7110
727
7.3V
74T
75F

7

T
7

76T
77T
Solve

............

............

............

............

............

Chapter 6 3-D Concepts 198

ﬁ.1 INEFOQUCTION ...ttt e e e et et e aaaaae e e 198
8.2 Translation OO SRR PR PO TOUUTORIUSORPI 198
B3 SCANNG oo e ee s s e ans 199
CBA ROIAEIONoveiiiicii e st a e rga s 200
. 6:5 Rotation about Arbitrary AXis ..o, 201
* 6.6 Reflection with Respectto Given Plane..............ccvvviimnccnnnene 208
.. 6.8.1 Reflection with RespecttoxyPlane 208

6.6.2 Reflection with Respectto AnyPlane 208
Solved EXaMPIES ...l 211
ReVIEW QUESHIONSuvvviiie ettt e e s e e ee s e s sannnnnnnnns 219
University QUEeSTIONS ... e 219
Chapter 7 Three Dimensional Viewing, Projection and Clipping 221
T IFOAUCHON ..ot e e e e e e s 221
7.2 Three Dimensional VIeWingc...ivviiviverriiiiiinnnineeierccesesanes 221
7.3 Viewing Parameters........c.ooeiiirieecirrrcsie st 222
7.4 Transformation from World Coordinate to Viewing Coordinates....... 225
5 ProJeCtioNS ..ot 226
P54 Parallel Projection 226
~1:5.2 Perspective Projection. PUITRIE 227
‘?./5/3 Types of Parallel Projections. i 227

) /}‘5‘3.1 Orthographic Projection 228

. 7.53.20blique Projectiono 228

654 Types of Perspective Projectionso i 229

7.5.5 Transformation Matrices for General Parallel Projection. 231
75540nXYPlane Lo p£Y
75520nGivenViewPiane L L0 232

_1.5.6 Transformation Matrix for Oblique Projection onto xy Plane. 233

71.5.7 Transformation Matrix for Perspective Projection 234

7.6 Three Dimensional ClipPiNg........ccooiieeeeeriiie e 235
7.7 Three - Dimensional Midpoint Subdivision Algorthm 239
SoIVEd EXAMPIESoonrrieeeee ittt ee et eeraa e seres e aen e e 239

REVIEW QUESHIONS .. oo eeees s eresseesssanssssaassaesanenssanes 245

University QUESTIONSvviieiiciie et e e e eeaes s sirnreeeee e 246
Chapter 8 Hidden Surface Elimination Methods 248
8.1 INOAUCHIONoeeiiiiiiii ettt ie e s s e e e e s s e reereeans 248
8.2 Techniques for Efficient Visible-Surface Algorithms 249
B2 CONBrENCE . . o o e e 249

8.2.2 Perspective Transformation. o i i 249

8.2.3 Extents and Bounding VOMIMES.ovvereeniiieeniieeeienn 250
B.24Back-Face Cullingo i e 250
8.2.5 Spatial Partitioning. e 251
B2 OHIBrarChY e 251

8.3 Hidden Line Elimination Algorithms ..., 251
831 Robert's Algorithm e 251
8.3.2AppelsAlgoritm. N 252
8I3HaloedLingst 253

8.4 Hidden Surface Elimination Algorithms........c....coeiiieeee i, 253
8.4.1 Painter's Algorithm (Depth Sort Algorithm), 253
8.4.23canLine Algorithm. e 255
843 ZBufferAlgorithm e 256
8.4.4 Wamnock's Algorithm {Area Subdivision Algorithm}258
8.4.5 Back-Face Removal Algorithmo 261
RevIeW QUESTIONSviiiiiirreeec et eecs e s e aeesseesssssaesaevens 262
University QUESHIONSccccvvrii et e 263
Chapter9 Curves 265
1 B (11 00T o L1 T (e o OO USSR U U NSRS UUUUPUPPORON 265
0.2 Generation Of CUIVES........ccommrriiieiecc e eees s svaiee e 265
9.2.1 Circular Arc Generation Using DDA Algorithm 265
922Interpolation. e e 267

9.3 Spline Representation.................oociiiiiniiiec e 270
9.3.1 Geometric and Parametric Continuity. e e 271
0.3.28pline Specificalions 272

0.4 BEZIET CUIVES ...ovviieiieeeiiieeeeeeeeeeree e e saraereseeesnrterasesanssataaeaeeorobensensens 273

95E
96 F
9
9
9
Revi
Uniwvi

Chapter 1

-10.1
10.2
10.3
10.4

1
1
10.5
10.6

P . T - Y

10.7
10.8
10.9

1011

...........

...........

...........

0.5 B-SPHNe CUIVESooiiiiiiieeee et e e s ee e e e e rne 279
9.6 Parametric Bicubic SUMaces...........cov oo 284
06 T Hermite SUMACES. e e e e 285
86.2B-Spline Surfaces 286
96.3Bezier SUMaCE. e 286
ReVIeW QUESHIONSoovveeiiieeeeeeeeccre e ee s s secnesrecessenssibbesanrnes 286
University QUESHIONSeuriieiiiie et 286
Chapter 10 Light Shading ' 288
0.1 INtrodUCHIONoooiiiiiiiiiii et 288
10.2 Diffuse BIUMINALIoN..........c.coovirimeieineieieerer et esnseeenes 288
10.3 Point-Source uminationcccooirreeiiinc i, 290
10.4 Specular Reflectionoooieiiiiiiieceeecccr e 291
10.4.1 The Phong lluminationModel i 291
1042 The Halfway Vector. o e e 293
10.5 Combined Diffuse and Specular Reflectionsccccvvnnnnnnn 293
10.6 Shading Algorithms ... e e 294
10.6.1 Constant-Intensity Shading i i 294
10.6.2Gouraud Shading 294
106.3PhongShading 297
10.6.4 Halftone Shading. v.voveeeeerreraen... BT 299
10.6.5Dithering Techniques. i i 300
107 TranSPArENCY «..cooiiiictitttet e e ee e receae e e sesess s et sa s e s s s ans e enas 301
0.8 ShAGOWS ..o e e s snvae e s seaann s aan e 302
10O RAY-TTACING .eeeeeeeeeire ettt eereente et 303
10.9.1 Ray Surface Intersection Calculations.o..o 305
10.9.2 Reducing Object-Intersection Caleulations 307
10.9.3 Antialiased Ray Tracing. i 309
10934 8uperSampling. L Lo 309
10.932Adaptive Sampling. L L L. Lo 310
10.9.3.3 Stochastic Sampling / Distributed Ray Traging 310
10.9.34 Advantages of Distributed Ray Tracing. 3o
10.10 ColoUr MOEISoeeviiiieiriirti e riaeeee et rae s eeaeasans 312

(xi)

10.10.1 Properies of Light 32

10.10.2 CIE Chromaticity Diagram. e 313

0103 RGB Colour Motel. . . . e e 315

10.10.4 CMY Colour Model e 318

10105 HSY Colour Model. .. .ot e e e 317

10106 HLS Colour Modelt 319

REVIEW QUESEIONS ..voeeeeeeeeeeee et iiiiitvtrvaeeeaaassrerrassanesssesseresesasseressaesesanssses 320
UNiversity QUESHONS -.......ovoveeimemeiicin et 321
Index 323

(xii)

-

Introduction to Computer Graphics

I

1.1 Introduction

The computer is an information processing machine. It is a tool for storing,
manipulating and correlating data. There are many ways to communicate the processed
information to the user(The computer graphics is one of the most effective and commonly
used way to communicate the processed information to the user. It displays the information
in the form of graphics objects such as pictures, charts, graphs and diagrams instead of
simple tenghus we can say that computer graphics makes it possible to express data in
pictorial form. The picture or graphics object may be an engineering drawing, business
graphs, architectural structures, a single frame from an animated movie or a machine parts
illustrated for a service manuaﬂ It is the fundamental cohesive concept in computer
graphics. Therefore, it is important to understand -

* How pictures or graphics objects are presented in computer graphics ?

* How pictures or graphics objects are prepared for presentation ?

* How previously prepared pictures or graphics objects are presented ?

* How interaction with the picture or graphics object is accomplished ?

@ computer graphics, pictures or graphics objects are presented as a collection of
discrete picture elements called
pixels. The pixel is the smallest
addressable screen eleme@lt is the
smallest piece of the display screen
which we can control. The control is
achieved by setting the intensity and
colour of the pixel which compose
the screen. This is illustrated in
Fig. 1.1.

Each pixel on the graphics
display = does not represent
mathematical point. Rather, it
represents a region which
theoretically can contain an infinite
number of points. For example, if we
want to display point P, whose
coordinates are (4.2, 3.8) and point P,

Fig. 1.1 Representation of picture

1)

Computer Graphics 2 Introduction to Computer Graphics

whose coordinates are (4.8, 3.1) then P, and P, are represented by only one pixel (4, 3), as
shown in the Fig. 1.2. In general, a point is represented by the integer part of x and integer
part of y, i.e., pixel (int {x), int (y)).

y coordinate 4 5
4
4 |
/3 P..
y pixel row 3 3
2
1 3l
1
0

0 1 2 3 4 5 @6
o 1 ,2 3f{ 4 &

. x coordinate 4
X pixel column 2

Fig. 1.2 Pixel display area of 6 x5

The special procedures determine which pixel will provide the best approximation to
the desired picture or graphics object. The process of determining the appropriate pixels for
representing picture or graphics object is known as rasterization, and the process of
representing continuous picture or graphics object as a collection of discrete pixels is called
scan conversion.

The computer graphics allows rotation, translation, scaling and performing various
projections on the picture before displaying it. It also allows to add effects such as hidden
surface removal, shading or transparency to the picture before final representation. It
provides user the control to modify contents, structure, and appearance of pictures or
graphics objects using input devices such as a keyboard, mouse, or touch-sensitive panel on
the screen. There is a close relationship between the input devices and display devices.
Therefore, graphics devices includes both input devices and display devices.

1.2 Image Processing as Picture Analysis

The computer graphics is a collection, combination and representation of real or
imaginary objects from their computer-based models. Thus we can say that computer
graphics concerns the pictorial synthesis of real or imaginary objects. However, the related
field image processing or sometimes called picture analysis concerns the analysis of scenes,
or the reconstruction of models of 2D or 3D objects from their picture. This is exactly the
reverse process. The image processing can be classified as

¢+ Image enhancement

* Pattern detection and recognition

* Scene analysis and computer vision

The image enhancement deals with the improvement in the image quality by
eliminating noise or by increasing image contrast. Pattern detection and recognition deal

COITIEI.ItQI

with the ¢
patterns, '
pattern d
recognitio

The at
as finger p
SO on.

We he
computer
But now a
They both

1.3 The .

Let us.

* Tod:
natu

* Itpr
also

have

~ animr

* With

the g

scern

* Thei

can 1

objec

throv

case)

}/ The i
dyna

being
-With
chip

grapl

In shor
interaction.

trends and 1

environmen
products wi

aphics

4, 3), as
integer

ation to
-ixels for
yess of
‘s called

various
s hidden
ation. It
tures or
panel on
devices.

I real or
omputer
e refated
f scenes,
actly the

rality by
‘ion deal

Computer Graphics 3 Introduction to Computer Graphics

with the detection and clarification of standard patterns and finding deviations from these
patterns. The optical character recognition (OCR) technology is an practical example of
pattern detection and recognition. Scene analysis and computer vision deals with the
recognition and reconstruction of 3D model of scene from several 2D images.

The above three fields of image processing proved their importance in many area such
as finger print detection and recognition, modeling of buildings, ships, automobiles etc., and
0 on.

We have discussed the two fields : computer graphics and ™mage processing of
computer processing of pictures. In the initial stages they were quite separate disciplines.
But now a days they use some common features, and overlap between them is growing.
They both use raster displays. '

-

1.3 The Advantages of Interactive Graphics

Let us discuss the advantages of interactive graphics.

* Today, a high quality graphics displays of personal computer provide one of the most
natural means of communicating with a computer.

+ It provides tools for producing pictures not only of concrete, "real-world" objects but
also of abstract, synthetic objects, such as mathematical surfaces in 4D and of data that
have no inherent geometry, such as survey results.

_ yft has an ability to show moving pictures, and thus it is possible to produce
animations with interactive graphics.

* With interactive graphics use can also control the animation by adjusting the speed,
the portion of the total scene in view, the geometric relationship of the objects in the
scene to one another, the amount of detail shown and so on.

* The interactive graphics provides tool called motion dynamics. With this tool user
can move and tumble objects with respect to a stationary observer, or he can make
objects stationary and the viewer moving around them. A typical example is walk
throughs made by builder to show flat interior and building surroundings. In many
case it is also possible to move both objects and viewer.

" The interactive graphics also provides facility calied update dynamics. With update
dynamics it is possible to change the shape, colour or other properties of the objects
being viewed.

- With the recent development of digital signal processing (DSP) and audio synthesis
chip the interactive graphics can now provide audio feedback alongwith the
graphical feedbacks to make the simulated environment even more realistic.

In short, interactive graphics permits extensive, high-bandwidth user-computer
interaction. It significantly enhances the ability to understand information, to perceive
trends and to visualize real or imaginary objects either moving or stationary in a realistic
environment. It also makes it possible to get high quality and more precise results and
products with lower analysis and design cost.

Computer Graphics 4 Introduction to Computer Graphics

1.4 Applications of Computer Graphics

The use of computer graphics is wide spread. It is used in various areas such as industry,
business, government organisations, education, entertainment and most recently the home.
Let us discuss the representative uses of computer graphics in brief.

* User Interfaces : User friendliness is one of the main factors underlying the success
and popularity of any system. It is now a well established fact that graphical
interfaces provide an attractive and easy interaction between users and computers.

. The built-in graphics provided with user interfaces use visual control items such as
buttbns, menus, icons, scroll bar etc, which allows user to interact with computer only
by mouse-click. Typing is necessary only to input text to be stored and manipulated.

* Plotting of graphics and chart : In industry, business, government and educational

/’ organisations, computer graphics is most commonly used to create 2D and 3D graphs
of mathematical, physical and economic functions in form of histograms, bars and
pie-charts. These graphs and charts are very useful for decision making.

* Office automation and Desktop Publishing : The desktop publishing on personal
computers allow the use of graphics for the creation and dissemination of
information. Many organisations does the in-house creation and printing of
documents. The desktop publishing allows user to create documents which contain
text, tables, graphs and other forms of drawn or scanned images or pictures. This is
one approach towards the office automation.

* Computer-aided Drafting and Design : The computer-aided drafting uses graphics
to design components and systems electrical, mechanical, electromechanical and
electronic devices such as automobile bodies, structures of building, airplane, ships,
very large-scale integrated (VLSI) chips, optical systems and computer networks.

* Simulation and Animation : Use of graphics in simulation makes mathematic
models and mechanical systems more realistic and easy to study. The interactive
graphics supported by animation software proved their use in production of
animated movies and cartoons films.

* Artand Commerce: There is a lot of development in the tools provided by computer
graphics. This allows user to create artistic pictures which express messages and
attract attentions. Such pictures are very useful in advertising.

* Process Control : By the use of computer now it is possible to control various
processes in the industry from a remote control room. In such cases, process systems
and processing parameters are shown on the computer with graphic symbols and
identifications. This makes it easy for operator to monitor and control various
processing parameters at a time.

.- ¢ Cartography : Computer graphics is also used to represent geographic maps, weather

.-~ maps, oceanographic charts, contour maps, population density maps and so on.

1.5 Classification of Applications

In the last section we have seen various uses of computer graphics. These uses can be
classified as shown in the Fig. 1.3. As shown in the Fig. 1.3, the use of computer graphics can
be classified according to dimensionality of the object to be drawn : 21D or 3D. It can also be
classified according to kind-of picture : Symbolic or Realistic. Many computer graphics

Comgutc

applicati
user's de
change t
Compute
drawi_ngg
classifies
white, co

Type of
(Dimensi

)

2D

1.6 Input

Numbe
keyboard, 1
them.

1.6.1 Key

The key
text and n
coordinates

Keyboa
keyboard. It
* Alphi
* Funct
+ Modi
+ Cursc
* Nums

GraEhics

sindustry,
the home.

e success
graphical
omputers.
ns such as
-puter only
ipulated.
ducational
» 3D graphs
s, bars and

M personal
:ination of
orinting of
iich contain
ares, This is

ses graphics
hanical and
slane, ships,
1etworks.

mathematic
2 interactive
oduction of

by computer
essages and

itrol various
10ess systems
symbols and
strol various

\aps, weather
»wd so on.

2 uses can be
graphics can
Tt can also be

-ter graphics

Computer Graphics 5 Introduction to Computer Graphics

applications are classified by the type of interaction. The type of interaction determines the
user’s degree of control over the object and its image. In controllable interaction user can
change the attributes of the images. Role of picture gives the another classification.
Computer graphics is either used for representation or it can be an end product such as
drawings. Pictorial representation gives the final classification of use computer graphics. It

classifies the use of computer graphics to represent pictures such as line drawing, black and
white, colour and 50 on.

Uses of Computer Graphics

Type of interaction Pictorial
representation

|

Type of object
{Dimensionality)

Controllable Non controllable i | i }
20 3D Line Biack Colour elc,
drawing and image
white
image
Kind of picture Role of picture
Symbolic Realistic Use for Use as an

representation end product
such as drawing

Fig. 1.3
1.6 input Devices

Number of devices are available for data input in the graphics systems. These include

keyboard, mouse, trackball, spaceball, joystick, digitizers, scanners and so on. Let us discuss _
them.

1.6.1 Keyboard

The keyboard is a primary input device for any graphics system. It is used for entering

text and numbers, ie. on graphics data associated with pictures such as labels X-y
coordinates etc.

Keyboards are available in various sizes, shapes and styles. Fig. 1.4 shows standard
keyboard. It consists of

* Alphanumeric key

* Function keys

* Modifier keys

* Cursor movement keys
* Numeric keypad

Computer Graphics 6 introduction to Computer Graphics

Fig. 1.4

When we press a key on the keyboard, keyboard controtler places a code corresponding
to key pressed into a part of its memory, called keyboard buffer. This code is called scan
code. The keyboard controller informs CPU of the computer about the key press with the
help of an interrupt signal. The CPU then reads the scan code from the keyboard buffer, as

shown in the Fig. 1.5.

Keyboard

Y Interrupt signal

Keyboard Keyboard
controller buffer Scancode | CPV

Fig. 1.5 Getting the scan code from keybeard

1.6.2 Mouse

A mouse is a palm-sized box used to position the screen cursor. It consists of ball on the
bottom connected to wheels or rollers to provide the amount and direction of movement.
One, two or three buttons are usually included on the top of the mouse for signaling the
execution of some operation. Now-a-days mouse consists of one more wheel on the top to

scroll the screen pages.

R

ComEute

provides s
measure t
positioning
used in thr

1.6.4 Joy

A joyst
steer the sc
Moving the
indicated t
potentiome
altered by t

Some jc
inexpensive

(a)

- Graphics

responding
called scan
:s5 with the
-d buffer, as

AU

» ball on the
f movement.
ignaling the
.m the top to

Computer Graphics 7 Introduction to Computer Graphics

o

{a) Mouse {b} Mouse with scrolling wheel

Fig. 1.6
1.6.3 Trackball and Spaceball

As the name implies, a trackball is a
ball that can be rotated with the fingers or
palm of the hand to produce screen cursor
movement. The potentiometers attached to
the trackball are used to measure the
amount and direction of rotation,

The trackball is a two dimensional
positioning device whereas spaceball
provides six degree of freedom. It does not actually move. It consists of strain guages which
measure the amount of pressure applied to the spaceball to provide input for spatial
positioning and orientation as the ball is pushed or pulled in various directions. It is usually
used in three-dimensional positioning and selecting operations in virtual-reality systems.

1.6.4 Joysticks

A joystick has a small, vertical lever (called the stick) mounted on the base and used to
steer the screen cursor around. It consists of two potentiometers attached to a single lever.
Moving the lever changes the settings on the potentiometers. The left or right movement is
indicated by one potentiometer and forward or back movement is indicated by other
potentiometer. Thus with ajoystick both x and y-coordinate positions can be simultaneously
altered by the motion of a single leVer. This is illustrated in Fig. 1.8.

Fig. 1.7 Trackball

Some joysticks may return to their zero {center) position when released. Joysticks are
inexpensive and are quite commonly used where only rough positioning is needed.

Computer —=1 4§ I
%

(a) Joystick (LT {b) Internal details

Fig. 1.8

Computer Graphics 8 introduction to Computer Graphics

1.6.5 Data Glove

The data glove is used
to grasp a virtual object. The
Fig. 1.9 shows the data
glove. It is constructed with
Fiber-optics ; \ a series of sensors that

cables " detect hand and finger

¢ : motions. Each sensor is a
‘R short length of fiberoptic
Cable guides “. cable, with a light-emitting
S ' : diode (LED) at one end and
a phototransistor at the
other end. The surface of a
cable is roughened in the
area where it is to be
sensitive to bending. When
the cable is flexed, some of
the LED's light is lost, so less
light is received by the
phototransistor.

Fiexion
SENSOrSs

Tactile-feedback device

Glove lining

Interface board

The input from the

Fig. 1.9 glove can be used to

: position or manipulate

objects it a virtual scene. Thus by wearing the dataglove, a user can grasp, move and rotate
objects and then release them.

1 6.6 Digitizer/Graphical Tablet

For applications such as tracing we need a device called a digitizer or a graphical tablet.
It consists of a flat surface, ranging in size from about 6 by 6 inches up to 48 by 72 inches or
more, which can detect the position of a movable stytus. Fig. 1.10 shows a small tablet with
penlike stylus.

Different graphics tablets use different techniques for measuring position, but they all
resolve the position into a horizontal and a vertical direction, which correspond to the axes
of the display. Most graphics tablets use an
electrical sensing mechanism to determine
the position of the stylus. In one such
arrangement, a grid of wire on 1/4 to 1/2
inch centers is embedded in the tablet
surface. Electromagnetic signals generated
by electrical pulses applied in sequence to
the wires in the grid induce an electrical
signal in a wire coil in the stylus. The
Fig. 1.10 strength of the signal induced by each pulse

Flat
surface

i

Comgu

is used
roughi

Ew
user ca

Ot}
The sor
periphe
the styl
microp]
tablets
powere.
with a t
radio Sig
the dist:

1.6.7 Ir

The
availabl¢
mechani
colour ar
format s
processe.
processir
sizes and

Fig. 1
is mount
the amou
source sh
photogra

phe

For col
photocell

_n_phics

used
" The
data

- with
that
finger
is a
optic
itting
1and
the
sofa
n the
Q0 be
When
‘me of
30 less
'y the

. the
d to
dpulate
! rotate

tablet.
ches or
et with

they all
the axes
3 use an
“ermine
e such
Do 1/2
2 tablet
nerated
wence to
fectrical
.15, The
-h pulse

Computer Graphics 9 Introduction to Computer Graphics

is used to determine the position of the stylus. The signal strength is also used to determine
roughly how far the stylus or cursor is from the graphical tablet.

Every time user may not wish to enter stylus position into the computer. In such cases
user can lift the stylus or make the tablet off by pressing a switch provided on the stylus.

Other graphical tablet technologies use sound (sonic) coupling and resistive coupling.
The sonic tablet uses sound waves to couple the stylus to microphones positioned on the
periphery of the digitizing area. Sound brust are created by an electrical spark at the tip of
the stylus. The time between when the spark occurs and when its sound arrives at each
microphone is proportional fo the distance from the stylus to each mi. rophone. The sonic
tablets mainly used in 3D positioning the devices. The resistive tablet uses a battery
powered stylus that emits high-frequency radio signals. The tablet is a piece of glass coated
with a thin layer of conducting material in which an electrical potential is induced by the
radio signals. The strength of the signals at the edges of the tablet is inversely proportional to
the distance to the stylus and can thus be used to calculate the stylus position.

1.6.7 Image Scanners

The scanner is a device, which can be used to store drawing, graphs, photos or text
available in printed form for computer processing. The scanners use the optical scanning
mechanism to scan the information. The scanner records the gradation of gray scales or
colour and stores them in the array. Finally, it stores the image information in a specitic file
format such as JPEG, GIF, TIFF, BMP and so on. Once the image is scanned, it can b
processed or we can apply transformations to rotate, scale, or crop the image using ima ge

processing softwares such as photo-shop or photo-paint. Scanners are available in variety of
sizes and capabilities.

Fig. 1.11 shows the working of photoscanner. As shown in the Fig. 1.11, the photograph
is mounted on a rotating drum. A finely collimated light beam is directed at the photo, and
the amount of light reflected is measured by a photocell. As the drum rotates, the light

source slowly moves from one end to the other, thus doing a raster scan of the entire
photograph.

Deflection system

Laser beam I—

Drum with

Light source
photo mounted

Light detector

Fig. 1.11 Photoscanner

For coloured photographs, multiple passes are made, using filters in the front of the
photocell to separate out various colours.

Computer Graphics 10 Introduction to Computer Graphics

Other type of scanners are electro-optical devices that use arrays of light sensitive charge
coupled devices (CCDs) to turn light reflected from, or transmitted through, artwork,
photographs, slides etc. into a usable digital file composed of pixel information.

The optical resolution and colour depth are the two important specifications of the
scanner. The photoscanners have resolution upto 2000 units per inch. Resolution of the CCD
array is 200 to 1000 units per inch which is less than the photoscanners. The colour depth is
expressed in bits. It specifies the number of colours scanner can capture,

According to construction the scanners also can be classified as :

Flatbed scanners, also called desktop scanners, are the most versatile and commonly
used scanners. In fact, this article focuses on the technology as it relates to flatbed scanners.

Sheet-fed scanners are similar to flatbed scanners except the document is moved and
the scan head is immobile. A sheet-fed scanner looks a lot like a small portable printer.

Handheld scanners use the same basic technology as a flatbed scanner, but relay on the
user to move them instead of a motorized belt. This type of scanner typically does not
provide good image quality. However, it can be useful for capturing an image quickly.

Drum scanners are used by the publishing industry to capture incredibly detailed
images. They use a technology called a photomultiplier tube (PMT). In PMT, the document
to be scanned is mounted on a glass cylinder. Located at the center of the cylinder is a sensor
that splits light bounced from the document into three beams. Each beam is sent through a
colour filter into a photomultiplier tube where the light is changed into an electrical signal.

1.6.8 Touch Panels

As the name implies, touch panels allow displayed objects or screen positions to be
selected with the touch of a finger. The touch panels are the transparent devices which are
fitted on the screen. They consist of touch sensing mechanism. Touch input can be recorded
using optical, electrical or acoustical methods,

Optical touch panels use a line of infrared light emitting diodes along one vertical edge
and along one horizontal edge of the screen. The opposite vertical and horizontal edges
contain light detectors. These detectors are used to record which beams are interrupted
when the panel is touched. The two crossing beams that are interrupted indicate the
horizontal and vertical coordinates of the screen position selected.

In electrical touch panels, two transparent plates are used. These plates are separated by
a small distance. One plate is coated with conducting material and other plate is coated with
resistive material. When outer plate is touched, it is forced to contact with the inner plate.
This contact creates a voltage drop across the resistive plate that is used to determine the
coordinate values of the selected screen position.

An acoustic touch panels use high frequency sound waves in horizontal and vertical
directions across a glass plate. Touching the screen causes partial reflection of each wave
from finger to the emitter. The screen coordinates of point of contact are then calculated by
measuring time between the transmission of each wave and its reflection to the emitter.

COmEUtI
1.6.9 Lj

Light
from poii

as shown
-‘_‘—‘———-

The lig
photo cell -
below it is
shielded ca
immediate
is cleared w
to which th.

Light pe
pen flip-flo;
detected. Fo
display proc
This ensures
the light pen

The resp
cells such as
operation. T
photo-multif

Now ad
sensors.

1.6.10 Voic

Speech re
commands. §
data. These s
and phrases.

The voice
recognize the:

-’aEhics

charge
rtwork,

s of the
he CCD
depthis

nmonly
nners.

ved and
nter.

ay on the
does not
ckly.

detailed
ocument
i a $ensor
hrough a

signal.

ons to be
~hich are
recorded

tical edge
ital edges
terrupted
dicate the

»arated by
rated with
ner plate.
:rmine the

ad vertical
cach wave
culated by

anitter.

Computer Graphics 11 Introduction to Computer Graphics

1.6.9 Light Pens

Light penis a pencil shaped device used to select positions by detecting the light coming

from points on the CRT screen. It consists of a photoelectric cell housed in a pencil like case
as shown in the Fig. 1.12.

N
J

Light dependent resistor (LDR)

Fig. 1.42

The light pen may be pointed at the screen. An optical system focuses light on to the
photo cell in the field view of the pen. The pen will send a pulse whenever the phosphor
below it is illuminated. This output of the photo-cell is then amplified and carried over a
shielded cable to light pen interface. A 'detect’ by the light pen can either be used to cause an
immediate interrupt to the computer through an interface or be used to set a flip-flop which
is cleared when read by the computer. Thus, the system can identify the part of the graphics
to which the pen is pointing, It records the co-ordinate position of the electron beam.

Light pen is an event driven device. After displaying each point, one can test the light
pen flip-flop. Thus exact location of the spot to which the light pen is pointing can be
detected. For using light pen for positioning, a tracking program isrun on the computer. The
display processor also has the capability to disable the light pen during the refresh cycle.
This ensures the inputs not desired by the operator are ignored. To facilitate the operation of
the light pen, a finger operated switch is provided to control the light reaching the photo cell.

The response time of the pen is also important. For slow displays transistor type photo
cells such as photo diodes are used. These are small, inexpensive and stitable for hand held
operation. The response time is about one microsecond. For the highspeed displays
photo-multiplier tube is used. It is bulky and uses fiber-optic cable.

Now a days improved light pens are available. These consist of a matrix of fibre optic
Sensors.

1.6.10 Voice Systems

Speech recognizers are used in some graphics systems as input devices to accept voice
commands. Such a voice-system input can be used to initiate graphics operations or to enter

data. These systems operate by matching an input with a predefined dictionary of words
and phrases.

The voice recognizers are classified accordings to whether or not they must be trained to
recognize the waveforms of a particular speaker, and whether they can recognize connected

Computer Graphics 12 Introduction to Computer Graphics

speech as opposed to single words or phrases. The speaker independent recognizers have
very limited vocabularies. Usually, they include only the digits and 50 to 100 words.

‘ The Fig. 1.13 shows the typical voice recognition system. In such systems microphone is
also included to minimize input of other backgrond sounds.

* Headphone

Fig. 1.13

The one advantage of voice system over other devices is that in voice systems the
attention of the operator does not have to be switched from one device to another to enter a
command. “

1.7 Output Devices

The output devices can be classified as display devices and hardcopy devices. Let us see
some of them.

1.7.1 Video Dispiay Devices

The most commonly used output device in a graphics system is a video monitor. The
operation of most video monitors is based on the standard cathode-ray-tube (CRT) design.
Let us see the basics of the CRT.

1.7.1.1 Cathode-Ray-Tubes

A CRT is an evacuated glass tube. An electron gun at the rear of the tube produces a
beam of electrons which is directed towards the front of the tube (screen). The inner side of
the screen is coated with phosphor substance which gives off light when it is stroked by
electrons. This is illustrated in Fig. 1.14. It is possible to control the point at which the
electron beam strikes the screen, and therefore the position of the dot upon the screen, by
deflecting the electron beam. The Fig. 1.15 shows the electrostatic defiection of the electron
beam in a CRT. '

Computer

Electron gu

Connector
pins

The deflectio
referred to as the
plates controls tt
horizontal deflect
two techniques us
and Raster scan.

- Graphics

izers have
rds.

rophone is

vstems the
rtoentera

.. Let us see

anitor. The
RT) design.

produces a
wer side of
stroked by

which the
- screen, by
‘he electron

Computer Graphics 13 Introduction to Computer Graphics

Cathode Ray Tube (CRT)

Side view Front view
Phosphor dot
Evacuated tube
Neck \
Electron gun \
— i Electron .
— 7 beam .

N

Fluorescent coating

Fig. 1.14 Simplified representation of CRT

Connector Electron .
pins qun Hor_lzontal
deflection plates
' g Phosphor
& =——coated
A BT R o W X, e AT O AR R g Screel‘l

: ™ g
Base / i

Focusing Vertical
system deflection plates

Efectron
beam

Fig. 1.15 Cathode Ray Tube

The deflection system of the cathode-ray-tube consists of two pairs of parallel plates,
referred to as the vertical and horizontal deflection plates. The voltage applied to vertical
plates controls the vertical deflection of the electron beam and voltage applied to the
horizontal deflection plates controls the horizontal deflection of the electron beam. There are

two techniques used for producing images on the CRT screen : Vector scan/random scan
and Raster scan.

Computer Graphics 14 Introduction to Computer Graphics

1.7.1.2 Vector Scan/Random Scan Display

As shown in Fig. 1.16, vector scan CRT
display directly traces out only the desired
lines on CRT i.e. If we want a line connecting
point A with point B on the vector graphics
display, we simply drive the beam deflection
circuitry, which will cause beam to go directly
from point A to B. If we want to move the beam
from point A to point B without showing a line
\ - -/ between points, we can blank the beam as we
move it. To move the beam across the CRT, the

Fig. 1.16 Vector scan CRT information about both, magnitude and

' direction is required. This information is

generated with the help of vector graphics generator.

4 N

The Fig. 1.17 shows the typical vector display architecture. It consists of display
controller, Central Processing Unit (CPU), display buffer memory and a CRT. A display
controller is connected as an I/O peripheral to the central processing unit (CPU). The
display buffer memory stores the computer produced display list or display program. The
program contains point and line plotting commands with (x, y) or {x, y, z} end point
coordinates, as well as character plotting commands. The display controller interprets
commands for plotting points, lines and characters and sends digital and point coordinates
to a vector generator. The vector generator then converts the digital coordinate values to
analog voltages for beam-defiection circuits that displace an electron beam writing on the
CRT's phosphor coating.

_) In vector displays beam
L cru | - is deflected from end point
} to end point, hence this
technique is also called
T 1O Port random scan. We know as
o beam, strikes phosphor it
MOVE i emits light. But phosphor
100 | (Interaction (Display light decays after few
L&;gll)s E data) commands) milliseconds and therefore
200 | it is necessary to repeat
300 | — through the display list to
CHAR | [=—=] Display controller CRT refresh the phosphor at
N?C?JE i t least 30 times per second to
100 | avoid flicker. As display
100 Keyboard |gouse buffer is used to store
LINE . . N
. display list and it is used for
.o refreshing, the display
JMP--- buffer memory is also
Display buffer memory called refresh buffer.

Fig. 1.17 Architecture of a vector display

Computer
1.7.1.3 Ra

The Fig
central pro
CRT.

As shown
refresh buffer.
on the screen. |
back to the top

Raster scan
—___‘——-———_._

- Graphics Computer Graphics 15 Introduction to Computer Graphics

1.7.1.3 Raster Scan Display

~can CRT The Fig. 1.18 shows the architecture of a raster display. It consists of display controller,

2 desired central processing unit (CPU), video controller, refresh buffer, keyboard, mouse and the
onnecting CRT.

- graphics

deflection
7o directly
-¢ thebeam
. ving a line
eam as we 17O port
1e CRT, the : I
itude and . .

-mation is . ' (Interaction data) (Display commands)

CPU

of display

Keyboard
A displ ay =1 Display controller _
'CPU). The , -
. 000000000000000000000 :
ogram. The 000000000000000000000
y end point 888380000000000088888
. 11111111111
't interprets 000001111111111100000
coordinates 000001111111111100000%—={ Video controller
000000000111000000000]
e soaadsses 1 1eenagoce:
s 1
‘iting on the 000000000111000000000
000000000000000000000
000000000000000000000
splays beam : 000000000000000000000
sn end point
hence this Refresh buffer
also called - -
We know as Fig. 1.18 Architecture of a raster display

phosphor it

As shown in the Fig. 1.18, the display image is stored in the form of 1s and 0s in the
-1t phosphor

refresh buffer. The video controller reads this refresh buffer and produces the actual image

after few on the screen. It does this by scanning one scan line at a time, from top to bottom and then
:nd therefore back to the top, as shown in the Fig. 1.18.
; i :g 1;(:8[::9?; Raster scan is the most common method of displaying images on the CRT screen. In this
l‘-;}h}::)sghor at method, the horizontal and vertical deflection
' er second to _ (A — —) signals are generated to move the beam all over the
] As display 4"-??%23—--—— screen in a pattern shown in the Fig. 1.19
»d to store N OFF Here, the beam is swept back and forth from the
it is used for NG ON left to the right across the screen. When the beam is
e display =% moved from the left to the right, it is ON. The beam
ey is also \ - A } is OFF, when it is moved from the right to the left as
“uffer. shown by dotted line in Fig. 1.19

Fig. 1.19 Raster scan CRT

Computer Graphics 16 Introduction to Computer Graphics

When the beam reaches the bottom of the screen, it is made OFF and rapidly retraced
back to the top left to start again. A display produced in this way is called raster scan
display. Raster scanning process is similar to reading different lines on the page of a book.
After completion of scanning of one line, the electron beam flies back to the start of next line
and process repeats. In the raster scan display, the screen image is maintained by repeatedly
scanning the same image. This process is known as refreshing of screen.

In raster scan displays a special area of memory is dedicated to graphics only. This
memory area is called frame buffer. It holds the set of intensity values for all the screen
points. The stored intensity values are retrieved from frame buffer and displayed on the
screen one row (scan line) at a time. Each screen point is referred to as a pixel or pel
(shortened forms of picture element). Each pixel on the screen can be specified by its row
and column number. Thus by specifying row and column number we can specify the pixel
position on the screen.

Intensity range for pixel positions depends on the capability of the raster system. It can
be a simple black and white system or colour system. In a simple black and white system,
each pixel position is either on or off, so only one bit per pixel is needed to control the
intensity of the pixel positions. Additional bits are required when colour and intensity
variations can be displayed. Upto 24 bits per pixel are included in high quality display
systems, which can require several megabytes of storage space for the frame buffer. On a
black and white system with one bit per pixel, the frame buffer is commonly called a bitmap.
For systems with multiple bits per pixel, the frame buffer is often referred to as a pixmap.

Vector Scan Displa Raster Scan Displa
¥ play

1. In vector scan display the beam is moved| 1. In raster scan display the beam is moved
between the end points of the graphics all over the screen one scan line at a time,
primitives. from top to bottom and then back to top.

2. Vector display flickers when the number| 2. In raster display, the refresh process is
of primitives in the buffer becomes too independent of the complexity of the
large. ' image.

3. Scan conversion is not required. 3. Graphics primitives are specified in terms
of their endpoints and must be scan
converted into their corresponding pixels
in the frame buffer.

4. Scan conversion hardware is not required. | 4. Because each primitive must be
scan-converted, real time dynamics is far
more computational and requires separate
scan conversion hardware,

5. Vector display draws a continuous and| 5. Raster display can display mathematically

smooth lines. smooth lines, polygons, and boundaries of
curved primitives only by approximating
them with pixels on the raster grid.

6. Cost is more.

6. Cost is low.

7. Vector display only draws lines and
characters.

7. Raster display has ability to display areas

filled with solid colours or patterns.

Table 1.1

Computer ¢

Frame |

In raste
memory are
points. The
screen one r

Usually,
memory. E
Conceptuall
stack. We kn
is pushed ou
pushed out ¢

Fig.1.20.
Fig. 1.20, one
in bits is equi
all 5 scan line
buffer. The s
is maintainec"

0 n 0

4 n 0
3fof Jo

2 n 1
1lo] |1

t 4

Both rotat:

of interactivity

is reduced in ¢
being added k

CP

Fig. 1.21 sl
display control
updates the fr:
through the fra
information to

r Graphics

ly retraced
ister scan
- of a book.
f next line
:epeatedly

only. This
the screen
yed on the
ixel or pel
by its row
y the pixel

stemn. It can
iite system,
control the
d intensity
ity display
uffer. On a
d a bitmap.
a pixmap.

is moved
it a time,
- to top.

wocess is
of the

in terms
be scan
ng pixels

ust be
ics is far
i separate

matically
daries of
aximating

.

Jay areas
s,

Computer Graphics 17 Introduction to Computer Graphics

Frame Buffer Organization

In raster scan displays a special area of memory is dedicated to graphics only. This
memory area is called frame bulffer. It holds the set of intensity values for all the screen

points. The stored intensity values are retrieved from frame buffer and displayed on the
screen ohe row (scan line) at a time.

Usually, frame buffer is implemented using rotating random access semiconductor
memory. However, frame buffer also can be implemented using shift registers.
Conceptually, shift register is operated as first-in, first-out (FIFO) fashion, i.e. similar to
stack. We know that, when stack is full and if we want to add new data bit then first data bit
is pushed out from the bottom and then the new data bit is added at the top. Here, the data
pushed out of the stack can be interpreted as the intensity of a pixel on a scan line.

Fig. 1.20 shows the implementation of frame buffer using shift register. As shown in the
Fig. 1.20, one shift register is required per pixel on a scan line and the length of shift register
in bits is equal to number of scan lines. Here, there aré 8 pixels per scan line and there are in
all 5 scan lines. Therefore, 8 shift registers, each of 5 bit length are used to implement frame
buffer. The synchronization between the output of the shift register and the video scan rate
is maintained data corresponding to particular scan line is displayed correctly.

OO AEAREE E)

o o o} [1 [[¢] [o T

Ol O EE R s

2L 1 [of [o] O] [% 1

o] [of [[o] [of] 1] [o]

LA S B B B B 2 077 2 3 456 7
Data out Display

Fig. 1.20 Frame buffer using eight 5-bit shift registers

Both rotating memory and shift register frame buffer implementations have low levels
of interactivity. The interactivity in rotating memory is limited due to disk access time and it

is reduced in shift register implementations because changes can only be made as bits are
being added to the register.

CPU Update | Frame Refresh _| oisplay Pixel | video

process buffer process |controller] information | menitor

Fig. 1.21 Frame buffer graphics system

Fig. 1.21 shows the frame buffer graphics system. It consists of CPU, frame buffer,
display controller and video monitor. An application program running in the computer
updates the frame buffer as per the picture information. The display controller cycles
through the frame buffer in scan line order (top to bottom) and passes the corresponding
information to the video monitor to refresh the display. The frame buffer can be part.of

e

Computer Graphics 18 Introduction to Computer Graphics

computer memory itself or it can be implemented with separate memory as shown in the
Fig. 1.22.

Host Graphics Main | | Display -] Video
CPy CPU memory controller monitor
Common bus

(a) Frame buffer as a part of computer memory

Host) Main
-CPU " |memory
f
L ! 7 Host system bus
High speed
interface
4
) Graphics system bus
Graphics Frame «| Display o] Video
CPU buffer controller monitor
{b} Separate frame butfer

Fig. 1.22 Frame buffer architectures

Generally, separate graphics processor is used to improve the performance of graphics
system. The graphics processor manipulates the frame buffer as per commands issued by
main processor.

The performance of the graphics system is also affected by sharing of single memory
done by two processors. The performance of the graphics system thus can be improved by
having separate frame buffer memory as shown in the Fig, 1.22 (b).

Display File and its Structure

We know that in raster scan displays image information is stored in the frame buffer. It
includes information of all pixels. On the other hand, the vector refresh displays store only
the commands necessary for drawing the line segments. Here, input to the vector generator
is stored instead of the output. The file used to store the commands necessary for drawing
the line segments is called display file.

In vector refresh display system, display processor uses the information in the display
file to draw lines with the help of vector generating algorithms, This is illustrated in Fig.1.23.
Therefore, we can say that display files provides an interface between the image
specification process and the image display process. It also describes image in a compact

Computer

format. Th
Such files ;

The Fig
commands.
operands. (
provides th

One wa
arrays. One
y coordinat
needed to .
operation ¢«
MOVE, LIN

Once the
display file.
display file.
Algorithm

1. Read

2. Searc

3. DF _C

DF_x
DF y
4. Stop

The table
shows how ¢

r Graphics

2wn in the

f graphics
issued by

€ memory
proved by

2 buffer. It
store only
generator
: drawing

e display
21 Fig. 1.23,
1e image
1 compact

Computer Graphics 19 Introduction to Computer Graphics

format. The concept of display file may be applied to devices other than refresh displays.
Such files are called pseudo display files, or metafiles.

User | Display Display /
program fite processor

Fig. 1.23 Vector refresh display systemn

The Fig. 1.23 shows the structure of display file. We know that it contains series of
commands. Each display file command contains two fields, an operation code {(opcode} and
operands. Opcode identifies the command such as draw line, move cursor etc., and operand
provides the coordinates of a point to process the command.

One way to store opcode and operands of series of commands is to use three separate
arrays. One for operation code, one for operand 1, i.e. x coordinate and one for operand?2, i.e.
y coordinate. This is illustrated in Fig. 1.24. The display file stores all commands to be
needed to create a specified image. It is necessary to assigh meaning to the possible
operation codes before we can proceed to interpret them. Let us consider three commands
MOVE, LINE and PLOT, and assign opcodes to these commands as shown in table 1.2,

Command Opcode
MOVE 1
LINE 2
PLOT 3
Table 1.2

Once the opcodes are defined we can write commands needed to draw ima ge into the

display file. The following algorithm gives the steps required to insert command in the
display file.

Algorithm
1. Read opcode, x and y coordinates.
2. Search for empty space in the display file. Let i be the empty row.
3. DE_OP[i] < Opcode;
DF_x {i] “— X
DE_y [i] “y;
4. Stop

The table 1.3 shows the structure of display file with five commands in it, and Fig. 1.24
shows how these commands are interpreted and plotted.

Computer Graphics 20

Introduction to Computer Graphics

DF_OT DF _x DF_y
Opcode Operand 1 Operand 2
X Yy
1 30 30
2 50 80
2 70 30
1 40 55
2 60 55
Table 1.3 Display file structure
Command 1: 1, 30, 30
It moves current cursor position to (30.30)
point (30, 30)
Fig. 1.24 {a)
{50.80) .
Command 2: 2, 50, 80
It draws the line between point (50,
80) and the current cursor position {30.30)
(30, 30)
Fig. 1.24 (b)
Command 3: 2, 70, 30 {50.80)
It draws the line between point (70,
30) and the current cursor position
(50, 80) | a0y (70.30)
Fig. 1.24 (¢)
Command 4: 1, 40, 55 {50,80)
It moves current cursor position to (40.55)
point (40, 55)
(3030) (70,30)
Fig. 1.24 (d)

Command 5

2, 60, 55

It draws the line between point (60,
55) and the current cursor position

(40, 55)

(50.80)
(40,55 {60,55)
{30,30) (70,30}

N/

Fig. 1.24 {e)

Comguter
Displ:
We ha
This inforr

into actua
representa

As sho
stored in tt
get the act

Instead
other dispk
in the displ
required di

Arnothe
‘than saving

Display

In some
display file.
file and it <

Fig. 1.26 sh

f Graghics

B

Computer Graphics 21 Introduction to Computer Graphics

Display File Interpreter

We have seen that display file contains information necessary to construct the picture.
This information is in the form of commands. The program which converts these commands
into actual picture is called display file interpreter. It is an interface between graphics
representation in the display file and the display device, as shown in the Fig. 1.25.

User Dispilay . :
program ﬂ Interpreter Display

Fig. 1.25 Display file and interpreter

As shown the Fig. 1.25, the display process is divided into two steps : first the image is
stored in the display file structure and then it is interpreted by an appropriate interpreter to
get the actual image.

Instead of this, if we store actual image for particular display device it may not run on
other displays. To achieve the device independence the image is stored in the raw format, i.e.
in the display file format and then it is interpreted by an appropriate interpreter to run on
required display.

Another advantage of using interpreter is that saving raw image takes much less storage
than saving the picture itself.

Display Controller

In some graphics systems a separate computer is used to interpret the commands in the
display file. Such computer is known as display controller. Display controller access display
file and it cycles through each command in the display file once during every refresh cycle
Fig. 1.26 shows the vector scan system with display controller,

Systemn Display .
cPy memory processor Monitor
|
System bus
IO devices

Fig. 1.26 Vector scan system

Computer Graphics 22 Introduction to Computer Graphics

In the raster scan display systems, the purpose of display controller is to free the CPU
from the graphics routine task. Here, display controller is provided with separate memory
area as shown in the Fig. 1.26. The main task of display controller is to digitize a picture
definition given in an application program into a set of pixel-intensity values for storage in
the frame buffer. This digitization process is known as scan conversion.

Display controlier are also designed to perform a number of additional operations.
These operations include

* Generating various line styles (dashed, dotted, or solid)

* Display colour areas ’ '

* Performing certain transformations and

* Manipulations on displayed objects

Display

Frame Video .

Processor - - Monitor
memory buffer controller .

1

Display System
CPU processor memory

Y

System bus

1
/O devices

Fig. 1.27 Raster scan system with a disptay processor
1.7.1.4 Colour CRT Monitors

A CRT monitor displays colour pictures by using a combination of phosphors that emit
different-coloured light. It generates a range of colours by combining the emitted light from
the different phosphors. There are twobasic techniques used for producing colour displays:

* Beam-penetration technique and

* Shadow-mask technique

Compute

Bean

This t
screen is
depends «
of red phe
the outer
excites thy
light are .
acceleratic
point on t)

Merit:
* Itis
* [tea
* The

othe

Shado

The sh
penetratior
including ¢
each pixel }
third emits
guns, one f{
screen.

 ——

The shad
As shown in
shadow mas
triangle. A d
These phost

T Graphics

w2 the CPU
e memory
€ a picture
r storage in

operations.

Aonitor

10rs that emit
ed light from
Jur displays:

Computer Graphics 23 Introduction to Computer Graphics

Beam-penetration Technique

This technique is used with random-scan monitors. In this technique, the inside of CRT
screen is coated with two layers of phosphor, usually red and green. The displayed colour
depends on how far the electron beam penetrates into the phosphor layers. The outer layer is
of red phosphor and inner layer is of green phosphor. A beam of slow electrons excites only
the outer red layer. A beam of very fast electrons penetrates through the red layer and
excites the inner green layer. At intermediate beam speeds, combinations of red and green
light are emitted and two additional colours, orange and yellow displayed. The beam
acceleration voltage controls the speed of the electrons and hence the screen colour at any
point on the screen.

Merits and Demerits

+ Itis an inexpensive technique to produce colour in random scan monitors.
* Tt can display only four colours.

* The quality of picture produced by this technique is not as good as compared to
other techniques.

Shadow Mask Technique

The shadow mask technique produces a much wider range of colours than the beam
penetration fechnique. Hence this technique is commonly used in raster-scan displays -
including colour TV. In a shadow mask technique, CRT has three phosphor colour dots at
each pixel position. One phosphor dot emits a red light, another emits a green light, and the
third emits a blue light. The Fig. 1.28 shows the shadow mask CRT. It has three electron
guns, one for each colour dot, and a shadow mask grid just behind the phosphor coated
screen.

Electron
guns

Selection
of shadow mask

Magnified
phosphor-dot
[~ triangle

Fig. 1.28

The shadow mask grid consists of series of holes aligned with the phosphor dot pattern.
As shown in the Fig. 1.28, three electron beams are deflected and focused as a group onto the
shadow mask and when they pass through a hole in the shadow mask, they excite a dot
triangle. A dot triangle consists of three small phosphor dots of red, green and blue colour.
These phosphor dots are arranged so that each electron beam can activate only its

Computer Graphics 24 Introduction to Computer Graphics

corresponding colour dot when it passes through the shadow mask. A dot triangle when
activated appears as a small dot on the screen which has colour of combination of three small
dots'in the dot triangle. By varying the intensity of the three electron beams we can obtain
different colours in the shadow mask CRT.

1.7.1.5 Direct-view Storage Tubes

We know that, in raster scan display we do refreshing of the screen to maintain a screen
image. The direct-view storage tubes give the alternative method of maintaining the screen
image. A direct-view storage tube (DVST) uses the storage gr.id which stores the picture
information as a charge distribution just behind the phosphor-coated screen.

ra rl
.

Flood électrons
Focusing and
deflection system

Flood gun

- Screen

Primary gun

Writing beam \
- Storage grid

| Collector

Fig. 1.29 Arrangement of the DVST

The Fig. 1.29 shows the general arrangement of the DVST. It consists of two electron
guns: a primary gun and a flood gun.

A primary gun stores the picture pattern and the flood gun maintains the picture
display.

A primary gun produces high speed electrons which strike on the storage grid to draw
the picture pattern. As electron beam strikes on the storage grid with high speed, it knocks
out electrons from the storage grid keeping the net positive charge. The knocked out
electrons are attracted towards the collector. The net positive charge on the storage grid is
nothing but the picture pattern. The continuous low speed electrons from flood gun pass
through the control grid and are attracted to the positive charged areas of the storage grid.
The low speed electrons then penetrate the storage grid and strike the phosphor coating
without affecting the positive charge pattern on the storage grid. During this process the
collector just behind the storage grid smooths out the flow of flood electrons,

Comeutc

Adv:
1. Re
2. Be:

hi,
3.Ith

Disac
1. The
2. Era
Prc

3. Sele
4. BEra
pre
5.1t ha
fot

6. The

1.7.1.6 Fl:

The ter
weight, an:
display is -
emissive di

Emissi
panels, thir

of emissive

Nonem
some other
nonemissive

1.7.1.7 Plas

Plasma]
remains brig
similar to th

- The Fig.
glass with th
faces and cc
conducting ri
The space be
voltages betv
divided into 1
made to glov
electrodes. Tt
of about 90 v¢

r Graphics

ngle when
‘hree small
can obtain

-in a screen
- the screen
the picture

iwo electron
. the picture

grid to draw
ed, it knocks
xnocked out
orage grid is
wod gun pass
storage grid.
phor coating
. process the

Computer Graphics 25 introduction to Computer Graphics

Advantages of DVST

L. Refreshing of CRT is not required.

2. Because no refreshing is re?(uired, very complex pictures can be displayed at very
high resolution without flicker

3. It has flat screen.

Disadvantages of DVST
1. They do not display colours and are available with single level of line intensity.

2. Erasing requires removal of charge on the storage grid. Thus erasing and redrawing
process takes several seconds.

3. Selective or part erasing of screen is not possible.

4. Erasing of screen l:pro«:luces unpleasant flash over the entire screen surface which
prevents its use of dynamic graphics applications.

5. It has poor contrast as a result of the comparatively low accelera ting potential applied
to the flood electrons. ‘

6. The performance of DVST is some what inferior to the refresh CRT.

1.7.1.6 Flat Panel Displays

The term flat-panel display refers to a class of video devices that have reduced volume,
weight, and power requirements compared to a CRT. The important feature of flat-panel
display is that they are thinner than CRTs. There are two types of flat panel displays :
emissive displays and nonemissive displays.

Emissive displays: They convert electrical energy into light energy. Plasma
panels, thin-film electro luminescent displays, and light emitting diodes are examples
of emissive displays. :

Nonemissive displays: They use optical effects to convett sunlight or light from
some other source into graphics patterns. Liquid crystal display is an example of
nonemissive flat panel display.

1.7.1.7 Plasma Panel Display

Plasma panel display writes images on the display surface point by point, each point
remains bright after it has been intensified. This makes the plasma panel functionally very
similar to the DVST eventhough its construction is markedly different.

The Fig. 1.30 shows the construction of plasma panel display. It consists of two plates of
glass with thin, closely spaced gold electrodes. The gold electrodes are attached to the inner
faces and covered with a dielectric material. These are attached as a series of vertical
conducting ribbons on one glass plate, and a set of horizontal ribbons to the other glass plate.
The space between two glass plates is filled with neon-based gas and sealed. By applying
voltages between the electrodes the gas within the panel is made to behave as if it were
divided into tiny cells, each one independent of its neighbours. These independent cells are
made to glow by placing a firing voltage of about 120 volts across it by means of the
electrodes. The glow can be sustained by maintaining a high frequency alternating voltage
of about 90 volts across the cell. Due to this refreshing is not required.

Computer Graphics 26 Introduction to Computer Graphics
Horizontal
(i conductors/electrodes
a1
Ga | (%4
s panel —m gy
(R LAAA &é’g
Y
&
g ~+—— Glass plate
&
I\ /™ Glass plate
Vertical .
conductors/electrades el - '
T~ Glass plate

Fig. 1.30 Construction of plasma panel display
Advantages
1. Refreshing is not required.
2. Produces a very steady image, totally free of flicker.
3. Less bulky than a CRT.
4. Allows selective writing and selective erasing, at speed of about 20 usec per cell.

5. It has the flat screen and is transparent, so the displayed image can be superimposed
with pictures from slides or other media projected through the rear panel.

Disadvantages
1. Relatively poor resolution of about 60 dots per inch.
2. It requires complex addressing and wiring.
3. Costlier than the CRTs.
1.7.1.8 Liquid Crystal Monitors

The term liquid crystal refers to the fact that these compounds have a crystalline
arrangement of molecules, yet they flow like a liquid. Flat panel displays commonly use
nematic (thread like) liquid-crystal compounds that tend to keep the long axes of the rod-
shaped molecules aligned, _ ‘

Two glass plates, each containing a light polarizer at right angles to the other plate
sandwich the liquid-crystal material. Rows of horizontal transparent conductors are built
into one glass plate, and columns of vertical conductors ate put into the other plate. The
intersection of two conductors defines a pixel position. In the ON state, polarized light
passing through material is twisted so that it will pass through the opposite polarizer. It is
then reflected back to the viewer. To turn OFF the pixel, we apply a voltage to the two
intersecting conductors to align the molecules so that the light is not twisted as shown in the
Fig. 1.31. This type of flat panel device is referred to as a passive matrix LCD.

COI'I'IEI.lter C

1.7.1.8 Import.
Persistence ;

Resolution :

= B = B T T

r Graphics

. electrodes

> per cell.

uperimposed
nel.

- a crystalline
ommonly use
<es of the rod-

he other plate
ctors are built
her plate. The
-olarized light
polarizer. It is
ige to the two
s shown in the
N

Computer Graphics 27

Introduction to Computer Graphics

Nematic
Transparent liquid crystal
conductor ICW ‘
020 Polarizer

“_Polarizer

ON State

/
/___Transparent

, conductor

(a) Fleld effect display "ON State'

Transparent Nemalic

conductor liquidcrystal Polarizer

U
LTransparent

conductor

OFF State
{b) Field effect display ‘OFF State’

Fig. 1.31

1.7.1.9 Important Characteristics of Video Display Devices

Persistence :

Resolution :

The major difference between phosphors is their persistence. It decides
how long they continue to emit light after the electron beam is
removed. Persistence is defined as the time it takes the emitted light
from the screen to decay to one-tenth of its original intensity. Lower
persistence phosphors require higher refreshing rates to maintain a
picture on the screen without flicker. However it is useful for
displaying animations. On the other hand higher persistence phosphors
are useful for displaying static and highly complex pictures.

Resolution indicates the maximum number of points that can be
displayed without overlap on the CRT. It is defined as the number of
points per centimeter that can be plotted horizontally and vertically.

Resolution depends on the type of phosphor, the intensity to be
displayed and the focusing and deflection systems used in the CRT.

Computer Graphics 28 Introduction to Computer Graphics

Aspect Ratio : It is the ratio of vertical points to horizontal points to produce equal
length lines in both directions on the screen. An aspect ratio of 4/5

means that a vertical line plotted with four points has the same length
as a horizontal line plotted with five points.

1.7.2 Hardcopy Devices

We can obtain hard-copy output for our image in several formats using printer or
plotter. Therefore, printers and plotters are also called hard-copy devices. The quality of
pictures obfained from a hard-copy device depends on dot size and the number of dots per
inch, or lines per inch, that can be printed, i.e. it depends on the resolution of printer or

plotter. Before going-to see working principle of various plotters and printers we see the
important characteristics of hardcopy devices.

1.7.2.1 Important Characteristics of Hardcopy Devices

Dot Size : It is the diameter of a single dot on the device's oufput. It is

also referred to as spot size.

Addressability: It is the number of individual dots (not necessarily
distinguishable) per inch that can be created. If the address of
current dot is (x, y), then address of next dot in the horizontal

direction is given as (x+1, y). Similarly, the address of next dot
in vertical direction is (x, y+1).

Interdot distance : It is the reciprocal of addressability. If addressability is large
the interdot distance is less. The interdot distance should be less
to get smooth shapes, as shown in the Fig. 1.32.

{a) Interdot spacing

(b) Interdot spacing (c) Interdot spacing (d) Interdot spacing
equal to dot size

one half dot size one-thrid dot size one-quarter dot size

Fig. 1.32

Resolution : It is the number of distinguishable lines per inch that a device

can create. It depends on a dot size and the cross-sectional
intensity distribution of a spot. A spot with sharply delineated
edges yields higher resolution than does one with edge that trail
off, as shown in the Fig. 1.33.

Comeuh

1.7.2.2 py

Printe
Non-impa
onto the pa
Non impac
electrostati
printer and

Line P1

A line
from 150 lin
are divided

Dirum P

A drum
embossed or

" printed is ad
e e

Graphics

1ce equal
o of 4/5
ae length

arinter or
quality of
f dots per
printer or
we see the

tput. It is

1ecessarily
address of
horizontal
f next dot

ty is large
ald be less

|

spacing
“dot size

aat a device
1ss-sectional
: delineated
ge that trail

Computer Graphics 29 Introduction to Computer Graphics

(YY Y) {a) Spotwith sharp defined edges

CEFE) (b) A wider spot with less high, since
the energy is spread out over a

large area; its edges are not well
defined

_ Fig. 1.33 T
1.7.2.2 Printers

Printers can be classified according to their printing methodology : Impact printers and
Non-impact printers. Impact printers press formed character faces against an inked ribbon
onto the paper. A line printer and dot matrix printer are the examples of an impact printers.
Non impact printers and plotters use laser techniques, ink-jet sprays, xerographic processes,
electrostatic methods, and electrothermal methods to get images onto the paper. An ink-jet
printer and laser printer are the examples of non-impact printers,

Line Printers

A line printer prints a complete line at a time. The printing speed of line printer vary
from 150 lines to 2500 lines per minute with 96 to 100 characters on one line. The line printers
are divided into two categories : Drum printers and chain printer.

Drum Printers

A drum printers consists of a cylindrical drum. One complete set of characters is

embossed on all the print positions on a line, as shown in the Fig. 1.34. The character to be
printed is adjusted by rotating drum.

Ribbon

Signal synchronized hammers

Paper

Print cylinder

Fig. 1.34 Cylinder of a drum printer

Computer Graphics 30 Introduction to Computer Graphics

The codes of all characters to be printed on line are transmitted from the memory of the
computer to a printer memory, commonly known as printer buffer. This printer buffer can
store 132 characters. A print drum is rotated with high speed and when printer buffer
information matches with the drum character, character is printed by striking the hammer.
Thus to print one line drum has to rotate one full rotation. A carbon ribbon and paper are in
between the hammer and the drum therefore when hammer strikes the paper an impression
is made on the backside of the paper by the ribbon mounted behind the paper. In drum
printers to get good impression of the line on paper it is necessary to synchronize the
movements of drum and the hammer.

Chain Printers

In these printers chain with embossed character set is used, instead of drum. Here, the
character to be printed is adjusted by rotating chain. To print line, computer loads the code
of all characters to be printed on line into print buffer. The chain rotated and when character
specified in the print buffer appears in front of hammer, hammer strikes the carbon ribbon.
A carbon ribbon is placed between the chain, paper and hammer. In this printer to get good
printing quality the movement of hammer and chain must be synchronized.

Dot Matrix Printers

Dot matrix printers are also called serial printers as they print one character at a time,
with printing head moving across a line. In dot matrix printer the print head consists of a
9x7 array of pins. As per the character definition pin are moved forward to form a character
and they hit the carbon ribbon in front of the paper thereby printing that character, as shown
in Fig. 1.35.

Dot matrix printhead

Print wires

GO0 000CO0 0000000

Fig. 1.35

ComEuter

In thes:
Fig. 1.36.

!

® ©® 0 0 ¢ ¢ 0 ¢ o

*® O 0 & & & & a

An othe
English, suc]

Compar

1) |Pri
2y | Ch

3) |Che
for

4) | Beti

5) [Bett

6} |Hea

Ink Jet P

Anink-jet
we ever look
dots are extre
are thinner th
precisely, witl
colours combj

_Graphics Computer Graphics 31 Introduction to Computer Graphics
1ory of the

In these printers character definition can be changed to get different font as shown in the

buffer can Fig. 1.36 ~r
iter buffer
* hammer. AN Y ¥ X R ® o0 0o @ e o oo
per arein
apression ® o @ o 0 0 0 @ o o ® o o @ o P o+ o 0
. In drum ® o6 @ o 0o 0 0 @ o o o o @ o o 0P o o
-‘onize the

e o @ o ¢ 0 0 P o o e @ o 0o 0 0 0 P o

* 000000 - e 9000OGVOGS P

o o @ o ¢ 0o 0P o o o @ ¢ ¢ ¢ 0 0 O o
Here, the
s the code o o @ ¢ 0 06 ¢ @O o o o @ o ¢ 0 ¢ 0 O o
character o o @ o 0o o 0 @ o o e @ o ¢ 0o 0 0 @O o
m ribbon.
» get good ¢ o @ o o 0 0 P o o o @ o o 0o 0 0 P o

(a) Dot pattern for A (b) Dot pattern for A
Fig. 1.36
;ti:t:gi:z An other advantage of dot matrix printers is that they can print alphabets other than
' English, such as Devangari, Tamil etc.
character
as shown Comparison between line printer and dot matrix printer
Line printer Dot matrix printer
1) |Prints one line at a time. Prints a character at a time.

2) |Characters are embossed on the drumor | Characters are formed by combination of
chain. dots.

3) |Characters can not be printed with different | Characters can be printed with various
fonts. fonts.

Poor printing quality as characters are

4 . - +
)| Better printing quality. formed by combination of dots.

5) | Better printing speed. Poor printing speed.
6) |Heavy duty printers. Light duty printers.
Ink Jet Printer

Anink-jet printer places extremely small droplets of ink onto paper to create an image. If
we ever look at a piece of paper that has come out of an ink-jet printer, we know that : the
dots are extremely small (usually between 50 and 60 microns in diameter), so small that they
are thinner than the diameter of 2 human hair (70 microns). The dots are positioned very
precisely, with resolutions of up to 1440 x 720 dots per inch (dpi). The dots can have different
colours combined together to create photo-quality images.

Computer Graphics 32 Introduction to Computer Graphics

Ink jet printers print directly on paper by spraying ink through tiny nozzles as shown in
the Fig. 1.37.

Sprayed Ink
forms character

Horizontal Vertical
places plates

Electrical charged
plate control direction
of ink jet spray

Fig. 1.37 Ink jet printer

As shown in the Fig. 1.37, the ink is deflected by an electric field with the help of
horizontal and vertical charged plates to produce dot matrix patterns,

Features of ink-jet printer
1. They can print from two to four Pages per minute
2. Resolution is about 360 dots per inch, therefore better printing quality is achieved.

3. The operating cost is quite low, the only part that needs replacement is the ink
cartridge .

4. Colour ink jet printers have four ink nozzles with colours cyan, magenta, yellow and
black, because it is possible to combine these colours to create any colour in the
visible spectrum,

Laser Printer

The line, dot matrix, and ink jet printers need a head movement on a ribbon to print
characters. This mechanical movement is relatively slow due to the high inertia of
mechanical elements. In laser printers these mechanical movements are avoided. In these
printers, an electronically controlled laser beam traces out the desired character to be
printed on a photoconductive drum. The exposed areas of the drum gets charged, which
attracts an oppositely charged ink from the ink toner on to the exposed areas. This image is

Comput

then tray
as show
charge is

A colour
repeated four
printers have
printd to 16 P
ideal for offic,

Advanta I

The main
move very qu
laser beam ha,
excess ink. Las
as much to kee

Thermal T

In thermal 1
of heating nibs,
of colour therm
magenta, yelloy
create one colot
used to manufa

tsraphics

“hown in

2 help of

tieved.
3 the ink

llow and
ur in the

« to print
aertia of
In these
ier to be
d, which
image is

Computer Graphics 33 Introduction to Computer Graphics

then transferred to the paper which comes in contact with the drum with pressure and heat,
as shown in the Fig. 1.38. The charge on the drum decides the darkness of the print. When
charge is more, more ink is attracted and we get a dark print.

Output Paper path
Tray
Paper is given
a static charge
Magical roller
.a

Stack of

paperin

inpul tray

Fig. 1.38 Laser-printer

A colour laser printer works like a single colour laser printer, except that the process is
repeated four times with four different ink colours : Cyan, magenta, yellow and black. Laser
printers have high resolution from 600 dots per inch upto 1200 dots per inch. These printers
print4 to 16 page of text per minute. The high quality and speed of laser printers make them
ideal for office environment.

Advantages of Laser printer

The main advantages of laser printers are speed, precision and economy. A laser can
move very quickly, so it can "write" with much greater speed than an ink-jet. Because the
laser beam has an unvarying diameter, it can draw more precisely, without spilling any
excess ink. Laser printers tend to be more expensive than ink-jet printers, but it doesn't cost
as much to keep them running, Its toner power is cheap and lasts for longer time.

Thermal Transfer Printer

In thermal transfer printer, wax paper and plain paper are drawn together over the strip
of heating nibs. The heating nibs are selectively heated to cause the pigment transfer. In case
of colour thermal transfer printers, the wax paper is placed on a roll of alternating, cyan,
magenta, yellow and black strips, each of a length equal to the paper size. It is possible to
create one colour hardcopy with less than 1 minute. This is possible because the material
used to manufacture nib heats and cools very rapidly. Morden thermal transfer printers

Computer Graphics 34 Introduction to Computer Graphics

accept a video signal and digital bitmap input, making them convenient for creating
hardcopy of video images.

1.7.2.3 Plotters
Pen plotter

Pen plotter is an example of a hard-copy output device that does not use the raster-scan
approach. The plotter uses random scan approach, in which a pen is steered over a piece of
paper according to motion instruction issued by the computer. Then pen can be lowered on

to the paper, so that it leaves a trace, or it can be raised in order to reposition the pen without
drawing, '

Generally, plotters use two motors to move a

y Stepping motor pen in x and y directions. Some plotters move the
FL] paper in one direction and pen in an orthogonal
direction. The colour plotters are constructed
using multiple pens or alternatively a single pen
holder and a mechanical pen loader that can select
one of several pens from a stable of pens.

For drawing the desired shape, some plotters
move the pen in a series of small, incremental
motions in one of the eight directions, while others
use a servomechanism to move the pen in a
smooth path. Many plotters have controllers built
into them that perform computations necessary to
Fig. 1.39 approximate geometrical shapes.

Flat bed plotter

In flat bed plotter pen moves in x and y direction on a sheet of paper spread out on the
table and held down by electrostatic charge, by vaccum, or simply by being stretched
tightly, as shown in the Fig. 1.40.

Carriage

/movemenl 1

S Z7
N F

\Pen

. movement

Fig. 1.40

Compute

“As sh
penis me
linesand
by 18 inct

Drun

Drum
the Fig, 1.

engage th

Drum
requiremer

Electro

[,

The elec
contacts are
etther on toi
plot is either
technique ws
achjeved by
view a very
details with ;

-aphics

~eating

ter-scan
piece of
ered on
without

' MOVe a
nove the
‘hogonal
istructed
ngle pen
an select

: plotters
remental
ile others
en in a
lers built
essary to

ut on the
stretched

Computer Graphics 35 Introduction to Computer Graphics

- As shown in the Fig. 1.40, carriage moves longitudinally over the table. On the carriage
pen is mounted and it is moved latitudinally along the carriage. The pen is lowered to draw
lines and it is lifted up during only movement. Flat bed plotters are available in sizes from 12
by 18 inches to 6 by 10 feet and larger.

Drum Plotter

Drum plotters move the paper along one axis and pen along the other axis, as shown in
the Fig. 1.41. Normally, the paper is stretched tightly across a drum and pins on the drum
engage the prepunched holes in the paper to prevent slipping.

H
o +
= 1]
%9
]

oQoORo

E2=9¢'°°.°ﬂ
I

=

— =

Fig. 1.41 Drum plotter

Drum plotters provide facility to move paper forward and backward, as per
requirement.

Electrostafic Plotter

Bath of Electrostatic plotter places a
f“:PrendEd negative charge on those parts
poar:cles of a white paper that are to be

black, then moves positively
charged black toner across the
Electric pa;;""'- paper, as shown in Fig. 1.42. The
contacts movement positively charged black toner
Fig. 1.42 attracts towards negative charge

on paper and adhere there.

The electric contacts are used to deposite negative charge on the paper. Normally these
contacts are constructed with a comb like structure and placed on the paper. Each contact is
either on to impart a negative charge or off to impart no charge. Each dot on an electrostatic
plot is either black or white; gray levels must be created with dither patterns. In dithering
technique we can create an apparent increase in the number of available gray levels. This is
achieved by incorporating multiple pixels positions to draw each intensity value. When we
view a very small area from a sufficiently large viewing distance, our eyes average fine
details with in the small area and record only the overall intensity of the area.

Computer Graphics

36

Introduction to Computer Graphics

Important Features of Electrostatic Plotters
* Electrostatic plotters are faster than pen plotters and very high quality printers.
* Recent electrostatic plotters include a scan conversion capability.

* Colour electrostatic plotters are available. They make multiple passes over the paper
to plot colour pictures or use multiple heads to deposit all the colours in a single pass.

1.7.2.4 Cameras

Motor to
rotate colour
wheel

vy

Colour wheel

Colour CRT
]

Fig. 1.43 Celour photograph recording using colour filters

Camera is also considered as a
hardcopy device. It photographs
animage displayed on a television
or CPU monitor. It records the
image on the colour film using
film recorder. The film recorder

-captures the image in the form of a

raster video signal, a bitmap or
vector-style instructions. The
resolution of image is depend on
the screen resolution. The film
recorder uses a raster scan

technique to record the image displayed on the CRT. The film recorders use colour filters to
record colour images, as shown in the Fig. 1.43.

Once the image is recorded in the film recorder, it is exposed to light of a specific colour
to get it printed on a paper. The recently developed Cycolour technique use the paper,
which is embeded with millions of microcapsules filled with one of the three coloured
dyes-cyan, magenta, or yellow. These capsules harden selectively when exposed to lightof a
specific colour. For example, when exposed to red light, chemicals in the cyan-filled
capsules cause that capsule to harden. With hardened cyan filled capsules when this paper
passed through pressure rollers and pressed against a sheet of paper only unhardened
capsules (magenta and yellow) break. The breaking of unhardened capsules (magenta and
yellow) cause mixing of colours between them and the mixed colour (red) is transferred to

the plain paper.
1.7.2.5 Comparison of Various Monochrome Hardcopy Devices
Parameters Dot Ink Jet Thermal Laser Pen |[Electro-static| Photo
Matrix | Printer Printer Printer | Plotter Plotter
Printer
Intensity levels 7 2 2 2 2 2 Many
per dot
Addressability | 410250 | upto360 | upto200 |upto 1500| Atleast upto 400 | upto 800
(points per 1000
inch)
Dot size 10-18 8-16 710 | S 6-15 8 618
(thousandths
of inch)]

ComEuter

—

Relative
purchase co

R

Relative
printing cos

Image quali-
[,

Speed

1.7.2.6 Cor

Paramete:

Intensity leve
per dot

Addressabilit
{points per
inch)

Dot size
(thousandths
inch)

Relative

purchase cost
e —

Relative
printing cost
[

Image quality

Speed

1.8 Coordi

Most of tl
applications,
symmetries ar
then we consi

181 Two L

. There are
the Fig. 1.44. T
origin at the]
computers, cox
origin is at the

Sraphics

fers.

he paper
sle pass.

lered as a
tographs
»levision
ords the
‘m using
recorder
form of a
itmap or
1. The
'‘pend on
The film
er scan
- filters to

‘ic colour
-e paper,
coloured
lightofa
yan-filled
his paper
hardened
yenta and
sferred to

Photo

Many

upto 800

6-18

Computer Graphics 37 Introduction to Computer Graphics

Relative Verylow| Low |Low-Medium| High |Medium |Medium-High| Medium
purchase cost '

Relative Very low | Medium |Medium-High| Medium | Low [Medium-High| High

printing cost

Image quality Poor Better Better Best Good Better Best

Speed Low | Medium [Medium High | Very low High Very low

1.7.2.6 Comparison of Various Colour Hardcopy Devices

Parameters Dot Ink Jet | Thermal | Lasex Pen |Electro-static Photo
Matrix | Printer | Printer | Printer | Plotter Plotter
Printer '
Intensity levels 8 8-many | 8-many 8 uptol6 8 Many
per dot
Addressability | ,pt0 250 | upto 360 | upto 200 |upto 1500| Atleast | wpto 400 upto 800
(points per 1000
inch)
Dot size 10-18 8-16 7-10 5 6-15 8 . 618
(thousandths of
inch)
Relative Verylow | Low | Medium | High |Medium [Medium-High|Medium-High
purchase cost
Relative Very low | Medium | High |Medium| Low High High
printing cost
Image quality Poor Better Better Best Good Better Best
Speed Low Mediurn { Medium | High [Verylow Medium-High| Verylow

1.8 Coordinate Systems

Most of the graphics packages use cartesian coordinate systems. However, in some
applications, non-cartesion coordinate systems such as spherical, cylindrical, or other
symmetries are useful. In this section, we first see standard cartesian coordinate systems and
then we consider a commonly used non cartesian system, polar coordinate system.

1.8.1 Two Dimensional Cartesian Reference System

There are two possible orientations for a cartesian screen reference system, as shown in
the Fig. 1.44. The Fig. 1.44 (a) shows the standard coordinate orientation with the coordinate
origin at the lower-left corner of the screen. In some systems, particularly in personal
computers, coordinate orientation is as shown in Fig. 1.44 {b). In this system, the coordinate
origin is at the upper left corner.

Computer Graphics 38 Introduction to Computer Graphics

4 I (o)

¥ | o
. N |

\.2 x 0\ . J

(a) b}

]

Fig. 1.44 Screen cartesian reference system

1.8.2 Three Dimensional Cartesian Reference System

There are two types of three dimensional reference system according to the orientation
for the coordinate axes : Right handed system and left handed system. The right handed
system uses the right hand thumb to point the positive z direction when we imagine the
fingers curling from positive x axis to the positive y axis (through 909 grasping the z axis, as
shown in the Fig. 1.45.

y axis y axis

-
[}
L]
1
L]
\
3

]
L3
]
¥
r
L]
1]

¥
I
r
-
1
1
1]
L]
1
1

sssssvsssann
4 ¥

N
-
]
r
I
¥
£
r
I
[
faaue
1
L)
L]
1
1)
A

PP rE——

Z axis X axis Z axis X axis

Fig.1.45

In Jeft handed cartesian coordinate system, the left hand thumb is used to point the
positive z direction when we imagine the fingers of the left hand curl from the positive x axis
to the positive y axis (through 90°) to grasp the z axis, as shown in the Fig, 1.46.

Comput

1.8.3 Pa

ltisa:
a position
displacen

Counte
clockwise
measured ;

The Fi
follows :

ter Graphics

ﬂ

<

e orientation
-ight handed
imagine the
the z axis, as

X axis

to point the
ositive x axis

Computer Graphics 39 Introduction to Computer Graphics

(b) X

Fig. 1.46

1.8.3 Polar Coordinate System

1t is a most commonly used non-cartesian coordinate system. In polar coordinate system
a position is specified with a radial distance r from the coordinate origin, and an angular
displacement 6 from the horizontal, as shown in the Fig. 1.47.

r

/

Fig. 1.47

Counter clockwise displacements are considered as positive angular displacements and
clockwise displacements are consider as negative angular displacements. The angle 0 is
measured in degrees.

The Fig. 1.48 shows the relation between polar and cartesian coordinates. It is as
follows :

X = rcosd, y=rsinb

Computer Graphics 40 Introduction to Computer Graphics

The inverse transformation from cartesian to polar coordinates is

r = ,]xz +y2, 0=tan'l(X_J

X

y axis 4

0

X X axis

Fig. 1.48 Relation between polar and cartesian coordinates

1.9 Coordinate Representations

In gencral, graphics packages are designed to be used with cartesian coordinate
specifications. If coordinate values for a picture are specified in some other reference frame,
they must be converted to cartesian co-ordinates before they can be input to the graphics
packages. Furthermore, we can construct the shape of individual objects, such as trees,
buildings or furniture, in a scene within a separate coordinate reference frames called
modeling coordinates, or local coordinates or master coordinates require coordinate
conversion.

The objects represented in the modeling coordinates are first placed into appropriate
positions within the scene using a reference frame called world coordinates. Then the world
coordinate description of the scene is transferred to one or more output device reference
frames for display. These display coordinates are referred to as device coordinates or screen
coordinates, in case of video monitor. Generally, in a graphic system the world coordinate
positions are first converted into normalized device coordinates, in the range from 0 to 1,
before final conversion to specific device coordinates. (Refer section 52.1 for detail
information on normalized coordinates). This conversion makes the system independent of
the various devices that might be used at a particular workstation. The Fig. 1.49 illustrates
the sequence of coordinate transformations from modeling coordinates to device
coordinates for a two-dimensional application.

Modeling World Normalized Devices
coordinates coordinates coordinates «| coordinates
(xmc- ymc) {ch- ywc) (’tncr ync) (xdc' ydc)

Fig. 1.49

Compute
Solved Ex
Ex. 1.1;

Sol.:

plotted w|
each scree

Ex.1.2:

Cvm e

[4
Sol. : i)
640 x 480 a;

Transfer

Therefor

it} Total ¢
and with 24-

Transfer

Therefore

Ex.1.3: W}

for
60 .

(us
Sol. : Tot.

. Graphics

coordinate
nce frame,
e graphics
h as trees,
mes called
coordinate

ppropriate
o the world
e reference
18 OF SCreen
coordinate
Tom 0to 1,

for detail
pendent of
? illustrates

to device

Computer Graphics 41 Introduction to Computer Graphics

Solved Examples

Ex.1.1: Avideo monitor has a display area measuring 12 inch by 9.6 inch. If e resolution is 1280
by 1024 and the aspect ratio is 1. What is the diameter of each screen point ?

(Dec.-2001)

Sol.: - An aspect ratio of 1 means that a vertical line ptotted and horizontal line
plotted with equal number of points have the same length. Therefore the diameter of
each screen point can be given as

d = horizontal display length

horizontal resolution
vertical display length

vertical resolution

A2 96 05 107 inch
1280 1024

Ex.1.2: Howlong it will take to load a 640 by 480 frame buffer with 12 bits per pixel if 10° bits can
be transferred per second ? How long it will take to load a 24-bits per pixel frame buffer
with a resolution of 1280 by 1024 using the same transfer rate 7 {Dec-2001}

Sol.: i) Total number of bits required to load the frame buffer with a resolution of
640 x 480 and with 12-bits per pixel can be given as

B = 640x480x 12 =3.6864 x 10°
Transfer rate is 10° bits/sec,

Therefore, time required to load the frame buffer is
3.6864 x 10°
10°

ii) Total number of bits required to load the frame buffer with a resolution of 1280 x 1024
and with 24-bits per pixel can be given as
B = 1280x 1024 x 24 = 31.45728 x 10
Transfer rate is 10° bits/sec,

T = = 36.864 seconds

Therefore, time required to load the frame buffer is
_ 31.45728x10°
10°
314.5728 seconds
Ex. 1.3: What is the fraction of the total refresh time per frante spent in retrace of the electron beany
Jor a non-interlaced raster system with a resolution of 1280 by 1024, a refresht rate of
60 Hz, a horizontal retrace time of Susec and a vertical retrace tme of 500 microseconds
{u sec) ? {Dec-99)
Sol.: Total horizontal retrace time = 1024 x 5 x 10" °
Total vertical retrace time = 500 x 10~

Total retrace time = 1024 x5 x 107% + 500 x 10~ °

T

Computer Graphics 42 Introduction to Computer Graphics

. The fraction of the total refresh time per frame spent in retrace of the electron beam can
be given as
Total retrace time _ 1024 x5x 10 © +500x 10
refresh time 1760
0.3372
Ex. 1.4: For an clectrostatic plotter 18-inch-wide paper, a resolution of 200 units to the inch in
-egelrdirection and a paper speed of 3 inches per second, low maiy bits per secopd must be
provided to allow the paper to move at full speed 7 {Dec-99)
Sol.: ‘Total dots in the horizontal direction = 18 x 200 = 3600

Totad dots in the 3 inch length of paper in one column = 3 x 200 = 600

T =

~Total number of dot information required per second = 3600 x 600
= 2.16x10°
If we assume 8-bits are requived for cach dot, then total number of bits per second
required to plot are given as
216 x 10° = 8
= 17.28x10°

B

1]

Review Questions

—

. Discuss on topic image processing as picture analysis.

1

List the advantages of interactive graphics.

e

. Explain the representative uses of computer graphics.

-

Explain the classification of use of computer graphics.

L

- What do you mean by rasterization ?
6. Define scan conversion.

7. Write a short note on

a) Keyboard b) Mouse

¢) Trackball and spaceball d) Joystick
¢) Digitizer f) Light pen
2) Touch panels h) Scanner

8. Write a short note on
a) Cathode -Ray Tubes
b) Vector scan display
c} Raster scan display
d) Bearn penetration technique
e) Shadow mask technique
9. Explain the working of direct-view storage tubes.

10. List the advantages and disadvantages of DVST.

Computer Gy
11. Write
a) Flat
b) Pla:
12. List th
13. Explai
14. Define
15. Give tl
16. Explai
17. Give t}
18. List thy
19. Write ;
20. Explair
21. Write ¢
22. Write ¢
23. Write ¢
24. Give tt
25, Explair
26. What it
27. Explair
28. What it
29. Write a
30. Explair
31. Explair
32. Explair
33. Write a

University Que

1. Write du

2. Write d:e
3. Write d«
4. Write d¢

5. Compan
phosph

6. Write sh
7. Write sh

8. What is)
of raste

v Graphics

i beam can

; - oy
107

o the inch in
cond muist be
(Dec-99)

per second

Computer Graphics 43 Introduction to Computer Graphics

11. Write a short note on
a) Flat panel display
b) Plasma panel display
12. List the important characteristics of video display devices .
13. Explain the important characteristics of hard copy devices.
14. Define dot size, addressability, interdot distance and resolution.
15. Give the classification of printers.
16. Explain various types of printers,
17. Give the difference between line printer and dot matric printer.
18. List the features of ink-jet printer.
19. Write a short note on laser printer.
20. Explain the principle of thermal transfer printer.
21, Write a short note on pen plotter
22. Write a short note on electrostatic plotter.
23. Write a short note on cameras.
24. Give the comparison between various monochrome and colour hardcopy devices.
25. Explain display file and its structure.
26. What is the role of display file interpreter ?
27. Explain the function of display processor in raster scan and vector scan displays.
28. What is a frame buffer? Explain the organization of frame buffer.
29. Write a shart note on coordinate systems.,
30. Explain the two dimensional cartesian reference system.
31. Explain the three dimensional cartesian reference system.
32. Explain the polar coordinate system.
33. Write a note an coordinate representations.

University Questions

1. Write detailed note on bit planes and frame buffer organisations.
(Dec-96, Dec-97, May-2000, Dec-2000)

2. Write detailed note on DVST display devices (May-97, Dec-2000)
3. Write detailed note on bit plane organisation. . {May-97, May-2001)
4. Write detail note on storage type CKTs and refresh type CRTs. {(May-98)
5. Compare storage against refresh type CRT display. List out the important properties of

phosphor being used in CRTs. {Dec-98)
6. Write short note on plasma panel display (Dec-98)
7. Write short note on Graphical output devices. (May-99)

8. What is refresh buffer? Identify the contents and organization of the refresh buffer for the case
of raster display and vector display. (Dec-99)

Computer Graphics 44 Introduction to Computer Graphics

9. Compare and contrast the operating characteristics of raster refresh systems, plasma panels

and LCDs. (Dec-99) 2
10. Identify the appropriate applications for each of the display technologies cited in past (as
above) : {Dec-99)

11. What is the fraction of the total refresh time per frame spent in retrace of the electron beam for
a non-interlaced raster system with a resolution of 1280 by 1024, a refresh rate of 60 Hz, a
horizontal retrace time of Susec and a vertical retrace time of 500 microseconds (u sec) ?

{Dec-99)
Ans. : £ (1024 x5 x 107+ 500 x 107)/ (1/60) = 0.3372] _
12. Fgr an electrostatic plotter 18—inch-.wide paper, a resclution of 200 u}nits to the inch in each 2.1 Inty
direction and a paper speed of 3 inches per second, how many bits per second must be —_—
provided to allow the paper to move at full speed ? {Dec-99) In &
Ans. :[18 x 200 x 3 x 8 (bits per pixel) = 86400] special o
13. The light pen is an aging technology with a limited use. Justify this contention. {Dec-99) evencha
14. Compare refresh type and storage type CRT display. (May-2000) generatic
15. Explain the block diagram of raster display system with display processor . Also explain 2.2 Bas

how the monitor functions in raster display. (May-2001)
16. Write a short note on bit plane and frame buffer organization. (Dec-2001) ﬁef or-
17. Compare and contrast the opf.-rat'ing characteristics of different display technologies. ll'iiCIEUIreml

Identify the appropriate applications for each., {May-2002) '

18. Write a short note on random scan displays. (May-2002) * The
19. Write a short note on computer graphics applications (May-2002)) g}-l f'
20. Write a short note on display processors. (May-2002, May-2003) * The
21. Mlustrate plasma panel display. Give its advantages and disadvantages. " (May-2003) Let us
—_—

Qao

r Graphics

asma panels
(Dec-99)

n past (as
(Dec-99)

on beam for
rof 60 Hz, a
{sec)?
{Dec-99)
5Q) = 0.3372]

inch in each
nd must be
(Dec-99)

ixel) = 86400]
(Dec-9%
(May-2000)

o explain
{May-2001)

{Dec-2001)

gies.
{May-2002)

(May-2002)
(May-2002)
12, May-2003)
{May-2003)

Qo

Raster Graphics Algorithms
for Drawing 2-D Primitives

2.1 Introduction

In the previous chapter we have seen that the raster scan graphics devices require
special procedures for displaying graphics objects such as line, circle, pelygons, curves and
even characters. In this chapter we will examine the procedures for line, circle and character
generation.

2.2 Basic Concepts in Line Drawing

Before discussing specific line drawing algorithms it is useful to note the general

requirements for such algorithms. These requirements specify the desired characteristics of
line.

* The line should appear as a straight line and it should start and end accura tely.

* The line should be displayed with constant brightness along its length independent
of its length and orientation.

* The line should be drawn rapidly.
Let us see the different lines drawn in Fig. 2.1.

Vertical line
P

&

] ~+— Horizontal
line

(a} Vertical and Horizontal lines (b} 45° line

(45)

Computer Graphics 46 Raster Graphics Algorithms for Drawing 2-D Primitives

o9

f\?f
N, A/

ce

(c) Line with other orientation
Fig. 2.1

As shown in Fig. 2.1 (a), horizontal and vertical lines are straight and have same width.
The 45° line is straight but its width is not constant. On the other hand, the line with any
other orientation is neither straight nor has same width. Such cases are due to the finite

resolution of display and we have to accept approximate pixels in such situations, shown in
Fig. 2.1 {c).

The brightness of the line is dependent on the orientation of the line. We can observe that
the effective spacing between pixels for the 45° line is greater than for the vertical and
horizontal lines. This will make the vertical and horizontal lines appear brighter than the 45°
line. Complex calculations are required to provide equal brightness along lines of varying
length and orientation. Therefore, to draw line rapidly some compromises are made such as

* Calculate only an approximate line length
* Reduce the calculations using simple integer arithmetic
* Implement the result in hardware or firmware

2.3 Line Drawing Algorithms

Considering the assumptions made in the previous section most line drawing
algorithms use incremental methods. In these methods line starts with the starting point.
Then a fix increment is added to the current point to get the next point on the line. This is
continued till the end of line. Let us see the incremental algorithm,

Incremental Algorithm
1. CurrPosition = Start
Step = Increment
2. if (| CurrPosition — End| < Accuracy) then go to step 5

Comgute
{

e
if
[
if
[.
3. C
g
4. C
£
5 &

In thl
incremen

2.3.1 Di
We ki

The a’
given x i
equation:

Simil:

Once
obtained ;

The e
along the
analyzer
raster uni

sitives

vidth.
h any
finite
‘wn in

‘e that
il and
he 45°
(rying
chas

'wing
20int.
his is

Computer Graphics 47 Raster Graphics Algorithms for Drawing 2-D Primitives

[This checks whether the currert position is reached upto approximate
end point. If yes, line drawing is completed. }

if (CurrPosition < End) then go to step 3
[Here start < End]
if (CurrPosition > End) then go to step 4
[Here start > End]

3. CurrPosition = CurrPosition + Step

go to step 2

4. CurrPosition = CurrPosition - Step
go tostep 2

5. Stop.

+

In the following sections we discuss the line rasterizing algorithms based on the
incremental algorithm.

2.3.1 Digital Differential Analyzer
We know that the slope of a straight line is given as

me&_Y2-¥ .2
Ax x,-x,
The above differential equation can be used to obtain a rasterized straight line. For any

given x interval Ax along a line, we can compute the corresponding y interval Ay from
equation 2.1 as

Ay = Y270 px .- (2.2)
Similarly, we can obtain the x interval Ax corresponding to a specified Ay as

Ax = MA)} - (23

Ya=¥

Once the intervals are known the values for next x and next y on the straight line can be
obtained as follows

Xjie1 = X+ AX
= xi-{-xz__x]..Ay ...(2.4)
Ya—¥
and Yisr = Yit Ay
= yi+Z3"_yle ...(2.5)
Xy =Xy

The equations 2.4 and 2.5 represent a recursion relation for successive values of x and y
along the required line. Such a way of rasterizing a line is called a digital differential
analyzer (DDA). For simple DDA either Ax or Ay, whichever is larger, is chosen as one
raster unit, i.e.

if | x| 2 | Ay| then

Computer Graphics 48 Raster Graphics Algorithms for Drawing 2-D Primitives
Ax =1
else Ay = 1

With this simplification, if Ax = 1 then

we have Yie: = v+ 22" and
X2 — X
Xje1 = X+ 1
If Ay =1 then
we have
Yier = Yi+1land
X2 7%
Xig1 = X+
Y-y
Let us see the digital differential analyzer (DDA) routine for rasterizing a line
DDA Line Algorithm
1. Read the line end points (x,, y,) and (x5, ¥) such that they are not equal.
[if equal then plot that point and exit)
2. Mx=|x-x| and Ay=|y,-y
3. if(Ax>Ay) then
length = Ax
else
length = Ay
end if
4. Ax=(x,-x,)/length
Ay = (3, - y)) /length
[This makes either Ax or Ay equal to 1 because length is either]x2 - x,|
or |y; - yi|. Therefore, the incremental value for either x or ¥ is one.]
5. x=x; + 0.5 * Sign (Ax)
¥ =¥, + 0.5 » Sign (Ay)
[Here, Sign function makes the algorithm work in all quadrant. It
returns - 1, 0, 1 depending on whether its argument is < 0, = 0, > 0
respectively. The factor 0.5 makes it possible to round the values in
the integer function rather than truncating them.]
6. i=1 [Begins the loop, in this loop points are plotted]

While (i <length)
{
Plot (Integer (x), Integer (y))
X=X+ 4x
y=y+4ay
i=i+1l

Initial

Tabul;

*rimitives

: |"z - "ll

is one.)

ant. It
=0, >0
ilues in

Computer Graphics 49 Raster Graphics Algorithms for Drawing 2-D Primitives

7. Stop
Let us see few examples to illustrate this algorithm.

Ex.21: Consider the line from (0, 0) to (4, 6). Use the simple DDA algorithm to rasterize this line
Sol.: Evaluating steps 1 to 5 in the DDA algorithm we have

=0 n=0
x2 =4 Y2 =6
Length = |y, -y,|=6
Ax = |x; -x,|/ length
-4
6
ard Ay = |y, ~y,|/ length
=6/6=1
Initial vatue for
x = 0+O.5*Sign(%)=0.5
y = 0+05+Sign(1)=05
Tabulating the results of each iteration in the step 6 we get,
i Plot 3 ¥
0.5 0.5
1 0,0)
1167 15
2 1,1
1.833 25
3 1,2)
25 3.5
4 2,3)
3.167 4.5
S (3, 4)
3.833 5.5
6 (3,5)
4.5 6.5

Table 2.1

Computer Graphics 50 Raster Graphics Algorithms for Drawing 2-D Primitives

; ([
4 ()

2l [

@

o 1t 2 3 4 5

Fig. 2.2 Result for a simple DDA

The results are plotted as shown in the Fig. 2.2. It shows that the rasterized line lies to
both sides of the actual line, i.e. the algorithm is orientation dependent.

Ex.2.2: Consider the line fron (0, 0) to (- 6, - 6). Use the simple DDA algorithm to rasterize this
line.

Sol.: Evaluating steps 7 to 5 in the DDA algorithm we have
x;=0 y, =0
x?=‘—6 Y2 =‘_6
Length = {x, - x,|=]|y,—y,|=6
' Ax = Ay=-1

Initial values for

x = 0+05+5ign(-1)=-05
y = 0+05+Sign(-1)=-05
Tabulating the results of each iteration in the step 6 we get,
i Plot X y
-0.5 -05
1 -1,-1)
-15 -15
2 ~2.-2)
-25 -~25
3 -3.-3)
-3.5 -35
4 (-4,-4)

Comp.

Ther
the actua

'C' code :
(Softcopy
#:
¥
#i

rimitives ' Computer Graphics 51 Raster Graphics Algorithms for Drawing 2-D Primitives

-4.5 -4.5
5 (-5,-5)
-55 -55
6 {~6,-6)
-65 -65
Table 2.2

% 5 -4 -3 -2 1

1IN0

o F) _
ne lies to L 2

sterize this (=~

() -5

* —vg pixel values are
with reference to pixel
at the cenler of screen

Fig. 2.3 Result for a simple DDA

The results are plotted as shown in the Fig. 2.3. It shows that the rasten/ed line lies on
the actual line and it is 45°line.

'C’ code for DDA Line Drawing Algorithm
(Softcopy of this program is available at vtubooks.com)
tinclude<stdio.h>
#include<graphics.h>
#include<math.h>
main(}
{
float x,y,xl,yl,x2,y2,dx,dy, length;
int i,gd, gm;

clrscr();

/* Read two end points of line

printf {"Enter the value of x1 :\t"}:
scanf ("% L", &x1);

Computer Graphics 52 Raster Graphics Algorithms for Drawing 2-D Primitives

printf {"Enter the value of yl :\t");
scanf {"%f", ayl);
printf ("Enter the value of x2 :\t"};
scanf ("$f", §x2);
printf{"Enter the value of y2 :\t");
scanf ("%€", §y2);

/* Initialise graphics mode

detectgraph (&qd, &gm) ;
initgraph{&gd, &gm, "");

dx=abs {x2-x1);
dy=abs (y2-y1};

if (dx >= dy)

i

length = dx;

}

else

{

length = dy;

}
{x2-x1)/length;
{(y2-yl}/length;

dx
dy

x1 + 0.5; /* Factor 0.5 is added to round the values */
Y =yl + 0.5 /* Factor 0.5 is added to round the values */

i=1; - /* Initialise loop counter */
while{i <= length)

{

putpixel (x,y,15);

x

y =y + dy:
i=1i+ 1;

X + dx;

delay{100); /* Delay is purposely inserted to see

observe the line drawing process */

Computer

ger

ol

}

Advan
Litist
2.0t is ;
y=r
char:
find

Disadyv.

1. Floati
2. The a

2.3.2 Bres

Bresenh:
multiplicatic
addition ang
integer mult:
straight lines

The basi
locations to 1
eitherxor vk
determined i
This distanice

thatat(1,1).T
than to the line
of the line, as

In mathen

mitives

Computer Graphics 53 Raster Graphics Algorithms for Drawing 2-D Primitives

}
gyecchi() ;
closegraph(});
}

)

Advantages of DDA Algorithm
1. Itis the simplest algorithm and it does not require special skills for implementation.

2. 1t is a faster method for calculating pixel positions than the direct use of equation
y =mx + b. It eliminates the multiplication in the equation by making use of raster
characteristics, 5o that appropriate increments are applied in the x or y direction to
find the pixel positions along the line path.

Disadvantages of DDA Algorithm
1. Floating point arithmetic in DDA algorithm is still time-consuming.
2. The algorithm is orientation dependent. Hence end point accuracy is poor.

2.3.2 Bresenham's Line Algorithm

Bresenham's line algorithm uses only integer addition and subtraction and
multiplication by 2, and we know that the computer can perform the operations of integer
addition and subtraction very rapidly. The computer is also time-efficient when performing
integer multiplication by powers of 2. Therefore, it is an cfficient method for scan-converting
straight lines.

The basic principle of Bresenham's line algorithm is to select the optimum raster
locations to represent a straight line. To accomplish this the algorithm always increments
either x or y by one unit depending on the slope of line. The increment in the other variable is
determined by examining the distance between the actual line location and the nearest pixel.
This distance is called decision variable or the error. This is illustrated in the Fig. 2.4,

As shown in the Fig. 2.4, the
line does not pass through all raster
points {pixels). It passes through
raster point (0, 0) and subsequently
crosses three pixels. It is seen that
the intercept of line with the line
D, - Distance above x =1 is closer to the line y = 0, i.e.
¢ Dy, - Distance below pixel (1, 0) than to the liney = 1 i.e.
pixel (1, 1}. Hence, in this case, the

Fig. 2.4 raster point at (1,) better

represents the path of the line than

that at (1, 1). The intercept of the line with the line x = 2 is close to the line y=1,i.e pixel (2,1)

than to the line y =0, i.e. pixel (2, 0). Hence, the raster point at (2, 1) better represents the path
of the line, as shown in the Fig. 2.4

In mathematical terms error or decision variable is defined as
e =Dy~Dy or D,-D,

Computer Graphics 54 Raster Graphics Algorithms for Drawing 2-D Primitives

Let us define e = Dy — D,. Now if e > 0, then it implies that Dg > D,,, i.e., the pixel above
the line is closer to the true line. If Dy < D, (i.e. e < 0) then we can say that the pixel below the
line is closer to the true line. Thus by checking only the sign of error term it is possible to
determine the better pixel to represent the line path.

The error term is initially set as
= 2Ay-Ax
where Ay=y,~y, and Ax=x,- %,
Then according to value of e following actions are taken.
while (e 2 0)
{
y=y+1
e=e—2*Ax
}
x=x+1
=e+2*Ay
When e > 0, error is initialized with e = e - 2 Ax. This is continued till error is negative. In

each iteration y is incremented by 1. When e <0, error is initialized to e = e + 2 Ay. In both the
cases x is incremented by 1. Let us see the Bresenham's line drawing algorithm.

Bresenham's Line Algorithm
1. Read the line end points (x,, y,) and (x, , ¥,) such that they are not equal.
[if equal then plot that point and exit]
2. Mx=|x-x%| and Ay=|y,-y)|
3. {Initialize starting point]
X=3x
y=xy
4. es2+Ay-Ax
[Initialize value of decision variable or error to compensate for
nonzero intercepts!
5. i=1llInitialize counter]
6. Plot(x,y)
7. while(e=0)
{
y=y+1
e=e—2+%Ax
)
X=x+1
eze+2*Ay
8 i=i+1
9. if (i <Ax) then go to step 6.
10. Stop

Computer G

Ex.23: (¢
J'fr:
Sol. : Ev

Tabulatin

The results

« Primitives

pixel above
‘tbelow the
possible to

negative. In
.Inboth the

‘nsate for

Computer Graphics 55 Raster Graphics Algorithms for Drawing 2-D Primitives

Ex.2.3: Consider the line from (5, 5) to (13, 9). Use the Bresenham's algoritim fo rasterize the
fine.
Sol. : Evaluating steps 1 through 4 in the Bresenham's algorithm we have,
Ax = [13-5]=8
Ay = |9-5| =4

x=5
y =5
e = 2%¥Ay~-Ax=2%4-8
=0
Tabulating the results of each iteration in the step 5 through 10.
i Plot X ¥ e
5 5)
1 (5, 5) 6 6 -8
2 (6, 6) 7 6 0
3 (7,6 8 7 -8
4 87 9 7 0
5 9.7 1¢ B -8
6 (10, 8) 11 8 0
7 {11, 8) 12 9 -8
8 (12, 9) 13 9 -0
9 (13,9 14 10 -8
Table 2.3

The results are plotted as shown in Fig. 2.5.

4 5 6 7 8 9 10 11 12 13

Fig. 2.5

Lompuer Graphics 29 Raster Graphics Algorithms for Drawing 2-D Primitives

Zompute
'C' code for Bresenham’s Line Drawing Algorithm
(Softcopy of this program is available at vtubooks.com)

tinclude<stdio.h> '
#include<graphics.h> de
#include<math.h> (
main () ‘Pu
{ wh
float Xe¥rxl,yl,x2,y2,dx,dy, e;

int i,gd,gm;

clrscri};

/* Read two end points of line X =
---------------------------------- */ e =
printf ("Enter the value of xl :\t"); i=
scanf ("%f", &x1) ; }
Printf ("Enter the value of yl :\t"); whi
scanf ("%£", &y1); get.
printf(“Enter the value of x2 :\t"); clos
séanf("%f",&xZ): }
printf ("Enter the value of ¥2 :\t"); [

scanf {"3£", 4y2);

/* Initialise graphics mode
detectgraph(&gd,&gm): —————__1
initgraph{&gd, &gm, "*);

dx=abs {x2-x1);
dy=abs (y2-y1);

/* Initialise starting peint '
Fig. 2.
_____________________________ iy 9. 2.6 Con
= x1; Generalized B)
Yy = vyl; 1. Readt
2. Ax:’&
/* Initialise decision variable 3. Initiali
________________________________ *
/ X=x,
e = 2 * dy-dx; y=y
=¥

J Primitives

Somputer Graphics 57

Raster Graphics Algorithms for Drawing 2-D Primitives

]

i=1; /* Initialise loop counter */

do

{

putpixel (x,y,15};
while{e >= 0)

¥y + 1;

L
]

e = e - 2 * dx;

X =%+ 1;

e =e + 2 * gdy;
i=1i4+1;

}

while{ i <= dx};
getch();
cleosegraph();

}

Fig. 2.6 Conditions for generalized Bresenham's

algorithm

Generalized Bresenham's Algorithm

1,
2.
3.

The Bresenham's algorithm only
works for the first octant. The
generalized Bresenham's algorithm
requires modification for lines lying in
the other octants. Such algorithm can be
easily developed by considering the
quadrant in which the line lies and it
slope. When the absolute magnitude of
the slope of the line is greater than 1, y is
incremented by one and Bresenham's
decision variable or error is used to
determine when to increment x. The x
and y incremental values depend on the
quadrant in which the line exists. This
is illustrated in Fig. 2.6.

Read the line end point (x,, ;) and (x, , y,) such that they are not equal.

8 =[x -x|and &y = |y, -y
Initialize starting point

'x=x1

¥=n

Computer Graphics 58

4.

10.

11,
12,
13.

Raster Graphics Algorithms for Drawing 2-D Primitives

8= Slgn (x2 - xl)
8y = Slg'n (Y2"'yl)

[Sign function returns - 1, 0, 1 depending on whether its argument is
<0, = 0, > ¢ respectively]

if Ay > Ax then

Exchange Ax and Ay

Ex_change =1
else

Ex_change =0 ' -
end if

[Interchange Ax and Ay depending on the slope of the line and set
Ex_change flag accordinglyl

e=2+ Ay —Ax

[Initialize value of decision variable or error to compensate for
nonzero intercept J.

i=1 [Initialize counter }
Plot (x, y)
while (e = 0)
| if (Ex_change = 1) then
X=X+8
else
y=y+s,
end if
e=e—-2%Ax
}
if Ex_change = 1 then
Y=Y +85,y
else
X=X+85
end if
e=e+2* Ay
i=i+1
if (i <Ax) then go to step 8
Stop

ComEute
2.4 Ant

P

- The ali
The proces
aliasing is ¢

2.5 Meth

2.5.1 Incr.

The alia
increasing r
many colun
and in y dir.

e

As shown
comes at the
scan-conversj
aliasing effect

D Primitives

:rgument is

ne and set

ensate for

Computer Graphics 59 Raster Graphics Algorithms for Drawing 2-D Primitives

2.4 Antialiasing of Lines

In the line drawing
algorithms, we have seen that all
rasterized locations do not match
with the true line and we have to
select the optimum raster
(:-\(.ja locations to represent a straight

— 7 ~ 4 line. This problem is severe in

OC)C’) low resolution screens. In such

YY) : screens line appears like a

' OOC} stair-step, as shown in the
' O Fig. 2.7. This effect is known as

aliasing. It is dominant for lines
having slopes less than 20° or
greater than 70°

The aliasing effect can be reduced by adjusting intensities of the pixels along the line.

The process of adjusting intensities of the pixels along the line to minimize the effect of
aliasing is called antialiasing.

2.5 Methods of Antialiasing

Fig. 2.7 Aliasing effect

2.5.1 Increasing Resolution

The aliasing effect can be minimized by increasing resolution of the raster display. By
increasing resolution and making it twice the original one, the line passes through twice as
many column of pixels and therefore has twice as many jags, but each jag is half as large in x
and in y direction.

.
h
X

(a) {b)

Fig. 2.8 Effect on aliasing with increase in resolution

As shown in the Fig. 2.8, line looks better in twice resolution, but this improvement
comes at the price of quadrupling the cost of memory, bandwidth of memory and
scan-conversion time. Thus increasing resolution is an expensive method for reducing
aliasing effect.

Computer Graphics 60 Raster Graphics Algorithms for Drawing 2-D Primitives

2.5.2 Unweighted Area Sampling

We have seen that for stoped lines, many a times the line passes between two pixels. In
these cases, line drawing aigorithm selects the pixel which is closer to the true line. This step
in line drawing algorithms can be modified to perform antialiasing. In antialasing, instead

of picking closest pixel, both pixels are highlighted. However, their intensity values may
differ. :

In unweighted area sampiing, the intensity of pixel is proportional to the amount of line
arca occupied by the pixel. This technique produces noticeably better results than does
setting pixels either to full intensity or to zero intensity.

. . oG

Fig. 2.9 Unweighted area sampling

2.5.3 Weighted Area Sampling

We have seen that in unweighted area sampling equal areas contribute equal intensity,
regardless of the distance between the pixel's center and the arca: only the total amount of
occupied area matters. Thus, a small area in the corner of the pixel contributes just as much
as does an equal-sized area near the pixel's center. To avoid this problem even better
strategy is used in the weighted area sampling,

In weighted area sampling equal areas contribute unequally i.e. a small area closer to the
pixel center has greater intensity than does one ata greater distance. Thus, in weighted area
sampling the intensity of the pixel is dependent on the line area occupied and the distance of
area from the pixel's center. This is illustrated in Fig. 2.10.

A

Fig. 2.10 Weighted area sampling

Computi

2.6 Thi:

So fa:
raster dis
a thick i
the line e
between

—_——

P

Letusc
boundary t

(Xl»‘ Yi- wy:

Here, w
shown in t
boundary it
half the thic
bottom bou

Primitives

» pixels. In
» This step
g, instead
-alues may

iunt of line
than does

| intensity,
amount of
st as much
ven better

loser to the
ghted area
distance of

Computer Graphics 61 Raster Graphics Algorithms for Drawing 2-D Primitives

2.6 Thick Line Segments

So far we have discussed line drawing algorithms where thickness of line is one pixel. In
raster displays, it is possible to draw lines with thickness greater than one pixel. To produce
a thick line, we have to run two line drawing algorithms in parallel to find the pixels along
the line edges, and while stepping along the line we have to turn on all the pixels which lie
between the boundaries. This is illustrated in Fig. 2.11.

@ Line edges

(%) Pixels between
the boundaries

Fig. 2.11 Thick line

Let us consider line from point (x,, y;) to (x,, y,) having thickness w, then we have a top
boundary between the points (x,, y, + wy) and (x,, y, + w,) and a lower boundary between
(X, y1 - wy) and (x,, y, - w,) where w, is given by

w1 [emx) G-y)]

¥ 2 |x2—x,|

112

Here, w, is the amount by which the boundary lines are moved from the line center, as
shown in the Fig. 2.12. The factor(w — 1) in the above equation exist because the line
boundary itself has a thickness of one pixel. We further divide the factor (w - 1) by 2 because
half the thickness will be used to offset the top boundary, and the other half to move the
bottom boundary.

Computer Graphics 62 Raster Graphics Algorithms for Drawing 2-D Primitives Comgute
y We can use equation for w, for lines /* En
I having slope less than 1. For sharp slope lines, | _____
i.e. lines having siope greater than 1 lines are print
handled similarly with the x and y roles scant
reversed. In this case w, is given as can
12 clear
2 2 ,
(w-1) [(xz"‘l) +(y2-y))] line
(x4, ¥1)L.3 Wy =] if '
2 |y2 -y e
- X {
0 Thus, left and right boundaries are wy = (1
(X, ~ W, 1) to (x, - w,, y,) and {x +w,, y}to for (.
Fig. 2.12 Thick line details (x + W,, y,), Tespectively. or (.
{
-
C’ code for Thick Line Drawing Algorithm line
(Softcopy of this program is available at vtubooks.com) line
#include<stdio. h> }
#include<conio.h> !
#include<graphics.h> else
#include<math.h> {
void main () wx =
{ for (i
int gd = DETECT, gm : t
float wy, wx, x1, yl, x2, y2; line({
int i, thickness; ’ line(
initgraph{&gd, &gm, " *); }
) }
/* Read two end points of the line printf.
____________________________________ */ getch ()
printf{"Enter the co-ordinates for the line:\n"); !
printf (*X1l: "); 2.7 Basic
scanf ("$£", &x1);
printf ("Yl: ");
scanf ("%f", &yl);:
printf{"x2: "y;
scanf ("%f", &x2); (-
printf ("¥2: ");
scanf ("%f", &y2); (-
" Fig. 2.

Primitives

, for lines
siope lines,
1 lines are
d y roles

-y,)2]11’2
|

laries are
“W,, ¥} to

Computer Graphics

63

Raster Graphics Algorithms for Drawing 2-D Primitives

/* Enter the thickness of the line

printf ("Enter the required thickness: ");
scanf ("%d", &thickness);

cleardevice

(}:

line (x1, y1, x2, y2);
if {(y2 - y1) /7 (%2 - x1) < 1)

{

Wy =(thickness—1}*3qrt{pow{(x2-x1},2)+pow((y2—y1),2)J/(2*fabs{x2—x1}1:
for(i = 0; i < wy; i++)

{

line(xl, yl - i, x2, y2 - i);

line (x1, v1 + i, %2, y2 + i);

H
}
else
{

wx = (thickness-1}+*

for(i = 0;
i

1 < wx;

line{xl - i, yl, x2 - i, y2);

line(x! + i, y1, x2 + i, y2);

)
H

3qrt{pow{(x2—x1),2)+pow((y2-y1},2})/(2*fabs{y2-y1]):
i++)

printf{"This is the line of thickness %d units.\n", thickness];

getch();
}

2.7 Basic Concepts in Circle Drawing

(—y.X) .

y axis

("‘-z) F

y = line

w X axis

{-y.—x) »

(_XI:Y)

(x.-y}

o (Y%}

= —x line

Fig. 2.13 Eight-way symmetry of a circle

A circle is a symmetrical figure. It
has eight-way symmetry as shown in
the Fig. 2.13. Thus, any circle generating
algorithm can take advantage of the
circle symmetry to plot eight points by
calculating the coordinates of any one
point. For example, if point A in the
Fig. 2.13 is calculated with a circle
algorithm, seven more points could be
found just by reflection.

Computer Graphics 64 Raster Graphics Algorithms for Drawing 2-D Primitives

2.8 Representation of a Circle

There are two standard methods of mathema tically representing a circle centered at the
origin.

2.8.1 Polynomia! Method
In this method circle is represented by a polynomial equation.
o
where X @ the x coordinate “
y @ they coordinate
r : radius of the circle

Here, polynomial equation can be
used to find y coordinate for the known
x coordinate. Therefore, the scan

S (x‘ Vr- x2] converting circle using polynomial
method is achieved by stepping x from

— Otor ﬁ, and each y coordinate is found

by evaluating v r* - x? for each step of
x. This generates the 1/8 portion (90° to
459 of the circle. Remaining part of the
circcle can be generated just by
reflection.

Fig. 2.14 Scan converting circle using polynomiai

The polynomial method of circle
method

generation is an inefficient method. In
this method for each point both x and r must be squared and x* must be subtracted from r%
then the square root of the result must be found out.

2.8.2 Trigonometric Method

In this method, the circle is represented by use of trigonometric functions
x=rcos8 and y=rsin@

v where 8: current angle
P = (r cos®, r sing) r: radius of the circle
N "f x: the x coordinate
rﬂ E ’?"9 y : they coordinate
et -~ The scan converting circle using
rcosh !

trigonometric method is achieved by stepping 6
from 0 to 7/4 radians, and each value of x and y
is calculated. However, this method is more
inefficient than the polynomial method because
the computation of the values of sin® and cos® s
Fig. 215 Scan converting circleusing ~ €ven more time-consuming than the

trigonometric method calcuiations required in the polynomial method.

The
circle as

Fron
and incri
below

Fore

Appl

Theg
circle we
equation
Therefort

Algorithn
1. R

2. sl

sl

Primitives

‘Ted at the

n can be
e known
he scan
lynormial
£ x from
+is found

h step of
m(90°to
irt of the
just by

of circle
‘thod. In

from 1%

using
pping 6
xandy
S more
ecause
: cosBis
1 the
rethod.

Computer Graphics 65 Raster Graphics Algorithms for Drawing 2-D Primitives

2.9 Circle Drawing Algorithms

In this section we are going to discuss two efficient circle drawing algorithms :
* DDA algorithm and

* Bresenham's algorithm

* Midpoint algorithm

2.9.1 DDA Circle Drawing Algorithm

We know that, the equation of circle, with origin as the center of the circle is given as
2,2 _ 2
X“+y° =1
The digital differential analyser algorithm can be used to draw the circle by defining
circle as a differential equation. It is as given below

2xdx+2ydy =0 where r isconstant
xdx+ydy =0
ydy = -xdx
dy —x
&y

From above equation, we can construct the circle by using incremental x value, Ax =gy
and incremental y value, Ay =-gx, wherec¢ is calculated from the radius of the circle as given
below

2" < r < 2" r: radius of the circle

g = 2™
For example, if r = 50 then n = 6 so that 32 < 50 < 64
. e = 2%
= 0.0156
Applying these incremental steps we have,
Xne1 = XptEY,
Ynet = Yn—€X,

The points plotted using above equations give the spiral instead of the circle. To get the
circle we have to make one correction in the equation; we have to replace x, by x,, , ; in the
equation of y, , ;.

Therefore, now wehave x,,, = x_ +¢ Va

Yns1 = Yn_exn+_l

Algorithm
1. Read the radius (r), of the circle and calculate value of &
2. start_x=0
start_y=r
3. x,=start_x
¥, = start_y

Computer Graphics 66 Raster Graphics Algorithms for Drawing 2-D Primitives

4, do
[x=x+ey
Y2=V¥1-E€Xy
{ x, represents x.,; and x, represents x,)

Plot (int (x5), int (y,))
X = Xg3
Y15 Y2,

[Reinitialize the current point]
) while (y, ~start_y) <¢ or(start x—x, })>¢

[check if the current point is the starting point or not. If current
point is not starting point repeat step 4 ; otherwise stop]

5. BStop.
'C' code for DDA Circle Drawing Algorithm

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>

#include<graphics.h>

#include<math.h>

main ()

{

float x1,yl,x2,y2,startx,starty,epsilon;
int gd,gm,i,val;

int r;

clrscr();
/* Read two end points of line
__________________________________ */

printf ("Enter the radius of a circle :");
scanf {"%d", &r);

/* Initialise graphics mode

detectgraph (&gd, &gm) ;
initgraph (&gd, &gm, ") ;

/* Initialise starting point

xl=r*cos({0);

Comgute

s1
s

/*

ge
cl

}

2.9.2 Bre
The B:
circle to g

Fig. 2.16. ¢
the negati

rnniyves
——

Surrent

Computer Graphics 67 Raster Graphics Algorithms for Drawing 2-D Primitives

¥Yl=r*sin(0):

startx x1;

starty ¥l;

/*Calculations for epsilon

val = pow(2,i);
it+;
}while {val<r);

epsilon = 1/pow(2,i-1};

do
{
X2= x1 + yl*epsilon;
¥2 = yl1 - epsilon*x2;
putpixel(200+x2,200+y2,15};

/* Reinitialise the current point

Yl=y2;
delay(1000); /* Delay is purposely inserted to see
observe the line drawing process */
}
while({ (y1 - starty) < epsilon || {startx - x1} > epsilon);

getch();

closegraph () ;

}

2.9.2 Bresenham's Circle Drawing Algorithm

The Bresenham's circle drawing algorithm considers the eight-way symmetry of the
circle to generate it. It plots /8™ part of the circle, i.e. from 90° to 45° as shown in the

Fig. 2.16. As circle is drawn from 90° to 45° the x moves in positive direction and y moves in
the negative direction.

Computer Graphics 68 Raster Graphics Algorithms for Drawing 2-D Primitives

Y] To achieve best approximation to the true circle
we have to select those pixels in the raster that fall

_j the least distance from the true circle. Refer Fig. 2.17.
Let us observe the 90° to 45° portion of the circle. It

9000 43 S can be noticed that if points are generated from 90°to

45°, each new point closest to the true circle can be
found by applying either of the two options :

* Increment in positive x direction by one unit or

* Increment in positive x direction and negative y
direction both by one unit

Fig. 2.16 1/8 part of circle

b4

Ll

90° //

45°
0 - X

Fig. 2.17 Scan conversion with Bresenham’s algorithm

Let us assume point P in Fig. 2.17 as a last scan converted pixel. Now we have two

options either to choose pixel A or pixel B. The closer pixel amongst these two can be
determined as follows

The distances of pixels A and B from the origin are given as
Dy = f (i) +(y;)* and
Dp = y (xp)? +(y; 1)
Now, the distances of pixels A and B from the true circle are given as
8o = Da-rand 83=D;-r
However, to avoid square root term in derivation of decision variable, i.e. to simplify the
computation and to make algorithm more efficient the §, and 8 are defined as
8, = D2=1r* and
8 = Dg-1?
From Fig. 2.17, we can observe that 8, is always positive and 8 always negative.
Therefore, we can define decision variable d, as
d; = 3, +8

ComEute

and we ¢z
incremen
words we

For d,
For d,
The e

Simila
For d,
For d,
Algorithm
1. Re
2. d-=
(I
3 x-=
[T
4. do
{

} wl
5 St

The rer
about origi:

Therefc
the algorith

.imitives

ue circle
“hat falt
ig. 2,17,
circle. It
.m90°to
i can be

ative y

ave two
y can be

slify the

:gative.

Computer Graphics 69 Raster Graphics Algorithms for Drawing 2-D Primitives

and we can say that, if d; < 0, i.e, 5, <3, then only x is incremented; otherwise x is
incremented in positive direction and y is incremented in negative direction. In other
words we can write,

Ford; < 0, Xj,1 = X+ 1and

Ford, > 0, Xiys1 = x+land y;, = y,-1

The equation for d, at starting point, i.e. at x = 0 and y = I can be simplified as follows
d; = 8, +6;

= G+ 1P+ -+ (G + 1P+ (- 1) -
O+12+ @ -+ @+ 1)+ (r-12- 1
T+ -rP+1+12-2r+1-¢
3-2r

Similarly, the equations for d, , , for both the cases are given as

For d; < 0, di,;=d+4x+6 and

For d; < 0, di,1=di+4(x,~y)+ 10
Algorithm to plot 1/8 of the circle

1. Read the radius (r) of the circle.

2. d=3-2r

[Initialize the. decision variable]

I

3. x=0,y=7r
[Initialize starting point)
4. do
{
plot (x, y)
if (d < 0) then
{
d=d+4x+6
)
else
{d=d+4&x-y)+10
y=y-1
}
x=x+1
} while (x < y)
5. Stop

The remaining part of circle can be drawn by reflecting point about y axis, x axis and
about origin as shown in Fig. 2.18.

Therefore, by adding seven more plot commands after the plot command in the step 4 of
the algorithm, the circle can be plotted. The remaining seven plot commands are

Computer Graphics 70 Raster Graphics Algorithms for Drawing 2-D Primitives ! _ Computer

y axis plot (y, x) E /*
Y oy ' plot {y, ~ x) ' T
bt . ¥ =X line _ d -
plot (x, - y)
{y. —x}o o (y.2)
= X Axis PIOt Ex- Y) : do
(=y. -x)e o (%) plot -y, ~x) (

plot(~y,x) and

- = —x line

(%, —)| (% -y) plot (- x, y)

Fig. 2.18 Eight-way symmetry of the circle
'C’ code for Bresenham's Circle Drawing Algorithm

(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>
#include<graphics.h>
#include<math.h> {
main{)

{

float d;

int gd,gm, x,y;

int r; S

clrscr{);

/* Read the radius of the circle
A * /
printf{"Enter the radius of a circle "y;
scanf ("%d", &r) ;

/* Initialise graphics mode get

______________________________ y cle
detectgraph (&gd, &gm) ; }‘

initgraph(&gd, &gm,"") ; 2.9.3 Mid

The mi

/* Initialise starting points generate it.

_______________________________ Ny is drawn f1

0) direction. 1

X = make use o

y = to the circle

at samplin

J Primitives

Computer Graphics 71 Raster Graphics Algorithms for Drawing 2-D Primitives

/* initialise the decision variable

{ putpixel (200+x, 200+y, 15} ;
putpixel (200+y,200+4x,15});
putpixel (200+y,200~-x,15);
putpixel (200+x, 200-y,15);
putpixel {(200-x,200-y,15);
putpixel (200-y,200-x,15});
putpixel (200-y,200+x,15);
putpixel (200-x,200+y,15);
if (d <= 0}

{

d=d + 4*x + 6;
}

else

d + 4*(x-y) + 10;
y - 1:

A -
It

}
x¥ = x + 1;
delay(1000); /* Delay is purposely inserted to see
ohserve the line drawing process */
}
while(x < ¥)};
getch(});
closegraph{);
]

2.9.3 Midpoint Circle Drawing Algorithm

The midpoint circle drawing algorithm also uses the eight-way symmetry of the circle to
generate it. It plots 1/8 part of the circle, i.e. from 90°t0 45°, as shown in the Fig. 2.19. Ascircle
is drawn from 90 to 45°, the x moves in the positive direction and y moves in the negative
direction. To draw a 1/8 part of a circle we take unit steps in the positive x direction and
make use of decision parameter to determine which of the two possible y positions is closer
to the circle path at each step. The Fig. 2.19 shows the two possible y positions (y; and y; + 1}
at sampling position x; + 1. Therefore, we have to determine whether the pixel at position

Computer Graphics 72 Raster Graphics Algorithms for Drawing 2-D Primitives

{x; +1,y;) or at position {x; + 1, y; - 1) is closer to the circle. For this purpose decision
parameter is used. It uses the circle function (f.,., (x, y) = x* + y? - 1) evaluated at the
midpoint between these two pixels.

¥i
yi+1 N
Midpoint
X
v+ 2 \-—x2+y2—r2=0
X Ix+1{x+2

] 1

Fig. 2.19 Decision parameter to select correct pixel in circle generation algorithm

1
d;i = ool +1, Yi— E)

2 1y
i+ 4y -2 -2
i) [y' ZJ ! |
= (x; +1)2+yi2 -y 1»-‘-11-—r2 ... (2.6)

If d; <0, this midpoint is inside the circle and the pixel on the scan line y; is closer to the
circle boundary. If d; 2 0, the midposition is outside or on the circle boundary, and y; -1 is
closer to the circle boundary. The incremental calculation can be determined to obtain the
successive decision parameters. We can obtain a recursive expression for the next decision
parameter by evaluating the circle function at sampling position x;, ; + 1 = x, + 2.

d

1
ie1 = foe (.1 + 1, Yia "E)

[(xi + D+1]° +(Yi+l ‘%Jg -r?

= (i +)2 420 +1)4 1oy 2, —(yi+])+%— 2 .2.7)
Looking at equations 2.6 and 2.7 we can write
di,, = di"'z(xi"'1)+(Y$+1_Yi2)_(Yi+l*Yi)+1
where y;, , is either y,ory,_,, depending on the sign of d,.

If d; is negative, Yie1 = ¥
: digq = di+20+1)+1
= di+ 2%, +1 . (2.8)
If d; is positive, Yie1 = Vioy
' di.y = di+20+ 1) +1-2y,,, ... (2.9)

Computer
The ter

The ini
the start pc

Algorithm
1. Rea
2. Init

X =

¥ =;

3. Calc
P=

4. do

{

5. Dete
6. Stop

'C' code for

(Softcopy of
#inc

#inc

} Primitives

se decision
ated at the

hm

... (2.6)

ioser to the
ndy;-1is
obtain the
xt decision

r?...(27)
1
.. (28)
{29

Computer Graphics 73 Raster Graphics Algorithms for Drawing 2-D Primitives

The terms 2x;, , and -2y, , in equations (2.8) and (2.9) can be incrementally calculated as
2,1 = 2x,+2
201 = 2y;-2

The initial value of decision parameter can be obtained by evaluating circle function at
the start position (xg, y,} = (0, r). '

4y = fcm:e[“’* v’ *'["}J o J
1+(r—%]2 -

1.25-r

Algorithm
1. Read the radius (r) of the circle
2. Initialize starting position as

x=0
y=r
3. Calculate initial value of decision parameter as
P=125-r
4. do
{ plotix,y)
if(d<0)
{ x=x+1
Y=y
d=d+2x+1
}
else
{ x=x+1
y=y-1
d=d+2x+2y+1
I .
while (x < y)

5. Determine symmetry points

6. Stop.
'C' code for Midpoint Circle Drawing Algorithm
(Softcopy of this program is available at vtubooks.com)

#include<stdio.h>

#include<graphics.h>

Computer Graphics 74 Raster Graphics Algorithms for Drawing 2-D Primitives . !’

$include<math.h>

main{)

{

float

int i,gd,gm,x,¥y;

int

/* initialise graphics

________________________ */
detectgraph {(&gd, &gm) ;
initgraph (4gd, &gm, " ") ;

/* Réad the radius
_______________________ */

printf ("Enter the radius of the circle :");
scanf ("%d",&r) ;

x=0;
y=r;
p =
do

{

r;

1.25 - r;

putpixel (200+4x,200+y,15);
putpixel {(200+y, 200+x,15) ;
putpixel {200+x,200-y,15);
putpixel {2004y, 200-x,15); - '~
putpixel (200-x,200-y,15); 7
putpixel (200-x,200+y,15); -
putpixel {(200-y,2004%,15) ;
putpixel (200-y,200-x,15);

|3
*

= x+1:

= y!
=p + 2*x + 1;

Computer

ge
cl
}

2.10 ENljj

Fig. 2.2/
Like ci

decision p.
along the ¢
midpointt
orx;+1,y,

Startin
between re¢
the remair
region 1 ar
slope of th

-D Primitives

Computer Graphics 75 Raster Graphics Aigorithms for Drawing 2-D Primitives

X= x+1;
y= ¥-1;
P =p t 2% (x-y} + 1;
}
delay(10000);
}
while(x < y};
getch();
closegraphi);
]

2.10 Ellipse Drawing Algorithm

The midpoint ellipse drawing algorithm
uses the four way symmetry of the ellipse to
generate it. The Fig. 2.20 shows the four-way
symmetry of ellipse. This approach is similar
to that used in displaying a raster circle. Here,
the quadrant of the ellipse is divided into two

g

=x.y) {(xy) regions. The Fig. 2.21 shows the division of the
first quadrant according to the slope of an

- x ellipse with r, <1,. As ellipse is drawn from 90°

to 0%, the x moves in the positive direction and

{(-x,~y) {x,-y) y moves in the negative direction, and ellipse

passes through two regions. It is important to
note that while processing first quadrant we
have to take steps in the x direction where the
slope of the curve has a magnitude less than 1
(for region 1) and to take steps in the y
direction where the slope has a magnitude
Fig. 2.20 Four way symmetry of ellipse greater than 1 (for region 2).

Like circle function, the ellipse function f,y;,., , ,, (r;,a x2 42 y? -2 r)f) serves as the

decision parameter in the midpoint algorithm. At each sampling position, the next pixel
along the ellipse path is selected according to the sign of the ellipse function evaluated at
midpoint between the two candidate pixels (x; + 1, y;or x; + 1, y;— 1 for region 1 and x;, y, - 1
orx; +1,y;~1 for region 2).

Starting at (0, r,) we have to take unit steps in the x direction until we reach the boundary
between region 1 and region 2. Then we have to switch to unit steps in the y direction over
the remainder of the curve in the first quadrant. To check for boundary point between
region 1 and region 2 we have to test the value of the slope of the curve at each step. The
slope of the ellipse at each step is givenas '

Computer Graphics 76 Raster Graphics Algorithms for Drawing 2-D Primitives

Fig. 2.21 Ellipse processing regions

dy 2 r)? X
ax 21y
At the boundary point between region 1 and region 2, dy/dx =-1 and
2r$x = 2rly
Therefore, when
2r§x z 2r3y

We have to switch to unit steps in
the y direction over the remainder of

v the curve in the first quadrant. The
' ~ Fig. 2.22 shows the midpoint between
v—1 N the two candidate pixels at sampling
‘ h———— Midpoint position x; + 1 in the first region. The
: next position along the ellipse path can

xi X +1 X +2

be evaluated by decision parameter at
this midpoint.

Fig. 2.22

.
dy, = fcl!ipse(xi +1,y; _EJ

2

2, 2 17 2
rf(xi+1) +rx(Yi_'2_) —r: r)?

If d}; < 0, the midpoint is inside the ellipse and the pixel on scan line ¥; is closer to the
ellipse boundary. If d,; > 0, the n¥idpoint is outside or on the ellipse boundary, and the pixel
on the scan line y; - 1 is closer to the ellipse bounda ry.

Compute

The i

Subst
wher
If dli)
Ifdy;)
The t¢

Inreg
ellipse fu

For re
taken betr
decision

Ifdy >

If doy =
X;,1- The

1 Primitives

1t steps in
nainder of
drant. The
1t between
: sampling
egion. The
e path can
rameter at

15er to the
{ the pixel

Computer Graphics 77 Raster Graphics Algorithms for Drawing 2-D Primitives
The incremental calculation of decision parameter of region 1 can be given as
1
djiyq = fcnipse (XHI +1LYin "2'}

2
= r)3 [(x; +1)+1]%+ r:[Ym ——) -1 rf
Substituting value of d,; in above expression we get,

1} 12
dj = dli+2r§ G+ 1)+ ry2 "‘rf[[Yin‘—) _(Yi __J]

wherey; , , is either y; or y; - 1, depending on the sign of d ;.

If d; is negative, ie. d;; <0, y;,, = ¥;
' djjuq = d1i+2r3 Xin"‘r;
if d,; is positive or zero, i.e. d}; 2 0,y,, ,=y,~ 1
* dli“-] =d"+2l';)(i+|+r3—2rx2yi+1
The terms 2 rff x and 217y can be incrementally calculated as
2r3 X4y = Zr)fxi + er,’ and
258y, = 250y, ~21)
In region 1, the initial value of the decision parameter can be obtained by evaluating the
ellipse function at the start position (xy, yo) = (0, r,).

1
dyy = fe]lipse(lf r, _E]

2, .2 1Y 5 o
S (ry HE) -1 1,

2, .2 12 ,
=1y + 1 ry+z %

For region 2, we sample at unit steps in the negative y direction, and the midpoint is now
taken between horizontal pixels, at each step, as shown in the Fig. 2.22. For this region, the
decision parameter is evaluated as

1
dy = felljp&e[xi "'Er)’i - 1)

]

2
1

rf (xi +§) +12 (v, -1% - r} ry2

If dy; > 0, the midpoint is outside the ellipse boundary, and we select the pixel at x,.

If d,; < 0, the midpoint is inside or on the ellipse boudnary, and we select pixel position
X; + 1- The incremental decision parameters for region 2 can be given as

Computer Graphics 78 Raster Graphics Algorithms for Drawing 2-D Primitiigs_

1
dyivq = fe]Iipse[xi-l-l"'E'YHI_lJ

2
1
=1 (Xm +E) +1¢ [y =1)~1) - 2 r
Substituting value of expression dy, in above expression we get,

1Y 1.1
dyiyy = dy - 262 (y, —1)+rf+r§{(xi+1 +E) _(xi.i.E) 2}

where x; , ; set either to x; or to X; + 1, depending on the sign of d,,

11

In region 2, the intial value of the decision parameter can be obtained by evaluating the
ellipse function at the last position in the region 1.

1
dy = fcllipse(x(] +§r}’o - 1)

"

2
1 2
r] (x0+§) +12 (yo-1)% - 12 r?

Algorithm
1. Read radii r, and Iy. 3
2. Initialise starting point as L :
x=0
y=r1,
3. Calculate the initial value of decision parameter in region 1 as

2.2 1,
_dl--r),--r,t r),+‘—4-rx

4. Initialize dx and dy as

d.x=2ry2x
dy=2rfy
5. do
| plotix,y)
if(d, <0)
{
x=x+1
y=5
dx=dx+2rf
dy=d; +dx+1] 7.

(dy = d, + 2t}?x + 21'},2 + r}?]

‘rimitives Computer Graphics 79 Raster Graphics Algorithms for Drawing 2-D Primitives
else
{
x=x+1
y=y-1
: : dx=dx +2 r?
1Y 1
E) 2] I.T dy = dy —2r2
dy=d, +dx—dy+r;
= 2 2 2 2 3
ating the (d; = d; + 2.1',, X+ 25 - 2Ky - 215 + 1]

} while (dx < dy)
6. Calculate the initial value of decision parameter in region 2 as

2
of .1 2 ?_ 2
d2=ry(x+§) +n(y-1)" -5 g

7. do
{ Plot{x,y)
if (dy > 0)
[x=x
y=y-1
dy =dy~2r?
dy=dy-dy + 1]

d, = d, - 22y - 22) + 1)
else

x=x+1

y=y-1

dy =dy —2rf

dx=dx+2r§

d2=d2+dx—dy+rf

[dy = d; + 25% + 21, - (2Try - 217) + 17]
}while(y > 0) -

7. Determine symmetrical points in other three quadrants.
8. Stop.

Computer Graphics 80 Raster Graphics Algorithms for Drawing 2-D Primitives

'C' code for Midpoint Ellipse Drawing Algorithm

(Softcopy of this program is available at viubooks.com)

#incluge<stdio.h>
#include<graphics. h>
#include<math.h>
main ()

{

long d1,dz2;

int i,q9d,gm, x,y;

long rx, ry, rxsq,rysq,tworxsq,tworysq,dx}dy;
/* Read the radius x and Y

printf (“Enter the x radius of the ellipse :");
scanf ("%1d", &rx) ;

printf ("Enter the Yy radius of the ellipse :%);
scanf ("%1d", &¢ry};

/* initialise graphics

detectgraph(&gd.&gm);
initgraph(&gd,&gm,""};

IXSq = rXx * rx;

rysq = ry * ry;
tworxsq =

b

* rxsq;

"
o]

Cworysg * rysqr .

x = 0;

Y = ry:

dl = rysq - rxsq * ry + (0.25 * rxsq) ;
dx

It

Lworysq * x;
dy = tworxsg * y;
do

{

ComEuh

Primitives | : Computer Graphics 81 Raster Graphics Algorithms for Drawing 2-D Primitives

putpixel (200+x, 200+y, 15) ;
putpixel {200-x,200~y,15);
putpixel (200+x,200~y,15);
putpixel (200-x,20Q+y, 15} ;

if {dl1 < 0}

x =x + 1;
yi:

dx = dx + tworysqg;
dl = dl + dx + rysq;
}
else
{

X =x + 1;

y=y-1;

dx = dx + tworysqg:

dy = dy - tworxsg;

dl = dl + dx - dy + rysq:

}
delay(10};

}
while(dx < dy);

v
1]

d2 = rysg* (x+0.5) * {x+0.5)+rxsq*(y—1r*(y—l}—rxsq*rysq
do

{

putpixel (200+x,200+y, 15);

putpixel {200-x,200-y,15);

putpixel (200+x, 200-y,15) ;

putpixel{200—x,200+y,15){

H

iftaz > O
{
X = X;
Yy =y ~1;

dy = dy -tworxsqg;
d2 = d2 =~ dy + rxsq;
}

else
{ x = x+1;
Yy =y -l
p w R dy = dy ~tworxsq;

Computer Graphics 82 Raster Graphics Algorithms for Drawing 2-D Primitives

dx
dz2

!
b while (y > 0j;

»

dx + tworysq;

d2 + dx - dy + rxsq;

getch(};
closegraph(};
}

Solved Examples

Ex. 2.4

Sol.:

The turnover of ABC Company for the following divisions is indicated below :
Construction Rs. 125 Crores
Engineering Rs. 90 Crores-
Shipping Rs. 530 Crores
Consumer products Rs 140 crores
Agro-tech Rs 115 Crores
Write a program to represent this information in a pie-chart.
The 'C’ code for above program is as given below
#include<stdio.h>

#include<graphics.h>

#include<math.h>

main{)

{

float sum=0,comp[S],dO,angle,theta,x,y,xc,yc;
int i, qgd,gm;

/* initialise graphics

detectgraph {&gd, &gm) ;
initgraph (&gd, &gm, ""} ;

/* Read the turnover values */

for{i=0;i<5;i++)

{

printf ("Bnter the turnover value for company%d :",i+1);
scanf ("%£", ecomp [i]};

}

for (i=0;i<5;i++}

{

(May-97)

(¥

v

ge
cl

Ex. 2.5

Sol.:
#include<
#include<

#include<

rimitives Computer Graphics 83 Raster Graphics Algorithms for Drawing 2-D Primitives

sum = sum + compfi];
}
for(i=0;1i<5;i++)
{
comp[i] = {comp(i]/sum)*360;
)
Xxc = 320;
yc = 240;
X = 429;
y = 240;
dl = 1/{3.2 * (abs(x-xc) + abs{y-yc)});
angle = {;
theta = 0;
for (i=0;i<5;i++}
{
theta = theta + comp{i];
while {angle*180/3.142 < theta)
{
setcolor (i+l);

{May-97)

line{xc, ye, x,y);
X = x - (y-yc) * d0;
Yy =y + {x - xc)*d0;:
angle = angle + d0;
delay(100);
}
}
getch();
closegraph{);
}
Ex.2.5 Consider the following circuit where the switch , is closed at t = 0. Develop a program to
display the plot of Vo(t) for t>0.
(May-2000)
Sol. : The 'C' code for above program is as given below
tinclude<stdio.h>

#include<graphics.h>
#include<math.h>

Computer Graphics 84

Raster Graphics Algorithms for Drawing 2-D Primitives

i

R V)

!

Fig. 2.23
main(}
¢
float d,t,c,r,vo,v,T;
int i,gd,gm,x, y;
detectgraph (&gd, &gm) ;
initgraph{&gd, &gm, "");
printf ("Enter the value of battery voltage
scanf {("%f", &v) ;
printf ("Enter the value of capacitor :");
scanf {("%f", &c) ;
printf ("Enter the value of resistor :"};
scanf ("%f", &r);
t= 0.0;
/* Draw axis */
line (50,400, 600,400);
line (100, 440,100,50};
for(i=0;i<450;i++})
{
T = -t/(c*r);
vo = v - (v*{l-exp(T)});
t =t + 0.001;
putpixel (100+t*1000, 400-vo* (300/v), 15} ;
delay (1000} ;
}
getch{):
closegraph();
}

Review Questions

:!!};

1. Explain the basic concept in line drawing,

2. Explain the steps in the incremental line drawing algorithm.

1’ Computer Gr:

3. Explair
4. Discust
5. Explair
6. Explair
7. What i
8. Write a
9. Explair
10. Give d
11. Explai
12. Explai
13. Explai
14, Explai

1. Develc
Your al

2. Using
“Vals“ i

3. The tw
Const
Engin
Shipp
Consv
Agro-
Write

4. Develd
DDA ;

5. Develc
set-pi>

6. Write
atleas

7. Write
the pi

' Primitives

Computer Graphics 85 Raster Graphics Algorithms for Drawing 2-D Primitives

3. Explain the steps in DDA line drawing algorithm.

4. Discuss merits and demerits of DDA line drawing algorithm.

5. Explain the steps in Bresenham's line drawing algorithm.

6. Explain the steps in generalized Bresenham’s line drawing algorithm.
7. What is aliasing ? Explain different methods of minimizing its effect.
8. Write a short note on thick line segment.

" 9. Explain the basic concept in circle drawing.

10. Give different methods of representing a circle.

11. Explain the steps in DDA circle drawing algorithm.

12. Explain the steps in Bresenham's circle drawing algorithm.
13. Explain the steps in midpoint circle drawing algorithm.
14. Explain the steps in midpoint ellipse drawing algorithm.

University Questions
1. Develop a procedure/ function for the Bresenham’s line algorithm.
Your algorithm should take care of lines of any given slope. (Dec-56)

2. Using the above, write a program to plot a line graph over a set of values stored in an array

"Vals”. Properly scale the values before plotting. (Dec-96)
3. The turnover of ABC Company for the following divisions is indicated below :

Construction Rs. 125 Crores

Engineering Rs. 90 Crores

Shipping Rs. 530 Crores

Consumer products Rs 140 crores

Agro-tech Rs 115 Crores

Write a program to represent this information in a pie-chart. (May-97, Dec-2001)
4. Develop the Bresenham's line algorithm to draw lines of any slope. Compare this with the

DDA algorithm. {Dec-97)
5. Develop a program to display a pie-chart over a set of values. You are allowed to use only the

set-pixel () or put-pixel (} primitive. {Dec-97)

[Hint : Replace a line function in program given for question 8
with a line function using putpixel, i.e. use DDA or
Bresenham's algorithm to develop line function)

6. Write an algorithm for Bresenham Circle Generation and then using it produce sequence of
atleast five points along the circumference of circle with radius = 20 and centered at (50; 50)
(May-98)

7. Write an algorithm for Bresenham Line Generation which will work for all slopes. Calculate
the pixel positions along a straight line between P, (20, 20} and P, (10, 12). (May-98)

Computer Graphics 86 Raster Graphics Algorithms for Drawing 2-D Primitives Computer

8. Develop an ellipse generation algorithm and use it to display elliptical arcs as shown below. 19. E‘t
Co
cir

20. Wi

21. Ex

22. Wi

Bru
cot

23 1h

Fig. 2.24
(Dec-98)
[Note : Only solid are is displayed : centre is at (xe, yc}]
9. What is antialiasing ? How can it be reduced? {May-99)
10. How is Bresenham's technique adva ntageous ? (May-99)
1. Explain the principle of any of the antialiasing techniques. (Dec-99)
12. Derive the algorithm for drawing Bresenham line between the end points : (100, 104) and
(150, 200) (Dec-99)
13. Repeat the above question for the end points {100, 100) and (200, 150). (Dec-99)
14. Compute the first three Bresenham points in each of the cases mentioned in above two
questions. (Dec-99)
15. Develop a program to plot a bar graph over a set of 'n’ values stored in an array 'data’.
Ensure that the values are scaled propexly to fit onto the display extents. {Dec-2000)
16. Derive Bresenham's line drawing algorithm which will work for line of an y slope.
Compute the first five points for the line segment A(20, 20) B(12, 10). (May-2001)
17. Derive and give the modified Bresenham's line drawing algorithm which will work for line
of any slope. (Dec-2001)

18. A dash line is shown below. Develop an algorithm to draw a dash line from point A(x,, y;)
to point B(x,, y,). The length of dash is d pixels and length of gap between dash is g pixels.

— Blxa.y5)

—
A(X"] IY‘l)

Fig. 2.25

(Dec-2001, May-2002)

Primitives

wn below,

{Dec-98)

(May-99)
(May-99)
(Dec-99)

Y and
(Dec-99)

(Dec-99)

two
{Dec-99)

ata’,
Dec-2000}

1ay-2001)

k for line
Jdec-2001)

Alxy,)
2 pixels.

ay-2002)

Computer Graphics 87 Raster Graphics Algorithms for Drawing 2-D Primitives

19. Two points on the circumference of the circle represented by (x - 5{})2‘+ (v - 50)2 =100 are

20.
21,
22.

23

given by (50, 60) and (60, 50).

Compute the pixel locations to be highlighted between the above points using Bresenham's

arrcle algurithm. (Dec-2001)
Write a short note on antialiasing techniques. (Dec-2001)
Explain the different antialiasing methods. (May-2002)

What are the advantages of Bresenham's line drawing algorithm ?
galg

Bresenham's line drawing algorithm is considered as most efficient algorithm when

compared with DDA line drawing algorithm. State the reason. (May-2003)

Hlustrate antialiasing. (May-2003)
£

Qaa

ERRSRRRRT T Y L T

L

T

LR T e

e

Area Filling

—

3.1 Introduction

t

We have seen scan conversion of lines, circles and elipse in the last chapter. In this

chapter we are going to study different types of polygons, their representation and filling
algorithms for them.

A polyline is a chain of connected line segments. It is specified by giving the vertices
(nodes) Py, P, P, ... and so on. The first vertex is called the initial or starting point and the last
vertex is called the final or terminal point, as shown in the Fig. 3.1 (a). When starting point

and terminal point of any polyline is same, i.e. when polyline is closed then it is called
polygon. This is illustrated in Fig. 3.1 (b).

Po
Star}ir:g P, Py
ppo:}n Py P,
P
2 Py P,
Terminal
point
Ps
(a) Polyline (b} Polygon
Fig. 3.1
3.2 Types of Polygons

/ The classification of polygons is based on where the line segrnent joining any two points
within the polygon is going to lie. There are two types of polygons :

* Convex and

oncave
_\/A/cinvex polygon is a polygon in which the line segment joining any two points within
the polygon lies completely inside the polygon. The Fig. 3.2 shows the examples of convex

polygons.

(88)

Compute

<

ﬁ
the polyg:

concave

3.3 Rep

We he
end point
system, w
polygons

+ Pol

* Tra

* Lin

Some
directly d
graphics ¢
twoscanl
stepping; «
inallthep
represents

ter. In this
and filling

1e vertices
nd the last
ting point
it is called

A0 points

its within
f convex

e p

Computer Graphics 89 Area Filling

Fig. 3.2 Convex polygons

concave polygon is a polygon in which the line segment joining any two points within
olygon may not lie completely inside the polygon. The Fig. 3.3 shows the examples of
concave polygons.

.\I'I'I

Fig. 3.3 Concave polygons
3.3 Representation of Polygons

We have seen that closed polyline is a polygon. Each polygon has sides and edges. The
end points of the sides are called the polygon vertices. To add polygon to our graphi:s
system, we must first decide how to represent it. There are three approaches to represent
polygons according to the graphics systems :

* Polygon drawing primitive approach
* Trapezoid primitive approach
* Line and point approach

Some graphics devices supports polygon drawing primitive approach. They can
directly draw the polygon shapes. On such devices polygons are saved as a unit. Some
graphics devices support trapezoid primitive. In such devices, trapezoids are formed fron:
two scan lines and two line segments as shown in the Fig, 3.4. Here, trapezoids are drawn by
stepping down the line segments with two vector generators and, for each scan line, f; Ling
in all the pixels between them. Therefore every polygon is broken up into trapezoids and it is
represented as a series of trapezoids.

(a) Polygon {b} Polygon as a series of trapezoids

Fig. 3.4 Representation of polygon

L

e e e e e 4

Computer Graphics 90 Area Filling

Most of the other graphics devices do not provide any polygon support at all. in such
cases polygons are represented using lines and points. A polygon is represented as a unit
and itis stored in the display file. In a display file polygon can not be stored only with serieg
of line commands because they do not specify how many of the following line commands
are the part of the polygon. Therefore, new command is used in the display file to represent
polygons. The opcode for new command itself Specify the number of line segments in the
polygon. The Fig. 3.5 shows the polygon and its representation using display file.

DF_OP DF_ x DF_y

(4.6) () 0 2
_ 2 0 4

(0,4} (6.4)
2 4 3]
(0,2) (6,2) 2 6 4
2 & 2

(4.0)

2 4 ly]
2 0 2

Fig. 3.5 Polygon and its representation using display file

3.4 Entering Polygons

Let us see how to enter polygon command and data into the display file. We know that,
we have to enter number of sides and the coordinates of the vertex points. This information
can be entered using a following algorithm.

Algorithm: Entering the polygon into the display file
1. Read AX and AY of length N

[AX and AY are arrays containing the vertices of the pelygon and N is
the number of polygon sides]

2.i=0 [Initialize counter to count number of sides]
DF OP[il « N
DF_x [i] « AX [i)
DF_y li] « AY [i]
ie—i+1
[Load pelygon command]
3.do
o
DF_OP [i] « 2
DF_x li] « AX i)

Compute

5.-8
35AnI

Once
To show -
pixels oni
inside of &

If the
endpoints
of the cons
If they lie
intersectio

Anoth
a point in
piece of el
one compls

Area Filling

t all. In such
urd as a unit
y with series
rcommands
to represent
ments in the
te.

DF_y

2

i\

]

* know that,
information

1and N is

Computer Graphics 91 Area Filling

DF_y il « AY (i
iei+l
}
While (i < N) [Enter line commands])
4. DF_OP [i] « 2
DF_ x [i} « AX (0]
DF_y [il « AY [0}
[Enter last line command]
5. Btop '

3.5 An Inside Test

Once the polygon is entered in the display file, we can draw the outline of the polygon.
To show polygon as a solid object we have to set the pixels inside the polygon as well as
pixels on the boundary of it. Now the question is how to determine whether or not a pointis
inside of a polygon. One simple method of doing this is to construct a line segment between
the point in question and a point known to be outside the polygon, as shown in the Fig. 3.6.
Now coynt how many intersections of the line segment with the polygon boundary o~cur. If
there pfe an odd number of intersections, then the point in question is inside; otherwise it is
outslde. This method is called the even-odd method of determining polygon inside points.

Even

Odd

Even

Fig. 3.6

If the intersection point is vertex of the polygon then we have to look at the other
endpoints of the two segments which meet at this vertex. If these points lie on the same side
of the constructed line, then the point in question counts as an even number of intersections.
If they lie on opposite sides of the constructed line, then the point is counted as a single
intersection. This is illustrated in Fig. 3.7.

Another approach to do the inside test is the winding-number method. Let us consider
a point in question and a point on the polygon boundary. Conceptually, we can stretch a
piece of elastic between these points and slide the end point on the polygon boundary for
one complete rotation. We can then examine the point in question to see how many times the

Computer Graphics 92

elastic has wound around it. If it is wound at least once, then the pointisinside. If there isng
net winding, then the point is outside.

Counts even

Fig. 3.7

Like even-odd method, in winding number method we have to picturise a line segment
running from outside the polygon to the point in question and consider the polygon sides
which it crosses. Here, instead of just counting the intersections, we have to give a direction
number to each boundary line crossed, and we have to sum these direction numbers. The
direction number indicates the direction the polygon edge was drawn relative to the line
segment we have constructed for the test. This is illustrated in Fig. 3.8

Fig. 3.8

As shown in the Fig. 3.8, point (x,, y,) is a test point and line Y =¥, is a horizontal line
runs from outside the polygon to point (x,, y,). The polygon edges crossed by this line could
be drawn in two ways. The edge could be drawn starting below the line, cross it, and end
above the line or starting above the line, cross it, and end below the line. In first case we have
to give direction number as -1 and in the second case we have give direction number as 1.
After giving the direction numbers we have to take sum of these direction numbers which
indicates whether the point in inside the polygon or not. The sum of the direction numbers
for the sides that cross the constructed horizontal line segment is called the winding

number for the point in question. For polygons or two dimensional objects, the point is said
to be inside when the value of winding number is nonzero.

Area Filli_n_g ‘

Computer !

3.6 Polyt

Filling
any colour
boundaries

There ¢
start from ¢

_thispoint i

called seec
boundary,
polygon is
outside the
known as
's':or'iii:;ﬁ't'atis
3.6.1 See

The se:
algorithm.
those that
algorithms

3.611 B¢

/ In this

point ingic
bounclat:y]
process is «

Bound
Fig. 39. If
combinati¢
region eve
horizontal

Area Filling

2, If there is no

line segment
olygon sides
re a direction
wmbers. The
ve to the line

irizontal line
115 line could
5 it, and end
:ase we have
wimber as 1.
nbers which
.on numbers
he winding
point is said

Y

Computer Graphics 93 Area Filling

3.6 Polygon Filling

Filling the polygon means highlighting all the pixels which lie inside the polygon with
any colour other than background colour. Polygons are easier to fill since they have linear
boundaries.

There are two basic approaches used to fill the polygon. One way to fill a polygon is to

start from a given "seed", point known to be inside the polygon and highlight outward from
this point i.e. neighbouring pixels until we encounter the boundary pixels. This approach is
called seed fill because colour flows from the seed pixel until reaching the polygon
boundary, like water flooding on the surface of the container. Another approach to fill the
polygon is to apply the inside test i.e. to check whether the pixel js inside the polygon or
outside the polygon and then highlight pixels which lie inside the polygon. This approach is
known as scan-line algorithm. It avoids the need for a séed pixel buf it requires some
computation. Let us see these two methods in detail.

3.6.1 Seed Fill

The seed fill algorithm is further classified as flood fill algorithm and boundary fill
algorithm. Algorithms that fill interior-defined regions are called flood-fill algorithms;
those that fill boundary-defined regions are called boundary-fill algorithms or edge-fill
algorithms.

3.61.1 Boundary Fil Algorithm

" In this method, edges of the polygons are drawn. Then starting with some seed, any
point inside the polygon we examine the neighbouring pixels to check whether the
boundary pixel is reached. If boundary pixels are not reached, pixels are highlighted and the
process is continued until boundary pixels are reached.

Boundary defined regions may be either 4-connected or 8-connected as shown in the
Fig.3.9. If a region is 4-connected, then every pixel in the region may be reached by a
combination of moves in only four directions : left, right, up and down. For an 8-connected
region every pixel in the region may be reached by a combination of moves in the two
horizontal, two vertical, and four diagonal directions.

{a) Four connected region (b) Eight connected region

Fig. 3.9

Computer Graphics 94 Area Filling

In some cases, an 8-connected algorithm is more accurate than the 4-connected

algorithm. This is illustrated in Fig. 3.10. Here, a 4-connected algorithm produces the partial
fill.

-
,
N
[J
Y
]
[J

000

XX

®

ot 8%%%\3

()
0000

Y
]

| _——Seed

¢

T

NV AN
(3[]%](][3
\

o

-
b

me

Fig. 3.10 Partial filling resulted using 4-connected algorithm

The following procedure illustrates the recursive method for filling a 4-connected region
with colour specified in parameter fill colour (f-colour) up to a boundary colour specified
with parameter boundary colour (b-colour)

Procedure : boundary_fill {x, y, f_colour, b_colour)
{
if (getpixel (x,y) ! = b_colour && getpixel (x, y) ! = f_colour)
| putpixel (x, y, f_colour)
boundary_fill (x + 1, y, f_colour, b_colour);
boundary_fill (x, y + 1, f_colour, b_célour);
boundary_fill (x - 1, y, f_colour, b_colour)
boundary_fill (x, y — 1, f_colour, b_colour);

}

Note : ‘getpixel” function gives the colour of specified pixel and ‘putpixel
function draws the pixel with specified colour.

Same procedure can be modified according to 8 connected region algorithm by
including four additional statements to test diagonal positions, such as (x + 1, y + 1).

Compute
'C' code
(Softcopy

O ™~ -~ 3

I+ H

—_—

searchir
bounda
Howew

a Filling

annected
. partial

Aregion
pecified

atpixel’

hm by

Computer Graphics 95 Area Filling

'C' code for Boundaryfill Algorithm (8 connected region)

(Softcopy of this program is available at vtubooks.com)
$include<stdio.h>
#include<graphics.h>
main(}
{int gd,gm;

/* Initialise graphics mode

detectgraph{&gd, &gm) ;
initgraph{&gd, &gm, """} ;

rectangle (50, 50,100,100} ;

flood(55,55,4,15);

getch{): .
closegraph () ; .

}

flood{seed_x,seed_y,foreground_col,background;col)

{

if (getpixel (seed_x, seed_y) != background_col &a&
getpixel (seed x,seed_y)!= foreground_col)
{
putpixel (seed_x, seed_y, foreground_col};
flood{seed_x+1, seed_y, foreground_col,background_col);
flood{seed_x-1, seed_y, foreground_col,background_col);
flood(seed_x,seedHy+l,foreground_col,background_col);
flood{seed_x, seed_y-1, foreground_col,background_col};
flood(seed x+1,seed_y+l, foreground_col,background col);
flood(seed x-1,seed_y-1, foreground_col,background col};
flood{seed_x+1, seed_y-1, foreground_col,background_col);

flood(seed_x-1, seed_y+l, foreground_col,background_col};

}
3.6.1.2°Flood Fill Algorithm

metimes it is required to fill in an area that is not defined within a single colour
oundary. In such cases we can fill areas by replacing a specified interior colour instead of
searching for a boundary colour. This approach is called a flood-fill algorithm. Like
boundary fill algorithm, here we start with some seed and examine the neighbouring pixels.
However, here pixels are checked for a specified interior colour instead of boundary colour

Computer Graphics 96 Area Filling

and they are replaced by new colour. Using either a 4-connected or 8-connected approach,
we can step through pixel positions until all interior point have been filled. The followin

procedure illustrates the recursive method for filling 8-connected region using flood-fil]
algorithm.

Procedure : flood_fill (x, y. old_colour, new_colour).

{
if (getpixel (x, y) = old_colour)
[putpixel (x, y, new_colour);
flood_fill (x + 1, y, old_colour, new_colour);
flood_fill (x - 1, y, old_colour, new_colour};
flood_fill (x,y + 1, old_colour, new_colour);
flood_fill (x, y = 1, old_colour, new_colour);
flood_fill (x + 1, y + 1, old_colour, new_colour);
flood_fill (x -1, ¥ — 1, old_colour, new_colour);
flood_fill (x + 1, y - 1, old_colour, new_colour);
flood_fill (x - 1, y + 1, old_colour, new_colour);

}

Note : "getpixel' function gives the colour of specified pixel and ‘putpixel’ function
draws the pixel with specified colour. :

3.6.2 Scan Line Algorithm

Recursive algorithm for seed fill methods have got two difficulties : The first difficulty is
that if some inside. pixels are already displayed in fill colour then recursive branch

terminates, leaving further internal pixels unfilled. To avoid this difficulty, we have to first
change the colour of any internal pixels that are initially set to the fill colour before applying

Such method fills horizontal pixel Spans across scan lines, instead of proceeding to
4-connected or 8-connected neighbouring points. This is achieved by identifying the
rightmost and leftmost pixels of the seed pixel and then drawing a horizontal line between

COI'I'lEl.lte

The F
crossing,

polygon
COTTespor

In Fig
and x = 1:

polygon.
to right, i

The i
line with
to right, f
intersecti
required-
endpoint:
lie on the
even nun
counted

Assh
For scan.
the samne
3-4.Inte

@a Filling

ipproach,
‘ollowing
flood-fill

function

ficulty is
- branch
e to first
'Pplying
t cannot
cking of
sient for
e used.
ding to
ing the
retween
2] above
thod we
’king all

Computer Graphics 97 Area Filling

The Fig. 3.11 illustrates the scan line algorithm for filling of polygon. For each scan line
crossing a polygon, this algorithm locates the intersection points of the scan line with the
polygon edges. These intersection points are then sorted from left to right, and the
corresponding positions between each intersection pair are set to the specified fill colour.

y
m Scan line

[
ot
] 3
L |
i
[|
6 9 12 15

Fig. 3.1

In Fig. 3.11, we can see that there are two stretches of interior pixels from x = 6 to x = 9
and x =12 to x = 15. The scan line algorithm first finds the largest and smallest y values of the
polygon. It then starts with the largest y value and works its way down, scanning from left
to right, in the manner of a raster display. ’

The important task in the scan line algorithmn is to find the intersection points of the scan
line with the polygon boundary. When intersection points are even, they are sorted from left
to right, paired and pixels between paired points are set to the fill colour. But in some cases
intersection point is a vertex. When scan line intersects polygon vertex a special handling is
required to find the exact intersection points. To handle such cases, we must look at the other
endpoints of the two line segments of the polygon which meet at this vertex. If these points
lie on the same (up or down)} side of the scan line, then the point in question counts as an
even number of intersections. If they lie on opposite sides of the scan line, then the point is
counted as single intersection. This is illustrated in Fig. 3.12.

¥
Scant line 1
Scan line 2
Scan line 3
-X
0

Fig. 3.12 Intersection points along the scan line that intersect pblygon vertices

As shown in the Fig. 3.12, each scan line intersects the vertex or vertices of the polygon.
For scan line 1, the other end points (B and D) of the two line segments of the polygon lie on
the same side of the scan line, hence there are two intersections resulting two pairs: 1 -2 and
3 - 4. Intersections points 2 and 3 are actually same points. For scan line 2 the other endpoints

Computer Graphics 98 Area Filling

(D and F) of the two line segments of the polygon lie on the opposite sides of the scan line,
hence there is a single intersection resulting two pairs : 1 - 2 and 3 - 4. For scan line 3, two
vertices are the intersection points. For vertex F the other end points E and G of the two line
segments of the polygon lie on the same side of the scan line whereas for vertex H, the other
endpoints G and 1of the two line segments of the polygon lie on the opposite side of the scan
line. Therefore, at vertex F there are two intersections and at vertex H there is only one
intersection. This results two pairs: 1-2and 3- 4 and points 2 and 3 are actually same points.

We have seen that it is necessary to calculate x intersection points for scan line with
every polygon side. We can simplify these calculations by using coherence properties. A
coherence property of a scene is a property of a scene by which we can relate one part of a
scene with the other parts of a scene. Here, we can use a slope of an edge as a coherence
property. By using this property we can determine the x intersection value on the lower scan
line if the x intersection value for current scan line is known. This is given as

1 _
Xigg = X5——
m
where m is the slope of the edge

As we scan from top to bottom value of y coordinates between the two scan line changes

by 1.
Yisr = ¥i—1

Many times it is not necessary to compute the x intersections for scan line with every

polygon side. We need to consider only the polygon sides with endpoints straddling the
current scan line. See Fig. 3.13.

Consider only
these sides

Scan

Fig. 3.13 Conslder only the sides which intersect the scan line

It will be easier to identify which polygon sides should be tested for x-intersection, if we
first sort the sides in order of their maximum y value. Once the sides are sorted we can
process the scan lines from the top of the polygon to its bottom producing an active edge list
for each scan line crossing the polygon boundaries. The active edge list for a scan line

ComEuter

contains al
with active

In sum
sides on th
For each y
intersectior

Scan Line (¢
1. Re:
2. Res
3. Fin

4, Sto
froa

Wh
anc
it
5. Sor
asco
6. Set

7. Fin

*a Filling

«can line,
23, two
“wo line
1e other
the scan
-nly one
< points.

ne with
crties. A
partof a
herence
wer scan

changes

th every
lling the

m, if we
we can
-dge list
-an line

Computer Graphics 99 Area Filling

contains all edges crossed by that scan line. The Fig. 3.14 shows sorted edges of the polygon
with active edges, '

BC

BA

C DC
G

A DE
€ Scan line A Top

F GF
H Active

d
GH edges

J o | EF | =+— Bottom

Hi

J

Sorted list of edges

Fig. 3.14 Sorted edges of the polygon with active edges

In summary, a scan line algorithm for filling a polygon begins by ordering the polygon
sides on the largest y value. It begins with the largest y value and scans down the polygon.
For each y, it determines which sides can be intersected and finds the x values of these
intersection points. It then sorts, pairs and passes these x values to a line drawing routine.
Scan Line Conversion Algorithm for Polygon Filling :

1. Read n, the number of vertices of polygon
2. Read x and y coordinates of all vertices in array x[n] and yin).
3. Find y;, and y ...

4. Store the initial x value (x,) y values y, and y, for two endpoints and x increment Ax
from scan line to scan line for each edge in the array edges [n] [4).

While doing this check that y, > y,, if not interchange y, and y, and corresponding x,
and x, so that for each edge, y, represents its maximum y coordinate and y, represents
it minimum y coordinate.

5. Sort the rows of array, edges [n] [4] in descending order of y,, descending order of y, and
ascending order of x,.

6.Sety=y._ .,
7. Find the active edges and update active edge list :
if(y>y,andy < y;)
{ edge is active }
else

Computer Graphics 100 Area Filling

{ edge is not active }

8. Compute the x intersects for al} active edges for current y value [initially x-intersect is
x; and x intersects for successive y values can be given as

X1 X+ AX

where Ax = - and m = Y21 i.e. slope of a line segment
m X2 - Xl

9. If x intersect is vertex i.e. x-intersect = x; and y = y, then apply vertex test to check
whether to consider one intersect or two intersects. Store all x intersects in the
x-intersect [) array.

10. Bort x-intersect [} array in the ascending order,

11. Extract pairs of intersects from the sorted x-intersect (1 array. ,

12. Pass pairs of x values to line drawing routine to draw corresponding line segments
13. Sety=y -1

14, Repeat steps 7 thrt;ugh 1Buntily2y,..

15. Stop

In step 7, we have checked for y < y, and not simply y < y,. Hence step 9 a becomes
redundant. Following program takes care of that.

'C' code for Scan line Algdrithm for Filling Polygon

{Softcopy of this program is availabie at vtubooks.com)

tinclude<stdio.h>
#include<conioc.h>

#include<graphics.h>
/* Defining the structure to store edges

struct edge
{

int x1;

int yl;

int x2;

int y2;

int flag;
}:

void main ()
i
int gd = DETECT, gm, n, i.r j: k;

-

Computer
st:
flc
int

ini

/*
pri

sca
/*

pri
for

pri
sca
pri
sca
if(
yina:
ifq(
ymi)
edl:

ea Filling Computer Graphics 101 Area Filling

struct edge ed[10], temped;

tersect is fleat dx,dy,m{10},x_int(10], inter x[10];

int x[10),y(10],ymax = 0, ymin = 480, yy,temp;
initgraph {(&gd, &gm, " "“):

/* Read the number of vertices of the polygen
tocheck | */
ts hlthe printf (*Enter the number vertices of the graph: ");
scanf ("%d", &n};

/* Read the vertices of the polygon and also find Ymax and Ymin

ments N T T e ene Tmn y
printf("Enter the vertices: \n");
for(i = 0; & < n; i++)
{

becomes printf("x[%d} : ", 1i);

scanf ("$d4", &x[i]});
printf("y[3d]) : ", i};
scanf {"%d", &y(i)):
if(y[i} > ymax)

ymax = yf[i];

if(y[i) < ymin)

ymin = y[i]:

ed[i).ylf= y(i]:
}

ed{i] .x1/= x[i]:

/* Store the edge information

_______________________________ Ir/
for (i=0;i<n~1;i++)

{

ed[il.x2 = ed[i+l].x1;

ed(i].y2 = ed[i+l]).y1;

ed[i].flag=0;

}

edfi] .x2 ed{0].x1;
ed[i]).y2 ed[C]).yl;
ed[ij.flag=0;

Computer Graphics 102 Area Filling | Computer (

/* Check for yl>»y2, if not interchange yl and y2
with corresponding x1 and X2 =-———e———mee o =/

for (i=0;i<n;i++)
{

if(ed[i).yl < ed[i].y2)

{

temp = edfi].xl;

ed{i].xl=ed[i].x2;

ed[i).x2=temp;

temp = ed(i).yl:
ed[i) .yl=ed{i].y2;
ed[i}.y2=temp;

]

/* Draw the polygon /¥
______________________ L coo
for(i=0;i<n;i++} for
{ {
line(ed(i).x1,ed[i].y1,ed{i].x2,ed[i].y2}; dx
} . dy
/* sorting of edges in the order of vl,y2,x1 if(
_________________________ T T USSR {
for(i=0;i<n-1;i++) mii
{ }
for (3=0;j<n-1;j++) ' els
{ {
if(ed[j]).yl<ed(§+1].y1) m{i
{ }
temped = ed[j]: int
ed[j]=ed[j+1}; }
ed(j+1] = temped:
] vy=
if (ed(j}.yl==ed[j+1].y1)} whi

(' {
if(ed[§].y2<ed(+1].y2)

~ea Filling

Computer Graphics 103 Area Filling

(
temped = ed[jl:
ed(i)=ed{j+1];
ed(i+1l] = temped:
)
if{ed(j].yZ==ed([j+l).y2)

if{ed(j].xl<ed|§+1].x1)
{
temped = ed{j):
ed[jl=edij+l];:
ed{j+1l] = temped;

}
/* calculating 1/slope of each edge and storing top x
coordinate of the edge ------------—---—--o—memeeo */
for(i=0;i<n;i++}

{

dx = ed(i).x2 - ed[i].x1l;
dy = ed[i].y2 - ed{i].yl:
if (dy==0)

{

m{i]=0;

}

else

{

m(i] = dx/dy:

)

inter_x[il= ed{i].xl;
H

yy=ymax;
while (yy>ymin)
{

Computer Graphics 104 Area Filling

/* Marking active egdes

1
1
1
1
1
|
1
1
1
1
1
]
i
1
1
1
]
]
|
1
1
1
]
|
|
1
»
e

for{i=0;i<n;i+4)
!
1f{yy > ed[i).y2 && yy <= ed(i}.yl}

!

ed(i].flag = 1;
)

else

{

ed[i].flag = 0:

]

/* Finding the x intersections

for(i=0;i<n;it+)

iffed[i).flag==1)
{
if(yy==ed[i].yl)
{
X_int([jl=ed[i]).x1;
J++;
*if(ed(i-1].yl==yy && ed[i-1].yl<yy)
[.
x_int(j)=ed[i].xl;
J++;
}
if(ed[i+l].yl==yy &4 ed[i+l].yla<yy)
{
¥_int[jl=ed[i) .xl;

F++;

Comgutel

/*

/t

get

“Mod l‘llllllg

Computer Graphics 105 Area Filling

]t

1
else
{
x_int[j] = inter x([i]+(-m[i}};
inter_x{il=x_int[§);
J++;
H
}

/* Sorting the x intersections

for(i=0;i<j;i++)
{
for (k=0;k<j-1;k++)
{ .
if(x_int[k]>x_int[k+1])
A
temp =x_int(k];
X_int(k] = x_int[k+1];
x_int[k+1l] = temp;
}
}

/* Extracting pairs of x values to draw lines

for (i=0;i<j;i+=2)
{
line{x_int[i],yy,x_int[i+1],yy):
}
yy--i
delay {50} ;
}
getch();
t

Computer Graphics 106 Area Filling

Solved Example

Ex3.1: Writea C’ program to generate figure below. Colour the areas as shown. Assume colour
codes are as follows : Background - 0, Foreground - 4, Grey - 2.
Fore- T
) Gray | ground Side
Back- Gray ,
ground Side
Fig. 3.15
(May-99)
Sol.: The 'C' code for above program is as given below

#include<stdic. b

finclude<qraphics.h>

Finglude<math.n>

main{

{

fleoat sum=0,d0,angle,theta, x,y,xc, yc;

int i,qd,gm;

/* initialise graphics

detectgraph {(&gd, &gm} ;
initgraph(&gd, &gm, ™"} ;
rectangle (320,190, 370,240} ;
rectangle (270,240,320,290);
serfillstyle{l,4);
floodfill(340,210,15);
setfillstyle(l,0);
floodfill (290,270,15);
®c=320;

yc=240;

#=370;

y=240;

Computer ¢
do
ang.
the

setf
Eloos
£floo:
getcl
close

}
Review Quest

1. What i
2. Explai
3. Whati
4. Explai
5. Explai
6. Explair
7. Explair
8. What it

Computer Graphics 107 Area Filling

wrea Filling
dd = 1/(3.2 * (abs(x-xc} + abs{y-yc)));
angle = 0;
sunie colour theta = 90;
for (i=0,i<2;i++)
{
while (angle*180/3.142 < theta)
{
setcolor(2);
putpixel (x,y,15);
x = x = (y-yc} * d0;
¥ =y + (x - xc)*d0;
angle = angle + d0; ~
delay(100);
!
(May-99) angle = (180+%3.142/180);:
theta = 270;
x = 270;
y = 240;

}
setfillstyle(l,2);
floodfill (310,230,15);
flood£ill (350,250,1%5);
getch();
closegraph(};

1

Review Questions

1. What is polygon ? Explain different types of polygons.

2. Explain various approaches used to represent polygon.

3. What is a display file ?

4. Explain the polygon entering algorithm in the display file.

5. Explain the boundary fill alogrithm in detail.

6. Explain the steps required to fill the polygon using flood fill technique.
7. Explain the steps in the scan line algorithm for filling the polygon.

8. What is the need of y-bucket and active edge list?

Computer Graphics 108

Area Filli_n_g

University Questions

1. What do you understand by solid area scan converting. Develop an algorithm to scan convert
a polygon. Explain the working of your algorithm for the following picture :-

The triangle PQR is cut out from the rectangle ABCD. (Drec-96, Dec-2000)
A B
P
RI]
D C
Fig. 3.16

[Hint : Draw rectangle and fill it with the background
colour then draw triangle and use scan line algorithm

to fill it with desired colour)
2. Write a program for the algorithm discussed above. (Dec-96)

3. Discuss various methods of 2D area filling and state the relative merits and demerits of each.
(May-97, Dec-97)

(May-97)

5. Develop a program to scan convert a polygon. Comment on the behaviour of your program if
there are two intersecting polygons.

4. Develop a program to scan convert a polygon.

(Dec-97)

6. Write a detailed note on boundary fill and flood fill algorithm. (May-98)

7. Discuss the scan line area fill method, how it will work for following picture ?

N
Q N
A
Flg. 3.17

(Dec-98)

8. Writea 'C’ program to generate figure below. Colour the areas as shown. Assume colour codes
are as follows : Background - 0, Foreground - 4, Grey - 2. {(May-99)

Compute

9. Wri
10, Wi
11 Exp

12, Dis
foll

13. Expl
14. Wrik
15, Writ

Area Fillina

ey,
Scan convert

36, Dec-2000)

———

background
ne algorithm
sired colour]
(Dec-96}

rits of each.
y-97, Dec-97)
(May-97)

I program if
{Dec-97)

(May-98)

{Dec-98)

Hour codes
(May-99)

3

Computer Graphics 109 Area Filling

Fore-

Gray ground Side

Back- Gray

ground Side

Fig. 3.18
9. Write a short note on scan line filling algorithm. (May-99)
(Dec-99)
{Dec-99)

12. Discuss any scan line area filling algorithm. Demonstrate how it would behave for the

10. What is the meaning of scan conversion of point ?

11 Explain the scan-line algorithm for area filling of polygonal areas.

following shaded area : {May-2000)
i)
7
%
Z
7,
. Fig. 3.19
13. Explain pattern filling algorithm with example, {May-2001)
14. Write a short note on scan line fill algorithm. (Dec-2001}
15. Write a short note on Boundary-fill algorithm. (May-2003)
Qa0

ComEuter
Ex.4.1:

Sol.:

2-D Geometric Transformation

4.1 Introduction

Almost all graphics systems allow the programmer to define picture that include a
variety of transformations. For example, the programimer is able to magnify a picture so that
detail appears more clearly, or reduce it so that more of the picture is visible, The
programmer is also able to rotate the picture so that he can see it in different angles.

In this chapter we discuss the 2D transformations.

4.2 Two Dimensional Transformations

In this section, we describe the general procedures for applying transiation, rotation,
and scaling parameters to reposition and resize the two dimensional objects.

4.2.1 Translation

Translation is a process of changing the position of an object in a straight-line path from
one coordinate location to another. We can translate a
y o two dimensional point by adding translation
distances, tx and ty, to the original coordinate position
(x, y) to move the point to a new position (x, y’), as
shown in the Fig. 4.1.

4

X = X+ 6 o (31)
X y =y+ty ...{(4.2)

—

The translation distance pair (t., ty) is called a
translation vector or shift vector.

It is possible to express the translation equations
4.1 and 4.2 as a single matrix equation by using column vectors to represent coordinate
positions and the translation vector :

Fig. 4.1

x fx! ty

P = p':l J T=
Yy)” by

This allows us to write the two dimensional translation equations in the matrix form :

PepaT 43 42.2'
=P+ ... {4.3) N
pathiir

(110} the rot

Computer Graphics 111 ' 2-D Geometric Transformation
Ex.41: Translate a polygon with coordinates A (2, 5), B (7, 10) and C (10, 2} by 3 units in x
direction and 4 units in y direction,
Sol.:
:on % ’
— 15T 151 B’
— 1
10+ ° 104 A,
A7
5+ Q 51 c
) C
nclude a ol 5 10 15 x ob s 10 15 E
ire so that :
ible. The - @ ®)
B, Fig. 4.2 Translation of polygon
A = A+T
[2] [37-
=| [+
rotation, 5] |4
-
ith from kd
anslate a '
*nslation ; B =B+T
position 771 [3
4 y) as ' = +
[10] |4
(4 107
...(42) =
called a 4]
C'=C+T
:uations (107 3 I
srdinate ' = +
(2] [4
3]
6
form : -
L (43) 4.2.2 Rotation
A two dimensional rotation is applied to an object by repositioning it along a circular
path in the xy plane. To generate a rotation, we specify a rotation angle 8 and the position of
the rotation point about which the object is to be rotated.
|

Computer Graphics 112 2-D Geometric Transformation

yl

P, y) Let us consider the rotation of the object about
the origin, as shown in the Fig. 4.3.

Here, r is the constant distance of the point

0 from the origin, angle ¢ is the original angular
Ly P(X . ¥) position of the point from the horizontal, and 8 is
4 the rotation angle. Using standard trigonometric
0 ; equations, we can express the transformed
2 coordinates in terms of angles 8 and ¢ as
Fig. 4.3
X' =r1cos(dp +0) =rcosd cos® - rsind sind (4.4)
y' =rsin(¢ +8) = rcos¢ sin® + rsiné cosd o
The original coordinates of the point in polar coordinates are given as
X =I¢08
_ ¢ } ...(4.5)
y =rsing

Substituting equations 4.5 into 4.4, we get the transformation equations for rotating a
point (x, y) through an angle 0 about the origin

x =xcos0~ ysind
:) . (4.6)
y =xsin0 +y cosd
The above equations can be represented in the matrix form as given below
X v (] cos8 sin®
x y] =[x
) Y -sin® cosB
P'= PR .. (4.7)
where R is rotation matrix and it is given as
cos8 sind
R = . (48
[— sin® cose] 48)

Itis important to note that positive values for the rotation angle define counterclockwise
rotations about the rotation point and negative values rotate objects in the clockwise sense.

For negative values of 8 i.e., for clockwise rotation, the rotation matrix becomes

R - cos(~8) sin(-0)
- —sin{-0) cos{-0)

_ [COS@ —sine] "~ cos(~0)=cos8 and o (49)

sin® cos® sin{-0)=-sin®

Computer
Ex.4.2:

Sol. :

4.2.3 Sca

A scalir
for polygor
and Sy to p:

Scaling
direction. T

‘srmation

~ctabout

he point
i angular
;, and 0 is
aometric
sformed

..(4.4)

...(4.5)

‘otating a

... (4.6)

. (87

. (4.8}

lockwise
' sense.

.. (4.9)

Computer Graphics 113

2-D Geometric Transformation

Ex.4.2: Apoint (4, 3)is rotated counterclockwise by an angle of 45°. Find the rotation matrix and

the resultant point.

cos6 sin® cos45” sin 45°
Sol.: R = =

-sin cos0 -sin45" cos45°

1/¥2 1/V2

-1/v2 1/V2
YV 1/42

P = [4 3} . ¢

SYNE 13

= [4/V2-3V2 4/VZ+3/V2]
= [1/¥2 7/42]
4.2.3 Scaling

A scaling transformation changes the size of an object. This operation can be carried out
for polygons by multiplying the coordinate values (x, y) of each vertex by scaling factors Sy
and Sy to produce the transformed coordinates (x', y).

X =x-5,
and y'=y-S, ... (4.10)

Scaling factor S scales object in the x direction and scaling factor Sy scales object in the y
direction. The equations 4.10 can be written in the matrix form as given below :

3
\ 20+ B
15+ 154
104 B 10-:- A
A
5“ 5"' Dt CI
L CI L - : L 'l L
0 5 10 15 - of s 10 15 20
{a) (b}
Fig. 4.4
S, 0
X ¥y = [x y]
0 S,

= [x-S, y-Sy] e (411)

e ARty .

¥

Computer Graphics 114

2-D Geometric Transformation

Any positive numeric values are valid for scaling factors S and S,. Values less than 1
reduce the size of the objects and values greater than 1 produce an enlarged object. For both
S, and Sy values equal to 1, the size of object does not change. To get uniform scaling it is

necessary to assign same value for Sx and Sy. Unequal values for S, and S, result in a
differential scaling.

Ex.4.3: Scale the polygon with coordinates A (2, 5), B (7, 10) and C (10, 2) by two unifs in x
direction and two units in y direction.
Sol.: Here S, = 2 and S, = 2. Therefore, transformation matrix is given as
20
S =
0 2
Xy
Al2 5]
The object matrix is :
Bi{7 10
Cc{io 2]
Alx) y 2 5]
2 0
B ix, y,|=[7 10
0 2
Cix; vy, 10 2]
4 10
= |14 20
20 4
¥ ¥4
25T 25T
w0l a0l B'(14,20)
154 154 A.10)
7,10
10+ a2.5) 3¢) 101
51 5+ C(20, 4)
. C(10, 2) .] .)) . . N
ol 5 10 15 20 25 X of "5 10 15 20 25 «x
{a) Originat object (b} Scaled object

Fig. 4.5

Comput:

4.3 Hoi

Ind
translati
In the pr
in the ge

For

For

For

To
followe
step at:
and fin
not etfi
transfo
coordir

In
additio
have tc
coordi
system
transfo

sformation

less than 1
-t. For both
:caling it is
result in a

9 units in x

1S

Computer Graphics 115 2-D Geometric Transformation

4.3 Homogeneous Coordinates

In design and picture formation process, many times we may require to perform
translation, rotations, and scaling to fit the picture components into their proper positions.
In the previous section we have scen that each of the basic transformations can be expressed
in the general matrix form

P'= P-M;+M; .. (4.12)
1 0 t,
For translation : P =P +
0 1 |t

1.¢. M = ldentity matrix

M; = Translation vector

; 0
; 0
For rotation : P = P C?Se sin +
-sin®. cos6 0
i.e. M| = Rotational matrix
Ma=0
S, 0 0
For scaling : P=r +
0 s, 0

i.e. My = Scaling matrix
M;=0

To produce a sequence of transformations with above equations, such as translation
followed by rotation and then scaling, we must calculate the transformed coordinates one
step at a time. First, coordinates are translated, then these translated coordinates are scaled,
and finally, the scaled coordinates are rotated. But this sequential transformation process is
not efficient. A more efficient approach is to combine sequence of transformations into one
transformation so that the final coordinate positions are obtained directly from initial
coordinates. This eliminates the calculation of intermediate coordinate values.

In order to combine sequence of transformations we have to eliminate the matrix .
addition associated with the translation terms in Mz (Refer equation 4.12). To achieve this we
have to represent matrix M1 as 3x 3 matrix instead of 2 x 2 introducing an additional dummy
coordinate W. Here, points are specified by three numbers instead of two. This coordinate
system is called homogeneous coordinate system and it allows us to express all
transformation equations as matrix multiplication.

Computer Graphics 116 2-D Geometric Transformation

The homogeneous coordinate is represented by a triplet (Xw, Yw, W),

where
x = X% ang y= Yw
w W

For two dimensional transformations, we can have the homogeneous parameter W to be
any non zero value. But it is convenient to have W = 1. Therefore, each two dimensional
position can be represented with homogeneous coordinate as (x, y, 1).

Summaring it all up, we can say that the homogeneous coordinates allow combined
transformation, eliminating the calculation of intermediate coordinate values and thus save
required time for transformation and memory required to store the intermediate coordinate
values. Let us see the homogeneous coordinates for three basic transformations.

4.3.1 Homogeneous Coordinates for Translation
The homogeneous coordinates for translation are given as

1 ¢ 0
T=|0 1 0 _ .. (4.13)
e oty 1
Therefore, we have
1 0 0
X y" 1} = [xy1}l0 1 0
bt 1

4.3.2 Homogeneous Coordinates for Rotation
The homogeneous coordinates for rotation are given as

cos sin® 0

W&

= [-sin® cosO O ... (4.15)
0 0 1
Therefore, we have)
cos® sin® 0
[X y'1] = [x y 1]/-sin® cos® 0

0 0 1

[Xx cosB-ysin® xsin8+ycos® 1] . (4.16)

Computer (

4.3.3 Hon
The hoi

Therefe

Note: Int
transforma
matrix we
makrix Le.,

Ex.4.4:

Sol.:

a) Her

ormation

'+ W tobe
ensional

ombined
thus save
»ordinate

... {4.13)

. (4.14)

... (4.15)

.. (4.16)

Computer Graphics 117 2-D Geometric Transformation

4.3.3 Homogeneous Coordinates for Scaling
The homogeneous coordinate for scaling are given as

5, 0 0

S=10 S). 0

lo 0 1

Therefore, we have
S, 00
X y' 1} =[x y 1) 0 s, 0
0 0 1
=[x S y-S 1] .. {417)

Note : In this text, the object matrix is written first and it is then multipled by the required
transformation matrix. If we wish to write the transformation matrix first and then the object
matrix we have to take the transpose of both the matrices and post-multiply the object
matrix Le.,
i_x _‘ 10 t.7] [x]
|

y 1 =101 |y
1 00 1 1
Ex.44: Give a 3 x 3 homogeneous coordinate transformation matrix for each of the following

translations

a) Shift the image to the right 3-units

b) Shift the image up 2 units

c) Move the image down % unit and right 1 unit
d) Move the image down 2/3 unif and left 4 unifs

Sol. : We know that homogenous coordinates for translation are
I 0 0
T=}0 1 0
t, ot 1
a) Here, t, =3 and ty, = 0

[1 0 0

T=[010

3 01

Computer Graphics 118 2-D Geometric Transformation Computer
b)Here, tx=0and ty =2
(1 0 0
T=(01 0
0 2 1
¢) Here, tx=1and t, =~ 0.5
(1 0 0

d) Here, tk =-4 and t, = - 0.66

T=| 0 1 0

-4 -0.66 1
Ex.4.5: Find the transformation matrix that transforms the given square ABCD to half its size
with centre still remaining at the same position. The coordinates of the square are ; Ex. 4.6
A(L 1), B(3,1),C(3,3), D(1, 3) and cenire at (2, 2). Also find the resultant coordinates
of square.
Sol. : This transformation can be carried out in the following steps.
1. Translate the square so that its center coincides with the origin.
: 2. Scale the square with respect to the origin. Sol.:
i ' 3. Translate the square back to the original position.
: Thus, the overall transformation matrix is formed by multiplication of three matrices.
[1 0 0][65 0 01 0 O
T,-$T=10 1 0{|0 05 0|0 1 0
The tr

-2 =2 1|0 0 1|2 21
(0.5 0 011 0 0

=0 05 0||0 1 0

-1 -1 1|2 2 1

nsformation

2 half its size
square are :
~coordinales

* matrices.

Computer Graphics 119

2-D Geometric Transformation

0.5 0
0 05
11
11 1]
30001
331
13 1]
(15 1.5
25 15
25 2.5
15 25

.
1

1

]_

Find a transformation of triangle A(1,0), B(0, 1), C(1, D by

1) Rotating 45° about the orivin mmd Hwen translating one unit in x grda
S 3 h ¥

b) Tramslating one wnit in x and y direction and then rotating 45° about the

Ex.4.6:
directon,
origin.
Sol.: The rotation matrix is

The translation matrix is

[cosd5

-sin 45

sin45 0 1/¥Z /N2 0
cos45 0| = —1/\/5 1/¥2 0] and

0 1 0 0 1

Computer Graphics 120 2-D Geometric Transformation
CYVZ N2 011 o o]l
a) R-T |—1/J§ 142 ol 1o 1 ol
0 0 1f[1 11
[1/¥2 142 0]
-1V2 1V2 0
| 1 11
Al o 1[1V2 12 0
B’ 01 1| [-1/¥2 1/¥2 0
c'| 11 1 1 1
71_54 %n 1
L Ly
V2 V2
1 2411
1 0 0] |1/v2 1¥2 0
b) T-R =0 1 {J -1/¥2 12 0
11y oo 0 1
SRR
-1/¥2 1V2 0
| 0 B
Al oo 1[Nz Yv2 o] [1/VZ 32 1
B 0 1 1| {-¥/¥2 1/¥2 o|=]|-1/v2 3/¥2 1
¢yof1 11 o ﬁtJLo 242 1

Computer !

Inthea
are not sai
important i

4.4 Comy

Wehav
in the previ
by applyin;
transforma

4.41 Rot;
To rota

1. Tran:
2. Rotal

3. Final
We hav
matrix A by
A. Therefor
matrices so
the transfor

sormation

/2 1

/2
2 1l

Computer Graphics 121 2-D Geometric Transformation

In the above exampile, the resultant coordinates of a triangle calculated in part (a) and (b)
are not same. This shows that the order in which the transformations are applied is
important in the formation of combined or concatenated or composed transformations.

4.4 Composition of 2D Transformations

We have seen what is meant by combined or concatenated or composed transformations
in the previous section. The basic purpose of composing transformations is to gain efficiency
by applying a single composed transformation to a point, rather than applying a series of
transformations, one after the other. #

4.4.1 Rotation About an Arbitrary Point
To rotate an object about an arbitrary point, (x,, Yp) we have to carry out three steps :

1. Translate point (xp, yp) to the origin

”

2. Rotate it about the origin and

3. Finally, translate the center of rotation back where it belongs (See Fig.4.6)

We have already seen that matrix multiplication is not commutative, i.e. multiplying
matrix A by matrix B will notalways yield the same result as multiplying matrix B by matrix
A. Therefore, in obtaining composite transformation matrix, we must be careful to order the
matrices so that they correspond to the order of the transformations on the object. Let us find
the transformation matrices to carry out individual steps.

3 L} i
Y4 <,) Y
U
x.v) o
. i
(xp‘ yp) /,’
. (<. ¥')
0 x 0 &£
(a) Rotation about an {b) Step 1 : Translate point
arbitrary point {xp, ¥p} to the origin
y Y
(. vy}
(<, y) (x. y).1
0 x.) A e Ye)
x (1] & X

o

{c) Step 2 : Rotate it (d) Step 3 : Translate back
about the origin to the original position

Fig. 4.6

Computer Graphics 122 2-D Geometric Transformation

The translation matrix to move point (x,, yp} to the origin is given as

The rotation matrix for counterclockwise rotation of point about the origin is given as
[cost sin0 lﬂ

'!
R I -sinl cosl U‘

[o 0 1

The translation matrix to move the center point back to its original position is given as

' [0 o']

To=i0 1 0l

2=
| :
i i
!_xp Yp 1]

Theretore, the overall transformation matrix for a counterclockwise rotation by an angle
0 about the point (x,, y,} is given as

1 0 0 cost sin® 0 1 0 0

T, RT, = 0 1 0 [-sinG cos® O 0O 1 0
|]
I_—xp “Yo IJ 0 0 l_I i}l‘ Yp |
[cos® sin@ o] [T o o
= —sin@ cosb 0 60 1 0
| ~Xp Cos0 +y sin0 —x sin@ -y cos8 1 Xo Yp 1
[cos sind O-i
= ~sin0 cosb 0 <. (4.18),
Xp o880+ y sinB+x, —x,sinb-y cosO0+y, 1

Compute
Ex.4.7 :

Sol.:

Here

4.5 Ot!
The

and mc
applicat

451 F

nsformation Computer Graphics 123 | 2-D Geometric Transformation

Ex.4.7: Performa counterclockwise 45° rotation of triangle A (2, 3), B (5, 5), C (4, 3) about point

(1, 1.
Sol.: From equation 4.18 we have
cos0 sin© 0
T, 'RT, = -sin® cosf 0
L is given as “XpcosO+y sin0+x, -x,sin0-y cosb+y, 1

Here, 0= 45% x,, = 1 and y,, = 1. Substituting values we get

(/42 Y2 o]
T-RT, = |-1/¥2 1/¥2 0|
1is given as 1 V2 +1 1J
I-A’ 2 3 1) [1/¥2 142 o0
IB‘ =[5 5 1|[-1/¥2 1/¥2 0
I .
1l a3l 1 —vZ+1 1]
b] l. J = 4o JI
by anangle - n
’ i L +1 2 +1 1
0 0 V2 V2
1 0 2
1 5
—+1 —+1 1
, | V2 V2]
Yp .
4.5 Other Transformations
0 The three basic transformations of scaling, rotating, and translating are the most useful
and most common. There are some other transformations which are useful in certain
0 applications. Two such transformations are reflection and shear.
L1 4.5.1 Reflection
Ly
A reflection is a transformation that
produces a mirror image of an object relative to
- (4.18), Q D an axis of reflection. We can choose an axis of
Original Reflscled reflection in the xy plane or perpendicular to the
object object xy plane. The table 4.1 gives examples of some
: common reflections.
- - x

Fig. 4.7 Reflection about y axis

Computer Graphics

124

2-D Geometric Transformatiop, E
T — Y

R
Reflection Transformation matrix Original image Reflected image

____‘_‘—\—u_..

I-1 0 o]

1

[4 Ay

Reflection about Y-axis |0 1 o [R
!
[0 01 J

Reflection about X axis

)
!o -1 0
o o 1

Retlection about origin

L
: <
<

TLA;
j@

Reflection about line
¥=X

Refiection about line

y=-x

Table 4.1 Common reflections

Compu

452 ¢

At
Two co
shifts y
its coor

4.5.2.1

The
lines to
as

4522

The
horizon

-ansformation Computer Graphics 125 2-D Geometric Transformation

e ———

cted image 4.5.2 Shear

A transformation that slants the shape of an object is called the shear transformation.
Two common shearing transformations are used. One shifts x coordinate values and other
shifts y coordinate values. However, in both the cases only one coordinate (x or y) changes
its coordinates and other preserves its values.

4.5.2.1 X shear

<

The x shear preserves th(‘i’y courdinates, but changes the x values which causes vertical

lines to tilt right or left as shown in the Fig. 4.8. The transformation matrix for x shear is given
o

as

~

¥
X
0
{a) Original object
—] v
>
Q,//, o 0 - X
_,"L— 1 {b) Object after x shear
Fig. 4.8
1 00
Xsh =|Sh, 1 0
B 0 01
> \\\ x = x+Sh,-y and
y =y ... (4.19)
—_— 4.5.2.2 Y shear

The y shear preserves the x coordinates, but changes the y values which causes
horizontal lines to transfornt into lines which slope up or down, as shown in the Fig. 4.9.

Computer Graphics 126 2-D Geometric Transformation

Y
) - X
{a) Original object
y
% -
0 X

(b) Object after y shear

Fig. 4.9
The wansformation matrix for y shear is given as
1 Sh, 0
Ysh=30 1 0
|_0 0 1

x =xand y'=y+3h.x .. (4.20)

4523 Sheanng Relatlve to Other Reference Line

We can apply x shear and y shear transformations relative to other reference lines. In
x shear transformation we can use y reference line and in y shear we can use x reference line.

The transformation matrices for both are given below :

[1 0 01[
x shear with y reference line:| Sh i0
[Sh, -y, 01 J
1 Sh, 0
y shear with x reference line : [0 1 0
0 —-Shy op, 0

Comput

Ex.4.8:

Sol.:

*ormation

.. (4.20)

e lings. In
rence line.

Computer Graphics 127 2-D Geometric Transformation

Ex.4.8: Apply the shearing transforuation to square with A(0,0), B(T,0), C(1, D aud D (0, Thas
Lfven beloiw

@) Shear parameter value of 0.5 refative to the line iy = - 1
b) Shear parmineter value of 0.5 relative to the tine xq = -1
Sol.: a) Here Shy = 05 and yu = -1
ATl A
] 1 0 01
BB
Pt = | t o Sh, 1 0
o C |
(-Shy - v, 01
D | D]
00 1]
00
1 01
= 05 1 0
111
05 0 1]
_U 1]
[0.5 0 1]
15 01
2 11
[1 1 13
y Y
Di{0,1) c{1.1) 0(1,1) c(2.1)
Al0LO) B(1, 0) x x
0 G A0.50) B'{1.5.0}
{a) Original squére (b} Sheared square

Fig. 4.10

Computer Graphics 128 2-D Geometric Transformation Compute
b} Here Shy = 0.5 and X, = -1 We h
(A TA
[t sh, 0
B’ B
= 0 1 0
C C
0 -Sh, x4 1
y o ref >
D D] If we
[0 0 1] [0 05 1
1 05 0
101 11 1
= 0 1 0] =
111 i T 2 1
0 05 IJ Comg
011 [0 1.5 1
y
C(1.2)
Y
D(0,1.5)
B(1.1)
C(0.1} C(1.1)
A{0. 0.5)
!
A(0,0 B(1. 0
(0) S 0 X Substi
{ {a) Original square {b) Sheared square
Fig. 4.11
It is important to note that shearing operations can be expressed as sequence of basic
transformations. The sequence of basic transformations involve series of rotation and Theref
scaling transformations.
Ex.4.9: Show how shear trausformation may be expressed in terms of rotation and scaling.
Sol.: The shear transformation matrix for x and y combinely can be given as
1 Sh, 0
Sh, 1 0
0 0 1
J

1sformation

1wce of basic
nation and

sealing.

en as

|

Computer Graphics 129 2-D Geometric Transformation

We have scaling matrix and rotation matrix as given below

. 0 0 cos0 sinG O
S=|10 S, 0 R=|-sin® c¢osO 0

0 01 0 0 1

If we combine scale matrix and rotation matrix we have,
S, cos0 S, sin0 0

5 R = —Sy 5in® S), cos) 0

0 0 1
Comparing shear matrix and 5- R- matrix we have
Sh, = -5;sind
Shy = S:sind
S.cos0 =1 and
Svcos0 =1
S = 1 and
cos9
Sy = !
cos®

Substituting values of S« and 5, we get,

Sh, = —--1—~ . 5in@=—tan®9
cos0

L . 5in8= tan?®

Sh,
’ cos9

Therefore, the shear transformation matrix expressed in terms of rotation and scales is
| 1 tang 0

-tan® 1 0 v Sxcos0=5,co50=1
0 0 1
where 8 : angle of rotation

S. : xscaleand

5, ¢ yscale

Computer Graphics 130 2-D Geometric Transformation

4.6 Inverse Transformations

When weapply any transformation to point (x, y) we get a new point (x', y). Sometimes
it may require to undo the applied transformation. In such a case we have to get original
point {x, y) from the point (x, y’). This can be achieved by inverse transformation. The
inverse transformation uses the matrix inverse of the (ransformation matrix to get the
original point (x, y). The inverse of a matrix is another matrix such thal when the two are
multiplied together, we get the identity matrix.

I the inverse of matrix 1is T), then

TT " = T-T=1| - 4.21)

where Fis the identity matrix with all elements along the major diagonal having valuc 1
and all other clements having vatue zero.

s

The elements for the inverse mateix T 1 can be calculated from the elements of T as
_ (-13""" det M,

A A {422
i det T “.22)

where by Vs the element in the i row and j# column of T-1, and M is the (n - 1) by

(n - 1) submatrix obtained by deleting the jt row and i% column of the matrix A. The det M
and det Tis the determinant of the My and T matrices.

The determinant of 2 2 x 2 matrix is

Lty by,
det |

= by tay — s s L 323
ta ta|
The determinant of a 3x 3 matrix is
det T =t - (t22 tva -ty b} — by, - (tay = bz tm) + L)y - (b2 t= L2 tyy) o (4.24)
b general form, the determinant of T s given by
det Ty = 3 t; (- 1)5 " det M e (425)
where M is the submatrix formed by deleting row i and column j from matrix T.

The inverse of the homogeneous coordinate transformation matrix can be given as
1

la d 07 [e -d 0
]

! E . |

! b ¢ 0 |' = — I ‘b a 0 |

i i ae-bd !

I_c f IJ ||_bf~ ce ¢d-af ae- de

Computer

Itisin
element o

In the
inverse m

Solved Ex
Ex. 4.10;

Sol.:
about an

In this

ST R

ormation

melintes
t original
tion. The
0 get the
¢ iwo are

. (421)

g valuel,

!f ’I-‘ (‘]S

L (423)

Computer Graphics 131 2.D Geometric Transformation

Itis important to note that the elements of inverse matrix T™' can be calculated from the
clement of T as

L (1)1 det M
U detT

In the above equation the term det T is in the denominator. Hence, we can oblain an
inverse mateix if and only if the determinant of the matrix is nonzero.

... (4.26)

Solved Examples

Ex. 4.10: Ffind out the final coordinates of a figure bounded by the coordinates (1,1),(3,4),(5,7),
(10, 3) when rotated about a poini (8, 8) by 30° in clockwise direction and scaled by two
wnits in x-direction and tlree wnits y direction.

Sol.: From following equation we have the transformation matrix for rotation
about an arbitrary point given as
[cos0 $in0 0]
T\ RT,=| -sin0 cosl) U}
| [
|_—><P cosb+y,, sind) + Xp X sin0 -y P cosO +y 'IJ
In this case, it is clockwise rotation therefore we take value of 0 negative.
11 1]
cos{-30) sin(-30) 0
3 41
ST R Ty = -sin{~30) cos(-30)]
5 71 !
—8x c05(—30) + 8x sin(-30) +8 -Bx sin(-30) -8 x cos(-30)+§ 1]
10 3 1]
T 1 1]
0.866 0.5 0
3 41
= 05 0.866 0
5 7 1
-2.928 5.072 1
(10 3 1) !
[-1.562 5.438 1]
1.67 7.036 1
4902 8.63¢4 1
|7.232 2.67 1]

Computer Graphics 132 2-D Geometric Transformation

r'--i'.%ﬁz 5.438 1]

(200 0
1.67 7036 11 !
[{0 3 {Ji
0 1]
7.232 267 1

-3.124 16.314 1

i

|

4.902 8.634 |

o
I

334 20108 1)
J v
1

I

|

]
|
i

9.804 25902 1
}
|

[14.464 801 1]

Ex. 411 Show that transformation matrix for a reflection about a line ¥ = X is eiptindlent to
reflection to X- axis fotlowed by counter - clockwvise rotation af 90,

Sol.: The transformation matrix for reflection about a tine Y = X is given as
U

The transformation matrix for reflection about x-axis and for counter clocksvise rotation
of Y0 are given as

|'I 0] cos(90) sin(90)7]

and
to -1J ~sin(90) cos(90) |

i Vo "
Tz[-1 o

01

Hence,

H

. Proved

1 0

Ex.4.12: Find out final transformation matrix, when point P (x, y) is to be reflected about a line

y=nmx+C.
Sol.: Equation of line :
y=mx+C

slope = m y intercept = C

Computer G

Wecan

where 0

Translat

Rotation

Reflecti

Inverse

yrmation Computer Graphics 133 2-D Geometric Transformation

Fig. 4.12

We can relate slope m to angle 0 by cquation
wirfeid fo
m = tan{

1% 0= tan'm

where #is ininclination of line wilh respect to x axis,

Translational matrix can be given as

1 0

rotation
T=10 1 0
LU -¢ 1

Rotational matrix to match the given line with x axis can be obtained as
cosl) —sin® 0}

R, = |sin0 cos® 0 ‘ f Note : angle of rotation = -9 |
i

0 0 lJ
Proned Reflection matrix about x axis
[1 0 0
M=10 10
wik o fine
0 01

Inverse transformation matrices,

Computer Graphics 134 2-D Geometric Transformation

(cos&l sin@ 0] M o {J]

i i

R;' =|-sin® cos® 0| T"'={0 1 0|
| !

0 o 1 0 e 1]

- Final transformation matrix can be obtained as
Ry = T’RZ-M-R;_' ST
As we have tan 8 = m, using trigonometry we can obtain

sinf = —— cosO= !
m? +1 m? +1

cos28 sin 20 01
Ry =1 sin2® -cos20 O |

_—csinZG (1 +cos2¢) 1J

By substituting valucs of sind and cosb we have,
) -

—l -m 2m
A 3 0
m-+1 m-+1
R, = %m m?-1 0
m- +1
-2cm 2
2 —5— 1
| m°+1 m~+1 |

Ex. 4.13: Derive the appropriate 2D transformatiou which reflects a figure in point (0.5, (.5)
Sol.: Translating given point to origin

-0.5 -05 1

Now obtaining reflection of the object about origin
-1 0 0

Translating point back to original position.

Computer

The tr.

Ex.4.14:

50l.:

Trans.

nsformation
nslormaton

0.5, 0.5)

Computer Graphics 135

2-D Geometric Transformaticn

1 06 ¢
T'=10 1 0]
0.5 05 1_1
The transformation can be given as
Ry = T-M-T"'
-1 ¢ o
Ry = l 0 -1 0
|
L1 1 1]

Ex.4.14: Find out the co-ordinates of a figure bounded by (0, 0) (1, 5) (6, 3}{(= 3, - &) when reflected
along the line whose equation is y = 2x + 4 and sheared by 2 units in x divection and 2

units in y dircction.

Sol. : Equation of the line 1 y = 2x + 4
slope = 2and y intercept = 4

0 = 6343°
Y | L

(0.4)

-1 -1
tan m=tan 2

-

Fig. 4.13

Translational matrix can be given as
1 0 0
T=j0 1 0

Computer Graphics 136

2-D Geometric Transformation

For matching of given line with x axis we have

[cos(-63.43) sin(-63.43) 0

R, = |-sin(-63.43) cos(-63.43) 0
.0 0 1
0.4472 -0.8944 0
R, = |0.8944 0.4472 0
L0 0 1
For reflection about x axis we have
1 0 0
M=(0 -1 0
¢ 01
Inverse transformation matrices are
[cos(-63.43) ~sin(63.43) 0

R;!

n

o

. +5in(~63.43) cos(-63.43) 0

0 0 1
4472 0.8944 D]

= |-0.8944 (.4472 OI

0 0 1
(1 0 0
T'=|01 0
0 41
For éhearing along x axis :
[1 00
Sc =15, 1 0

Computer Gra;

For shearir

The resulta

Final co-ore

Calculatior

Ex. 2.15: Shor
Y =

Sol.: 2D 1

2D reflectic

sformation Computer Graphics 137 2-D Geometric Transformation

For shearing along y axis

The resultant transformation matrix can be obtained by
Ry = T'R,M-R;' . T8 .5

Final co-ordinates of the given figure can be obtained by

A’ [A]
B’ B
= . R'I'
C C
_D' ~D—

Calculations are left for the students as an exercise

Ex.4.15: Show that 2D reflection through X axis followed by 2-D reflection threugh the line
Y = - Xis equuivalent to a pure rotation about tHe origin.

Sol. : 2D reflection about X axis
1 0 0
R, =0 -1 0
{0 0 ‘IJ

2D reflection about Y = - X

Computer Graphics 138 2-D Geometric Transformation

... Resultant transformation matrix
Ry = R-R
+1 0 O 0 -1 0

0 -1 0]
=11 0 0
0 01

For pure rotation about origin we have
[cos8 —sin® 0

R, = |+sin® cos8 0

0 0 1

where 8 is angle of rotation

put 0 = 90°
0 -1 0
R,=|1 0 0
0 01
Ry = R, Hence the result

Ex.4.16 Prove that successive 2D rotations are additive; i.e.
Sol. : We can write rotation matrix R} as

cos8, sind,

R®,) = [

-sin®;, cos0,

] and R@6,) = [

Computer G

~ R,
Ex.417 P
ol

Sol.: T

The matrix r

asformation

sin9,
cos8,

Computer Graphics 139

2-D Geometric Transformation

[cos, sinU,] i

[COSB] ‘C0502 +5in91 ‘(‘SiﬂBE)

[cos(0, +0,) sin(8, +6,)

|-sin(0, +8,) cos(B, +6,)

" since,

| cost, sineﬂl
[-sin0, cos0, | |-sin®, c0s0, |

cos®, -sin@, +sin@, - coso,

[—sin®, -cosB, +cosh, -(-sinB,) -sind, -sind, +¢os0, -cos0,

cos (8) + 0} = cos 8, cos 0, - sin ¢, sin 6,
sin (B + 8,) = cos 6, sin 0, + sin 0, cos 6,
Ex.4.17 Prove that 2D rotation and scaling commute if S, = S, 0r 0 = nnfor integral 11 and that

otherwise they do not.

{Dec-99)
Sol.: The matrix notation for scaling along S, and S, is as given below
{sx 0] '
S = and
oS,]
The matrix notation for rotation is as given below
R = [cosf sinﬂ] ’
-sinB cosB /
SR = S 0 [c?se sine]
10 s, -sin® cosB
[S,cos@ S, sind
_—Sy sin® 'S, cosd
[S,cos8 S sind
= V5=, .1

|-5xsin@ 5,cos8

or =

R.S = cosB sin®

-sinb cosd

" 0 =t where n is integer ...11

5. 0

0 S

¥

Computer Graphics 140 2-D Geometric Transformation

r Lcost S_\, sin0

-§_sin0 S), cosU

Scosth S,sin0]

-S, sind choso_

ur 0 =un where nis integer .. 1V

¢ -5,
From cquations 1and IJ1, and equations lland 1V itis proved that 2D rotation and scaling
commute if S, =S, or§ = nnfor integral n and that otherwise they do not.

Ex.:4.18 A circular disc of diameter "d” is rolling down the inclined plane starting from rest as
shown beloto. Assume there is no slip and develop He sef of transformation required fo
produce this animation and also write a progrant. (Dec-96}

Fig. 4.14

Sol.: For rolling a circular disc of diameter d down the inclined plane starting
from rest we have to consider the movement of disc in x direction and in y direction
along with the rotation of disc. As length is greater then height we increment x by 1
unit and y by h/{ units ie.

N x+1
y = y+h/l

The increment of rolling angle can be calculated by relating of a circle with the diagonal
length of inclined plane as given below

(\/hz +1? nd)x 360
1

Tt is necessary to rotate two lines on the disc by d after increment of x and rotation is
clockwise. The rotation matrix necessary for this purpose is

H

do =

Compn

Eve
these «
coordi
Bine |
Tincly
Finelu
e i)

{

Tint g

douls] ¢
Y_!
int i,
float
detcot

inizgr

printf
svanf (
printcf
scanf {
printf
scant (
princf
scanft (
printf

scanf |

theta
y offs
®x offs
circle
tine tx

line (=

isformation

nteger .1V

and scaling

from rest as
n requiived fo
(Dec-96)

me starting
y direction
ent x by 1

he diagonal

1 rotation is

Computer Graphics 141 2-D Geometric Transformation

[cosB —sing]
R =1
Lsin il cos0

Every time rotated coordinates are calculated at the origin and at time of line drawing
these coordinates are converted into actual coordinates by adding current x and y
coordinates to it. Let us the listing of 'C’ code for above animation.
tinclude<sutdio. n-
fincludecgraphics. hs

Finclude<math, b

S omain(}

{

int gd, gm;

double d, h,l,x,y, six, sty,dx,dy,d0,sin0, cos0,angle=0, theta, x offset,
y otfsels

int i/3,k,ball[213]={1},ball 4] [3])=11};

float pi = 3.14%;

detcotgrach (&gd, agm) ;

iritgraph (&gd, sgm, "");

J* dead starting x,starting y, height,lenth, diameter

printf ("Enter starting x coordinate :");
scanf ("%15", &x);

printf ("Enter starting y coordinate :"};
scanf ("SLf", &y}

printf ("Enter height :");

scant {"31£", &h)

printf ("Enter lengclr "},

scanf ("%1€f", &1);

printf ("Enter diameter :"};

scanf {("%1L", &d};

theta = atan{h/1};
v offgset = d/f{2*cos(theta))-d/2*tan(theta);
d/2;

x_offset
circleixtx offset,y~y offset, d/2);
linetx,y, %, ythis

line (x, y+h, x+1l,yth);

Computer Graphics 142

2-D Geometric Transformation

vine s,y ntl, prn) g
sYH - K5

sty = ¥:
balllO)[0)= O;
ball{0]{l)= 0~d/2;
Lall11{0)= 0;
pailli)[i]= (+d/2;
ball{i2]10)= O-d/2;
ball[Z]1i11]= 0;
ball[3)110]= U+d/2;
ball[3]1[1]= 0;
balll (0] (0)= 0O;
balll{0)[1]= O-d/2;
balllfl]{0)= 0y
Dailll(11(1]= 0+d/2;
ballii2)ild)= 0-a/2;
palli{21{il= 0:
Lalll3]1[(0)= U4d/2;
halll[(3])(1]= O;

line(hall (0] [0]+x+x _offset,ball(0)f1)+y-y_offser,ball(1][014x+x_oiisetr,

ball(1} [1)+y-y offset);

line{ball {2} (0)+x+x_offset,ballf2) (1]l+y-y_offset,ball[3] (0] txtx_offset,

ball (3] {1)+y-y_offset);
dy = h/1l;
dax = 1;
do= (sqrt(h*h+1*1)/ (pi*d)*360}/1;
i= 0;
do
{
setcolor (0}

circle(x+x_offset,y-y_offset,d/2):

line(balll[O][0]+x+x_offset,balll[0][l]+y—y_0ffset,balll[1][0]+x+d/2,

balll[l) [1)+y-y_offset);

line(balll[Z][D]+x+xmoff5et,balll[2}[1]+y—y_offset,balll[3][0]+x+d/2,

balll[3][1)+y-y_ offset}:

sind = sin{angle*pi/180);
caosl = coslangle*pi/180);

Compute

For

'
setcolor

angle=an
¥=xtdx;
y=yrdy;
line{stx
lineibal
. ba
line (bal
. ba
circle{x
i=iv1l;
delay {10
I while
gerch ()

closegra

l

Review QL

1. Gix
a)
b)
<)

2. Wi
tra

3. Wi
4. De.
5. Wr
a)
b)
6. Ex)

rmation .
LU L Computer Graphics 143 2-D Geometric Transformation

For (3=0:3<46;3+4)
i
balll([§1[0) = ball(j][0]*cos0 + ball(j){1]1*(-sin0};
balll(3}11] = ball{jlfC)l*sin® + ball(j][1]*{cos0);
}
setcolor {15);

angle=angle+d0;

¥=x+dx;

y=yidy:

line{stx, sty,stx+l,sty+h);

line{balll[0]{0)+x+x _offset,balll[0][1]+y-y_offset,balll(1l][0])+x+x_offset
,balll{l]) (11+y-y offser};

line(ball1i2][0]+x+x_offsot,bal]1[2][1]+y—y_offset,balll[3][0}+x+x_off5et
Salll3) [11+y-y_offser);

circle(x+x_offset,y-y offset,d/2):

i=j+l;

delay(1000):

} while{i<l-d/2]||ly<h+sty-y_offset-d/2};

getch();

closegraph{):

Review Questions

sef,

1. Give the 2-D transformation matrix for
a) Translation
b} Rotation ancl
c) Scaling

2. What is the need of homogeneous coordinates ? Give the homogeneous coordinates for
translation, rotation and scaling. ' y

3. What do you mean by composite transformation ? How it is useful ?

4. Derive the transformation matrix for rotation about arbitrary point.

5. Write a short note on
a) Reflection

2e b) Shearing transformation

6. Explain the inverse transformation. Derive the matrix for inverse transformation.

Computer Graphics 144 2-D Geometric Transformation

University Questions

o Develop o 2D rotation and scaling transformation matrices with respect to a fixed point
I’ (xi,, ¥p) (Drec-96)
2. A circular dise of diameter 'dis rolling down the inclined plane starting (rom rest as shown
below. Assume there is no slip and develop the setof transformation required to produce this
animation. (Dec-96)

.

—-—— T ———-

- /

Fig. 4.15
3. What are the properties for concatenation of transformations 2 What is the seguence of
transformation required to change the position ol object, shown in figure (o) Lo Hguere (b},

{Dec-98)
y
y-axis (0.0) x-axis
-C Il S _+ _____
c a
-—-Mb‘—--
(0.0 x-axis .
—y-axis
(a) (b)
Fig. 4.16
4. What are hemogencous co-ordinates? What is the significance of this co-ordinate system ?
(May-99}
5. Write a short note on shearing, (May-99)
6. For the following figure generate transformation matrix. (May-99)
Initial et 3
positioﬂsme 1
““““ A
] |
) i
) 1 T1
5 ; 1 2 3 4 5
} 1 Il Il } Il }
T T T I T I !
-2 -1 I) 1
| I 1
- ——————
: I Side 1
A S P e —
Final
position

Fig. 4.17

Computer

7. Why
K. Doew

9 Prov
othe

10. Proc
R{O,
IT. Dew

12. Exp
rota
CO-0

13. Cone
gives
assu:

ormation

ixed point
{Dec-96)

as shown
wuduce this
(Dec-96)

vquence of
2ure (b},

(Dec-98)

X-axis

—t—

tsystem ?
(May-99)
{(May-99)
(May-99)

Computer Graphics 145

2-D Geometric Transformation

f2 0o o}
Ans:T=|0 -1 0

611_|

7. Why are matrices used or implementing transformations ? (May-99)

8. Develop the procedure to implement scaling as a raster transformation of a pixel block.

9,

10.

—

11.

12

(Dec-99}

Prove that 2D rotation and scaling commute if S, = S, or 0 = nx for integral n and that
otherwise they do not.

{Dec-99)
Proove that successive 2D rotations are additive; i.e.
R(0))-R{G;) =R (0 + &) ' (Dec-2000}
Develop a 2D scaling transformation matrix with respect to a fixed point Pixg, yp).
{Dec-2000)

Explain the orthogonal property of rotational matrix. Using the orthogonal property of
rotational matrix derive the transformation matrices required for transformation between

co-ordinate system., (May-2001)
yW yw
Yy
x\-l'
Yy 4
RO
"X, {0} %, "X
Fig. 4.18

13, Consider a wheel of diameter d rolling down on the inclined plane as shown in the Fig. 4.19

given below. Give the sequence of transformations required to perform this animation
assuming that there is no slip. (Dec-2001)

2

-— T ———-

Fig. 4.19

Computer Graphics 146 2-D Geometric Transformation

14. Develop the transformation procedure to display the italic characters, given a vector font ; 5
definition. That is all character shapes in this font are defined with straight line segments and .
italic characters are to be formed from this information with transformation operation. F
Specify the values of each parameter required for transformation operation. lllustrate the]
procedure by taking suitable example. (Dec-2001)

15. Write a short note on homogenous co-ordinates. {May-2002)

16. Show that two successive reflections about either of the coordinate axes is equivalent to a
single rotation about the coordinate origin. (May-2003)

|
5.1 Int

Typ
be displ
package
in the p

enerat
While ¢
display
inside t.
entirely
illustrat
called v
and inv

Qa0

Int
clippin
5.2 Vi

We
cartesii
when
coordi:

isformation

a vector font
egments and
n operation.
‘Itustrate the

{Drec-2001)

(May-2002)

divalent to a
(May-2003)

Qao

2-D Viewing and Clipping

5.1 Introduction

Typically!la graphics package allows us to specify which part of a defined picture is to
be displayed and where that part is to be displayed on the display device. Furthermore, the
package also provides the use of the scaling, translation and rotation techniques]described
in the previous chapter[to generate a variety of different views of a single picture]We can

enerate different view of a picture by applying the appropriate scaling and translation.
While doing this, we have to identify the visible part of the picture for inclusion in the
display image. This selection process is not straight forward. Certain lines may lie partly
inside the visible portion of the picture and partly outside. These lines cannot be omitted
entirely from the display image because the image would become inaccurate] This is
illustrated in Fig. 5.1} The process of selecting and viewing the picture with different views is
called windowing, and a process which divides each element of the picture into its visible
and invisible portions, allowing the invisible portion to be discarded is called clipping i

N_/]
\'4

<
<<

e

7N

Fig. 5.1

In this chapter we are going to discuss the concepts involved in windowing and various
clipping algorithms

5.2 Viewing Transformation

We know that the picture is stored in the computer memory using any convenient
cartesian coordinate system, referred to as world coordinate system (WCS). However,
when picture is displayed on the display device it is measured in physical device
coordinate system (PDCS) corresponding to the display device. Therefore, displaying an

(147)

Computer Graphics 148 2-D Viewing and Clipping

image of a picture involves mapping the coordinates of the points and lines that form the
picture into the appropriate physical device coordinate where the image is to be displayed.
This mapping of coordinates is achieved with the use of coordinate transformation known
as viewing transformation.

The viewing transformation which maps picture coordinates in the WCS to display
coordinates in PDCS is performed by the following transformations :

+ Normalization transformation (N} and
* Workstation transformation (W)

5.2.1 Normalization Transformation

We know that, different display devices may have different screen sizes as measured in
" pixels. Size of the screen in pixels increases as resolution of the screen increases. When
picture is defined in the pixel values then it is displayed large in size on the low resolution
screen while small in size on the high resolution screen as shown in the Fig. 5.2. To avoid this
and to make our programs to be device independent, we have to define the picture
coordinates in some units other than pixels and use the interpreter to convert these
coordinates to appropriate pixel values for the particular display device. The device
independent units are called the normalized device coordinates. In these units, the screen
measures 1 unit wide and 1 unit length as shown in the Fig. 5.3. The lower left corner of the
screen is the origin, and the upper-right corner is the point (1, 1). The point(0.5, 0.5) is the
center of the screen no matter what the physical dimensions or resolution of the actual
display device may be.

4 N 4 N

(a} More resolution {b) Less resolution

Fig. 5.2 Picture definition in pixels

A B — T

0.0 >V—m (1.0}

Fig. 5.3 Picture definition in normalized device coordinates

} Computer

The in
courdinate.

The tra
is called na
to as scalin

5.2.2 Wo
The tra
coordinate.
The vic
workstatio

Wo
coordi
(W

We kn
display are
coordinate
mapped is
defines wl

The w
device coc
coordinate
transforme

]

i1 Clipping

t form the
isplayed.

1 known

‘o display

casured in
ses. When
~esolution
avoid this
e picture
vert these
he device
the screen
rner of the
(1.5} is the
the actual

Computer Graphics 149 2-D Viewing and Clipping

The interpreter uses a simple linear formula to convert the normalized device
coordinates to the actual device coordinates.

X% Xw (51)
¥ = ¥Ynx Yn -~ (5.2)

X

whure
x : Actual device x coordinate
y & Actual device y coordinate
xn : Normalized x coordinate
y» : Normalized y coordinate
Xw © Width of actual screen in pixels
Y - Fleight of actual screen in pixels.

The transformation which maps the world coordinate to normalized device coordinate
is called normalization transformation. [t involves scaling of x and y, thus it is also referred
to as scaling transformation.

5.2.2 Workstation Transformation

The transformation which maps the normaiized device coordinates to physical device
coordinates is called workstation transformation.

The viewing transformation is the combination of normalization transformation and
workstation transformations as shown in the Fig. 5.4. [t is given as

V=NW .. {5.3)
World o Normalized . Device
coordinates ——t Normalization Workstation oordinates
(WC) transformation § coordinates transformation (DC)
(NC)
Viewing transformation

Fig. 5.4 Two dimensional viewing transformation

We know that world coordinate system (WCS}) is infinite in extent and the device
display area is finite. Therefore, to perform a viewing transformation we select a finite world
coordinate area for display calted a window. An area on a device to which a window is
mapped is called a viewport. The window defines what is to be viewed; the viewport
defines where it is to be displayed, as shown in the Fig. 5.5,

The window defined in world coordinates is first transformed into the normalized
device coordinates. The normalized window is then transformed into the viewport
coordinate. This window to viewport coordinate transformation is known as workstation
transformation. 1t is achieved by performing following steps :

Computer Graphics 150 2-D Viewing and Clipping ‘ . Computer Gi

The trans

y Window Yy max / \
winax View port
Yo V Yy min K‘ - |r j /
x\l‘ mimn x\l’ max
Xw [Eally] XW max
World coordinates Device coordinates

Fig. 5.5 Window and viewport
1. The object together with its window is translated until the lower left corner of the
window is at the origin. 1 The overa
2. Object and window are scaled until the window has the dimensions of the viewport.
3. Translate the viewport to its correct position on the screen.
This is illustrated in Fig.5.6.

Object Translale

window -

The Fig. 5.

1
World
coordinate —
{WC)
Scale Translate
o, "]
iFq-» mm
i)
" 1
1
Ex.51: Fine
Fig. 5.6 Steps in workstation transformation cork
(0, (
Therefore, the workstation transformation is given as X
Sol.: Give

W=T.5T- .. (54)

nd Clipping

\

_/

w

orner of the

viewport.

... (5.4}

Computer Graphics 151 2-D Viewing and Ciipping

The transformation matrices for individual transformation are as given below :

(1 0 0]
T = i 0 | (} |
:‘_X“_ oin - 7Y win] 1
5. 0 07
S=]0 S 0] where & =ZumnIXvon
!- 0 (') '|J Xwmax ~ Xwnin
S, = Lxmax 7Y vmin,
Y owman 7 ¥ wmin
[0 (ﬂ
T =1 0 10
i_x\- wn Y v min lj

The overall transformation matrix for W is given as

w=T5S5T+
1 ¢ 0| s, 0 0] 1 0 0
=0 1ol fo s, 0[] o0 10
“Xumin “Yemn 1 L0 0 1 [%mn Yvwn !
[S, 0 o]
= i 0 S, 0l
wamn ~Xymin-Ox Y vmin = Y wmin oy]J
The Fig. 5.7 shows the complete viewing transformation.
Workl Mormalized Device
°°?{,3}§'f‘° 1 waneiomnaton | cooranaies mo{gig?“’s
(NC)
Viewing transformation

Fig. 5.7 Viewing transformation

Ex.5.1: Find the normalization transformation windotw to viewpoint, with window, lower Ioft
corner at (1, 1) and upper right cornei at (3, 5) onto a viewpoint witl lower left corner at
(0, 0} and upper right corner at (1/2, 1/2).

Sol. : Given : Coordinates tor window

L

Computer Graphics 152

2-D Viewing and Clipping

x wWoATLR
Xy man

Coordinates for view port

x\ 1n
x\ AIATIEY
We know that,
S
and Sy

We know thal transformation

T G T

5.3 2D Clipping

=1 Y wmin = 1
= 3 'Y\\‘ s = 5
=0 Yvim = 0

=1 fz =05 }!\‘ mas = 1/2 =05

= Keman T Xvmin
X max ~ Xw min

0.5-0

©3-1

= 025

¥vmax = Y viin

Y wmax 7 ¥ wmin

_05-0

T 5.1

= 0125

matrix is given as
[S, . 0 0

= 0 S, 0

Xy min ~ XwminOx ¥ vmin ~ \ w min S_v 1

[0.25 0 0

= 0 0.125 0

0-(1x0.25) 0-(1x0.125) 1
f025 0 0
=l o 010
-0.25 -0.125 1

The procedure that identifies the portions of a picture that are either inside or outside of
a specified region of space is referred to as clipping. The region against which an object is to
be clipped is called a clip window or clipping window. It usually is in a rectangular shape,

as shown in the Fig. 5.8.

The clipping algorithm determines which points, lines or portions of lines lie within the
dipping window. These points, lines or portions of lines are retained for display. All others

are discarded.

5.3.1 Point
The poin

The equa
window.

$.3.2 Line -

The lines
points are int
line are exteri
e.g lineP7 P
to the left of, ¢
exterior to the

The lines
infersection f
calculations a
visible and in
remaining lin

5.3.2.1 Suthe

This is on
Cohen and Iv:
that reduce th
digit (bit) cod:
codes are calt
relative to the

Clipping

sutside of
‘bject is to
:ar shape,

within the
All others

Computer Graphics 153 2-D Viewing and Clipping

P4
Clipping window

Fa / Py \ / P,
oP 14 i
P *P1z b P *Py
Py / 8 Pg ,
Ps | __— 2
Py e . / Ps /
/ P,
Py
{a} Before clipping _ {b) After clipping

Fig. 5.8

5.3.1 Point Clipping
The points are said to be interior to the clipping window if
Xwmin £ X £ X max and
Ywmin & ¥V £ Ywmax

The equal sign indicates that points on the window boundary are included within the
window. :

5.3.2 Line Clipping

The lines are said to be interior to the clipping window and hence visible if both end
points are interior to the window, e.g., line P P in Fig. 5.8. However, if both end points of a
line are exterior to the window, the line is not necessarily completely exterior to the window,
e.g. line P7 Py in Fig. 5.8. If both end points of a line are completely to the right of, completely
to the left of, completely above, or completely below the window, then the line is completely
exterior to the window and hence invisible. For example, line P; Py in Fig. 5.8.

The lines which across one or more clipping boundaries require calculation of muitiple
intersection points to decide the visible portion of them. To minimize the intersection
calculations and to increase the efficiency of the clipping algorithm, initially, completely
visible and invisible lines are identified and then the intersection points are calculated for
remaining lines. There are many line clipping algorithms. Let us discuss a few of them.

5.3.2.1 Sutherland and Cohen Subdivision Line Clipping Algorithm

This is one of the oldest and most popular line clipping algorithm developed by Dan
Cohen and Ivan Sutherland.ﬁ!‘o speed up the processing this algorithm performs initial tests

that reduce the number of intersections that must be calculated. This algorithm uses a four .

digit (bit) code to indicate which of nine regions contain the end point of tine. The four bit
codes are called region codes or outcodes. These codes identify the location of the point
relative to the boundaries of the clipping rectangle as shown in the Fig. 5.9.

Computer Graphics 154 2-D Viewing and Clipping

Each bit position in the region code is used to
indicate one of the four relative coordinate positions of
the point with respect to the clipping window : to the

_
<
jurd
o

1001 1000 : | ao
left, right, top or bottom. The rightmost bit is the first
"""""" bit and the bits are set to 1 based on the following
ooo1 | 9090 1 0010 scheme: o
Set Bit 1 — if the end point is to the left of
"""") T the window
0101 i 0100 E 0110 Set Bit 2 - if the end point is to the right of
1 I

the window

Set Bit 3 - if the end point is below the

Fig. 5.9 Four-bit codes for nine window

regions
Set Bit 4 - if the end point is above the window

Otherwise, the bit is set to zero.

Once we have established region codes for all the line endpoints, we can determine
which lines are completely inside the clipping window and which are clearly outside. Any
lines that are completely inside the window boundaries have a region code of 0000 for both
endpoints and we trivially accept these lines. Any lines that havea 1 in the same bit position
in the region codes for each endpoint are completely outside the clipping rectangle, and we
trivially reject these lines. A method used to test lines for total clipping is equivalent to the
logical AND operator. If the result of the logical AND operation with two end point codes is
not 0000, the line is completely outside the clipping region. The lines that cannot be
identified as completely inside or completely outside a clipping window by these tests are
checked for intersection with the window boundaries.

Ex.5.2: Consider the clipping windotw and the lines shown in Fig. 5.10. Find the region codes for
cach end point and identify whether the line is completely visible, partially visible or
contpletely invisible.

/Pz \
P
P 10
1 _ Ps /- Py
F\3 ':'5-/ /

Comput

Sol.:
These c¢c

_ visibility

\ The &

by compa
line can t
boundari
is found i

This i:

nd Clipping , Computer Graphics 155 2-D Viewing and Clipping

. is used to Sol .: The Fig. 5.11 shows the clipping window and lines with region codes.
These codes are tabulated and end point codes are logically ANDed to identify the

" 5 f
positions 0 visibility of the line in table 5.1.

dow : to the
.t is the first
e following

eft of ' 1001 1000 1010
Pg\
right of e N oo
g ~
P, P2
the - _ / | \ Pio
. . 6
1e window Ps /
Py e /
________________ . L EEE TP
n determine i p},/ '
. 1 1
sutside. Any 0101 : 0100 : 0110
000 for both : :
: bit position ; :
ngle, and we : -) (
ivatent to the
wint codes is Fig. 5.11
at cannot be
nese tests are Line End Point Codes Logical ANDing Result
. P P2 0000 0000 oooo C letely visible
egion codes for ‘ ompletely visible
walty wisible or P1 Py 0001 0001 0001 Completely invisible
Ps Pe 0001 0000 0000 Partially visible
Py 0100 0010 0000 Partially visible
PyPuw 1000 0010 3000 Partially visible
Table 5.1

The Sutherland - Cohen algorithm begins the clipping process for a partially visible line
by comparing an outside endpoint to a clipping boundary to determine how much of the
line can be discarded. Then the remaining part of the line is checked against the other
boundaries, and the process is continued until either the line is totally discarded or a section
is found inside the window.

This is illustrated in Fig. 5.12.

Computer Graphics 156 2-D Viewing and Clipping

_
|

Py Py
{a) (b) (c)
Py
P, -
Py P'1/
(d) (e}

Fig. 5.12 Sutherland-Cohen subdivision line clipping

As shown in the Fig. 5.12, line Pi P2 is a partially visible and point Py is outside the
window. Starting with point Py, the intersection point Plis found and we get two line
segments Py - P, and P/-P2. We know that, for P - P; one end point i.c. Py is outside the
window and thus the line segment Py - P is discarded. The line is now reduced to the section
from 1 to P2. Since P2 is outside the clip window, it is checked against the boundaries and
intersection point Pyis found. Again the line segment is divided into two segments giving
P} - I and P, - P2. We know that, for P;- P2 one end point i.e. P2 is outside the window and
thus the line segment P; - P2 is discarded. The remaining line segment P, - Piis completely
inside the clipping window and hence made visible.

The intersection points with a clipping boundary can be calculated using the
slope-intercept form of the line equation. The equation for line passing through points
P (x4, y;) and P2 (x2, Y:) ts

y = mX-x)+yr or y=mx-x)+y: ... {5.5)
where m = Y270 (slope of the line)
Xg =X

Therefore, the intersections with the clipping boundaries of the window are given as:
Left = xi,y = m{xe-xi}+yr | m=#w
mixg—x1)+yr ; m#®

X) +(l](}"l‘—)'l) ;o m=0
m

11

Right : xz, ¥

Top : ynx

Bottom : yu, X x|+(l){yn—y1) ;o omz0
m

Compute

Sutherlan

ro

(%3]

ind Clipping

P

=

(c}

s vutside the
get two line

is outside the

to the section
iwndaries and

sments giving,

»window and
is completely

:d using the
wough points

.. (55)

are given as :

Computer Graphics 157

2-D Viewing and Clipping

Sutherland and Cohen subdivisien line clipping algorithm :

Py

(Wi, Wy,) /

e

e

Py

(Wixo, Wy,)

ot

Fig. 5.13

Read two end points of the line say P, (x), y)) and Py (xy, y,).

Read two corners (left-top and right-botlom) of the window, say (Wx |, Wy, and Wx,,
W‘YgJ‘

Assign the region codes for two endpoints 7 and Py, using following steps :
Initialize code with bits 0000

Set Bitl - if (x<Wxy)

Set Bit2 - il (x> Wxy)

Set Bit3 - if (y<Wyy)

Set Bit4 - if (y>Wy)

Check for visibility of line P, P,

a} I region codes for both endpoints P, and Py are zero then the line is completely
visible. Hence draw the line and go to step 9.

b} If region codes for endpoints are not zero and the logical ANDing of them is also
nonzere then the line is completely invisible, so reject the line and go to step 9.

¢) If region codes for two endpoints do not satisfly the conditions in 4a) and 4bithe
line is partially visible,

Determine the intersecting edge of the clipping window by inspecting the region
codes of two endpoints.

a} If region codes for both the end points are non-zero, find intersection points Pli
and P._,' with boundary cdges of clipping window with respect to point P| and
point Py, respectively

b) If region code for any one end point is non zero then find intersection point P,' or

)2, witlh the boundary cdge of the clipping window wilh respect to it.

Divide the line segments considering intersection points.

Reject the line segment if any one end point of it appears outsides the clipping
window.

Draw the remaining line segments.
Stop.

Computer Graphics 158 2-D Viewing and Clipping Computer (

'C’ code for Sutherland and Cohen Subdivision Line Clipping Algorithm

S
{Softcopy of this program is available at vtubooks.cony)
kinclude<stdio.h>
Finclude<conio.h>
iinclude<stdlib.h>
finclude<dos, h>
finclude<math.h:
tincluae<graphics.h>
/* Defining structure for end point of line */
) lypeaal struct coordinate
inc x,vy:
char code(4);
LTS
volid drawwindow (};
vold drawline (PT pl,PT pZ,int cl);]
gert«
FT setcode(PT p}:

clo:

int visibility {(PT pl,PT p2}:

rett

PT resectendpt (PT pl,PT p2}; .
main () -

[[

{ .
volic
int gd=DETECT, gm,v; {
Pr pl,p2, ptemp:

senc
initgraph (&gd, &gm, ™ ")y ; .

Line
cleardevice() ; .

line
printf ("\nA\n\CAEENTER END-POINT 1 (x,y): "): 1

ine
scanf ("%d, sd", &pl.x, &pl.y}; 11

ine
print€ ("\n\n\t\tENTER END-POINT 2 (x,y): "};

]
scanf ("%d, 3d", &p2.x,8p2.y) ; "
cleardevice () ;
drawwindow () ;)

voic
getch () ; (
drawline(pl,p2,15};

setc
getch(); .

line
pl=setcode (pl); \
plZ=setcode (pd); '
v=visibility{pl,p2);

d Ciipping

Computer Graphics 159 2-D Viewing and Clipping

switch (v}
!
case 9: oleardevice(}; /* Linc conpletely visible */
drawwindow () ;
draw!inei{pl,p2,15);
preak;
case 1: cleardevice(); /* Line completely invisiblie */
drawwindow () ;
break;
case 2: cleardevice(}; /* line partly visible */
pl=resetendpt (pl,p2);
pZ2=resetendpt {p2,vl};
drawwindow () ;
draw] ine{pl,p2,15};
break;
i
getci{};
closegraph () ;
return{{l;
f* Funcrion to draw window */
vold drawwindow ()
{
setcolor (RED);
line{150,100,450,100);
line{450,100,450,350};
line (450, 350,150,350} ;
line (150, 350,150,100);
I

/* Function to draw line between two points

void drawline {PT pl,PT p2,int cl)
{

setcolor{cl);
lineipl-%x,pl.y,p2.%,p2.Y¥};

1

i ; Computer Graphics 160 2-D Viewing and Clipping Comput
i /% Function to set code of cne coordinanes

Lo I ettt s L

? Pl sercode (Pl p)

;|

blopnemp;
. ye100)
ptemp.coade{0])="1"; /* Tur */
el ze
premp.code (010"
. iflp.y-300
ptemp.code{l)="1'; /% BOTTOM */
clse
premp.code[1)="0";

i ip.x>450)

" premp.code [21="1"; /% RIGHT */

ié else

?E ptemp.code(2]="0";

ti if (p.x<150) /% LEFT */ v
?:_ premp.code[3]="1";

i;' else

;i ptemp.code [3]="0";

%{ ptemp.x=p.x;:

i premp.y=p.y;

Ej return{ptemp)

. !

F /* Function to determine visibilicy of line
ettt btk il */
- int visibility (PT pl,PT 92}

: {

i int i,flag:=0:

for{i=0;i<4;i++}

{
if((pl.code[i]!='0')II(pZ.code[i]!='O'))
flag=1;
}

: if(flag==0)

%(return(0);

Computer Graphics 161 2-D Viewing and Clipping

| Cligping

tfifol coueril==nr catle]} ab{oi. coue]ij=="1"])

LA I R A B B

rorur (i)

At Function to find new end poinus
FI' resectendpr (¢T pl, PT p2)

PT temp;

bne ¥,y iz

float m, k;

1f(pl.code(3]=="1"} /* Cutiing LVMT kdge */
w=1E0;

ifipl.code{2]=="2"}) /* Turtri;qg SIGHT kBdge *7
x=450;
ifiipl.code[3]f=="1")1li{pl.code{s]=-"1%))

i

m=({float) (pZ.y-pl.y)/(p2.x-pl.x};

k= (pl.y+{m* (x-pl.x)));

temp. y=k;

Lemp. X=X

for (i=0;i<4;i++)

temp.code[i]=pl.codei];

if (temp.y<=330&&temp.y>=100)

return{temp) ;

!

if{pl.code(0]=="1"} /* Cutting TOP Edge */
y=100;

if{pl.code [1]=='1") /* Cutting BOTTOM Edge */
v=350;

if{(pl.code{C)=="1") ! (pl.code[l]=="1"))

m=(float) {p2.y-pl.yv)/{(p2.x-pl.x);

Computer Graphics 162 2-D Viewing and Clipping

k=(float)pl.x+ (float) (y-pl.y}/m;
Lemnp, Xk

Lenge, e

by P
Sorii-Uri<dr i
temp.code (1j=pl. code i)y
retdrnqLema)
J

return({pl};
} .
5.3.2.2 Midpoint Subdivision Algorithm

We have seen that, the Sutherland Cohen subdivision line clipping algorithm requires
the calculation of the intersection of the line with the window edge. These calculations can
be avoided by repeatatively subdividing the line at its midpoint.

Like previous algorithm, initially the line is tested for visibility. If line is completely
visible it is drawn and if it is completely invisible it is rejected. If line is partially visible then
it is subdivided in two equal parts. The visibility tests are then applied to each half. This
subdivision process is repeated until we get completely visible and completely invisible line
segments. This is illustrated in Fig. 5.14. (see on next page)

As shown in the Fig. 5.14, line P P2 is partially visible. It is subdivided in two equal parts
Pi Piand Pz Pz (see Fig. 5.14(b)). Both the line segments are tested for visibility and lound to
be partially visible. Both linc segments are then subdivided in two equal parls to get
midpoints Py and Ps (see Fig. 5.14 {c)). It is observed that line segments PP and PsPz are
completely invisible and hence rejected. However, line segment PsPs is completely visible
and hence drawn. The remaining line segment PyP; is still partially visible. It is then
subdivided to get midpoint P.. It is observed that PP is completely visible whereas PiPs is
partially visible. Thus PsP3 line segment is drawn and PPy line segment is further
subdivided into equal parts to get midpoint P7. Now, it is observed that line segment PaP7 is
completely invisible and line segment 7P, is completely visible (see Fig. 5.14 (f)), and there
is no further partially visible segment.

-

Midpoint Subdivision Algorithm :
1. Read two endpoints of the line say Py(xy, 3’1) and Py (xy, ¥3).

2. Read two corners (left-top and right-bottom) of the window, say [le, Wy, and Wxy,

3. Assign region codes for two end points using following steps :

Initialize code with bits 0000
Set Bit 1 - if (x < Wx,)

Set Bit 2 -if (x > Wxy)
Set Bit 3 - if (y < Wy}
Set Bit 4 - if (y > Wy,)

iipping

Cauires
uns can

pletely
ble then
1lf. This
ible line

al parts
ound to
3 to gel
P2 are
v visible

is then
s PPeis

further
Wt PylPsis
nidl there

ind Wx,,

Computer Graphics 163 2-D Viewing and Clipping

-~ ~

(e) fi

(9)

Fig. 5.14 Clipping line with midpoint subdivislon algorithm

Computer Graphics 164 : 2-D Viewing and Clipping

4. Check for visibility of line
a) If region codes for both endpoints are zero then the line is completely visible.
Hencee draw the line and go Lo step 6.
b) Ifregion codes for cndpoints are nol zero and the logicul ANDing of them is also
nonzero then the line is completely invisible, so reject the Hne and go to step 6.

¢} Ifregion codes for two endpoints do not satisty the conditions in 4a) and 4b) the
line is partlially visible.

5. Divide the partialiy visible line segment in equal parts and repeat steps 3 through 5
{or both subdivided line segments until you get completely visible and completely
invisible line segments,

6. Stop.
'C' code for Midpoint Subdivision Line Clipping Algorithm

(Softcopy of this program is available at vtubooks.com)

Finclude<atdia b

finclude<zonia.hs

#include<stdlib. b

#inzlude<aos . he

#include«math. h:-

Finclude<grapling: . h>

/* Defining struecture tor cnd point of line *y

typedel struct coordinan.,

{

int x,y:

char codel(4];

P

void drawwindow();

void drawline (PT pl, PT pZ,int cl);

Posoteode (PT pls

int visivility (PT gl,PT pZ);

PT resetendpt (PT pl,PT p2);

main ()

{

int gd=DETECT, gm,v:
PT pl,p2,ptemp;
initgraph(&gd, &gm, " ") ;
cleardevice();

printf {("\n\n\t\tENTER END-POTNT 1 (x,y}: "}:
scanf ("5%d, &d", &pl.x,apl.y);

Comp

Clipping
visible.

s also
Aep 6.

4 4b) the

hrough b
mplelely

Computer Graphics 165

printf ("\n\n\Ct\LENTER END-POINT 2 (x,y):

scanf ("%d, %d", 4p2.x%, &p2 .y} ;
cleardevice();
drawwindow () :
getch();
drawline{pl,p2,15};
getch};
cleardevice(};
drawwindow () ;
midsub (pl, p2);
getchi);
closegraph{);
return(0};

}

midsub (PT pl, PT p2}
([
PT mid;
int v;
pl=setcode (pl}:
pZ=setcode (p2}):
v=yisibility{pl,p2):
switch (v)
{

case 0: /* Line conpletely visible */

drawline(pl,p2,15):
break;

case 1: /* Line completely invisible

break;

case 2: /* line partly visible */

mid.x = pl.x + (p2.x-pl.x}/2;
mid.y = pl.y + (p2.y-pl.y}/2;

midsub (pl, nid);
mid.x = mid.x+1;
mid.y = mid.y+1;
midsub (mid, p2);

break:

"):

*/

2-D Viewing and Clipping

. I I Com
Computer Graphics 166 2-D Viewing and Clipping Lompute
4]
fr o Funatian to cdraw window */ P
el Aok s () P
; r
soetloalor(aiig g }
e (W, TG0, 450, 100) ;
Vita (a0, 100, 450, 4003 ; /
Fine t455,40%, 1450, 400) ; B
Pires 0150, 400, 155, 100 ; H
| f
/* Fupction Lo draw line hecween two points i
fc
___ \I‘/
vold drawline (F ¢, 20 p2,int 21) t
i
|
setoularict); £
ine{vl .x,nl.y,02.%,p2.¥): }
,‘ if
re
fa gt e e 1 - .) fc
/* Funotion to sec code of the coordinates
__ s\/ {
21 osercode (PT p) 1f
£l
{
T otemp; }
1f(p.y<=100) 1t
=TT * : ; re
pteme.coede(0)="1"; /* TOP */
re
@laa
ptemp.code[0]="0"; }
if(p.y>=400} The m
ptemp.code[1]="1%; /% BOTTOM */ l';e“ce‘ma_r
olse the Fllppll
architectu
premp.code(l)="0";
if (p.x>=450) 5.3.2.3 G«
ptemp,code[2)="1"; /* RIGHT */ The als
else These algo
ptemp.code[2]='0"; hage{deve
_ arbitrary ¢
if (p.x<=150) /* LEFT */ the interse
ptemp.code[3]="1"; segment fr
alse

:nd Clipping

Computer Graphics 167 2-D Viewing and Clipping

premp.code[3]="0";
PLCGMP . X=0. X
prtemp.y=p.y:
ceturn (ptemp};

}

/* Function to determine vigibility of line

int visibilivy (BT pl,PT p2)

{

int i,flag=0;

for{i=0;i<4;1i+1)

{
if((pl.code(i]!="0"})1{(pZ.codeli])!="0"})
flag=1;

]

if {Flag==0)

return(0j;

for(i=0;i<4;i++)

|

if{(pl.code(i])==p2.code[i])) &&(pl.code(i]=="1"}}
flag=0;

}

if (£lag==0}

return{l);

return(2};

'

The midpoint subdivision algorithm requires repeated subdivision of line segments and
hence many times it is slower than using direct calculation of the intersection of the line with
the clipping window edge. However, it can be implemented efficiently using parallel
architecture since it involves parallel operations.

5.3.2.3 Generalized Clipping with Cyrus-Beck Algorithm

The algorithms explained above assume that the clipping window is aregular rectangle.
These algorithms are not applicable for non rectangular clipping windows. Cyrus and Beck
have developed a generalized line clipping algorithun. This algorithm is applicable to an
arbitrary convex region. This algorithm uses a parametric equation of a line segment to find
the intersection points of a line with the clipping edges. The parametric equation of a line
segment from P1 to P2 is

Computer Graphics 168 2-D Viewing and Clipping

P(t) = Pi+(P2-Py)t ;0<tg .. (5.6)
where tis o parameler, t=0at Pyand t =1 at P,

Consider a convex clipping region R, fis a boundary point of the convex region R and n
ts an inner normal for one of its boundaries, as shown in the Fig. 5.15.

yl/ Boundary point
f

R - convex region

0

Fig. 5.15 Convex region, boundary point and inner normal
Then see can distinguish in which region a point lie by looking at the value of the dot
product o[P(t) - f], as shown in the Fig. 5.16.

T 1E dot product is negative, ve.

n-[1P-f] <0 .. (5.7)

Then the vector P(t) - f is pointed away from the interior of R.

2. 18 dot product is vero, je,

n-| Ply=f] =0 ... (5.8)

Then Pt} - fis pointed parallel to the plane containing f and perpendicular to the
normal.

3. [Fdot product is positive, i.e.
n[Piy-f] > 0 ...{5.9)
Then the vector P() - f is pointed towards the interior of R, as shown in Fig. 5.16.

Py
f /
])
] \"
" n [P0
n
n.[P{t)}-f<0 I n.[P()-f=0
i 1
P b
™ Ciipping edge

Fig. 5.16 Dot products for three points inside, outside and on the boundary of the clipping region

Computer

As she
the innerr
the interse

Ex.5.3:

Sol.: 1

where i
normals are

Left
Rigt
Bott
Top
Choosin

Substitul

Choosing

Substitut

ind Clipping
.. (5.6)

donRandn

‘@ of the dot

.. (B7)

... (5.8)

licular to the

... (5.9)

ipping region

Computer Graphics 169 2-D Viewing and Clipping

As shown in the Fig. 5,16, if the point f lies in the boundary planc or edge for which n is
the inner normal, then that point t on the line P{t) which satisfics n AP - F | =0 condition s
the intersection of the line with the boundary edge.

Ex.5.3: Consider the line from P, (-2, 1) to P, (8, 4) clipped to the rectangulur region K us <hown
in the Fig. 5.17. The line PP, intersects the window. Calculute te miersection points,

y
64
f
4 _._Apz(g- 4)
2 | /
P,(—2.1)./"'/
T f 1 1 1 X
-2 2 4 6 8
Fig. 5.17
Sol.: The parametric representation of the line P\, is

P(t) = P, +(P,-P)t=[-2 1] +[10 3]1
=(10t-2)i+@Bt+1)j; Osted
where j and j are the unit vectors in the x and y directions, respectively. The tour inner
normals are given as

Left n =i

Right ng =—i
Bottom : ng = j

Top Ny = —j

Chaosing f (2, 0) for the left edge gives
P(t)-f = (10t-4)i+@Bt+1)j and .
n[Pty-f] = 10t-4=0
' t = 2/5

Substituting value of t in parametric equation we get,

P2/5) = [-2 1]+ [10 3](2/5)
= [-21]+[4 6/5]
=[2 22]
Choosing (7, 5) for the right edge gives
P{t)-f = (10t-9)i+ (3t-4)jand
ng [P)-f] = -(10t-9) =0
t=29/10

Substituting value of t in parametric equation we get,
P(9/10) = [-2 1]+ [10 3](9/10)

Compute

: Computer Graphics 170 2-D Viewing and Clipping
= -2 1+19 27/10] v:
= (7 37/10) ={7 3.7] ” (s
Using (2, 0) for the bottom edge gives D
. equation
: ng-[PO-f] =3t+1=0
5 t = -1/3 Cyrus-Be
- This value of ¢ is outside the range of 0 < t < T and hence it is rejected. L
2.
Using (7, 5) for the top edge gives 3
ne- [Py -f] = ~(3t-4) =0 .
c t = 4/3 5’
‘ This value of t is outside the range of 0 £ £ < 1 and hence it is rejected. 6‘
i Thus, we get two intersection points (2,2.2) and (7, 3.7) with left edge and right edge, 7.
respectively.
To get the formal statement of the Cyrus-Beck algorithm we substitute value of P(t) in
equation 5.8.
n-[P -] = ne [P, +(P,-P)t-£]=0 . (510)
This relation should be applied for cach boundary plane or edge of the window to get
the intersection points. Thus in general form equation 5.10 can be written as,
no P+ (P -Pt=-61=0 .. (5311) 8
where i 1 edge number 9.
Solving equation 5.11 we get, 10.
n [Py =)+ 0 [Py-Plt=0 ... (5.12)
Here, the vector P, - P, defines the direction of the line. The direction of line is important 11.
to correctly identify the visibility of the line. The vector P, - £, is proportional to the distance
from the end point of the line to the botindary point. 12
Let us define, 13.
D = P,-P, as the directorix or direction of a line and Ex.5.4:
W, = P,-f, asaweighting factor. '
Substituting newly defined variable D and W;in equation 5.12 we get,
, W,
S B .. (5.14)
D-n;
where D = 0andi=1,23, ...
The equation 5.14 is used to obtain the value of t for the intersection of the line with each
edge of the clipping window. We must select the proper value for t using following tips:
1. If t is outside the range 0 < t < 1, then it can be ignored.
5 We know that, the line can intersect the convex window in at most two points, i.e. at
two values of t. With equation 5.14, there can be several values of t in the range of

ad Clipping

.1 right edge,

Alue of P{t) in

... (5.10)

vindow to get

.. (5.11)

... {512)

¢ is important
to the distance

»f a line and

.. (5.13)
... (5.14)

e line with each
llowing tips

wo points, i.e. at
t in the range of

Computer Graphics 171

2-D Viewing and Ciipping_

0<t<1. We have to choose the fargest lower limit and the smallest upper Jimit
(sec Ex. 5.3).

If D, - n, > 0 then equation 5.14 gives the lower limit value for t and if 1J; - n; < 0 then
equation 5.14 gives the upper limit value for t.

Cyrus-Beck Line Clipping Algorithm

1.

10.

1.

12.
13.

Ex. 54

e e N

Read two end points of the line, say P, and P,
Read vertex coordinates of the clipping window
Calculate D =P, - P,

Assign boundary point (f) with particular edge
Find inner normal vector for corresponding edge
Calculate D-nand W=P, - T

IfD-n>0
W.n
L]J= -
Dn
else
W.n
ty=———
u D-n
end if

Repeat steps 4 through 7 for each edge of the clipping window
Find maximum lower limit and minimum upper limit

If maximum lower limit and minimum upper limit do not satisfy condition 0 <t <1
then ignore the line.

Calculate the intersection points by substituting values of maximum lower limit
and minimum upper limit in the parametric equation of the line P, P,.

Draw the line segment P(t;) to Pity;).
Stop.

Fig. 5.18 shows the Hexagonal clipping window. The line P, (=2, D to P, (6, 3) is fo be
clipped to this window. Find the intersection points.

Computer Graphics 172 2-D Viewing and Clipping ' Computer (
Sol.: We knOW that, H .Thus’ tl-
_ D="P,-P=[63]-[-21]=(8 2] and VoV, 1
For boundary point £(3, 0) 5.3.2.4 Lia
W="D-f=[-21-30=[-51]
: . In the I
For the edge V, V, the inner normal is ,
equations. |
n = {11] developed
Hence D-n=1[82]-111=10>0 equations. 1
~. The lower limit can be given as
L. W 5101
L= - = :
D-n 10 where
S Eh_ 4 The poi
10 10 parametric |
Similar calculation with each edge gives the complete results of the Cyrus-Beck
algorithm. These results are tabulated in table 5.2.
Liang-B:
Edge n f w W-n D-n t ty
viv, |11 11| GO |[-511| -4 10 4/10 where p
v,v, [(1 01| a9 j1-3-311 -3 8 3/8
VeVs 1111 64 [1-7-31] 10 - 10 10/10
Followir
VoV, |21 01| &9 J1-731| 7 -8 7/8 q
vev, |2 11] eo [1-s 11| -6 6/6 Fp, =0
Table 5.2 If p, = 0
: : y =
Referring table 5.2 we have, Kp,=0
The maximum lower timit (t;) =4/10 and If p, =0,
The minimum upper limit (t;) =7/8 It g
If g
Substituting these values of t in parametric equatipn If p, {C[(.}
we get, If p;>0
P@4/10) = [-2 1]+ (8 2](4/10) Therefor:
= [-21]+[3.2 0.8] find paramet
= (12 1.8}
P(7/8) = [-2 1]+[8 2] (7/8) _
= [—2 1] + [7 175] Liang—Ba
=[5 2.75] part of the lir

Clipping

Iyrus-Beck

Computer Graphics 173 2-D Viewing and Clipping

Thus, the two intersection points to line P,P, are [1.2 1.8] and [5 2.75] with edges V,V,
and V.V, respectively.

5.3.2.4 Liang-Barsky Line Clipping Algorithm

in the last section we have seen Cyrus-Beck line clipping algorithm using parametric
equations. It is more efficient than Cohen-Sutherland algorithm. Liang and Barsky have
developed even more efficient algorithm than Cyrus-Beck algorithm using parametric
equations. These parametric equations are given as

X = Xy + tAx
y =y, +tAy, 0<t<1
where AX = xy-x;and Ay =y, -y,

The point clipping conditions (Refer section 5.3.1) for Liang-Barsky approach in the
parametric form can be given as

X

woin S X+ tAX £ x and

winax

Y1+ Y = Vi

Liang-Barsky express these four inequalities with two parameters p and q as follows :
tp; < g i=1,234

where parameters p and q are defined as

1A

YWmin

Pr = =A% Q)= X~ Xy
P2 = 8% Gy = Xyma = X
Py = -4y, g3~ Y1~ Ywmin
Pa =8y, 4= Yumx— Vi
Following observations can be easily made from above definitions of parameters p and

q

If p, =0 : Line is parallel to left clipping boundary.

Itp,=0 ¢ Line is parallel to right clipping boundary.

Ifp,=0 : Line is parallel to bottom clipping boundary.

If p, =0 ¢ Line is parallel to top clipping boundary.

If p; = 0, and for that value of i,
Ifg; <0 : Line is completely outside the boundary and can be eliminated.
Ifq;20 : Lineis inside the clipping boundary.

Ifp <0 : Line proceeds from outside to inside of the clipping boundary.

Ifp,>0 ¢ Line proceeds from inside to outside of the clipping boundary.

Therefore, for nonzero value of p;, the line crosses the clipping boundary and we have to
find parameter t. The parameter t for any clipping boundary i can be given as

g = 4 i=1,2,3,4
Pi

Liang-Barsky algorithm calculates two values of parameter t : t, and t, that define that
part of the line that lies within the clip rectangle. The value of t, is determined by checking

womputer Graphics 174 2-D Viewing and Clipping

the rectangle edges for which the line proceeds from the outside to the inside (p < 0). The
value of t, is taken as a largest value amongst various values of intersections with all edges.
On the other hand, the value of t, is determined by checking the rectangle edges for which
the line proceeds from the inside to the outside (p > 0). The minimum of the calculated value
is taken as a value for t,.

Now, if t; > t,, the line is completely outside the clipping window and it can be rejected.
Otherwise the values of t; and t, are substituted in the parametric equations to get the end
points of the clipped line.

Algorithm
1. Read two endpoints of the line say p, (x, ¥;) and p, (xy, ¥,).
2. Read two corners (left-top and right-bottom) of the window, say (X, in» Ywmaxs

X wmax ernin)

3. Calculate the values of parameters p; and q; for i = 1, 2, 3, 4 such that
P1=-AX G =Xy~ Kypin
Pg = Ax Q2 = Xwmax ~ X1
q=-48Y q3=Y¥1~ Ywmin
qy = Ay A4 = Ywmax ~ Y1
4. ifp; =0, then
[The line is parallel to i'” boundary.
Now, if q; < 0 then
{ line is completely outside the boundary, hence
discard the line segment and goto stop.
}
else
| Check whether the line is horizontal or vertical and accordingly
check the line endpoint with corresponding boundaries. If line
endpoint/s lie within the bounded area then use them to draw
line otherwise use boundary coordinates to draw line. Go to stop.

5. Initialise values for t, and t, as
ty=0andt,=1
Calculate values for q/p;fori=1,2,3,4
Select values of q/p; where p; < 0 and assign maximum ocut of them as t,.
Select values of q/p, where p; > 0 and assign minimum out of them as t,.
If (¢, < t,)

[Calculate the endpoints of the clipped line as follows :

© ® =P

Compi

'C' cod

{Softeo)
¥i
ki
#i
ma
{
ir
ir
f1
de

re
Pl
el
=1
pl
ql
ql
ql
gl

d Clipping

» < 0). The
- all edges.
- for which
' ated value

be rejected.
set the end

mine Y wmaxe

Computer Graphics 175 2-D Viewing and Clipping

xxgz:xl+t25x
YYi =yt ay
Yya=y1 +t AY
Draw line (xx,, ¥y, XXy, ¥¥o)
]
10. Stop.

'C' code for Liang-Barsky Line Clipping Algorithm
(Softcopy of this program is available at vtubooks.com)
#include<scdio.h>
finclude<graphics.h>
tinclude<math.h>
main{}
{
int i,qd,gm;
int %1,vyl,x2,y2,xmin, xmax, ymin, ymax, #x1, xx2,yyl, yy2:
float tl,t2,pl{4),gl4],cemp;
detectgraph (&gd, &gm) ;
initgraph(&gd, &gm, ""};

x1=10;
y1l=10;
X2=60;
y2=30;
xmin = 15;¢
xmax = 25;
ymin = 15;
ymax = 25;

rectangle (xmin, ymin, xmax, ymax) ;

pi0] = -{x2-x1};
pll) = {x2-x1});

pi2] = -(y2-yl):
pl3) = (y2-yli);

gld) = (x1-xmin});
qll) = ({(xmax-x1);
gi2) = (yl-ymin);

ql3] = (ymax-yl):

Computer Graphics 176

. Computer Gr
2-D Viewing and Clipping ==Mputer Gr

forii=0;i<4;i++)
{
ifipli)==0)
{

{
tem
if iy

printf{"line is parallel to one of the clipping boundary™);

if(gli] »>=0O)
{
if{i < 2)
{ if {yl < ymin)

¥yl = ymin;

if (y2 > ymax)
{
ye = ymax;
}
line(xl,vyl,x2,y2):
J
ifti > 1y
{
if (X1 < xmin)

if {x2 > xmax)

{

X2 = xmax;

}
line(xl,yl,x2,y2);

}
getch{);
return{0):
}

}

tl = 0;

tz = 1;

for{i=0;i<4;i++)

else

}
if{tice2:
{
xxl = x1
XXZ = n1
¥¥l = y1
yy2 = yl
line (xx1,
!
getch{) ;
closegrap
H
Advantages
1. Tt is more
are reduc
2. It requires

3. Window i

Ex. 5.5 Find 1
winde

Sol.: Here,
Xl =

=

H CliEEing

Computer Graphics 177

2-D Viewing and Clipping

{
temp = qli]/pl[i];

tf{pli] < O

I
1f({tl <= temp)
{
tl = temp;
}

}

else

{
if(t2 > temp)
{
t2 = temp;
)

'
1f(tl<t2)
(
xxl = x1 + £l * p[1);
XX2 = x1 + t2 * p[l];
y¥l = y1 + €1 * p(3);
y¥2 = ¥yl + t2 * p[3};
line (xx1, yyl, xx2, yy2);
}
getch();
closegraph();
}

Advantages

1. It is more efficient than Cohen-Sutherland algorithm, since intersection calculations

are reduced.

2. It requires only one division to update parameters t; and t,.

3. Window intersections of the line are computed only once.

Ex.55 Find the clipping coordinates for a line pip; where p,
Window With (X i Yoma) = (15, 15) and (x

Sol,: Here,

y1 =10 Yemin = 15

=(10, 10) and p, (60, 30), against
wnax’ y:vnmx) = (25! 25)

Computer Graphics 178

2-D Viewing and Clipping

X, = 60 X

=25

Computer Grag

wimax . We conside
Yz = 30 YWmax =125 CIOSEd- To aChil
p = -50 q = -5 Pl/q: =01 ;V_hgl:nmdaﬁe_tl;f
p2 = 50 Q=15 Pa/qy = 03 =
p;=-20 Q= -3 P3/qs = 0.25

t, = max (0.25, 0.1) = 0.25

t, = min (0.3, 0.75) = 0.3
Here, t; < t, and the endpoints of

XX,

YY2

XX,

Y¥2

5.4 Polygon Clipping

since for these values p < 0
since for these values p > 0
clipped line are :

Xy + b AX

10 +0.25x 50

22.5

Y1+t 8y

10 + 0.25x 20

15

X; + b Ax

10 +0.3x50

25

yithay

10+0.3x20

16

Adding lin
when clipping
Fig. 5.21. For e:

clipped polygo

In the previous sections we have seen line clipping algorithms. A polygonisnothing but

the collection of lines. Therefore, we

directly for polygon clipping. However, when a closed polygon is clipped as a collection of
lines with line clipping algorithm, the original closed polygon becomes one or more open

polygon or discrete lines as shown in
algorithim to clip polygons.

might think that line clipping algorithm can be used

the Fig. 5.19. Thus, we need to modify the line clipping

(a) Before clipping-

5.5 Sutherlz

A polygon
edge. This is
boundary in tu

{b) After clipping

Fig. 5.19 Polygon cl

olygon agains
ipping done by line clipping algorithm PoYB 8

A4 Clipping

»p <0
sp>0

nothing but
can be used
collection of
r more open
line clipping

Computer Graphics 179 2-D Viewing and Clipping

We consider a polygon as a closed solid area. Hence after clipping it should remain
closed. To achieve this we require an algorithm that will generate additional line segment
which make the polygon as a closed area. For example, in Fig. 520 the lines a-b,c-d,d -e,
f-g, and h - i are added to polygon description to make it closed.

(a) (b)

Fig. 5.20 Modifying the line clipping aigorithm for polygon

Adding lines ¢ - d and d - e is particularly difficult. Considerable difficulty also occurs
when clipping a polygon results in several disjoint smaller polygons as shown in the

Fig. 5.21. For example, the linesa-b,c-d,d - e and g - f are frequently included in the
clipped polygon description which is not desired.

Fig. 5.21 Disjeint polygons in potygon clipping

5.5 Sutherland - Hodgeman Polygon Clipping

A polygon can be clipped by processing its boundary as a whole against each window
edge. This is achieved by processing all polygon vertices against each clip rectangle
boundary in turn. Beginning with the original set of polygon vertices, we could first clip the
polygon against the left rectangle boundary to produce anew sequence of vertices. The new

Computer Graphics 180 2-D Viewing and Clipping

set of vertices could then be successively passed to a right boundary clipper, a top boundary
clipper and a bottom boundary clipper, as shown in Fig. 5.22. At each step a new set of
polygon vertices is generated and passed to the next window boundary clipper. This is the
fundamental idea used in the Sutherland - Hodgeman algorithm.

Original polygon Left clipped Right clipped

Top clipped Bottom clipped

Fig. 5.22 Clipping a polygon against successive window boundaries

The output of the algorithm is a list of polygon vertices all of which are on the visible side
of a clipping plane. Such each edge of the polygon is individually compared with the
clipping plane. This is achieved by processing two vertices of each edge of the polygon
around the dipping boundary or plane. This results in four possible relationships between
the edge and the clipping boundary or plane. (See Fig. 5.23).

1. 1f the first vertex of the edge is outside the window boundary and the second vertex of
the edge is inside then the intersection point of the polygon edge with the window
boundary and the second vertex are added to the output vertex list (See Fig. 5.23 a).

2. If both vertices of the edge are inside the window boundary, only the second vertex is
added to the output vertex list. (See Fig. 5.23 b).

3. If the first vertex of the edge is inside the window boundary and the second vertex of
the edge is outside, only the edge intersection with the window boundary isadded to
the output vertex list. (See Fig. 5.23 c}.

4. If both vertices of the edge are outside the window boundary, nothing is added to the
output list. (See Fig. 5.23 d).

Once all vertices are processed for one clip window boundary, the output list of vertices
is clipped against the next window boundary. ‘

~

Computer Gi

-

Fig. :

Going thi
algorithm.

1. Deterrr
2. Deternr

One way
that two poir
then these thr
this plane is ¢
component g
decides the p

d Clipping

boundary
1ew set of
This is the

ped

svisible side
ed with the
the polygon
ips between

nd vertex of
the window
2 Fig. 5.23 a).

ond vertex is

md vertex of
yisadded to

added to the

st of vertices

Computer Graphics 181

2-D Viewing and Clippiﬂg

M
|
|
|
]
]
]
1
1
|
1
]
]
1
1
1
1
1
1

n

Vv, — Inside
V, — Qulside
- Save V)

(c)

Vy oo Inside
V2 - Inside
.. Save v,

V; ~ Outside
Vv, — Quiside
.. Save nothing

(d)

Fig. 5.23 Processing of edges of the polygon against the left window boundary

Going through above four cases we can realize that there are two key processes in this

algorithm.

1. Determining the visibility of a point or vertex {Inside - Qutside test) and

2. Determining the intersection of the polygon edge and the clipping plane.

One way of determining the visibility of a point or vertex is described here. Consider
that two points A and B define the window boundary and point under consideration is V,
then these three points define a plane. Two vectors which lie in that plane are ABand AV 1f
this plane is considered in the xy plane, then the vector cross product AV x AB has only a 2

component given by (xy - Xa) (Yg = ¥a) = {(Yv = ¥a) (xg = xn). The sign of the z component
decides the position of point V with respect to window boundary.

Computer Graphics 182 2.D Viewing and Clipping Computer Gr
Ifzis: Positive ~ Pointis on the right side of the window boundary 5 Efi:
Zero - Point is on the window boundary ca
Negative - Point is on the left side of the window boundary 6. Re
Ex.5.6: Cousider the clipping boundary as shown in the Fig. 5.24 and determine the positions of re
points V,and V,. cli
— 7. St
T Ex.57: Fc
bo
64
B25) - oo :
4 i
Vil3) oV,(43)
2 :
/ A@ AN
t t t X
2 4 & 8
Fig. 5.24
Sol.: Using the cross product for V, we get,
Xy = XA} (Y3 = YA — Yy = ¥a) (xp = X)
=(1-2)5-1}-3-11(2-2)
=-14)-0
= -4 Sol.: 0
The result of the cross product for V, is negative hence V| is on the left side of the the new ver
window boundary.
Using the cross product for V, we get, (4 -2} (5-1)-(3-1}(2-2)
=(@)@4)-~0
=8
The result of the cross product for V, is positive hence V, is on the right side of the
window boundary.
The second key process in Sutherland - Hodgeman polygon clipping algorithm is to
determine the intersection of the polygon edge and the clipping plane. Any of the line
intersection (clipping) techniques discussed in the previous sections such as Cyrus-Beck or
mid point subdivision can be used for this purpose.
Sutherland-Hodgeman Polygon Clipping Algorithm
1. Read coordinates of all vertices of the pelygon. After 1
er I
2. Read coordinates of the clipping window Aft
3. Consider the left edge of the window ¢ e :
4. Compare the vertices of each edge of the polygon, individually with the clipping After ©
plane o After b

'd Clipping

oundary

undary
» pusitions of

‘t side of the

1t side of the

gorithm is to
wy of the line
“yrus-Beck or

5 the clipping

Computer Graphics 183 2-D Viewing and Clipping

5. Save the resulting intersections and vertices in the new list of vertices according to
four possible relationships between the edge and the clipping boundary discusied
carlier.

6. Repeat the steps 4 and 5 for remaining edges of the clipping window. Each time the
resultant list of vertices is successively passed to process the next edge of the
clipping window.

7. Stop.

Ex.5.7: Fora polygon and clipping windotw shown in Fig. 5.25 give the list of vertices after each
boundary clipping.

Vg

Clipping window

Fig. 5.25

Sol. : Original polygon vertices are V,, Vy, V3, Vy, V. After clipping each boundary
the new vertices are given in Fig. 5.26

_ Fig. 5.26

After left clipping Vo, Vi, V3,V V,, Ve
After right clipping : V., Vi, V3, V3, V, Vs
After top clipping Vy, Vi, Vo, Vs V3, Vg, Vs

After bottom clipping : Vs, Vy, Vy Vi, Vi, Vs, Vg

Computer Graphics 184 2-D Viewing and Clipping

'C’ code for Sutherland-Hodgeman Polygon Clipping Algorithm
(Softcopy of Lhis program is available at vtubooks.com)

Bipiciooe o ot he
pincindeigranthiics he
IR SYRN ST TR TIPS 5 BN O

Lypedel stroct

!

Pleat g

Viian v:

L

i g

miinl)

i

1ar i, 73,q9d,g9m;

Prod, el e, pt2Cl,pil.pid.ppl20);
detecrygraph (dgd, dgm)

inicgraph {&yd, &gm, " ") ;

/* Read ccoordinates of clipping window
___ v/

printf ("Enter coordinates ({left, top) of pointl : *}:
scanf ("%, %", 4pl.x, &pl.y};

printf("Enter coordinates {right,bottom) of point2 : ");
ccanf ("%f, 3f", &p2 ¥, &p2.¥)

/* Enter the number of vertex
______________________________ */
printf ("Enter the number of vertex : ");

scanf ("3d", &n);

/* Read vertex coordinates of clipping window
___ i-/
for{i=0;i<n;it+s)

{

printf{”Enter coordinates of vertexid YLi+l):
scanf ("%f, %", &p (i) .x, epl[i]. .y}

'

plil.x = p[0]).x;

|

Computer ¢

plil.y =
cleardevi.
drawpol yg:
rectangle
getchi();
left(pl, p,
right {p2,g
topiepl,p, g
bottom({p2,
cleardevic
recrangle(
drawpolygo
getchi);
closegraph
}

left (PT pi
{
int i,9=0;
for{i=0;i<
{
it{pli).x
{
ifipli+:
{
ppliil
}
else
{
pplil
}
pplj) . x -
F++;
PPl .x=1
pplil.y=1
J++;

i

d Clipping

Computer Graphics 185

plij.y = pi0l.y:
cleardevice ()
drawpclygoni{p,n};
rectangle(pl.«,pl.y,p2.%, p2.y):
getchi();

left(pl,p,ppi;

right{p2,p,.pp):

top{pl,p.pPp):

bottom{pZ, p, pp};

cleardevice({);
recrangle (pl . x,pl.y,p2.X,p2.¥};
drawpeolygon(p, n):

gerch{);

closegraph();

}

left (PT pl,PT p(20],PT pp(20]}
{
int i, 3=0;
for{i=0;i<n;i++}
{ .
if{pli].x < pl.x && pli+l]).x >= pl.x)
(
if (pli+l] . .x-p[i]).x!=0}
{
ppli) .y
}

else

]
1

pplil.y = plil.y;
}

ppijl.x = pl.x;

Jt+i

ppljl.x=pli+l].x:

ppli).y=pli+tl].y;

J4++;

}

(P(i+1}.y-plil.y)/(pli+1) . x-p[i].x)*

2-D Viewing an

§sX N

Aepiilox)yeg i)

LY

:

C,

Computer Graphics 186 2-D Viewing and Clipping

if{p(i)l.x > pl.x && pli+tl).x >= ol.x)
{

pplil.y = plitl].y:
pplil.x = pli+l]).x;
Jrts

}

ifiplil.x > pl.x §& pli+lj.x <= pl.x)

|
if{pli+l].x-pii).x!=0}

{

pp(jl.y = (pli+l].y-plil.y)/{plivl).x-p[1].X)* (pl.x-plil.-x}+pli].y;
}

alse

{

pplil.y = plil.y:

1
pplil.x = pl.x;
j++;

]

for (i=0:1i<j;i++)

!

plil.x = pplil.x;
pli).y = ppli).y:
}

plil.»x = ppl0].x:
plil.y = ppl0].y?
n=j;

right (PT p2,PT p(20]}.PT ppl20]1}
{
int i,3=0;
for{i=0;i<n;i++)
{
if(plil.x » p2.x && plitl].x <= p2.x%}

|
iftpli+l] . .x-p{ij.xl=0)

]’ . Computer Gy

i

pelil.

}

else

(

pplil.

]
PPI3).x
jH+:
PR3] .x=
pplil.v=)
j-I-+;
}
if{p[i].:
{
pplil.y =
pplil.x =
Jt+;
}
if(pl{i].»
i

ifipl

{

pplil.

)

else

{

pPli].

H
pplil.x =
j++;

)

for{i=0;i

1

plij.x
pli).y =

and Clipping Computer Graphics 187 2-D Viewing and Clipping

§

f

ppli).y
}

else

{
ppl3).y = pli).y:

)

(PliFl).y-pli) .y} /(pEi+l] .x-p{i].x)* (P2.x-p[i).x) +p[i].y;

pR31. %"= p2.x;

¥+ -
pp{j).x=pli*l).x;

peli).y=pli+l}.y;

G+

}

if(pli).x < p2.x && p{i+l].x <= p2.x)

{

LRY+pli) .y

pplil.y = pli+l).y:
pplil).x = pli+tl] . x;
JF+;

)
if(pli]l.x < p2.x &6 pli+l).x >= p2.x)

{
if(pli+l).x-p[i].x'=0}
{
Pp(3).y = (Pli+1).y-pli].¥)/(pli+1].x~p[i).x)* (p2.x-p(i].x)+pli].y;
}
else
{
ppljl.y = plil.y;
}

pplJ).x = p2.x;

jt+:

}

}

for (i=0;i<j;i++}

{

plil.x = pp(i).x;

plil.y = pplil.y;

}

Computer Graphics 188 2-D Viewing and Clipping

r
'{; LM f i
! ! . e ='I Fa
T f ; TLINNY!
TR R (oicstiim-ngibosrs(pliil] oy~ toyd s (el oy-pliloyreplil.ox:
el Ly %
Shws
] emenfiel ey
PO y=piiadl gy
H I
{11 LA T AN - i)
ILj-l bl SR .
v E - HERE :
by
:
iniiloy e A NS
i

PE T4] . y=pin] .yl-i)

pElales - il s p i x) A pltrlloy-pli)oy)t (pl.y-plil.y)r+plil.x;

Computer G

Ppli)

}
pelil.y
SRR

!

}
for{i=0;
{
plil.n =
plil.y =

piir.x =
plit.y =
n=j;

i
bottom{PT ¢
!
int i,3=0;
for{i=0;i<n
if(pli]) .
!
if(p[i
{
ppli].
!
eise
[

ppijl.:

)
ppl3l.y =
J+4;
pplil.x=p
ppli).y=p

T+

and Ciipping

Sy rpliloxg

vivp[il.x:

Computer Graphics 189

2-D Viewing and Clippi_ng

ppli).x = pli].x;
i
PRldly s ploys
1+

[
r

Forv (i=0;1<§;14+}

{

plil.x = ppli).x;
plil.y = pplil.y;
plil.« = ppl0).x;
pfil.y = ppl0).y;
n=j:

}

bottom (Pt pz, PT pl201,PT pp[20])
!

ing 1,9=0;

for(i=0;1<n;1++)

if(plil.y > p2.y && plitl].y <= pZ2.y)

{
if(pli+l].y-pli].y!=0)

{

pRlj].x =

'

clise

!

ppli).x = pli].x:

}
pplil.y = p2.y;
G

pp(3) . x=p(i+1].x;
ppli).y=plit+l].y;

JHe

O+ x-pli] . x) /7 (plitl) . y-p (i) .y} * (p2.y-pli].y)+p[i]) .x;.

Computer Graphics 1980 2-D Viewing and Clipping I Comput
1F(pi1l.y € pl.y &b piatll.,y <= pZ.v} The
: correctl
pplil.y = plivl].y: extranet
pplil.x = pli+ll.x; -
Jbt
!
iflplil.y < pZ.y && pli+l]l.y >= p2.y)
ifiplitl).y-plil.y!'=0}
] —_—
: pplil.®x = (plit)] . x-piil.x)/(p[i+1l.y-p(i) .y} * (p2.y-plil.y)+pli}.x; Fig. 5.27
elsa The
: polygor
: { convex
i poli)l.x = pli}.x;
3 5.6 W
i pplil.y = p2.y: The
: T many a
| require«
i and Atk
: s subject
for{i=0;1i<3;1++)
{
plil.x = pplil.%; C
olil.y = pplil.y: I
)
}
piil.x = ppl0].x%;
plil.y = ppl0]).¥:
n=j;
}
drawpolygon (PT x{20],1int n}
{
int i; I
for(i=0;i<n-1;i4+) ‘nt'
subject
{ polygo
line(x[i].x,x[1] .y, x{i+1).x,x[i+1].y};
}
line(x(i]) . %, x{i).y, x([(0).x, x[0] .y};
\.r\t'- }
b J

- Clipping

tpli}.*:

Computer Graphics 191 2-D Viewing and Clipping

The Sutherland-Hodgeman polygon clipping algorithm clips convex polygons

correctly, but in case of concave polygons, clipped polygon may be displayed with
extraneous lines, as shown in Fig. 5.27.

{b)

Fig. 5.27 Clipping the can cave polygon in (a} with the Sutherland-Hodgeman algorithm produces
the two connected areas in (b)

The problem of extrancous lines for concave polygons in Sutherland-Hodgeman
polygon clipping algorithm can be solved by separating concave polygon into two or more
convex polygons and processing each convex polygon separately.

5.6 Weiler-Atherton Algorithm

The clipping algorithms previously discussed require a convex polygon. In context of
many applications, e.g., hidden surface removal, the ability to clip to concave polygon is
required. A powerful but somewhat more complex clipping algorithm developed by Weiler
and Atherton meets this requirement. This algorithm defines the polygon to be clipped as a
subject polygon and the clipping region is the clip polygon.

The algorithm describes both the subject and the clip
107 Cy polygon by a circular list of vertices. The boundaries of
the subject polygon and the clip polygon may or may not

1

1 |
A E intersect. If they intersect, then the intersections occur in
Va : pairs. One of the intersections occurs when a subject
Va i polygon edge enters the inside of the clip polygon and
Ly E one when it leaves. As shown in the Fig. 5.28, there are
y : four intersection vertices 1, I, , 1, and I;. In these

vy) [!

intersections |; and 1, are entering intersections, and I,
c, T Ca and‘ I, are leaving intersections. The clip polygon
vertices are marked as C;, C,, C; and C,.

Fig. 5.28

In this algorithm two separate vertices lists are made one for clip polygon and one for
subject polygon including intersection points. The Table 5.3 shows these two lists for
polygons shown in Fig. 5.28.

Computer Graphics 192 2-D Viewing and Clipping

For subject polygon For clip polygon

Start I l4 Finish

1 Finish

\

Vs Cs
Slart '3 [4

Ve

i

Vi

Table 5.3 List of polygon vertices

The algorithm starts at an entering intersection (I;} and follows the subject polygon
vertex list in the downward direction (ie. I, V; V,, I,). At the occurrence of leaving
intersection the algorithm follows the clip polygon vertex list from the leaving intersection
vertex in the downward direction (i.e. I, I}. At the occurrence of the entering intersection
the algorithm follows the subject polygon vertex list from the entering intersection vertex.
This process is repeated until we get the starting vertex. This process we have to repeat for
all remaining entering intersections which are not included in the previous traversing of
vertex list. In our example, entering vertex I, was not included in the first traversing of
vertex list,. Therefore, we have to go for another vertex traversal from vertex I,.

The above two vertex traversals gives two clipped inside polygons. There are :
L, Vs Vo I, Land 1, V,, T, 14

5.7 Generalized Clipping

We have seen that in Sutherland - Hodgeman polygon clipping algorithm we need
separate clipping routines, one for each boundary of the clipping window. But these
routines are almost identical. They differ only in their test for determining whether a point is
inside or outside the boundary. It is possible to generalize these routines so that they will be
exactly identical and information about the boundary is passed to the routines through their
parameters. Using recursive technique the generalized routine can be ‘called’ for each
boundary of the clipping window with a different boundary specified by its parameters.
This form of algorithm allows us to have any number of boundaries to the clipping window,
thus the generalized algorithm with recursive technique can be used to clip a polygon along
an arbitrary convex clipping window.

Y

Computer G

5.8 Interio

So far ws
interior of a
However, iti

Fig. 5.29 Clip

Solved Exam,

Ex.5.8: L
an
Dy

Sol.: Li

P,(40, 15
(¢

and Clipping

ject polygon
e of leaving
; intersection
: intersection
ction vertex.
to repeat for
raversing of
raversing of

3

are :

im we need
v. But these
hera pointis
t they will be
hrough their
ed' for each
parameters.
ing window,
slygon along

Computer Graphics

193

2-D Viewing and Clipping

5.8 Interior and Exterior Clipping

So far we have discussed only algorithms for clipping point, line and polygon to the
interior of a clipping region by eliminating every thing outside the clipping region.
However, it is also possible to clip a point, line or polygon to the exterior of a clipping region,

i.e., the point, portion of line and polygon

Window 1

Window 2

Window 3

£

&

which lie outside the clipping region. This is
referred to as exterior clipping.

Exterior clipping is important in a
multiwindow display environment, as
shown in Fig. 5.29. The Fig. 5.29 shows the
overlapping windows with window 1 and
window 3 having priority over window 2.
The objects within the window are clipped
to the interior of that window. When other
higher-priority windows such as window 1

Solved Examples

Fig. 5.29 Clipping in multiwindow environment

and/or window 3 overlap these objects, the
objects are also clipped to the exterior of the
overlapping windows.

Ex.5.8:

Use the Cohen-Sutherland outcode algorithm to clip two lines P, (40, 15) - P, (75, 45)

and P; (70, 20) - P, (100, 10) against a window A (50, 10), B (80, 10), C (80, 40),

D(50,40).

Line 1: P, (40, 15) P, (75, 45) W,, =50 W, =40

W,=80 W, =10

Point Endcode ANDing
P, 0001 0000 Partially visible
P, 0000
6 45-15 ¢
= mix ~x)+y==(50-40)+15 m= =2
n b= +y =71) 75-40 7
= 23.57
X, = = (yq - y)+x:>z6(40-15) +40=69.16
m
=m(xg — x) +
P,(75. 45) Y2= MO =x) +y
(50, 40) X180, 40) =z (80-40) +15
= 4928
1
Y1 X=—{yg-y)+x
P,(40, 15 ;n
(50, 10) (80, 10) = 5 (10-15) + 40
Fig. 5.30 =34.16

Computer Graphics 194 2-D Viewing and Clipping

Line 2 : P, (70, 20) P, (100, 10)

Point End code ANDing Position
[oooo - 00udY Partiafly visible
P, 0010

. 10-20 =10 -1

100-70 30 3

Slope m

y[= n1(x|_—x)+y=;;(5()—70}+20
= 26.66

x| = %(y1-—y)+x=—3{4l]—20)+70
=10

y5 = m (xR—x)+y=._—31(80—7U)+2[}

= 1666
Xy = 4 (y - y)+ x= =3 (10-20) + 70
n

= 100
(50.40) (80.40)
*.J ¥2(80.16.66)
{50,10) {80,10)
Fig. 5.31

Ex.5.9: Find the normalization transformation window to viewport, with windotw, lower left
corner at (1, 1) and upper right corner at (3, 5} onto a viewport, for entire normalized
device screen.

Sel.: Xw min =])’ womin 1
Xy max = 3 Yemax = 5
Entire normalized screen
X\, min 0 .V\f min & 0
Xemax = 1 ¥Yoman = 1
Xy max ™ Xy min
S, =
Xy max — Xw min
1-0¢ 1
3-1 2

Computer ¢

Transfc

Review Qu

1. Wh
2. Wri
‘ 3. Dis
4 Wh
5 De
6. WF
7. Exy
8. Ex|
9. Exj
10. Ex
11 W
12. Ex
13. W

i4. B>
5t

15. W

University

1.E»
2.0
in

3.
al

4 Clipping

v, lower Ieft
“normalized

Computer Graphics 195 2-D Viewing and Clipping

S = ¥ vmax = ¥ vmin

¥ wmax = ¥ wmin

_1-0
5.1
21
o 4
Transformation matrix is given as
S, ¥ 0
T.S. T = 0 Sy 0
| Xymin = Xw rninSx Yvmin 7Y wminsy 1
[0.5 0 0
= 0 025 0
~-0.5 -0.25 1

Review Questions

1. What is windowing and clipping ?

2. Write a short note on viewing transformation.

3. Distinguish between viewport and window.

4. What do you mean by normalization transformation 7 Why it is needed ?
5. Derive the transformation matrix for 2-D viewing transformation.

6. What is point clipping and line clipping ?

7. Explain the Sutherland and Cohen subdivision algorithm for line clipping.
8. Explain the mid-point subdivision method of clipping a iine segment.

9. Explain the Cyrus-Beck algorithm for generalized line clipping.
10. Explain Liang-Barsky line clipping algorithm.
11. What is polygon clipping ?

12. Explain Sutherland - Hodgeman algorithm for polygon clipping ?
13. What are the limitations of Sutherland-Hodgeman polygon clipping algorithm ?

14. Explain Weiler-Atherton polygon clipping algorithm and state its advantage over
Sutherland-Hodgeman polygon clipping algorithm.

15. Write a short note on generalized clipping.

University Questions

1. Explain the Cohen-Sutherland techniques for line clipping. (Dec-96)

2. Develop a PASCAL program/C program to clip a polygon against a rectangular window
inclined at an angle © to the x-axis. (Dec-96)

3. What do you understand by the terms "window" and "viewpoint”. Derive the mapping for
any given point {x,,, y,,) from the window onto the viewpoint. {May-97)

Computer Graphics 196 2-D Viewing and C!ipping

4. Discuss the algorithm and develop a program for polygon clipping. lllustrate the working of

your program for any sample polygon of your choice. (May-97)
5. Define the terms world-co-ordinates, device co-ordinates, normalised co-ordinates and

homogeneous co-ordinales. (May-97, May-2000)
6. Figure below depicts a picture in the "window". For the "view port” shown alongside evaluate

and draw the mapped picture. (Dec-97)

Window View Port
(200,100} {0,0) {639.0)
(5,60)
(- 50.50) (60,50)
{-50,-25) (60,-25)
(0,479) (639,479)
(100,-50)
Fig. 5.32

(Note : The picture is not to scale)

7. Write an line clipping algorithm which uses parametric form of equations, Test it for a line P,
P, where Py = (10, 10) and P, = (60, 30), against window with {X,min Yemin) = (15, 15) and

(Xwmaxs Ywmax) = (25, 25). (May-98)
8. Figure below shows a window (A, B, C, D) and a viewport (L, M, N, O). Show how the
window and object in it, is mapped to viewport. (May-98)
4 - 4 N
4 3
: :
2 i M
1 2 3 4 5 123 456
Window Viewport
Fig. 5.33

9. Develop an function/procedure which performs line clipping using Cohen-Sutherland
method, How the line between (2, 2) and (12, 9} is clipped against window with

(meinf Ywmin) ={4,4)and (meaxf YWmax) =(9,8). (Dec-98, May-2002)
10. Develop formulae for window to view port mapping in 2D. Write a routine to map a POINT
(X1, Y1) ’ (May-99)

11. Indicate a mechanism to map an elliptical window to circular view port. Hint : map centre of
ellipse to centre of circle. (May-99)

12.
13
14,

15.

16.
17.

Computer Gr;

Explair
What i
Explair
clippin
Explait
(xi ¥1)
Give L:
Using

with er

(xwmin

. Sugges

polyga

. Whatd

the ma
Windo
handec

id Clipping
vworking of
(May-97)

Ainates ancl
7, May-2000)

wde evaluate
(Dec-97)

__ (6390}

T (639,479)

t for a line P,
=(15, 15) and
(May-98)

aow how the
(May-98)

n-Sutherland
vindow with
98, May-2002)

map a POINT
(May-99)

map centre of
{(May-99)

Computer Graphics 197

2-D Viewing and Clipping

12. Explain Sutherland - Hodgman clipping algorithm with example. (May-99)
13. What is the use of Normalised Device Co-ordinates. (May-99)
14. Explain why the Sutherland - Hodgman polygon - clipping algorithm works for only convex
clipping regions. (Dec-99)
15. Explain Cohen-Sutherland line dlipping algorithm. Develop a program to clip a line between
(X1 y)} (X y2) against a window (X i ¥imin) Kaox: Yenax) (May-2000)

16. Give Liang Barsky line clipping algorithm. (May-2001, May-2003)

17. Using Liang Barsky line clipping algorithm find the clipping co-ordinates of line segment
~with end co-ordinates A(- 10, 50) and B(30, 80} against window

Kymin = =30, Yemin = 10) Kymax = 20, Yyrmax = 60). {May-2001)
18. Suggest medification to Sutherland Hodgman polygon clipping algorithm to dlip concave
polygon. {May-2001)

19. What do you understand by the termns WCS, DCS, NDS, WINDOW and VIEWPORT. Derive
the mapping for any given point P{xw, yw) from window to viewpoint using matrix method.
Window is defined in right handed world coordinate system and view port is defined in left
handed device coordinate system. (May-2001)

W [[

]
3-D Concepts

]
L - |

6.1 Introduction *

Manipulation viewing and construction of three dimensional graphic image requires
" the use of three dimensional geometric and coordinate transformations, Three dimensional
geometric transformations are extended from two-dimensional methods by including
considerations for the z coordinate. Like two dimensional transformations, these
transformations are formed by composing the basic transformations of translation, scaling,
and rotation. Each of these transformations can be represented as a matrix transformation
with homogeneous coordinates. Therefore, any sequence of transformations can be
represented as a single matrix, formed by combining the matrices for the individual
transformations in the sequence.

€.2 Translation

Three dimensional transformation matrix for translation with homogeneous
coordinates is as given below. It specifies three coordinates with their own translation factor.

[1 0 0 0]
01 0 0
T =
G 0 1 0
oty b 1
PP=PT
1 0 0 0
c 1 0 0
Sy = xyz1]
0 0 1 0
oty 1]
=[x+t y+t, z+t, 1] ... (6.1)

Like two dimensional transformations, an object is translated in three dimensions by
transforming each vertex of the object. :

(198)

Computer Gri

Z axis

6.3 Scaling

Three dirr
as given beloy

It specifie:

:pts

ge requires
‘imensional
- including
ions, these
on, scaling,
isformation
ms can be
individual

Mogeneous
ation factor.

(6.

nensions by

Computer Graphics 199 3-D Concepts

¥ axis
4

Pix, y. 7)
»

Z axis ' X axis Z x
(a) Translating point {b) Translating object

Fig. 6.1 3 D translation

6.3 Scaling

Three dimensional transformation matrix for scaling with homogeneous coordinates is
as given below.

Fig. 6.2 3 D Scaling

It specifies three coordinates with their own scaling factor.

S, 0 0 0

0S5 00
5 =

0 0 S, 0

0 0 0 1

Computer Graphics 200 3-D Concepts
S, 0 0 0]
0 Sy 0 0
LKy 2= xyz1)
0 0 S, 0
0 0 0 1]
= [xs0 yes, zs, 1] -~ (6.2)

A scaling of an object with respect to a selected fixed position can be represented with
the following transformation sequence.

1. Translate the fixed point to the origin.
2. Scale the object

3. Translate the fixed point back to its original position.

6.4 Rotation

Unlike two dimensional rotation, where all transformations are carried out in the xy
plane, a three-dimensional rotation can be specified around any line in space. Therefore, for
three dimensional rotation we have to specify an axis of rotation about which the objectis to
be rotated alongwith the angle of rotation. The easiest rotation axes to handie are those that

are parallel to the coordinate axes. It is possible to combine the coordinate axis rotations to
specify any general rotation.

Coordinate Axes Rotations

Three dimensional transformation matrix for each coordinate axes rotations with
homogeneous coordinate are as given below

¥ ¥
costt sinGk 0 0
R = -sind cos®) 0 0

1o o0 10 ™)
0 0 0 1 0 ¢
P p 4
2 X z X
(a) (b) (c)

Fig. 6.3 Rotation about z axis

The positive value of angle 8 indicates counterclockwise rotation. For clockwise rotation
value of angle 6 is negative.

Computer Grap

1 0
R, = 0 cqs{)
0 —sin0 ¢
0 0
(a)
costh O —¢
R, = ,0 !
¥ lsino 0 o
(U]
(a)

6.5 Rotation

A rotation s
as a compos
coordinate-axe:

In a special
coordinate axe:
sequence,

1. Translat:
axis.
2. Perform

3. Translab

When an o
axes, we hawvi
transformation

-0 Concegts

. (6.2)

“ssented with

out in the xy
(herefore, for
e objectis to
are those that
5 rotations to

stations with

I

X

wise rotation

Computer Graphics 201

3-D Concepts
y y
3
1 © 0 0
R = 0 cos{ sinb 0
X .
0 —sin0 cos0 O 5
0 0 0 1
z X X
(a) (b)
Fig. 6.4 Rotation about x axis
y _ Y
J
cost O -sin0 O —pP
_ G 1 0 C
Ry sind 0 cos0 O
0 0 o 1 0 x 0
z X z X

(a) {b) {c)

Fig. 6.5 Rotation about y axis
6.5 Rotation about Arbitrary Axis

A rotation matrix for any axis that does not coincide with a coordinate axis can be set up
as a composite transformation involving combinations of translations and the
coordinate-axes rotations.

In a special case where an object is to be rotated about an axis that is parallel to one of the
coordinate axes we can obtain the resultant coordinates with the following transformation
sequence:.

1. Translate the object so that the rotation axis coincides with the parallel coordinate
axis.
2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to its original position.

When an object is to be rotated about an axis that is not parallel to one of the coordinate
axes, we have to perform some additional transformations. The sequence of these
transformations is given below.

Computer Graphics 202 3-D Concepts

1. Translate the object so that rotation axis specified by unit vector u passes through the
coordinate origin. (see Fig. 6.6 (a) and (b))

2

. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.
Usually the z axis is preferred. To coincide the axis of rotation to z axis we have to
first perform rotation of unit vector u about x axis to bring it into xz plane and then
pertorm rotation about y axis to coincide it with z axis. (see Figs. 6.6 (c) and (d})

-l

. Perform the desired rotation © about the z axis.

4=

. Apply the inverse rotation about y axis and then about x axis to bring the rotation axis
back to its original orientation.

n

. Apply the inverse transglation to move the rotation axis back to its original position.

a} Axis of rotation b} Translation of the
defined by points rotation axis to the
P,and P, coordinate origin

Y
0
!
i’
L bl
z
¢) Rotation of unit d} Rotation of unit
vector about x axis to vector u about y axis
bring il into xz plane to align it with the z axis
Fig. 6.6

As shown in the Fig. 6.6 (a) the rotation axis is defined with two coordinate points P; and
P. and unit vector u is defined along the rotation of axis as
\

n = —=(a,b,C)
|V

Computer Gra

where V is

The compo
and they can b

As mentio
object to pass t
moving point |

Now we h;
around the x a;
into the z axis a
of u' and the w

where d is

Similarly, v

and the Ca

3-D Concepts

s through the
rdinate axes,
15 we have tg

-ane and then
rand (d))

-rotation axis

1al position.

points P, and

Computer Graphics 203 3-D Concepts

where V is the axis vector defined by two points P, and P, as
V = P,-P
= (=X, 2=y 22~ 2)

The components a, b, and ¢ of unit vector u are the direction cosines for the rotation axis
and they can be defined as

a=2"% Yz“)’ll c=f277
VI VI Vi

As mentioned earlier, the first step in the transformation sequence is to translate the
object to pass the rotation axis through the coordinate origin. This can be accomplished by
moving point P, to the origin. The translation is as given below

M1] 0 0]

0 1 0 0

AT AT N

Now we have to perform the rotation of unit vector u about x axis. The rotation of u
around the x axis into the xz plane is accomplished by rotating u’ {0, b, ¢} through angle «
into the z axis and the cosine of the rotation angle'«: can be determined from the dot product
of u” and the unit vector u, {0, 0, 1) along the z axis.

L]
u-u,

cosa = _'_=_C_ where 1’ (0, b, ¢) = bJ + cK and
T
u, (0,0, 1)=K

= <
'] w

= —C,~ Since |u,| =1
||

= £
d

where d is the magnitude of u’:
d = +Vb®+?
Similarly, we can determine the sine of « from the cross product of u” and u,.
u'xu, = u |u'| |u,| sina ... (63)
and the Cartesian form for the cross product gives us

r
uxuw, = u

. b o {0.4)

Computer Graphics 204 3-D Concepts

Equating the right sides of equations 6.3 and 6.4 we get

u, [u'] |u,|sine=u,.b

u’| |u,}sine = b
. b
sing = ———
Iu“uz|
b . .
=3 since |u,[=land |u'| =d

This can also be verified graphically as shown in Fig. 6.7

Fig. 6.7

By substituting values of cos a and sina the rotation matrix R, can be given as

1 0 0 0]
0 ¢/d b/d 0O

0 -b/d ¢/d 0

0 0 0 1

Next we have to perform the rotation of unit vector about y axis. This can be achieved by

rotating u” (a, 0, d) through angle p onto the z axis. Using similar equations we can determine
cos P and sin § as follows.

We have angle of rotation= - 3

— 2 where u"=al + dK and

cos (-fB) = cosB= w

u, =K

A

Computer (

Consid«

Cartesi:

Equatin

but we

3-D Conceets

ziven as

1be achieved by
‘e can determine

-d

Computer Graphics 205

3-D Concepts

d

|u,]

3
u

d
v’

d

Consider cross product of u” and u,_

u'xu, = u, |[u’| |u,f sin{-B)
= -u, |u’| fu,| sinp
Cartesian form of cross product gives us
u_" xu, = u, (+a)
Equating above equations,
- |u’[|u,| sinB = a
-a

sinp = ————
ju”|

but we have, d = Jb? +¢?

cos B

and sinf =

| =

< sin (-6} =-sinH

Computer Graphics 206

3-D Concepts

By substituting values of cos f and sin B in the rotation matrix R, can be given as

. Resultant rotation matrix R,

Xy

We have,

=1 _
tii =

Vb? +¢?

+a

Ja? +b? + ¢

-4

Ja? +b? +¢?

0 1 0

b2 +c?

\/a2 +b? +¢?

Ja? +p2 42

Using above equation we get inverse of R, as

-1 _
Ry =

| 0 0 0
Let A =vb2actand |V| = val+b?+?
1 o0 0 0] [X o 2
+b M lV
0 < =0 0 1 0
L g -
0 2 £ g —a 45 *
AoA (Vi 1V
0 0 0 1 0 0 0
=R, R,
A0 A
VI V]
-ab ¢ b g
IVix & |V
—ac b ¢ 4
Vi 3 V]
| 0 0 1]
(-1)"*T detM;
detT
(A -ab -ac 0_
VI [V[A [V
o £ 2
A A
a b <
vl vl Vi
o o 0 1

.
0

0

0

1

Computer Grap

Inverse of ti

With tr
positive z axis.
transformation

To complet
rotation axis b:
transformation: .

arbitrary axis
transformation:

D Concepts

ven as

Computer Graphics 207 3-D Concepts
Inverse of translation matrix can be given as
[1 0 0 0]
0 1 0 0
T =
0 0 1 0
;Xl Yi 2y 1]

With transformation matrices T and R,, we can align the rotation axis with the
positive z axis. Now the specified rotation with angle 8 can be achieved by rotation
transformation as given below

[cos® sing 0 0]
-sin@ cos® 0 O

0 0 10

|_O 0 0 1}

To complete the required rotation about the given axis, we have to transform the
rotation axis back to its original position. This can be achieved by applying the inverse
transformations T and R;,. The overall transformation matrix for rotation about an

arbitrary axis then can be expressed as the concatenation of five individual
transformations.

R®) = T-R,, ‘R, Ry -T™

1 00 0 01 X~ o0 A 0|[cos® sin® 0 0]
| V] | V]
o 1 0 of[® ¢ b ,li-sin® cosd 0 0
ie R(0) = MV x|V
0 0 1 0 -ac j K 0 0 0 1t 0
MV x|V
__xl Y1 74 1_ 0 0 o 11l 0 0 0 ‘1'
(A -ab -ac 0ry ¢ o 0]
V] A|V] a|V]
0 < bogljo 1 00
A y
a b ¢ 4|0 0 1 0
VI V] |V
| 0 0 0 111X Y1 & 1

Computer Graphics 208

6.6 Reflection with Respect to Given Plane

3-D Concepts

6.6.1 Reflection with Respect to xy Plane

Consider point P(x, y, z). The reflection of
this point with respect to xy plane is given by
ponit P(x, y, - z), as shown in Fig. 6.8.
Corresponding to this reflection the
transformation matrix can be given as

1 & 0
M=|0 1 0
0 0 -1

T R{x y 2)

y
Jn v 0)/

/

& Pix, v -2)

6.6.2 Reflection with Respect to Any Plane

Often it is necessary to reflect an object through a plane other than x = 0 (yzplane),y =0
(xz plane) or 2 = 0 (xy plane). Procedure to achieve such a reflection (reflection with respect

to any plane) can be given as follows :

Fig. 6.8

1. Translate a known point P,, that lies in the reflection plane to the origin of the

co-ordinate system.

2. Rotate the normal vector to the reflection plane at the origin until it is coincident with
+vezaxis, this makes the reflection plane z = 0 co-ordinate plane i.e. xy plane.

3. Reflect the object through z = 0 (xy plane) co-ordinate plane.

4. Perform the inverse transformation to those given above to achieve the result.
Let F, (x,, y, z,) be the given known point. Translate this point to the origin by using

corresponding translation matrix

[0
0 1
T =
0 0
__xr} “Yo
Let the normal vector N = nJI+nJ+nK

Z
[
=
Lol %]
+
=
k2 b3
+
=
LR]

and A = 4n3 +n;

¢

0

0

Computer Gra,

As we war
parallel to Xy p

As seen ear

Now for inv

Resultan

Ex.6.1: Findii
and ha

Sol.: Here,
matrix is not ne

-D Concepts

)
Y
.z)

——]

slane), y=0
~ith respect

rigin of the

cident with
plane.

xsult.
in by using

Computer Graphics 209 3-D Concepts

As we want to match this vector with z axis, (so that the plane of reflection will be
parallel to xy plane), we will use the same procedure as used in rotation.

v - -

Ly o Lo
IN| (N
ML LI JLL L S
R, =| MN LN
“hywn; -np, ng
AN AN
| 0 0 0 1]
As seen earlier for reflection about xy plane we have
[1 0 0 0]
01 00
M =
00 -10
00 0 1]
Now for inverse transformation we have,
1 0 0 0
0 1 0 0
T =
0 0 1 0
%o Yo Zo 1]
A -min, -myng 0'
INI ANl AN
0o D& 2o
Ry = A A
LU LS M9
IN| IN] IN|
| O 0 0 1]

Resultant transformation matrix can be given as
Ry = TRy MR - T
Ex.6.1: Find the matrix for mirror reflection with respect to the plane passing through the origin
and having a normal vector whose directionis M =1+ J + K -

Sol.: Here, P, (0, 0, 0) and the plane passes through the origin hence translation
matrix is not necessary.

Computer Graphics 210

3-D Concepts

The normal vector N
IN|

R

AY

xy

i

V2

00 0 1

». The reflection matrix is given by

Ry = R,,-M-Rjj

L

[1/3

-2
-2
0

I+]+K
l!
Y3 and A=42

q

0

0

Lsl= e

0

< 0

L

= Sl=&
Slrslisll o Gl=Gl-Gl-

£
LS

OIC

3 13

0 0

-3 -2/3 0]

-%3 0
3 -23 +1/3 0

1

Computer Gr
Solved Examj

Ex.62: O
(11

Sol.: In
required. Th

by usual

Here, a =

section 6.5 w

Ex.63: ¢

-D ConceEts

Computer Graphics 211 3-D Concepts

Solved Examples

Ex.6.2: Obtain transformation matrix for rotation about the line joining the points (0, 0, 0) and
(1,1, 1) with the angle of rotation 45° in counter-clockwise sense.

Sol.: In this case the line passes through the origin, so the translation is not
required. Therefore, R, can be given

Ry = R, -R-R}}

by usual notations, o
A= 1+1=42
V] = m =3
Here, a = 1, b = 1, ¢ = 1. By using derived rotation matrices for R,,, R and R;} from
section 6.5 we have '

[J2 1 | [1 1 1
20 = 0 — —= 00
V3 3 V2 V2
__I_LLO Zl_iOO
RXY=J€J?J§ R=|v2 V2
-1 -1 1
— = — 0 ¢ 10
J6 V2 3 _
(o 0 o 1] [0 o0 o0 1]
'Jﬁ—_l—_lo‘
ﬁ%@
]_
0 —— — 0
Ry = V2 V2
N
V3 V3 48
o 0 o0 1]

R; = R,, ‘R-R}}
[0.80473 0.5058 -0.3106 0]
-0.3106 0.80473 0.5058 0

0.5058 -0.3106 0.80473 0

0 0 0 1

Ex.63: A triangle is defined by 3 vertices A (0, 2, 1) B, (2, 3, 0), C (1, 2, 1). Find the final
co-ordinates after it is rotated by 45°around a line joining the points (1,1, 1) and (0, 0, 0).

Computer Graphics 212 3-D Concepts

Sol.: The required transformation matrix for this example is already obtained in
previous example.
Al TA]
B‘r = B R]‘
C’ C

[0 2 1 0] [0.804 0.505 ~0.3106 0-‘
2 3 0 0| {-0.3106 0.804 0.505 0

1210 05058 -0.3106 0.804 O

ocoo0 1) o0 0 0 1
(0116 1297 -1.814 0

0.676 3.422 0.893 0O

0.687 1.802 0998 0

0 0 0 1

Therefore final co-ordinates are: A’ (-0.116, 1.297, - 1.814)
B’ (0.676, 3.422, 0.893)
C’ (0.687, 1.802, 0.998)

Ex. 6.4: A triangle is defined by 3 vertices A (0,2, 1) B (2, 3, 03, C (1, 2, 1). Find the final
co-ordinates after it is rotated by 45°around a line joining the points (2,2, 2yand (1,1, 1).

Sol.: Here the given axis of rotation is not at the origin, therefore translation
matrix is required. The translation matrix can be given as :
1 0 0 0"
o 1 00
T =
0O 0 1 0
-1 -1 -1 1)

Therefore the inverse of translation matrix can be obtained as

Computer Gra

Tt can be s
1y and (0,0, 0)
rotation angl
Therefore wae
Lranstormation
can be given a

Substituki

3-D Concegts

- ubtained in

106 0
50
M0

]_

Ind the final
and(1,1,1).

translation

213

3-D Concepts

I Computer Graphics

can be given as

R, =

1 00 0!

01 0 0

i
i

001 o

1 1_’

{_
|
!
3
|
|
|
(o1

T-R.- R R

I g
\\'I I-

Substituting resultant mateix from the previous problem we have,

[t can be seen that after translating the given axis to the avigin we get line points as (1,1,
1) and {0, 0, 0) which are same as the line points comsidered in the previous example. The
rolation angle (459 in this example also matches with that in the previous example.
Thercfore we can use resultant matrix of the previous problem, in deriving the
transtormation matrix for the given problem. The transformation matrix for this problem

10 0 0
01 0 0
001 ol

[r

1hpr 1]

[08047 0505 -0.310 0
i ~0.3106 08047 0505 0
|

! 0505 -0.3106 0.80473 0O
L 0 0 0

|1 0 0 0]] 0.804 0.505
0 1 0 0|l{-0310 0.804
0 0 1 of| 0505 -0.310
-1 -1 -1 1) | 1 1

[0.8047 0505 -0.3106 0]
~0.3106 0,8047 0505 O
0505 -0.3106 0.8047 0

.0 0 0 1]

~0.310 0
0.505 0
0.804 0
1

Computer Graphics 214 3-D Concepts

(A7 A

1 i |

;B"i=l51.RT

i

|

o L]
0 2 1 0] [0.8047 0.505 -0.3106 0]
2 30 0l [-03106 08047 0505 0
1210 0.505 -0.3106 0.8047 O
0001} o 0 0 1]

Calculation part is left for the student as an exercise.
Ex. 6.5 A cube defined by 8 vertices
A 0,0 B0y C220 D20
E, 020 F.02) G(222 H(022)

Find the final co-ordinates after it is rotated by 45° around a line joning the
points {2, 0, §) and (0, 2, 2).

Sol: Let P (2, 0, U) and Q (0, 2, 2)
Step 1: Shifting the arbitrary axis to origin by using translational matrix.
"1 0 0 0]
0100
T = .
0010
-2 0 0 1]
Step 2 : Finding inverse translation matrix
[1 0 0 0]
010090
T =
0010
_2 0 0 1]

Step 3 : Finding matrix for coinciding the given axis with the z axis
Here, a=2 b=-2 c=-2

by usual notations, A = o b +c?

Computer Gra

By using d

Step 4: Fit

By using d

Step 5: M:

- Resultan

D Concepts Computer Graphics 215 3-D Concepts
Vi = JaZ +b® 4+
A= 4d+4
-
= 242
3]“6 U" e ¢ e msem—— —_—
VI =22 ()7 4 (-2
1.505 0 - 12
1.8047 0 =23
By using derived rotation matrix for R,
oo oy L]
V3 3o
R
R, = |46 V2 43
[TR St B
| % B D
Cjoining the 0 0 0
Step 4 : Finding R}
By using derived rotation matrix for R;!
211
NN NS
-1] .
0 — — !
R = V22
N R
V3 43 43
o 0 0 1
Step 5 : Matrix for rotation about z axis. Here, 8 = 45°
[1/¥2 1/¥2 0 0
-1/¥2 1/¥2 0 0
R =
0 0 10
0 0 01
.Resultant transformation matrix can be given as
Ry = T-R,-R-Ryy - T™

Computer Graphics 216 3-D Concepts

From tw resultant matrix the final co-ordinates of the cube can be oblained as

AT A
s lﬁ
ol ¢
| | P
= R
BLE
ey
G| |G
[t |H]

Calculation partis left for the student as an exercisi.

Ex.6.6: A mirror is placed vertically such that it passes through the peinds (10, 0) and (0, 104
Find the reflected vicw of triangle ABC with co-ordinates A(5, 500, B120, 400, C (10, 70)

Sol.: The TFig. 69 shows the ' —‘

representation of reflection plane. As y

shown in the Fig. 6.9.
intercept on x axis : 10
intercept on y axis : 10

. . 0.10} 14

intercept on z axas ;= ©0.10)

The equation of the plane using
intercept form can be given as

X ¥ .
— 4= =]
10 10 - X
BaS S R
w1
Fig. 6.9
1 1
The normal vector = —T +—7J
10 10

[
10 10

Computer Gra

Normalizi

© Translat

I Concepts

Jd

uud (0, T,
C1. 70)

Computer Graphics 217

3-D Concepts

Nuormalizing,

I

© Translating the given plane

T

IN|

Al

[1/10.1/10,0]
pivais
V100 T 100
_[1/10,1/10,0)
1

2 T
ST MaLeiy
00 oo

]
i
|

!

0 1 u!
= |
0 0 1 0
|

1

0 -0 0 1
N (N
o 1 oo
0 0 1 0]
I

. i

L() +100 0 1

=J1=1 1n=J1j3=
AN _
= 0 -k o
V2 V2
-1 !
—= 0 = 0
= |2 V2
G -1 0 o
0 0 0 1

|
= ad n, e

0

Computer Graphics 218 3-D Concepts Computer G
1/v2 -1/v2 o ol
0 0 -1 0
R = ;
SNz N2 00
| .
0 o 0 1l IR
- - triangle.
[Y01
oo b0y Ex.67: C
I
01 0 0 | Sol.: L
M = | {with respe
0 0 -1 ol We follo
| 1. Trans
-
00 01! 2. Rotate
-, Resultant transformation matrix is given by 3. Mirro
R, = TR, M- [{\'_'\‘_ ! 4. Rotak
T 0 -1 0 vl > Frans
'| | By trans
-1 0 0 v, M, = T-
R, = i .
00 01 Review Que:
! | - 1. Give
i 0 0 0 1 ayTr
~. Final co-ordinate of the triangle can be given as b} 5¢
-“\"I -A ' C) R
i . 2. Derin
B’ } - B[Ry 3. Deria
1 ! ' L
| c] University G
- : 1. Write
o 0 -1 0 0] by tt
A 550 00 _
-1 0 00 y=
B | =120 40 0 0 ‘ 2. W]:]t.
L0 010 whe
c'y |10 70 00 3. Deve
- 0 0 01 : 4. Give
i tran:
{fror
tow:

-D Concepts

Computer Graphics 219 3-D Concepts
-50 -5 0 0
=|-40 -20 0 0
=70 <10 0 0

A" (=50, -5), B' (- 40, - 20) and C' (- 70, - 10} are the co-ordinates of the reflected
triangle.

- Ex. 6.7 Describe the transformation My which reflects an object about a line |.

Sol. : Let line L have a y intercept {0, b) and an angle of inclination 8 degrees
(with respect to x axis).

#

We follow the steps given below to achieve the transformation
1. Translate (U, b) to origin

2. Rotate by -8 degrees so that line L algins with the x axis.

3. Mirror reflect about the x axis,

4. Rotate back by 8 degrees

5. Translate the origin back to the point (0, b).

By transformation notation we have,

M,= T-R,-M_-R]'- T

Review Questions

1. Give the 3-D transformation matrix for
a) Translation
b) Scaling and
¢} Rotation
2, Derive the tfransformation matrix for rotation about an arbitrary axis.

3. Derive the transformation matrix for rotation about an arbitrary plane.

University Questions

1. Write a program to rotate any given solid object by an angle 8 about any arbitrary axis given
by the line-

y=mx+c¢ (May-97)
2. Write are the sequence of transformations required to rotate an object about an axis PP,

where Py =(xq, ¥y, zg) and [y ={x,, y,. »|) with angle 8. (May-98)
3. Develop a 3D transformation matrix for translation and rotation. {(May-2000)

4. Given a unit cube with one corner at (0, 0, 0} and the opposite corner at (1, 1, 1), derive the
transformations necesary to rotate the cube by 0" degrees about the main diagonal
{from {0, 0, 0) to (1, 1, 1)) in the counter clockwise direction when looking along the diagonal
towards the origin. (Dec-2000)

" Computer Graphics 220

3-D Concepts

5. Give the sequence of ransformations regutired Lo reflect the object about the line v = 2x - 1)
{May-2001)

0. What are the sequence ol transtormations required o rotale an abjectaboutan axis 12, | with
angle din clockwise direction ? (Dec-2007)

7. What are the propertics of concatenation ol transformations 2 Derive a 2-dimensiong|
transformation matrix for rotating o point P{x; yy} aboul a line y = mx + ¢. (May-2002)

8. [lustrate the rotation of a 3-13 object about an wribitrary axis with derivation, (May-2002)

9. Give Lhe sequence of transtormations reguired to reflect an object about the line y = mx + ¢,
Derive compuosite transformation matris for the same. (May-2003)

QQaq

I

7.1 Introdh,

In chaple
from the wor
Jdimensional
to how view
position : fro:
we woulld see
Another imp
though the o
the display d

In this
dimensional
paramelers a

7.2 Three

A menti
viewing Lro
abjects in the
into the view
because of th
the display

The mi=
projections.
shows the cc

In 3D vi
transformati
viewing oo
to convert 31
Finally, the
device coorc

-0 Concepts

vE 2% - 1),
(May-2001)
s 1y) with
{(Dec-2001)

dimensional
{May-2002)

{May-2002)

ey = MK+

(May-2003)

QQaQ

Three Dimensional Viewing,
Projection and Clipping

7.1-|r'|trocluctipn

- Inchapter 6, we have seen that two dimensional viewing operations transfer positions
from the world coordinale plane to pixel positions in the plane of display device, In three
dimensional viewing the situation is bit more complex, since we now have more options as
Lo how views are to be generated. First of all, we can view an object from any spatial
position : from front, from back or from above. Further more we can generate a view of what
we would see if we were standing in the middle of a group of objects or inside a single object.
Another important aspect must be considered in the three dimensional viewing is that cven
though the object is three dimeasional it must be projected onto the flat viewing sueface of
the display device.

In this chapter, we discuss the general operations required to generate three
dimensional viewing. ftincludes the study of parallet and perspective projections, viewing

parameters and three dimensional CHipping.

7.2 Three Dimensional Viewing

As mentioned earlier, the 3D viewing process is inherently more complex than the 2D
viewing process. In two dimensional viewing we have 2D window and 21 viewport and
objects in the world coordinates are clipped against the window and are then transformed
into the viewport for display. The complexity in added in the three dimensional viewing is
because of the added dimension and the fact that eventhough objects are three dimensional
the display devices are only 2.

The mismatch between 3D objects and 2D displays is compensated by introducing
projections. The projections transform 3D objects into a 212 projection plane. The Fig. 7.1
shows the conceptual model of the 31 transformation process.

In 3D viewing, we specify a view volume in the world coordinates using modelling
transformation. The world courdinate positions of the objects are then converted into
viewing coordinates by viewing transformation. The projection transformation is then used
to convert 3D description of objects in viewing coordinates to the 2D projection coordinates.
Finally, the workstation transformation transforms the projection coordinates into the
device coordinates.

(221)

Computer Graphics 222 Three Dimensional Viewing, Projection and Clipping

————

Modelling | Modelling World Viewing View
coordinales transformation coordinates transformation coordinates
Projeclion . Projection | Workstation Device
{ransformation coordinates transformation coordinates

Fig. 7.1 Conceptual model of 3D transformation process

7.3 Viewing Parameters

As mentioned earlier, we can view
Ve the object from the side, or the top, or
even from behind. Therefore, it is
necessary to choose a particular view for
a picture by first defining a view plane.
Yy X, A view plane is nothing but the fibm
\ i plane in a camera which is positioned
z, and oriented for a particular shot of the
Polxo- Y. Zo) scene. Workd coordinate positions in the
scene are transformed to viewing
w coordinates, then viewing coordinates
are projected onto the view plane. A
z, view plane can be defined by
establishing the viewing - coordinate
system or view reference coordinate
system, as shown in the Fig. 7.2

Fig. 7.2 Right handed viewing coordinate system

The first viewing parameter we must consider is the view reference point. This point is
the center of our viewing coordinate system. It is often chosen to be close to or on the surface
of some object in a scene. Its coordinates are specified as Xg, Yp and Zp.

The next viewing parameter is a view-plane normal vector, N. This normal vector is the
direction perpendicular te the view plane and it is defined as [DXN, DYN, DZN]. We know
that the view plane is the film in the camera and we focus camera towards the view reference
point. This means that the camera is pointed in the direction of the view plane normal. This
is illustrated in Fig. 7.3. (See on next page)

As shown in the Fig. 7.3, the view plane normal vector is a directed !ine segment from
the view plane to the view reference peoint. The length of this direcled line segment is
referred to as view - distance. This is another viewing parameter. It tells how far the camera
is positioned from the view reference point. In other words we can say that a view plane is
positioned view - distance away from the view reference point in the direction of the view
plane normal. This is illustrated in Fig. 7.4.

!

Computer G

a

VLA
referent
point

Assk
obiect, ar

1 Clipping

©Can view
the top, or
ore, it s
arview for
iew plane.
it the film
~0sitioned
shot ot the
onsin the

viewing
Jordinates

plance. A
fined by
roordinate
wordinate
2

us point is
he surface

ctor is the
We know
“reference
-mal. This

nent from
sgment is
1 camera
~ plane is
' the view

Computer Graphics 223

Three Dimensionat Viewing, Projection and Clipping

—
{ N
' W Camera
{
A
o™
1 \B
i : 4 ‘\\ \\f\a\ﬂ 360\0(\ -
View 1
reference ;]
poini — .___.1 __
ra
s
'
I
Object
Fig. 7.3 View reference point and view plane normal vector
Yy
View
4" plane
&
6'\9\'6“0 2y x
Yy \]'\e'\N’ \0{\ M
N
o‘d\a\
o
‘;\e
W o®
&
! o
1
1
LAY 1
reference :
poit T, __1___
v
g "
/ L
" Object
ZW

Fig. 7.4 3-D viewing parameters

As shown in the Fig. 7.4 we have world coordinate system which we used to model our
object, and we have view plane coordinates, which are attached to the view plane.

Computer Graphics 224 Three Dimensional Viewing, Projection and Clipping

Itis possible to obtain the different views by rotating the camera about the view plane
normal vector and keeping view reference pointand direction of N vector fixed, as shown in
the Fig. 7.5

e

Fig. 7.5 Rotating view plane

At different angles, the view plane will show the same scene, but rotated so that a
ditferent part of the object is up. The rotation of & camera or view plane is specified by a
view-up vector V [XUP YUP ZUP) which is another important viewing parameter.

We canalso obtain a series of views of a scene, by keeping the view reference point fixed
and changing the direction of N, as shown in the Fig. 7.6 changing the view plane normal
changes the orientation of camera or view plane giving different views.

N

V{view-up vector)

Fig. 7.6 Viewing object by changing view plane vector N

In this section we have seen viewing parameters such as view reference point, view
plane normal vector, view-distance and view-up vector. These parameters allow the user to
select the desired view of the object.

Computer G

7.4 Transf

The cony
achieved by
1. Transl

2. Apply

axes,

The view

coordinale ¢

Foralign
the direction
we can align
R:R.-R,. Th
Then, we rot:
the z,, axis t
reflection of «

Y

b

~

14
W

(a) Origina
Fig. 7.7 Al

Therefor

There is
matrix can b
vectors, the

nd Clipping
view plane
18 shown in

i so that a
Cified by a
or.

point fixed
e normal

SNt view
he user to

Computer Graphics 225 Three Dimensional Viewing, Projection and Clipping

7.4 Transformation from World Coordinate to Viewing Coordinates

The conversion of object description from world coordinates to viewing coordinates is
achieved by following transformation sequence,
1. Translate the view reference point o the origin of the world coordinate system.
2. Apply rotations o align the x, v, and 7, axes with the world coordinale X Vo a0l 7,
axes, respectively.
The view point specified at world position (x,, Ypr 4p) can be translated 1o the workd
coordinate origin with the matrix transformation
P 0 0 07
0 1 0 0
0 0 | 0

Xp Y, 74]

1

P=P.7

Foralignrent of three axes we require the three coordinate-axis rotations, depending on
the direction we choose for N. [n general, if Nis notaligned with any world coordinate axis,
we can align the viewing and world coordinate systems with the transformation sequence
R, R, -R,. That is, we first rotate around the world x_. axis to bring z, into the x,, z,, planc.
Then, we rotate around the world Y axis to align the z,, and z, axes. Finally, we rotate about
the 2, axis to align the v, and y_ axes. In case of left handed view reference system, a
reflection of one of the viewing axes is also necessary. This is illustrated in Fig. 7.7.

Sjw Y, % Yu 5;w
\pzv
Yy
-)/ ~ — %
tw . 2y
{a} Original positions {b) Translation {c) 3 axes rotation

Fig. 7.7 Aligning of viewing and world coordinate axes using a sequence of translate - rotate
transformations
Therefore, the composite transformation matrix is given as
Te = T-R ‘R, R,
There is another way to generate composite rotation matrix. A co mposite rotation

matrix can be directly generated by calculating unit u, v, n vectors. If we know N and V
vectors, the unit vectors are caleulated as

N
n = ——=(n;,n,n,

IN|

Computer Graphics 226 Three Dimensional Viewing, Projection and Clipping

vxn

v]

= Uy) vEnxu=({vy, vy, vs)

This method of generating composite rotation matrix a utomatically adjusts the direction
of V so that v is perpendicular to n. The composite rotation matrix for the viewing
transformation is given as

U v, m
R = U, Vo nz

IUJ Vg 1y
LU {) 2y

— o o

#

This transforms u onto the world x,, axis, v onto the y,, axis, and n onto the 2

7

axis,
Furthermore, this matrix automatically performs the reflection necessary to. transform a
left-handed viewing system onto the right handed world system.

With second method, the compaosile transformation matrix is given as

T =T R

[%

7.5 Projections

After converting the description of objects trom world coordinates to viewing
coordinates, we can project the three dimensional objects onto the two dimensional view
plane. There are two basic ways of projecting objects onto the view plane : Paraliel p rojection
and Perspective projection.

7.5.1 Parallel Projection

[n parallel projection, z - coordinate is discarded and parallel lines from each vertex on
the object are extended until they intersect the view plane. The point of intersection is the
projection of the vertex. We connect the projected vertices by line segments which
correspond to connections on the original object.

View plane

Fig. 7.8 Parallel projection of an object to the view plane

As shown in the Fig. 7.8, a parallel 'projection preserves relative proportions of objects
but does not produce the realistic views.

7.5.2 Persj
The pers

preserve rele
parallel. Inst
projection r«
these conver
calculating tt
in the Fig. 7.¢

7.5.3 Type

Parallel
between the
the projectio
projection. €
types of par.

-

View plane
{front view)

(a}

— it

t Clipping

rdirection
: viewing

¢ 2, axis.
mstorm a

viewing
wnal view
rojection

vertex on
ion is the
ts which

of objects

Computer Graphics 227 Three Dimensional Viewing, Projection and Clipping

7.5.2 Perspective Projection

The perspective projection, on the other hand, produces realistic views but does not
preserve relative proportions. In perspective projection, the lines of projection are not
paraliel. Instead, they all converge at a single point called the center of projection or
projection reference point. The object positions are transformed to the view plane along
these converged projection lines and the projected view of an object is determined by
calculating the intersection of the converged projection lines with the view plane, as shown
in the Fig. 7.9. ,

View plane

Converged

projection
lines = "“}*....C enter of
projection

Fig. 7.9 Perspective projection of an object to the view plane

7.5.3 Types of Parallel Projections

Parallel projections are basically categorized into two types, depending on the relation
between the direction of projection and the normal to the view plane. When the direction of
the projection is normal {perpendicular}) to the view plane, we have an orthographic parallel
projection. Otherwise, we have an oblique parallel projection. Fig. 7.10 illustrates the two
types of parallel projection.

View plane

View
plane
normal

LY
)

View plane

View plane View plane
{front view) (side view)

{a} Orthographic paralle! projection {b} Oblique parallel projection

Fig. 7.10

Computer Graphics 228 Three Dimensional Viewing, Projection and Clipping

7.5.3.1 Orthographic Projection

As shown in Fig. 7.10 a), the most commaon types of orthographic projections are the
front projection, top projection and side projection. In all these, the projection plane (view
planc) is perpendicular to the principle axis. These projections are often used inengineering
drawing to depict machine parts, assemblies, buildings and so on.

The orthographic projection can display move than one face of an object. Such an
orthographic projection is called axonometric ofthographic projection. T uses projection
planes (view planes) that are not normal to a principle axis. They resemble the perspective
projection in this way, but differ in that the Toreshortening is uniform rather than being
celated to the distance from the center of projection. Parallelism of lines is preseryved but
angles are not. 'the most commonly used axonomelric orthographic: projection s the
sometric projection. '

1 he isometric projection can be generated by aligning the view plane so that it intersects
cach coordinate axis in which the object is defined at ithe same distance from the origin, As
shown in the Fig, 7.11, the isometric projection is obtained by aligning the projection vector
with the cube dingonal. It uses an useful property that all three principle axes are equally
(oreshortened, allowing measwrements along the axes to be made to the same seale (henee
the name : iso for equal, metric for measure).

Projeclion
plane

Projector

Projection
plane
normal

Fig. 7.11 Isometric projection of an object onto a viewing plane
7.5.3.2 Oblique Projection

An oblique projection is obtained by projecting points along paraliel lines that are not
perpendicular fo the projection plane. Fig. 7.10 (b} shows the oblique projection. Notice thal
the view plane normal and the direction of projection are not the same. The oblique
projections are further classified as the cavalier and cabinet projections. For the cavalier
projection, the direction of projection makes a 45°angle with the view planc. As a result, the
projection of a line perpendicular to the view plane has the same length as the line itsclf; that
is, there is no foreshortening. Fig. 7.12 shows cavalier projections of a unit cube witha = 45¢
and « = 30°

Computer G

When th
the resulting
viewing sur
more realis
perpendicul

7.5.4 Typ

The pe
projection g
are paralle
vanishing |
to the num
classified a
points or tt
perspective

d Clipping

nms are the
danc (view
ngineering

L Such an
projechion

wrspective

than being,
served bt
o iy the

Bintersects
origite As
Hon veclor
e egually
ale thenee

1t are not
Jotice that
w oblique
e cavalier
result, the
itsell; that
itha = 45¢

Computer Graphics 229 Three Dimensional Viewing, Projection and Clipping

300

45°

(a) (b

Fig. 7.12 Cavalier projections of the unit cube

When the direction of projection makes an angle of arctan (2} = 63.4°with the view plane,
the resulting view is called a cabinet projection. For this angle, lines perpendicular to the
viewing surface are projected at one-half their actual length. Cabinet projections appear
more realistic than cavalier projections because of this reduction in the length of
perpendiculars. Fig. 7.13 shows the examples of cabinet projections for a unit cube,

1/2 1/2

a 149

(2) {b)

Fig. 7.13 Cabinet projections of the unit cube

7.5.4 Types of Perspective Projections

The perspective projection of any set of parallel lines that are not parallel to the
projection plane converge to a vanishing point. The vanishing point for any set of lines that
are parallel to one of the three principle axes of an object is referred to as a principle
vanishing point or axis vanishing point. There are at most three such points, corresponding
to the number of principle axes cut by the projection plane. The perspective projection is
classified according to number of principle vanishing points in a projection : one-point, two
points or three-point projections. Fig. 7.14 shows the appearance of one-point and two-point
perspective projections for a cube.

Computer Graphics 230 Three Dimensional Viewing, Projection and Clipping
y — /
e - - //,
£
Ld
’,
ra
e
,
e
/ g
71
(a) (b
Coordinate) .
: One-point
description perspective
projection
- f"- — .
X axis L "o X axis
vanishing . |~ vanishing
point point

{c}
Two-point
perspective
projection

:

Fig. 7.14 Perspective projections

The Fig.7.15 summarizes the logical relationship among the various types of projections

Planar geometric

projections
Parallel Perspeclive '
Orthographic Oblique One Two Three
I -point -point -point
Top Front Axonometric Side
{plan) (elevation) elevation
Cabinet Cavalier Other
1somelric Other

Fig. 7.15

computer G
i ———— A e

7.5.5 Tran:
7.5.5.1 On

Py(X4. ¥4, 24}
-

Point on the

objecl/

4
b

For prc

Substit

The ab

orint

This i

Here,

nd Clipping

>f projections

Computer Graphics 231

Three Dimensional Viewing, Projection and Clipping

7.5.5 Transformation Matrices for General Parallel Projection

7.5.5.1 On XY Plane

View plane

Pa(x4, ¥1. 24} /

.,..--"’“"‘32 {XZ, Yzl 0)

| Projected point

-V = xpl *ypd+ sz

Paint on the -
object
z
Fig. 7,16
Y2 = N # yP u

In a general parallel projection, we
may select any direction for the lines of
projection. Suppose that the direction of
projection is given by the vector [x, y,
z,] and that the object is to be projected
onto the xy plane. If the point on the
object is given as (x|, y,, ;), then we can
determine the projected point (x,, y,) as
given below :

The equations in the parametric
form for a line passing through the
projected peint (x,, y, z,) and in the
direction of projection are given as

For projected point z, is 0, therefore, the third equation can be written as,

0 =2z+z,u

_zl
z

u =
P

Substituting the value of u in first two equations we get,
Xp = X X, (-2,/2;) and
Y = 1+Y, (-2,/2)
The above equations can be represented in matrix form as given below :

X2 ¥2) = [x¥12)]

1 0
0 1

~Xp/2p ~Yr[2p

or in homogeneous coordinates we have,

[x; v 2 1)

[x; ¥, 2, 1}

ie. P, = P,-Par,

I

0
XpfZp Y /Zp
0

1 0
1

o o o o
| e T e I

0

This is the general equation of parallel projection on xy plane in matrix form.

Here, we ignore the value of z, when drawing the projected irnage.

Computer Graphics

232

Three Dimensional Viewing, Projection and Ciipping

7.5.5.2 On Given View Plane

\7\'

Pallinn

V=xl+ ygd+ z,K
P1{x1. ¥1. Z4)

27 View
plane Ry

N=ngf+ngd + nzK

Py{X2. ¥2. 23}

Fig. 7.17

From the above
transformation matrix we can
derive the general equation of
parallel projection onto a given
view plane instead of xy plane in
the direction of a given vector
VX, Ypr z,) as follows :

Let us consider that R is the
view reference point, P, is the
object point and P, is the
projected point. Now perform
the following steps :

1. Translate the view reference point R, of the view plane to the origin using the
rranslation matrix T.

2. Perform an alignment transformation R, 50 that the view normal vector N of the view
plane points in the direction K, the normal to the xy plane.

3. Project point P, on to the xy plane.

4. Perform the inverse of steps 2 and 1.

Par\,l_N’Ru = T'ny‘Par\, R;)l('T_

S

1 o o o] | IN|
10 1 o of MRz Na
o o 1 o |[MNI *
—Xs Yo TZg 1 MNI 'y
1] 0

L

[-mn, -myng]
IN| AN} AMN| 1 9
g M M2 g 10 1

Y A

Mmoo N g 00
IN| [N IN| Xoo Yo

| O 0 0 1

n,

NO 1 0 00
n,ogl o0 1 00
IN| ﬂyf’oo
N3 ol 1% Zp
|Nl 0 0 01
0 1

0 0

0 0

I 0

z, 1

This is the general equation of parallel projection on the given view plane in matrix

form.

Computer Graj

7.5.6 Transf«

Oblique pr
prescribes the r
the projection.’
plane makes w

To find the
From Fig. 7.18,
of vector B P,

Comparing

we gef,

~Using rest

This is the g

and Clipping

above
"X we can
tquation of
nto a given
{xy planein
siven vector
W5 !

that R, is the
i, P, is the
P, is the
nw perform

- using the

N of the view

¢ 00
1 00
Yp 0
Zgo :
0 01

1€ in matrix

Computer Graphics 233 Three Dimensional Viewing, Projection and Clipping

7.5.6 Transformation Matrix for Oblique Projection onto xy Plane

Oblique projections to the xy plane can be specified by a number f and an angle. Here f
prescribes the ratio that any line L perpendicular to the xy plane will be foreshortened after
the projection. The angle 8 is the angle that the projection of any line perpendicular to the xy
plane makes with positive x axis.

To find the projection transformation, we need to determine the direction vector V.
From Fig. 7.18, with line L of length I, we choose vector V to have the direction same as that
of vector P, P,.

Py(Xp. Yo, 0)
¥z
m X

Fig. 7.18
Comparing with
V = XPI+yPI+ZI’K

we get,
Xp = X, =fcos
¥p = Yo=fsind
z, = -1

P
~Using result of previous article, we have

1 0 00

p 0 1 00

ar, = | fcosB fsin® 0 0
{ !

0 0 0 1

This is the general form of an oblique projection onto the xy plane.

Computer Graphics 234

Three Dimensional Viewing, Projection and Clipping

7.5.7 Transformation Matrix for Perspective Projection

Let us consider the center of T
projection i at P(x. Yo zJ and the
point on object is P(x;, y1, 21 then the

parametric equation for

containing these points can be given as

| ot S

line P, (%, ¥1. 2,) View plane

| Projected point

Poini on the \/ P,(xy, ¥ 0)

X; = X 4 (X~ x)u object] Gentes of
Yo=Yty - YJu . \pr?jhe;ction PolXe Ve 20)
o=z +{z)-z)u
For projected point 2z, is 0, z
therefore, the third eq.uatlon can be Fig. 719

writben as

¢

Ll

ze+{zy -2z

4,

zZ, -2

[

Substituting the value of w in first two equations we get,

X4

The above equations can be
below :

[x2 ¥, Z2 1= Ix yi % 1]

Xy =X,
= X -% 1 ¢
Z, - Z.
_ XZL T XeZe ~ X2 F XZe
Zy —Z,
X.Z X112
- [and! 1<c and
21— 2
-
_ Yi'Yc
- YC_ZE
2y —Z,
— yczl_YCzc_YIzc+YCzc
Zy — 2,
I T At
Z ~ 2,

represented in the homogeneous matrix form as given

-z, 0 0 0
0 -z. 0 O
x. Yy 0 1
0 0 0 -z

Here, we have taken the center of projection as PdX. Yo 2o)- If we take the center of
projection on the negative z-axis such that

Computer Gr

Py (x4,
Point ¢
the obj

Aqlxq, O,

Thus we

7.6 Three

In chapi
in two-dim
clipping vo
are a rectan,
a truncated
volumes. T1
yon {far).

1 and Clipping

»0int
0)

r.of
lion P{x. Yer 2)

orm as given

the center of

Computer Graphics 235 Three Dimensional Viewing, Projection and Clipping

x =0
y =0
z = -2
ie. PA0,0, - z) then we have

¥

P1 (X1. y1,’21) V|ew

Point on "“"-"---.EZ_E? Y2 %2) plane

the object Pt AP, OA, ~ AP BA,

]
P.(0,0, -z) S %= X e
- Z1 + Zc

""" Cenler of projection
Ay @"fz;}l'gr//zc Similarly,

o e y2= y1 ZC‘
2yt 24
Fig. 7.20
Xy = 2K
B Z.+24
Zl.‘
Y2 = EDAR
z.+2z
Z, = 0 _
Thus we get the homogeneous perspective transformation matrix as
z. 0 0 O
¢ z. 00
X z, 1]= [x z, 1 N
[2)’22][|Y:110001
0 0 0 =z

7.6 Three Dimensional Clipping

In chapter 6, we have seen the concept of window, which served as clipping boundary
in two-dimensional space. In three dimensional space the concept can be extended to a
clipping volume or view volume. The two common three dimensional clipping volumes
are a rectangular parallelepiped, i.e. a box, used for parallel or axonometric projections, and
a truncated pyramidal volume, used for perspective projections. Fig. 7.21 shows these
volumes. These volumes are six sided with sides : left, right, top, bottom, hither (near), and
yon (far).

Computer Graphics 236 Three Dimensional Viewing, Projection and Clipping

y N/
Yon Lom] T Yon - lTUp 7
1 s s
1 £
L .
1 [melen mu—— "X
/(!’f’ :
AR ; —— Right
tet—1 7/ | Right | eft S
AN !
/ - Bottom z “—— Bottom
: Hither : Hither
{(a) Parallel {b) Perspective
Fig. 7.21

The two-dimensional concept of region codes can be extended to three dimensions by
considering six sides and 6-bit code instead of four sides and 4-bit code. Like
two-dimension, we assign the bit positions in the region code from right to left as

Bit 1 =1, if the end point is to the left of the volume
Bit 2

Bit 3 =1, if the end point is the below the volume

1, if the end point is to the right of the volume

Bit 4 = 1, if the end point is above the volume
Bit 5 =1, if the end point is in front of the volume
Bit 6 = 1, if the end point is behind the volume

Otherwise, the bit is set to zero. As an example, a region code of 101000 identifies a point
as above and behind the view volume, and the region code 000000 indicates a point within
the view volume.

A line segment can be immediately identified as completely within the view volume if
both endpoints have a region code of 000000. If either endpoint of a line segment does not
have a region code of 000000, we perform the logical AND operation on the two endpoint
codes. If the result of this AND operation is nonzero then both endpoints are outside the
view volume and line segment is completely invisible. On the other hand, if the result of
AND operation is zero then line segment may be partially visible. In this case, it is necessary
to determine the intersection of the line and the clipping volume.

We have seen that determining the end point codes for a rectangular parallelepiped
clipping volume is a straight forward extension of the two dimensional algorithm.
However, the perspective clipping volume shown in Fig. 7.21(b) requires some additional
processing. As shown in the Fig. 7.21(b), the line connecting the center of projection and the
center of the perspective clipping volume coincides with the z axis in a right handed
coordinate system.

Computer Gra

+Z

-—-—E
Zc

Fig.7.22 sl
which represe

where

This equat
right, onor to|
the volume. 5
following resu

fp =%

ind Clipping

e

- Right

nenstons by
code. Like
as

tifies a point
»oint within

w volume if
nt does not
o endpoint
outside the
he result of
is necessary

allelepiped

algorithm.
» additional
don and the
sht handed

Computer Graphics 237

Three Dimensional Viewing, Projection and Clipping

P X
NS oo
Center of
(projection Hither -a—— Yan
+Z } } } - -7
Ze P2 Zy
Right
*r

(a) X

I

f’
- P-;

(b}

Fig. 7.22

Fig. 7.22 shows a top view of the perspective clipping volume. The equation of the line
which represents the right hand plane in this view can be given as

where

Z-2¢
X = ——=Xg=2¢,+,
Zy —2¢
X
o, = —& anda, =~ 2
Zy —Z¢

This equation of right hand plane can be used to determine whether a point is to the
right, onor to the left of the plane, i.e., outside the volume, on the right hand plane, or inside
the volume. Substituting the x and y coordinates of a point P into x - z a; ~ at, gives the

following results

fr=x-z0;-a, >0

if P is to the right of the right plane
=0 if P is on the right plane
< 0 if P is to the left of the right plane

Computer Graphics 238

Three Dimensional Viewing, Projection and Clipping

Similarly, we can derive the test functions for the left, top bottom, hither and yon planes,

Table 7.1 shows these test functions.

Plane Test functions with Results
Right fr=x-20,-0t,; >0 if P is to the right of the right plane
=0 if P is on the right plane
) <0 if P is to the left of the right plane
~ where ‘a, = Z:l(zc and o,=-a; %
Left fL- =x—-z8,-B < 0 if Pis to the left of the left plane
=0 if Pis on the left plane
>0 if P is to the right of the left plane
where B, = ZYX_I‘ZC and B, = - B, z¢
Top fr=y-zy,-v2 >0 if P is above the top plane
=0 if P is on the top plane
<0 if P is below the top plane
where Y= zyy—TzC and y, =-7; 2¢
Bottom fy=y-28,-8, <0 if P is below the bottom plane
=0 if P is on the bottom plane
>0 if P is above the bottom plane
where 8,=2zc andd,=-5 2z
Hither fy=2-2y >0 if P is in front of the hither plane
=0 if P is on the hither plane
<0 if P is behind the hither plane
Yon f,=z~2, <0 if P is behind the yon plane
=0 if Pisonthe yon plane
>0 if Pis in front of the yon plane

Table 7.1 Test functions for six planes of clipping volume

Computer

7.7 Thre«

Inthe |
segments w
line segme
visible. For
volume, Tt
algorithm.
6.32.2.

Algorithm :

1. Find
volu

2. Chec.
a)Ife
lir

b} If ¢
lir

c) If ¢
pa

3. Divi¢
subc¢
segn

4. Stop.

Solved Exar
Ex.71:

Sol. :

1d Clipping

yon planes,

" plane

slane

iane

plane

e

e

dane

]

Computer Graphics 239 Three Dimensional Viewing, Projection and Clipping

7.7 Three - Dimensional Midpoint Subdivision Algorithm

In the previous section, we have seen how to identify location of the end points of line
segments with respect to clipping volume. Once this process is over we can determine which
line segments are completely visible, which are completely invisible and which are partially
visible. For partially visible segment we have to determine the intersection with clipping
volume. This can be achieved with the help of three - dimensional midpoint subdivision
algorithm. It is an extension of 2D midpoint subdivision algorithm discussed in section
6.3.2.2.

Algorithm :

1. Find the locations of endpoints (endpeint codes) of line segments with respect to clipping
volume (using test functions in case of perspective clipping volume)

2. Check visibility of each line segment

a} If codes for both endpoints are zero then the line is completely visible. Hence draw the
line and go to step 4.

b) If codes for endpoints are not zero and the logical ANDing of them is also nonzere the
line is completely invisible, so reject the line and go to step 4.

¢) If codes for two endpoints do not satisfy the conditions in 2 a) and 2 b) the line is
partially visible.

3. Divide the partially visible line segments in equal parts and repeat steps 1 and 2 for
subdivided line segments until you get completely visible and completely invisible line
segments. Draw the visible line segment and discard the invisible one.

4. Stop.
Solved Examples

Ex.7.1: Under the standard perspective, what is the projected image of
a) a point in the plane z = - z,
b) the line segment joining P, (1, -1, -3 z) to P, (3, 1, 0)
Sol.:

- X

P4(1, -1, -32,)

Fig. 7.23

Computer Graphics 240 Three Dimensional Viewing, Projection and Clipping

a) The plane z = — z, is the plane parallel to xy view plane and isata distance of z, units
from it. The centre of projection P (0, 0, -) lies on the piane. If P(x, y, -z} is any point in this
plane, the line of projection PP does not intersect the xy view plane. Thus P(x, y, - z) is said
to be projected out to infinity (=).

b) The given line P,P, passes through the plane 2 = —z_. The equation of the line is given

by .
x = 1+2t y=21+2t z=-3z +3zt

Applying the standard projection to the equation of the line, we get

z. 0 0 0
0 =z,

[1+2t -1+2t -32z.+3zt 1] 0 zo‘ 0 1 ={z +2zt -z +2z%t 0 -2z.+3zd]
0 0 06 =z

Changing to 3D co-ordinates, the equations of the projected line segment are
. = z . +2zZ.t _ 1+2¢
-2z +3z .t ~2+3t
-z +2z b -1+2t
y = -2z, +3z.t T 243t

z=0
Ex.7.2: Using the origin as the centre of projection, derive the perspective transformation onto the
plane passing through the point P, (x, vy, 2z, and having the normal vector
N=nI+ny] +n;K
Sol. : Let P, (X, Y1, z,) be projected onto P, (x,, y,, Z,). From Fig. 7.24 we see that
the line segments P,O and P,0 are along the same line. Hence there exists a constant
‘u' such that P,0 = uP,0. Comparing the corresponding components, we get

X, =UX;
Z; =u
¥

4 N = nyf + nd +naK

2
W/'

P1(x1' Y1v z‘.)

Rt Yoo 20)

Fig. 7.24

Computer

We no
equation

Puttingl
ny{w;

This pr
representat

Applica
gives Py(d, :
Polx ¥a. 2)

x; y, ¢

Ex.73: F
f

Sol: Tk
view plane
the view r
parameters .

and

So

=~ The prc

"Ex.7.4: D

pr

d Clipping
of z_ units

ointin this
- 2.) is said

ne is given

2z,+3zt)

ion onto the
mal vector

re see that
a constant

. ()

Computer Graphics 241 Three Dimensional Viewing, Projection and Clipping

We now find the value of u. As any point P, (x,, y,, z,} lying on the plane satisfies the
equation

N Xy + Nyy, + N3z, = d,
where dy = Xy + nyy, + 0y 2
Putting values of x,, y, and z, into the above equation, we have
n{u xp) + 0, (uy)) + 0, (uzy) = d,
dy
DXy + Mo Y + 42

u =

This projection transformation can be represented using homogeneous coordinate
representation for 3D points as follows

d, 0 0 n,

0 d 0 n

Pervi, =g o 4 n2
0 3

0 0 0 0

Application of this matrix to homogeneous representation P,(x,, y,, z,, 1) of point P,
gives Py(dy x;, dyyy, dpzy, nix; + n, ¥y, + ny2z,), whichis homogeneous representation of
Py(x,, 2 2,) found above i.e. in matrix form,

dg 0 0 n
0 dy 0 n
ba vy 2 1] ’ l=ldex dyyy dez my Xty Y+, Z))

0 0 dy n,
0 0 0 o0

Ex.7.3: Find the perspective projection onto the view plane z = z, where the centre of projection is

the origin 0(0, 0, 0).
Sol: The plane z = z_is parallel to xy plane and is z. units away from it. Thus

view plane normal N is same as normal vector k to the xy plane. i.e. N = K. Choosing
the view reference point as Ry0, 0, z.), then from the problem 7.2 we get the
parameters as

N (0, ny ng) = (0,0,1)

and Ry (Xo Yo- 2g) = (0,0, 2,)
So dy = nyxg + 0y, + N5z,
= ZC
~The projection matrix is
z. 0 00
0 0 0
Pery g, = Ze
’ 0 0 z. 1
0 ¢ 0 0

Ex.7.4: Derive the general perspective transformation onto a plane with reference point
Ro(xo, Yo o), normal vector N = n,I + n,] + n;K, and using C (a, b, ¢) as the centre of
projection, '

Computer Graphics 242 Three Dimensional Viewing, Projection and Clipping

Sol.: From Fig. 7.25 we sece that the line segments CP, and CP, are along the
same line. Hence there exists a constant 'u’ such that CP, = uCP,. Comparing the
corresponding components we have

X, = a+(x;—aju

Y, = b+(y,;-b)u
Z, = c+{z,-qu

¥ “

N=ngd+nd+nK
RolXps Yo Zp) ’
P10t ¥4.. 29)
V2. Z3)
Cla.b.)]

plane
F4
Fig. 7.25
Now P, (x5, ¥4, 2,) lies in the view plane,
N Xy +ny ¥, + Mz, =dg
where dg = nyXp+ Ny ¥+ N2,
“nyfa+(x;-aju]l+n,[b+{y,-blu]+nyfc+(z,-)ul=d,
- d
u =
ni{x; —a) +ny{y, -b)+n3(z; - ¢)

where d = d;~d,
ie. d = dy-(na + b + ny0)

To find the homogeneous coordinate matrix representation we proceed as follows

1. Translate the centre of projection C (a, b, c) so that it lies at the origin. Hence
o{%g = a, ¥o— b, 25 — ¢) becomes the view reference point of the translated plane.
The normal vector remains the same.

2. Project onto the translated plane using origin as centre of projection (Refer
problem 7.2)

3. Translate back to the original position.
PerN’ Ro: C = T M PQI‘N’ Ri} ‘T -l

i ' . . . N .
where R} is used as reference point in constructing projection Pery ¢,

ComEuter (

This is t
Ro(xp. Yo 20),
Ex.75: F

i

b

Sol. : a)
foreshorteni

This is th
b) A cabii

we have,

This is the

¢) Now tc
imatrix whose

d Clipping

along the
saring the

sllows

zin. Hence
ited plane.

ion (Refer

Computer Graphics 243 Three Dimensional Viewing, Projection and Clipping
1 0 0 0][d 0 0 n,/|[1 0 0 O
0 1 O 0ffod O n.|l0 10 0}
Pk =10 0 1 0|0 0 d ngilo 01 0
3
-a b - 1]10 0 0© Oﬂ_abclJ
d+an; bn, ¢, n, |
| an, d+bn, cn, nzl
- an, bn, d+cny ny
| —ad, -bd, -cdy, —d;

This is the general perspective transformation onto a plane with the reference point
Ry(X Y Zo), normal vector N and centre of projection C(a, b, ¢).
Ex.7.5: Find the transformation for
a) Cavalier projection with 9 = 45°
b) Cabinet projection with 6 = 30°

Sol.: a) A cavalier projection is an oblique projection where there is neo
foreshortening of lines perpendicular to the xy plane.
f=1
and 0 = 45° ... given
1 0 00
< 100
V2 V2
0 0 01

This is the cavalier projection transformation for 6 = 45°.

b) A cabinet projection is an oblique projection with f = '%. For 6 = 30°

we have,
1 0 00
p 0 1 0 0
av =181
4 4
0 0 01

This is the cabinet projection transformation for & = 30°.

c) Now to draw the projections, we first represent the vertices of the unit cube by a
matrix whose rows are homogeneous coordinates of the vertices

Computer Graphics 244 Three Dimensional Viewing, Projection and Clipping

AT [0 0 0 1]
B, 1001
G 11 01
D g1 01

vzl 1=

E, 0111
K 0011
G, 1 011

Hy) 11 1 1]

To draw the cavalier projection, we find the image coordinates by- applying the

transformation matrix Par,, to the coordinate matrix V.

A,
B,
G
D,
E, = V-Pary
F,
G,
[H; |
[0
1
1
| o
T yv2
/2
1+1/2
_l+1/~/§

Hence the image coordinates are

A, = (0,0,0)
B, = (1,0,0)
C, = (1,1,0)
D, = (0,1,0)

To draw the cabinet projection, we find the image coordinates by applying the

0
0
1
1
1+1/42
1/v2

1/42
1+1/¥2 0

L= S e T e B o R v Y e)

E, = (1/+2, 1 +1//2,0)

F, = (1/V2,1/42,0)
G,=(1+1/v2,1/v2,0)

H, = (1 +1/42,1+1/42,0)

transformation matrix Pary, to the coordinate matrix V.

Computer Gra

Hence the

Review Questic

1. Explain

2. Explain

3. Derive tt
4. Write a ¢
5. Write a ¢
6. Explain

7. Explain

8. Derive tl
9. Derive t]
10. What is
11. Explain

Computer Graphics 245 Three Dimensional Viewing, Projection and Clipping

-and Clipping

A,
BZ
G,
G = V. Par,
E,
F,
G,
[H: |
, 0 0 0 1
applying the] 0 0 1
1 1 0 1
| o T 01
| V34 1414 0 1
NETZ N V2 R
1+43/4 /4 0 1
1+3/4 1414 0 1

Hence the image coordinates are
A, = (0,000 E,=(/3/4,1+1/4,0)
B, = (1,0,0) F,=(+3/4, 1/4,0)
C, =10 G, =(1+3/414, 0
D, = (0,1,0) H,= (1++/3/4, 1+1/4,0)
Review Questions
1. Explain the 3D viewing process.

2. Explain various 3D viewing parameters.

3. Derive the 3D transformation matrix to transform world coordinates to viewing coordinates.
4. Write a short note on parallel projection.

5. Write a short note on perspective projection.

6. Explain various types of parallel projections.

7. Explain various types of perspective projections.

8. Derive the transformation matrix for general parallel projection.

9. Derive the transformation matrix for perspective projection.

10. What is the necessity of 3D clipping algorithm ?

v applying the 11. Explain midpoint subdivision algorithm for 3D clipping.

Computer Graphics

246

Three Dimensional Viewing, Projection and Clipping

University Questions

|
2

wd

6.

- Give a mathematicai deseription of the perspective projection.

- Write a detailed note on perspective projections

(Dec-96)

- Consider a cube of sice 5 units placed such that the co-ordinate axes s, y and z are along the

cube edges and the origin is at one corner of the cube. Assurme that the centre of projection
{COP) is at (0, 0 ~ d) and the view plane is the x y plane. Draw the projected image using
pv rspeclive transformations ford =5Sand d - 25. (Dec-96)

(May-97)

- With suitable example: wnd appropriate mathematical models, explain various perspective

crojections, {")ec-97, May-2000, Dec-2000)

. Consider a cube of side 10 units placed such that the co-ordinate axes x, v, and z are | araslel

alonyg the cube edges and the origin is at the centre of the cube,

Assume wiat the centre of projection (COP) is at 0, 0,- dy and the view planc is in the x-y
plane. Evaluate and draw the projected image using perspective transformation for d = 10
and d = 30. (Dec-97)

Differentiate between parallel and - erspective projection. Generate a homogeneous matrix
representation for oblique projection of co-ordinate position (x, y,) to position (x|, y) on the
view plane, {(May-98}

. Write a detailed note on three dimensional clipping w.r.t. view volumes.

(May-98, May-2000)

. What are different types of projection ? Derive an matrix representation for perspective

transformation ? What are different perspective anomalies ? (Dec-98)

Y. For an standard perspective projection with COP at (0, 0, - d), what is the projected image of -

10.

11.
12.

i) A point in the plane z =-d
i1) The line segment joining P, (-1, 1, - 2d) to P{2, - 2, 0) (Dec-98)

How normalised view volume is converted inte regular y -ped form ? What advantage we will
have, if the conversion takes place before clipping ? {Dec-98)

{Dec-98)

A irahedron of size 10 units is placed on xy plane with one edge along X-axis (+ ve) and one
vertex at origin. Assuming the tetrahedron to be opaque evaluate and draw projected image
if centre of projection is (10, 0, () (May-99)

3-dimensional view port ? How line clipping is done against it ?

. Compare parallel and perspective projections with reference to practical use only. (May-99}
- Identify the building blocks thak implement the 3D - viewing as shown below : (Dec-99)
. Compare and contrast parallel and perspective projection technic: tes. (Dec-99)

- A tetrahedron of size 10 units is placed on the x-y plane with one ed;re along the x-axis and the

origin at the centre of the object. Assuming the COP at (5, 0, 0), draw the projected image
using perspective projection transformation, (May-2000)

y

Computer Gra
__-__--_-
B ————

3D World

Sl
Coordinate
output
primitives
_—

17. Consider
cube ed
(COP) is
perspectt

18. ldentify

—_—

3D w

coordir

19. What are ¢
Orl'l‘lugona
xy plane,

20. Develop t
projection
A (150, 250

21. What do
orthograph
vanishing I

22. Define orth
Derive mat
23. Define the f.
Vanishing f

1d Clipping

(Dec-96)

are along the
r of projection
| image using

{Dec-96)

(May-97)

15 perspective
000, Dec-2000)

{7z arc; araslel

w is in the x-y
tion ford = 10
(Dec-97)

cnecus matrix
1(x,, y,yon the
{May-98)

y-98, May-2000)

for perspective
(Dec-99)

‘ted image of -

{Dec-98)

vantage we will
(Dec-98)

(Dec-98)

s (+ ve) and one
projected image

(May-99)
ronly. (May-99)
W (Dec-99)

(Dec-99)

ne x-axis and the
srojected image
(May-2000}

Computer Graphics 247

Three Dimensional Viewing, Projection and Clipping

3D World 2D
—] 1 - 2 3 4
Coordinate Device
oulput coordinales
primitives

Fig. 7.26

i7. Consider a cube of side 10 units placed such that the c-ordinate axes s, y and z are along the
cube edges and the origin is at one corner of the cube. Assume thal the contre of projection
{COM s at (0, 0~ d) and the view plane is the x v plane. Draw the projected image using
perspective transformations ford = 10.and d = 30 (Dyec-2000)

18. Identify the building blocks (hat implement the 3D-viewing as shown below. (May-2001)

3D World 2D
— 1 2 - 3 4 -
coordinat Device
coordinates
Fig. 7.27

19. What are different types of projections ? Generate a homogencous matrix representation for
orthogonal projection and oblique projection of co-ordinate position Pix, y, 2) on Lo the

xy plane, (May-2001)

20. Develop the perspective transformation of an object onto the xy plane with center of
projection at cop (100, 100, — 100). What will be the projection of a line segment
A (150, 250, 150) B(250, 350, 100} (Dec-2001)

21. What do you understand from the terms parallel projection, perspective projection,
orthographic projection, oblique projection, Cavalier projection, cabinet projection,
vanishing point, principal vanishing point ? (May-2002)

22. Define orthographic projection and oblique p'mjection‘

Derive mathematical model and transformation matrix for parallel projection. (May-2003)
23. Define the following terms :

Vanishing point, World coordinates, View volume, Homogeneous coordinates. (May-2003)

Qag

Hidden Surface Elimination Methods
3

8.1 Introduction

For generation of realistic graphics displays, we have to identify those parts of a scene
that are visible from a chosen viewing position. There are many algorithms called visible
surface algorithims developed to solve this problem. In carly days of computer graphics
visible surface algorithms were called hidden line or hidden surface algorithms.

Ina given setof 3D objects and viewing specification, we wish to determine which lines
or surfaces of the objects are visible, so that we can display only the visible lines or surfaces.
This process is known as hidden surfaces or hidden line elimination, or visible surface
determination. The hidden line or hidden surface algorithm determines the lines, edges,
surfaces or volumes that are visible or invisible to an observer located at a specific point in
space. These algorithms are broadly classified according to whether they deal with object
definitions directly or with their projected images. These two approaches are called
object-space methods or object precision methods and image-space methods,
respectively.

Object-space Method : Object-space method is implemented in the physical coordinate
system in which objects are described. It compares objects and parts of objects to each other
within the scene definition to determine which surfaces, as a whole, we should label as
visible. Object-space methods are generally used in line-display algorithms.

Image-Space Method : Image space method is implemented in the screen coordinate
system in which the objects are viewed. In an image-space algorithm, visibility is decided
point by point at each pixel position on the view plane. Most hidden line/surface
algorithms use image-space methods.

In this chapter we are going to study various visible surface detection or hidden line
removal algorithms, algorithms for octrees, algorithms for curved surfaces, and
visible-surface ray tracing.

(248)

Computer Gr:

8.2 Technic

e

We have s
Object precisi.
require to per
projections of
in case of inter
perform visik
visible-surface

8.2.1 Coher

The cohere
exhibit local siy
algorithms mo
calculations me
without change
we can use in v

* Object ¢

need to 1
faces or ¢

* Face coh

the comp
parts of t

* Edgecoh

or penetr

* Implied

intersecti

* Area coh

* Span coh
line, 1t is ¢
* Scanline
image typ
* Depth col
depth. Th
of the poi
increment
* Frame Co
likely to b
the calcul:

8.2.2 Perspec

Visible-surfa
destroys the dep
typically done af

‘thods

parts of a scene
s called visible
nputer graphics
ithms,

aine which lines
ines or surfaces,
- visible surface
the lines, edges,
specific point in
deal with object
ches are called
pace methods,

sical coordinate
cts to each other
should label as
15,

reen coordinate
bility is decided
en line/surface

2 or hidden line
surfaces, and

Computer Graphics 249 Hidden Surface Elimination Methods

8.2 Techniques for Efficient Visible-Surface Algorithms

We have seen that there are two basic approaches used for visible surface detection
Object precision algorithm and image precision algorithm. In both the algorithms we
require to perform a number of potentially costly operations such as determination of
projections of objects, whether or not they intersect and where they inlersect, closest object
in case of intersection and so on. To create and display picturedn minimum lime we have to
perform visible surface algorithms more efficiently. The techniques o perform
visible-surface algorithms efficiently are discussed in the following scctions.

8.2.1 Coherence

The coherence is defined as the degree to which parts of an environment or its projection
exhibit local similarities. Such as similaritics in depth, colour, texture and so on. To make
algorithms more efficient we can exploit these similarities (coherence) when we reuse
calculations made for one part of the environment or a picture for other nearby parts, cither
without changes or with some incremental changes. Let us sce different kinds of coberence
we can use in visible surface algorithms.

* Object coherence : If one object is entirely separate from another, comparisons may

need to be done only between the two objects, and not between their componenls
faces or edges.

* Face coherence : Usually surface propertics vary smoothly across a face. This allows
the computations for one part of face to be used with incremental changes to the other
parts of the face.

+ Edge coherence: The visibility of edge may change only when it crosses a visible edge
or penelrates a visible face.

* Impiied edge coherence : If onc planar face penetrates another their line of
intersection can be determined from two peints of intersection.

*+ Area coherence : A group of adjacent pixel is often belongs to the same visible face.

+ Span coherence : It refers to a visibility of face over a span of adjacent pixels onva scan
line. 1t is special case of arca coherence.

* Scan line coherence : The set of visible object spans determined For one scan line of an
image typically changes very little from the set on the previous line.

* Depth coherence : Adjacent parts of the same surface are typically same or very close
depth. Therefore, once the depth at one point of the surface is determined the degpth
of the points on the rest of the surface can often be determined by at the most simple
incremental calculation.

* Frame Coherence : Pictures of the same scene at two successive points in time are
likely to be quite similar, except small changes in objects and view ports. Therefore,
the calculations made for one picture can be reused for the next picture in a sequence.

8.2.2 Perspective Transformation

Visible-surface determination is done in a 3D space prior to the projection into 2D that
destroys the depth information needed for depth comparisons, and depth comparisons are
typically done after the normalizing transformation. Due to this projectors are parallel to the

Computer Graphics 250 Hidden Surface Elimination Methods

Z axis in parvalle]l projections or emanate from the origin in perspective projections. In
pavallel projection, when x; =x,and y, = y, we can say that points are on the same projector.
However, in perspective projection we have to perform four divisions : x, / z) =%, / 2, and
y; / %, = Y2 / 7> to determine whether the points are on the same projector. These divisions
can be avoided by first transforming a 3D object into the 3D screen-coordinate system, so
that the parallel projection of the transformed object is the same as the perspective projection
of the untransformed object.

8.2.3 Extents and Bounding Volumes

_ The Fig. 8.1 shows two objects
): with their projections and the
rectangular screen extents
swrrounding the projections,

It is easier to check the
overlapping of extents than the
projections, and we can say that
~ x| when extends are not overlapping
then projections are alse not
overlapping. Therefore, extents

Fig. 8.1 must be compared first and then

the projections must be compared

only if the extents are overlapped. This avoids unnecessary comparisons in checking the
overlapping of projections if extents are not overlapped.

Extents can be used to surround the object themselves rather than their projections; in
this case the extents become solid and are commonly known as bounding volumes. In this
case extents can be used to check whether two objects are overlapped or not.

Extents and bounding volumes are used not only to compare two objects or their
projections with each other, but also to determine whether or not a projector intersects an
object.

8.2.4 Back-Face Culling

— When an object is approximated
A B by a solid polyhedron, its polygonal
faces completely enclose its volume.
In such case, if none of the
polyhedron’s interior is exposed by
the front clipping plane, then those
polygons whose surface normals
H E point away from the observer lieon a
[—F part of the polyhedron whose
visibility is completely blocked by
other closer polygons, as shown in
z Fig. 8.2.

Fig.‘s.z Back face culling

Computer ¢

As show
front-facing
These in
technique t
Back-face C

8.2.5 Spat

In this t
number of ¢
coherent gr
detcrmining
the objects | y

When ot
suitable. Bec;

8.2.6 Hiera

In hierar
parent-child

rm——

—
Object B

Object £ Objec

F
belongs to tha

8.3 Hidden

In this sect
8.3.1 Roben

The earlies
of this algorith
this algorithm
removed using
compared with
there is at most
by any polyhec
two pieces of tt
polyhedron.

ition Methods

srojections. In
ame projector,
| =%/ Zy and
hese divisions
ate system, so
tive projection

~'s two objects
ong and the
en extents
jections.

o check the
ents than the
» can say that
ot overlapping
are also not
efore, extents
first and then
t be compared
n checking the

' projections; in
olumes. In this
.

sbjects or their
or intersects an

s approximated
1, its polygonal
ose its volume.
none of the
" is exposed by
ane, then those
irface normals
yhserver lieon a
redron whose
ely blocked by
18, as shown in

Computer Graphics 251 Hidden Surface Elimination Methods

As shown in the Fig. 8.2, polygons (A, B, D, F) shown in gray are eliminated, v “ore as
front-facing polygon (C, E, G, H} a=¢ retained.

These invisible back facing polygons can be eliminated from further processing. Such a

technique to eliminate the back facing polygon from further processing is known as
Back-face Culling.

8.2.5 Spatial Partitioning

In this technique, subdivision rule is applied to break down a large problem into a
number of smaller ones. In this objects and their projections are assigned to spatically
coherent groups as a preprocessing step. This partit ning speed up the process of
determining which object intersect with a projector. Because now it is necessary to test only
the objects lying within the partitions which intersect with projector.

When' objects are unequally distributed in space the adaptive partitioning is more
suitable. Because it allows variable size of cach partition.

8.2.6 Hierarchy

In hierarchical structure different levels are assigned to the object and their is a
parent-child relationship between the objects, as shown in the Fig. 8.3,

Ohest A . vl ‘ In ‘this Strl:lCtLlr(:, cach

child is considered as a

/\ part of its parent. This

) .) allows lo restrict the

Object B Object C ChjectD ----eoemeeme Level2| ber of object
/\ compatisons needed by a

Object E Object F Object H Object | -+~ Level 3| visible-surface algorithm.
Object G If the parent level object is

fail to intersect, the lower

Fig. 8.3 Hierarchical structure of objects level (child) objects

belongs to that parent do not need to be tested for intersection.

8.3 Hidden Line Elimination Algorithms

In this section we see some algorithms for hidden line elimination.
8.3.1 Robert's Algorithm

The earliest visible-line algorithm was developed by Roberts. The primary requirement
of this algorithm is that each edge be part of the face of a convex polyhedron. In the phase of
this algorithm the all edges shared by a pair of polyhedron’s back facing polygons are
removed using back-face culling technique. In the next phase, each remaining edge is
compared with each polyhedron that might obscure it. Because the polyhedra are convex,
there is at most one contiguous group of points on any line that is blocked from the observer
by any polyhedron. Thus each polyhedron either obscures the edge totally or causes one or
two pieces of the remain. Then any remaining pieces of the edge are compared with the next
polyhedron.

Computer Graphics 252 Hidden Surface Elimination Methods

8.3.2 Appel's Algorithm

Arthur Appel introduced the quantitative invisibility of a line. He defined the
quantitative invisibility as the number of potentially visible surfaces that lie between the
line segment and the ¢ »epoint. When a line passes behind a front facing polygon, its
quantitative invisibility is incremented by 1 and when it passes out from behind that
polygon, its quantitative invisibility is decremented by 1. A line is visible only when its
quantitative invisibility is 0. This is illustrated in Fig. 8.4. Here, line AB is annotated with the
guantitative invisibility of cach of its segments.

"

Fig. 8.4

Appel defined contour line as an edge shared by a front-facing and a back-facing
polygon, or unshared edge of a front facing polygon that is not part of a closed polyhedron.
An edge shared by two front-facing polygons causes no change in visibility and therefore is
not a contour line. In Fig. 8.4, edges AB, EF, FC, GK and GH are contour lines, whereas edges
ED, DC and GI are not. As shown in the Fig. 84 line AB begins with a quantitative
invisibility of zero, passes behind contour line EF, where the quantitative invisibility
increases to +1, then behind the contour line GH, where it increases to + 2. Passing behind
contour line GK reduces the quantitative invisibility to +1. The line then emerges from
behind contour line MN after which the quantitative invisibility is zero. It then passes
behind contour line OP where the quantitative invisibility increases to +1. When it passes
behind the contour IJ its quantitative invisibility is again zero. Therefore, the portions of line
AB (portions from A to the contour line EF, from contour line MN to OP and from contour
line 1] to B} with a quantitative invisibility of zero are visible.

A

Computer Gr:

8.3.3 Haloe

In many a
intensity or w
application hic
Appel, Rohlf, .
both sidey by ¢
the haloed lir
senticircular er

the segment w
e Thw

This clears t
track of those se
after the intersec
lines, then an efj

8.4 Hidden St

In this sectior

8.4.1 Painter's

The basicidea
polygons into the
process involves f

L. Sorting of P

2. Resolving a
splitting pc
3. Scan conver

on Methods

defined the
between the
. polygon, its
: behind that
mnly when its
.ated with the

{ a back-facing
vd polyhedron.
and therefore is
, whereas edges

a quantitative
tive invisibility
Passing behind
1 emerges from
. It then passes
When it passes
»portions of line
'd from contour

Computer Graphics 253 Hidden Surface Efimination Methods

8.3.3 Haloed Lines

In many applications the hidden lines are shown as dotted, dashed, lines with lower
intensity or with some other rendering style supported by the display device. But in such
application hidden lines are not totally suppressed. The haloed line algorithm described by
Appel, Rohlf, and Stein can suppress hidden lines. The algorithm surrounds each line on
both sides by a halo that obscures those parts of lines passing behind it. The Fig. 8.5 shows
the haloed line segment. Tt has a symmetrically placed rectangle of width 2H with
semicircular ends of radius H. If line A in Fig. 8.5 is closer to the viewpoint than line B, then
the segment within the halo, labeiled C, is not drawn.

2H

Fig. 8.5 Haloed line segment

This clears that the algorithm intersects cach line with those passing in front of it, keeps
track of those sections that are obscured by halos, and draws the visible scctions of each line
after the intersections have been calculated. If the halos are wider than the spacing between
lines, then an effect similar to conventional hidden-line elimination is achieved.

/

~=

n— [TS <= 71 1

Fig. 8.6 Hidden lines elimination by Haloed line algorithm

! I!ﬂl"ili

I I

8.4 Hidden Surface Elimination Algorithms

In this section we see some algorithms for hidden surface elimination.

8.4.1 Painter's Algorithm (Depth Sort Algorithm)

The basic idea of the painter’s algorithm developed by Newell and Sancha, is to paint the
polygons into the frame buffer in order of decreasing distance from the viewpoint. This
process involves following basic functions.

1. Sorting of polygons in order of decreasing depth.

2. Resolving any ambiguities this may cause when the polygon’s z extents overlap, i.e.,
splitting polygons if necessary.

3. Scan conversion of polygons in order, starting with the polygon of greatest depth.

Computer Graphics 254 Hidden Surface Elimination Methods

The algorithm gets its name from the manner in which an oil painting is created. The
artist begins with the background. He then adds the most distant object and then the nearer
objectand so forth. There is no need to erase portions of background; the artist simply paints
on top of them. The new paint covers the old so that only the newest layer of paint is visible.
This is illustrated in Fig. 8.7.

o| [%] m

Fig. 8.7 Painter’s algorithm

Using the similar technique, we first sort the polygons according to their distance from
the view point. The intensity values for the farthest polygon are then entered into the frame
buffer. Taking each polygon is succeeding polygon in turn (in decreasing depth order),
polygon intensities are painted on the frame buffer over the intensities of the previously
processed polygons. This process is continued as long as no overlaps occur. If depth overlap
is detected by any point in the sorted list, we have to make some additional comparisons to
determine whether any of the polygon should be reordered. We can check whether any
polygon Q does not obscure polygon P by performing following steps :

1. The z-extents of P and Q do not overlap, i.e. Z .., < Zp min (se€ Fig. 8.8 (a))

2. The y-extents of P and Q do not overlap (see Fig. 8.8 (b))

3. The x-extents of P and Q do not overlap

4. Polygon P lying entirely on the opposite side of Q's plane from the view port. (see
Fig. 8.8 (c))

5. Polygon Q lying entirely on the same side of P's plane as the viewport. (see
Fig. 8.8 (d)).

6. The projections of the polygons P and Q onto the xy screen do not overlap.

If all these five tests fail, we assume for the moment that P actually obscures Q, and
therefore test whether Q can be scan-converted before P. Here, we have to repeat tests 4 and
5 for Q. If these tests also fail then we can say that there is no order in which P and Q can be
scan converted correctly and we have to split either P or Q into two polygons. The idea
behind the splitting is that the splitted polygons may not obscure other polygon.

Algorithm
1. Sortall polygons in order of decreasing depth.

2. Determine all polygons Q (preceding P) in the polygon list whose z-extents overlap
that of P.

3. Perform test 2 through 6 for each Q

Comguter

a)l
b) 1

Z¢

Z exter
of Qb _

0
Screen dispta

v

8.4.2 Scan

A scan lir
method. It is
algorithm de:
polygon surfe
calculation ar
intensity valu

on Methods

created. The
n the nearer
imply paints
intis visible.

distance from
into the frame
depth order),
he previousiy
depth overlap
OMPArisons o
. whether any

(a})

view port. (see
viewport. (see

arlap.
bscures Q, and
peat tests 4 and

Pand Qcanbe
'gOonNs. The idea

ygon.

its overlap

Computer Graphics 255

Hidden Surface Elimination Methods

a} [f every QO passes the tests, scan convert the polygon P.

b} If test fails for sume Q, swap P and Q in the list, and make the indication that Qis
swapped. If Q has already been swapped, use the plane containing polygon I to divide
polygon Q into two polygons, Q, and Q,. Replace Q with Q, and Q,. Kepeat step 3.

Y3 rd

- ————

z extent of P

ZPmin * ZOmax

ZPmin——fa - m e el D
ZQmax -
z extent Q
of Q -
Le 1| r |
0
Screen display of Q Screen display of P

"t
/A
7 v
S s
Fa ra
/, s £ 4
r 4
P
’ ray
s
Q)
0
{c)

Y4 z
P
Iy extent of P
mein
Y& max
Q
1 y extent of Q
meln I P
Yo max] @
o - X
(b
¥ /z
P plane
Q
Q
0 - X

{d)

8.4.2 Scan Line Algorithm

Fig. 8.8

A scan line method of hidden surface removal is an another approach of image space
method. It is an extension of the scan line algorithm for filling polygon interiors. Here, the
algorithm deals with more than one surfaces. As each scan line is processed, it examines all
polygon surfaces intersecting that line to determine which are visible. It then does the depth
calculation and finds which polygon is nearest to the view plane. Finally, it enters the
intensity value of the nearest polygon at that position into the frame buffer.

sr Graphics 256 Hidden Surface Elimination Methods

- know that scan line algorithm maintains the active edge list. This active edge list
N ns only edges that cross the current scan line, sorted in order of increasing x. The scan
line method of hidden surface removal also stores a flag for each surface that is set on or off
to indicate whether a position along a scan line is inside or outside of the surface. Scan lines
are processed from left to right. At the leftmost boundary of a surface, the surface flag is
turned ON; and at the rightmost boundary, it is turned OFF.

The Fig. 8.9 illustrates the scan line method for hidden surface removal. As shown in the
Fig. 8.9, the active edge list for scan line 1 contains the information for cdges AD, BC, EH and
FG. For the positions along this scan linc between edges AD and BC, only the flag for surface
S, is ON. Therefore, no depth calculations are necessary, and intensity information for
surface S, is entered into the frame buffer. Similarly, between edges EH and FG, only the
flag for surface S, is ON and during that portion of scan line the intensity information for
surface S, is entered into the frame buffer.

For scan line 2 in the Fig. 8.9, the
active edge list contains edges AD,
A B EH, BC and FG. Along the scan line 2
from edge AD to edge EH, only the
flag for surface S, is ON. However,
between edges EH and BC, the flags
for both surfaces are ON. In this
portion of scan line 2, the depth
D c calculations are necessary. Here we
have assumed that the depth of 5, is
"X less than the depth of S, and hence
the intensities of surface S, are
loaded into the frame buffer. Then,
for edge BC to edge FG portion of
scan line 2 intensities of surface S, are entered into the frame buffer because during that
portion only flag for S, is ON.

8.4.3 Z-Buffer Algorithm

One of the simplest and commonly used image space approach to eliminate hidden
surfaces is the Z-buffer or depth buffer algorithm. It is developed by Catmull. This
algorithm compares surface depths at each pixel position on the projection plane. The
surface depth is measured from the view plane along the z axis of a viewing system. When
object description is converted to projection coordinates (X, y, z), each pixel position on the
view plane is specified by x and y coordinate, and z value gives the depth information. Thus
object depths can be compared by comparing the z- values.

Y &

————————— Scan line 1

B —-———— Scanline 2

Fig. 8.9 Wlustration of scan line method of hidden
surface removal

The Z-buffer algorithm is usually implemented in the normalized coordinates, so that z
values range from 0 at the back clipping plane to 1 at the front clipping plane. The
implementation requires another buffer memory called Z-buffer along with the frame buffer
memory required for raster display devices. A Z-buffer is used to store depth values for each

Computer ¢

If the calcula:
value i3 store
same xy loca

Forexam
position (x, y
Z-buffer Algo

1. Initial

Z-bufi

2. Durin
values

Calcul

fz>:

Z-buf
3. Stop

Note that,
intensity vaiu
Z-buffer cont:
corresponding

To calcula

is used w

constants desc

Therefore,

Note, if at

on Methods

ive edge list
g x. The scan
.set on or off
-e. Scan lines
irface Hag is

shown in the
v, BC, EH and
1g for surface
ormation for
FG, only the
‘ormation for

e Fig. 8.9, the
s edges AD,
the scan line 2
EH, only the
IN. However,
. BC, the flags
ON. In this
2, the depth
sary. Here we
depth of S, is
S, and hence
irface S, are
buffer. Then,
FG portion of
se during that

minate hidden
Catmull. This
won plane. The
-system, When
position on the
armation. Thus

inates, so thatz
ing plane. The
he frame bufter
_values for each

Computer Graphics 257 Hidden Surface Elimination Methods

Y, {x, y) position as surfaces are
processed, and the frame buffer stores
the intensity values for each position.
Atthe beginning Z-buffer is initialized
to zero, representing the z-value at the
back clipping plane, and the frame
buffer is initialized to the background
colour. Each surface listed in the
display file is then processed, one scan
line at a time, calculating the depth
{z-value) at each (x, y) pixel position.

“The calculated depth value s

Fig. 8.10 compared to the value previously
stored in the Z-buffer at that position.

If the calculated depth values is greater than the value stored in the Z-buffer, the new depth

value is stored, and the surface intensity at that position is determined and placed in the

same xy location in the frame buffer.

83 52

Forexample, in Fig. 8.10 among three surfaces, surface S| has the smallest depth at view
position (x, y) and hence highest z value. So it is visible at that position.
Z-buffer Algorithm
1. Initialize the Z-buffer and frame buffer so that for all buffer positions
Z-buffer (x, y) = 0 and frame-buffer (x, ¥} = hyepcound

2. During scan conversion process, for each position on each polygon surface, compare depth
values to previously stored values in the depth buffer to determine visibility.

Calculate z-value for each (x, y} position on the polygon
If z > Z-buffer (x, y), then set

Z-buffer (x, y} = z, frame-buffer (x, y) = L . (X, ¥)
3. Stop
Note that, I, rnna i the value for the background intensity, and I, (., is the projected
intensity value for the surface at pixel position (x, y). After processing of all surfaces, the

Z-buffer contains depth values for the visible surfaces and the frame buffer contains the
corresponding intensity values for those surfaces.

To calculate z-values, the plane equation
Ax+By+Cz+D =0

is used where (x, y, z) is any point on the plane, and the coefficient A, B, C and D are
constants describing the spatial properties of the plane. (Refer Appendix A for details)

Therefore, we can write
_ -Ax-By -D
C
Note, if at (x, y) the above equation evaluates to z,, then at (x + Ax, y) the value of z, is

Z

Computer Graphics 258 Hidden Surface Elimination Methods

Z = % (Ax)

Only one subtraction is needed to caleudate z{x + 1, y), given z(x, y), since the quotient
A/C is constant and Ax = 1. A similar incremental calculation can be performed to
determine the first value of 2 on the next scan line, decrementing by B/C for each Ay,

Advantages
1. It is casy to implement.
2. It can be implemented in hardware to overcome the speed problem.

3. Since the algorithm processes objects one at a time, the total number of polygons ina
picture can be arbitrarily large.
Disadvantages

1. It requires an additional buffer and hence the large memory.
2. It is a time consuming process as it requires comparison for cach pixel instead of for
the entire polygon.
8.4.4 Warnock's Algorithm (Area Subdivision Algorithm)

An interesting approach to the hidden-surface problem was developed by Warnock. He
developed area subdivision algorithim which subdivides each area into four equal squares.
At each stage in the recursive-subdivision process, the relationship between projection of
each polygon and the area of interest is checked for four possible relationships :

1. Surrounding Polygon - One that completely encloses the (shaded) area of

interest (see Fig. 8.11 (a}))
2. Overlapping or Intersecting Polygon - One that is partly inside and partly
outside the area (see Fig. 8.11 (b))

3. Inside or Contained Polygon - One that is completely inside the area
{see Fig. 8.11 (c)).

4. Outside or Disjoint Polygon - One that is completely outside the area
(see Fig. 8.11 (d}).

(a) Surrounding {b) Overlapping = (c) Inside or Contained (d) Outside or Disjoint

Fig. 8.11 Possible relationships with polygon surfaces and the area of interest

After che

1. If all the

in the ;

2. 1f there
filled w

areg is

3.1 there
then th

4. If there ¢
then wy

See Fig. 8.1

to the viewpoi
the colour of t}

—_—_—e

'ﬁ

However, Fi
intersecting pol
algorithm subdi
shown in the Fig
the other. But af
and polygon 2 is
corresponding c

The Warnocl
or when area is ¢

tion Methods

: the quotient
serformed 1o
sach ay.

polygonsina

instead of for

r Warnock. He
equal squares.
1 projection of

ps:
i) area of

and partly
1 (b))

the area

the area

N

e or Disjoint

terest

Computer Graphics 259 Hidden Surface Elimination Methods

After checking four relationships we can handle cach relationship as follows :

1. If all the polygons are disjoint from the arca, then the background colour is displayed
in the area.

2. If there is onty one intersecting or only one contained polygon, then the area is first
filled with the background colour, and then the part of the polygon contained in the
arca is filled with colour of polygon.

7
3. If there is a single surrounding polygon, but no intersecting or contained polygons,
then the area is filled with the colour of the surrounding polygon.

4. If there are more than one polygon intersecting, contained in, or surrounding the area
then we have to do some more processing,.

See Fig. 8.12. In Fig. 8.12 (a), the four intersections of surrounding polygon are all closer

to the viewpoint than any of the other intersections. Therefore, the entire area is filled with
the colour of the surrounding polygon.

- X - X
: * :
*Q ;Contamed polygon \9\Intersecting
,i: ’ O polygon
) : : Surrounding
: Q , [olygon
: : Intersecting : N pog
5 : lygon —
: 9 polys Area of interest
t;‘:é: Surrounding
polygon
i Area of interest i
z z
(a) v

Fig. 8.12

However, Fig. 8.12 (b) shows that surrounding polygon is not completely in front of the
intersecting polygon. In such case we cannot make any decision and hence Warnock's
algorithm subdivides the area to simplify the problem. This is illustrated in Fig. 8.13. As
shown in the Fig. 8.13 (a) we can not make any decision about which polygon is in front of
the other. But after dividing area of interest polygon 1 is ahead of the polygon 2 in left area

and polygon 2 is ahead of polygon 1 in the right area. Now we can fill these two areas with
corresponding colours of the polygons.

The Warnock's algorithm stops subdivision of area only when the problem is simplified
or when area is only a single pixel.

Computer Graphics 260

Hidden Surface Elimination Methods

Polygon 2

v o

Area of interest

Fig. 8.13
Algorithm
1. Initialize the area to be the whole screen.
2. Create the list of polygons by sorting them with their z-values of vertices. Don't
include disjoint polygons in the list because they are not visible.

Find the relationship of each polygon.

Perform the visibility decision test

a} If all the polygons are disjoint from the area, then fill area with background
colour.

b} If there is only one intersecting or only one contained polygon then first fill entire
area with background colour and then fill the part of the polygon contained in the
area with the colour of polygon.

¢) If there is a single surrounding polygon, but no intersecting or contained
polygons, then fill the area with the colour of the surrounding polygon.

d) If surrounding polygon is closer to the viewpoint than all other polygons, so that
all other polygons are hidden by it, fill the area with the colour of the surrounding
polygon.

e) If the area is the pixel (x, y), and neither a,b,c, nor d applies, compute the z
coordinate at pixel (x, y) of all polygons in the list. The pixel is then set to colour of
the polygon which is closer to the viewpoint.

5. If none of the above tests are true then subdivide the area and go to step 2.

Computer G

Advanta

1. It follo
to spe

2. Extrar

8.4.5 Back-

——

e

h

the light face is
face is hidden (

The directio

where

N : I

tion Methods

wes. Don't

ackground

st fill entire
ained in the

- contained
on.

sons, 50 that
urrounding

npute the z
t to colour of

p 2.

Computer Graphics 261 Hidden Surface Elimination Methods

Advantages

1 it follows the divide-and-conquer strategy, therefore, parallel computers can be used
to speed up the process.

2. Extra memory buffer is not required.

8.4.5 Back-Face Removal Algorithm

We know that a polygon hos two
surfaces, a front and a back, just as a
picee of paper does, We might picture

out polygons with one side painted
@ @ light and the other painted dark. But
the question is "how to find which
surface is light or dark”. When we are
looking — at the light surface, the
polygon wilt appear to be drawn with
counter clockwise pen motions, and
when we are tooking at the dark
surface the polvgon will appear to be
drawn with clockwise pen motions,
as shown in the Fig. 8.14.

Fig. 8.14 Drawing directions

Let us assume that all solid
objects are to be constructed out of
polygons in such a way that only the
light surfaces are open to the air; the
dark faces mecet the material inside
the object. This means that when we
look atan object face from the outside,
tt will appear to be drawn
N=(AB.C) - counterclockwise, as shown in the

— Ve—— B | Fig 8.15.

If a polygon is visible, the light

surface should face towards us and

Fig. 8.16 the dark surface should face away

from us. Therefore, if the direction of

the light face is pointing towards the viewer, the face is visible (a front face), otherwise, the
face is hidden (a back face) and should be removed.

1

- Fig. 8.15 Exterior surfaces are coloured tight
and drawn counter clockwise

The direction of the light face can be identified by examining the result
N.V >0
where

N: Normal vector to the polygon surface with cartesian components
(A, B, C).

Computer Graphics 262 Hidden Surface Elimination Methods

v A vector in the viewing direction from the eye (or “camera”} position
{Refor Fig. 8.16)

We know (hat, the dot product of two vector gives the product of the lengths of the two
vectors times the cosine of the angle between them. This cosine factor is important to us
because if the vectors are in the same direction (0 20 < 2), then the cosine is positive and the
overall dot product is positive. However, if the divections are opposite (72 < @ < x), then the
cosine asul the overall dot product is negative (Refer Fig. 8.17).

N
N
1)
o ‘\C\
A -y
cos >0 cos <0

Fig. 8.17 Cosine angles between two vectors

If the dot product is positive, we can say that the polygon faces towards the viewer;
otherwise it taces away and should be remaoved.

In case, il object description has been converted to projection coordinates and our
viewing direction is parallel to the viewing #, axis, then V = (0,0, V) and

V.-N =V C

So that we only have to consider the sign of C, the-Z componeat of the normal vector N.
Now, if the 7z component is positive, then the polygon faces towards the viewer, if negative,
il faces away.

Review Questions

1. Lxplain the two approaches used to determine hidden surfaces.
2. scuss the techniques for efiiciont visible-surface algorithims.

3. What is coherence ? Discuss various types of coherence that can be used to make visible
=urface algorithms more efficient.

4. Write a short note on

A Perspective transformation

b) Extents and bounding volumes

¢) Back-face culling
5. Explain the Robert's visible Hine algorithm,
6. Lxplain the Appel's visible line algorithm.
7. Explain the Haloed line algorithm.
8. Explain the painter’s algorithm for hidden surface removal.
9. Explain the scanline algorithm for hidden surface removal.
10. Explain the Z-buffer algorithun for hidden surface removal.
11. List the advantages and disadvantages of Z-buffer algorithm.
12. Explain any one area subdivision algorithin for visible surface detection.

13, Describe the back face removal algorithm.

Computer Gra
University Que
e

I What d¢
art algor
and dra

2. D(_'\fclol:

below -
- "

Commer:
method y
3. Apply an’
the result
4. Differenti
surface re

5. Explain s
shown be

6. Write a de-
7. Explain ho

8. Explain a-
9. Explain z-t

i‘on Methods

~a') position

‘s of the two
-nortant to us
witive and the

< m), then the

ds the viewer;

inates and our

armal vector N.
~er, if negative,

d to make visible

Computer Graphics 263 Hidden Surface Elimination Methods

University Questions

1. What do you understand by hidden ling and hidden surtace elimination lechniques ? Develop
an algorithm for any hidden surface algorithm of your choice. Clearly state its advantoges
andd drawbacks over vthers.) {Dec-96)

2. Develop an algorithm for removal ol hidden surfaces. Hlustrale this on the object shown
below - {Dec-96, Dec-2000)

Fig. 8.18

Comment on the advantages and disadvantages of vour method with respuect to any other
method you have studied.

3. Apply any hidden surface/hidden line algprithm on the above wire-frame model and draw
the resultant, assuming that the view point is at (0, 2h, Q) (May-97, Dec-97)

4. Differentiate between image space and object space. Explain painters algorithm for hidden
surface removal. {May-98)

5. Explain scan-line method for hidden surface removal and explain how it works for figure
shown below : (May-98)

Fig. 8.19

6. Write a detailed note on z-bufter method (May-98)

7. Explain how area subdivision method is used for hidden surface elimination.
(Dec-98, May-2001)
8. Explain a-buffer algorithm, state its advantages over z-buffer algorithm. (Dec-98)

9. Explain z-buffer method. (May-99)

Computer Graphics 264 Hidden Surface Elimination Methods

0. Compare and contrast bidden surface removal algorithms based <n object space and Linag

space approaches. (Dec-99)

11. Develop an appropriate hidden surface algorithm which is suitable for the above object.
{(May-2000)
12, Develop a program for the z-buffer technique. (May-2000)

13. Differentiate between image space and object space methods of hidden surface removal,
Lxplain 7 buffer method of hidden surface removal with reference 1o the folowing object.
{Dec-200M)

[4. xplain depth buffer methed of hidden surface removal in detail. {May-2001)
15 Apply scanline method of hidden sarface removal on the fullowing figure and do the
fullowing,. (May-2001)

b

3

o Scanline 1

+ Scaniine 2
* Scanline 3

X
Fig. 8.20
1) Give the active edge list for each scanline.
i1} Mention the possible intensities of ¢ach scanline,
la. Differentiate between @ image-space method and object-space method. {May-2003)

[

r——

9.1 Introduc
—______-__'-'—-—

In chapters
chaplers, we [
have also seen 1y
nherently smoc
perfectly flat no

In this chapt
chapter we diser

9.2 Generatig

We can use
generation algori
approach the cupy
achieved with the

9.2.1 Circular

_ Digital differe
differential equati
alteady discussed
arcs. The equation

where (X Vo) i

Differcntiating
I

X, Yo)
Fig. 9.1

tion Methods
ace and Image
{Dec-99)
a0ove objuct.
(May-2000)
{May-2000}
wface remuoval,
wing object.
{Dec-2001})
(May-2001)

are and do the
(May-2001)

{May-2003)

aaa

Curves

9.1 Introduction

In chapters 2 and 3 we have seen line, cirele and polygon seneration algorithms. In later
chapters, we learned how to represent and manipulate 1. segraents and polygons. We
have also seen transformations and clipping of them. Flow uer, many real world objects are
inherently smooth and invelve curves to represent them, Some natural objects are neither
perfectly flat nor smoothly curved but often have rouglhi, jagueed contours.

In this chapter, we see the methods for gencraling urved Bnvs In the Jater part of the
chapter we discuss the procedures to draw fractal curves, lines and surfaces.

9.2 Generation of Curves

We can use two approaches to draw curved lines. One approach is (o use a curve
generation algorithm such as DDA In this approach a true curve is created. In the second
approach the curve is approximated by a number of smallstraight tine segments This canbe
achieved with the help of interpolation techniques. '

9.2.1 Circular Arc Generation Using DDA Algorithm

Digital differential analyzer algorithm uses the differential equation of the curve, The
differential equations for simple curve such as circle is fairly casy to solve and we have
already discussed it in the chapter 2. Let us see the DDA algorithm for generaling circular
arcs. The equation for an arc in the angle parameters can be given as

X = Rcost + x,
y = Rsing+y, . {9.1)

where (x,, y,) is the center of curvature, and R is the radius of are. (see Fig. 9.1)

Differentiating equation 9.1 we got

dx =~ R sin0 d@

dy =R cosB do - (9.2)
From equation 9.1 we can solve for R cosd and R sin0
R as follows,
Xx=Recos0+ x,
o Yol - Recos®=x-~x,and
Fig. 9.1

(265)

Computer Graphics 266 Curves

Rsmb = y-Yyu .. {9.3)
Substituting values of R cos 0 and R sin 0 from equation 9.3 in equation 9.2 we get,
dx = =(y-yyd0and
dy = Oo=x,}3do ... (9.4)
Ihe values of dx and dy indicate the incrementin and y increment, respectively, tobe
added in the current pointon the arc to get the next point on the arc. Therefore, we can write

xp + dx = x; =y, - yo) do

]

X’\
ya =y +dy =y, ¥ 0= Xghd0 ... (9.5)

-

The equation 9.5 forms the basis for arc generation algorithm. From equation 9.5 we can
see that the next point-on the arc is the function of d0 . To have a smooth curve, the
neighbouring points on the arc should be close to cach other. To achieve this, the value of df
should be small enough not to leave gaps in the arc. Usually, the value of d0 can be
Jdetermined from the following equation. :

d0 = Min (001, 1/(3.2x (1x—xp| + |y = ¥ol)})

Algorithm
1. Read the center of o curvature, sav (X, ¥y)

2. Read the arc angle, say
3, Read the starting point of the arg, say (%, ¥)
4. Calculale d9
d0 = Min (001,17 (32x (| x=x] + 1y =¥a 1))
5. Initialize Angle=90

6. While (Angle < @}
do
| Plot(x, v}
x=x-{y-yy xd0
y=y+(x—xn)x d
Angle = Angle + do
}
7. Stop.
Problems in True-Curve Generation Approach
1. To specify a curve, we need more information than just its endpoints.
2. Itis difficult to apply transformations. For example, a circle when scaled in only one
direction becomes an ellipse. If our algorithm supports only circular arc generation
then ability to scale pictures is limited.
New clipping algorithm is required to clip arcs.
4. The curve generation algorithms for curves other than circular or elliptical such a5
airplane wings or cars or human faces, are complex.

@

Computer ¢
-

9.2.2 Inter

in the |
Furthermore
mathematic:
methods, 1f y
the required
pass througl
finding the ¢
these points

—_—

The main ta

known curve. -
functions that c:

Curves

.. (9.3)
9.2 we get,

- (9.4)
spectively, tobe
g, wecan write

... {9.5)

1ation 9.5 we can
wolh curve, the
is, the value of d8
w of dB can be

ol 1))

{OInts.

rgcaled inonly one
ular arc generation

or clliptical such as

Computer Graphics 267 Curves

9.2.2 Interpolation

In the last section we have seen limitations of true curve gencration approach.
Furthermore in practice we have to deal with some complex curves for which no direct
mathematical function is available. Such curves can be drawn using approximalion
methods. If we have set of sample points which lic on the required curve, then we can draw
the required curve by filling portions of the curve with the pieces of known curves which
pass through nearby sample points. The gap between the sample poinls can be filled by
finding the co-ordinates of the points atong the known approximating curve and connecting
these points with line segments as shown in the Fig. 9.2,

Unknown curve

L+]
Q
[¢]
a

Known sample potnis

=]

o o Calculate more points
o from the known curve

(=3
Q Fit a region with
a known curve
(=]

=]

[+]
frvﬂ‘“ o © Actually draw siraight

° line segments connecting
points

Fig. 9.2 The interpolation process
The main task in this process is to find the suitable mathematical expression for the
known curve. There are polynomial, trigonometric, exponential and other classes of
functions that can be used to approximate the curve. Usually polynomial functions in the

Computer Graphics 268 Curves

parametric form are preferred. The polynomial functions in the parametric form can be
given as

x = f{u)
y = fy(u)
o = f,(u)

We can realise from above equations that the difference between 2 and 3 dimensions is
just the addition of the third equation for z. Furthermore the parametric form treats all the
three dimensions equally and allows multiple values (several values of y or z for a given x
value). Due to these multiple values curves can double back or even cross themselves, as
shown in Fig. 9.3.

Fig. 9.3 Representation of curves with double back or crossing themselves

We have seen that, we have to draw the curve by determining the intermediate points
between the known sample points. This can be achieved using interpolation techniques.
Let's see the interpolation process.

Suppose we want a polynomial curve that will pass through n sample points.

(X ¥ir Zoh (Xar Yor Z2)s oo (K Yo Z4)
We will construct the function as the sum of terms, one term for each sample potnt.

These functions can be given as
1]

fu) = x; Bi{u)
i=)

L = 3y B
i1

f{u) = i z; Bi{u)

i=l

The function B; {u) is called ‘blending function’. For each value of parameter u, the

blending function determines how much the i" sample point affects the position of the

Computer Gr.
‘_-____-‘—-—-

curve, In oth
direction and
for unique va
control of the
some other sa;
pass through |
to each of the
sample point (
whenu=1, ar

To get B, (u

given as

where den
which is 1 at |

The appro
interpolation, }
given as

Using above

points can be re;

Itis possible

u between the »

Curves

rm can be

S MeNSions is
reeats all the
for a given x
emselves, as

lves

nediate points
an technigues.

oints.

. sample point.

arameter u, the
nosition of the

Computer Graphics 269 Curves

curve. In other words we can say that each sample points tries to pull the curve in its
direction and the function B,(u) gives the strength of the pull. If for some value of u, B{u} =1
for unique value of i (i.c. Bj(u) = 0 for other values of i) then i sample point has complete
controt of the curve and the curve will pass through i™ sample point. For different value of u,
some other sample point may have complete control of the curve. In such case the curve will
pass through that point as well. In general, the blending functions give control of the curve
to cach of the sample points in turn for different values of u. Let's assume that the first
sample point (x,, y,, z,) has complete control when u = - 1, the second when u = 0, the third
whenu =1, and so on. ie.

when u=-~-T=Buw=landlOforu=0,1,2...,n-2
when v =0 =Bw=landOforu=-1,1, ...,n=-2
when u=n-2)=Bfuw=iandlforu=-1,0,...,(n-1)

’l:t) getBlw=Tatu=-landO0foru=0,1,2, ..., n -2, the expression for B, (u) can be
given as
u(u-Ti{u-2y.... Jlu-n-2)]
-DHi-2)...(0-n)

where denominator term is a constant used. In general form i blending function
which is 1 at u =i -~ 2 and 0 for other integers can be given as :

B.(1) = U+ u-1} u-G-][u-E-1].... [u-({i-2))
‘ (i-DE-2)({=3) ... D=1 (-1
The approximation of the curve using above expression is called Lagrange

interpolation. From the above expression blending functions for four sample points can be
given as

B{u} =

w(u-13{u-2)

B|(L]) =

DD (-3)
B.(u) = L+ u-1)u-2)
- 1(-1) (-2)
By = WrDuu-2)
| (2) (1) (-1
By{u) = w

(@M

Using above blending functions, the expression for the curve passing through sampling
points can be realised as follows :

X = % By(u) + x; By{u) + x, By(u) + x, By(u)
¥y = ¥1 Byu} +y, By(u} + y3 Bs(u) + ¥4 By(u)
z = 2z By{u) + z, By(1)) + z; By(u} + 2, B,(u)
Itis possible to get intermediate points between two sampling points by ta king values of
u between the values of u related to the two sample points under consideration. For

it

Computer Graphics 270 Curves

example, we can find the inlermediate points between second and third sample points for
which vatues of warc ¢ and 1, respectively; by taking values of u between 0 and 1. This is
shownin Fig. 9.4.

Fig. 9.4 Determining intermediate points
for approximation of curve

The subsequent intermediate points can be obtained by repeating the same procedure.
Finally the points obtained by this procedure are joined by small straight line segments to
get the approximated curve.

Initially, sample points (1, 2, 3, 4) are considered and intermediate points between (2, 3)
are obtained. Then sample point at one end is discarded and sample point at the other end is
added to get new sample points (2, 3, 4, 5). Now the curve between sample points (3, 4) is
approximated. The subsequent intermediate points can be obtained by repeating the same
procedure. The initial and final portions of the curve require special treatment. For the first
four points (1, 2, 3, 4) we have to draw region between points (1, 2) with u values between - 1
and 0. '

Similarly the blending function for very last step of the curve should be evaluated with
u values between 1 and 2.
Interpolating Algorithm
1. Get the sample points.
Get intermediate values of u to determine intermediate points,
Calculate blending function values for middie section of the curve.

Calculate blending function values for first section of the curve,

LTI

Calculate blending function values for the last section of the curve.

6. Multiply the sample points by blending functions ta give points on approximation curve,
7. Connect the neighbouring points using straight line segments

8. Stop.

9.3 Spline Representation

To produce a smooth curve through a designated set of points, a flexible strip called
spline is used. Such a spline curve can be mathematically described with a piecewise cubic
polynomial function whose first and second derivatives are continuous across the various

Compute

curve sec
control p.
are fitted

resulting

polynomi
the result;
Fig. 9.5 (b

g

9.3.1 Ge

To ens
next, we
parametric

In gec
proportior
Parametric
sections at
means sim
parametric
functions f
order conti
two succes
both the fi)
intersectior
first and se
boundary.
positions.

Two cu

. and
Derivat

Curves

: points for
wi 1. This is

» procedure.
segments to

stwoen (2, 3)
other end is
sinks (3, 4) is
ng the same
For the first
‘between-—1

alvated with

ation curve.

2 strip called
wewise cubic
7 the various

Computer Graphics: 271 Curves

curve sections. We can specify a spline curve by giving a set of coordinate positions, called
control points, which indicates the general shape of the curve. When polynomial sections
are fitted so that the curve passes through all.control points, as shown in the Fig. 9.5 {a), the
resulting curve is said to interpolate the set of control points. On the other hand, when the
polynomials are fitted to the path which is not necessarily passing throughall control points,
the resulting curve is said to approximate the set of control points. This is illustrated in the
Fig. 9.5 (b).

{a} Interpolation spline

{b} Approximation spline

_ Fig. 9.5
9.3.1 Geometric and Parametric Continuity

To ensure a smooth transition from one section of a piecewise parametric curve to the
next, we can impose various continuity conditions at the connection points. We see
parametric continuity and geometric continuity conditions.

In geometric continuity we require parametric derivatives of two sections to be
proportional to each other at their common boundary instead of equal to each other.
Parametric continuity is set by matching the parametric derivatives of adjoining two curve
sections at their common boundary. In zero order parametric continuity, given as C°, it
means simply the curve meet and same is for zero order geometric continuity. In first order
parametric continuity called as C' means that first parametric derivatives of the coordinate
functions for two successive curve sections ark equal at the joining point and geometric first
order continuity means the parametric first derivative are proportional at the intersection of
two successive sections. Second order parametric continuity or C* continuity means that
both the first and second parametric derivatives of the two curve sections are same at the
intersection and for second order geometric continuity or C* continuity means that both the
first and second parametric derivatives of the two curve sections are proportional at their
boundary. Under C* continuity curvature of the two curve sections match at the joining
positions.

Two curves

) = (F-2t1)

nit) = #+1,t+1)
C' and G! are continuous at (1) = n (0)
Derivative {t) = 2t-2,1

1) = 2-2,1

0,1

Computer Graphics 272 Curves

Derivative n{k)
n{l))

2t 1
0,1

H

r{1) = n(0), two curves are continuous.

Ex.9.1: Show that two curves a(t) = (8 + 2t -2, Erand r(it) =(F + 2t + 1, 8 + 1 are both C* and G°
continuous where they joiir at 1(1) = 1(0). Do they meet C' and G continuity.

Sol.: nt) = (t + 2t -2, t)
WO = (C+2t+1,t+1)

Zero order parametric continuity, described as C? continuity, means simply that the
curves meet. That is, the values of x, y and 7 evaluated al u, for the first curve section are
equal, respectively, to the values of x, y and 7 evaluated at u, for the next curve section. The
zero-order geometric continuity described as G° continuity, is the same as zero-order
parametric continuity. o

We have, '

n{l) = (1I°+2-2,19
= (LD
(O +0+1,0+1)
(1.1

Therefore, we can say that both curves are C” and G contindous at n(1) and r(©). To

check for C*and G' continuity we have to take first derivative of both the curves :
Derivative n{ty = (2t + 2, 21)
Derivative rit) = (2t +2, 1)

t(0)

i

1

n(l) = 2+2,2)
= 4,2)
r0) = 2, 1)

Since n{1} # r(0), the two curves are not C' and G' continuous at n{1} and r(0).

9.3.2 Spline Specifications
There are three basic ways of specifying spline curve :

* We can state the set of boundary conditions that are imposed on the spline

* We can state the matrix that characteristics the spline or

* We can state the set of blending functions that caleulate the positions along the curve

path by specifying combination of geometric constraints on the curve.

Why to use cubic polynomials ?

Polylines and polygons are first-degree, piecewise linear approximation to curves and
surfaces, respectively. But this lower degree polynomials give too little flexibility in
controlling the shape of the curve. The higher-degree polynomials give reasonable design
flexibility, but introduce unwanted wiggles and also require more computation. For this

reason the third-degree polynomials are most often used for representation of curves. These
polynomials are commonly known as cubic polynomials.

Computer ¢
'"_‘—‘—-—-.

Wecan,
condroj poir

For cacl
cocfficients ;
between the
joints betwie
et us see the
splines,

9.4 Bezier

.
Bezier cu
determined b
them highly
implement. T
general grapk
for choosin g
avoid the larg

Properties of

1. The b;
2. Bezier
same e

3‘ The dl
numbe:
polyno;

4. The cu
5. Thedi
determi

6. The cu:
7. The co
follows

8. The cw
does nol

9. The cur
In cubic Be:

B-spline curve,
we pick four m

Curves

nCand G
fiy.

ly that the
section are
ection, The
zero-order

nd r(0). To

51

).

e

1g the curve

curves and
lexibility in
able design
on. For this
irves. These

Computer Graphics 273 Curves

We can describe the parametric cubic polynomial that is to be fitted between cach pairof
control points with the following set of equations :
x{u) = axut+bxu+exu + dx
y(u) = ayu’ +by u® + cy u+dy
2(u) = az + bzl v czu + dz D=zu<l) . 19.6)
For cach of these three equations, we need o determine the values of the four
coefficients a, b, c and d in the polynomial representation for cach of the n curve sections
between the n+ 1 control points. We do this by setting enough boundary conditions at the
joinks between curve sections so that we can obtain numerical values for all the coefficient,
Let us see the common methods for setting the boundary conditions for cubic inlerpolation
splines.

9.4 Bezier Curves

Bezier curve is an another approach for the construction of the curve. A Bezier curve is
determined by a defining polygon. Bezier curves have a number of properties that make
them highly usefut and convenient for curve and surface design, They are alse casy to
implement. Therefore Bezier curves are widely available in various CAD systems and in
general graphic packages. In this section we will discuss the cubic Bezier curve. The reason
for choosing cubic Bezier curve is that they provide reasonable design flexibility and also
avoid the large number of calculations.

Properties of Bezier curve

1. The basis functions are real.
2. Bezier curve always passes through the first and last control points i.c. curve has
same end points as the guiding polygon.

3. The degree of the polynomial defining the curve segment is one less than the
number of defining polygon point. Thercfore, for 4 control points, the degree of the
polynomial is three, i.e. cubic polynomial.

4. The curve generally follows the shape of the defining polygon.

The direction of the tangent vector at the end points is the same as that of the vector
determined by first and last segments.

The curve lies entirely within the convex hull formed by four control points.

The convex hull property for a Bezier curve ensures that the polynomial smoothly
follows the control points.

8. The curve exhibits the variation diminishing property. This means that the curve
does not oscillate about any straight line more often than the defining polygon.

9. The curve is invariant under an affine transformation.

In cubic Bezier curve four control points are used to specify complete curve. Unlike the
B-spline curve, we do not add intermediate points and smoothly extend Bezier curve, but
we pick four more points and construct a second curve which can be attached to the first.

Computer Graphics 274

Curves

Fig. 9.6 A cubic Bezier spline

The second curve can be attached to
the first curve smoothly by sclecting
appropriate control points.

Fig. 9.6 shows the Bezier curve
and its four control points. As
shown in the Fig. 9.6, Bezier curve
begins at the first control point and
ends at the fourth controb point. This
means that if we want to connect
two Bezier curves, we have to make
the first control point of the second
Bezicr curve match the last control
point of the first curve. We can also
observe that at the startof the curve,
the curve is tangent to the line
connecting first and second control
points. Similarly at the end of curve,
the curve is tangent to the line
connecting the third and fourth
control point. This means that, to
join two Bezier curves smoothly we
have to place the third and the
fourth control points of the first

curve on the same line specified by the first and the second control points of the second

curve,

The Bezier matrix for periedic cubic polynomial is

MH =

P{w) =

where Gy =

-1 3 =31
3 6 30
-3 3 00
1 0 00
U-M,;-Gy

F

P,

Py

P,

and the product P{u} = UM;.G; is
Pu) = 1-w)’P, +3u(l-u)?P, +3u’(l -uw)P; + u’P,

Ex. 9.2
and D(6, 4).

Construct the Bezier curve of order 3 and with 4 polygon vertices A(1, 1), B(2, 3), C(4, 3)

Computer

Sol.: The ¢

where)

Letus ¢

P(1)
The Fig. ¢

Curves

itached to
y sulecting
5.
rZier curve
0ints. As
azier curve
| point and
puint. This
to connect
ive to make
the second
last control
We can also
f the curve,
o the line
ond control
nd of curve,
to the line
and fourth
ans that, to
imoothly we
rd and the
of the first
f the second

+ U3P4
B(2,3),C(4,3)

Computer Graphics 275

Curves

Sol. : The equation for the Bezier curve is given as

Py = (1-up* P, +3u(l - u) s + 3ut(l w) P +utl,

forO<u=l

where P(u) is the point on the curve), Py, 15, Py

Let us take u =10, l_ Z

w(-@;) o

t 3
24

Py = 1 —(I l)

(1 1) - ---(2 3.

' 64

z[m 139}
04" 64

= (1.9218, 2.1718)

A Y U N I R IV, 1 I
(3) = (-3) nesgln-3) moa(z) (-3 mel3)

= g(ir

5

_ 11
8

_[25
18

3

3
]-r—x'7+—><-l+l><6 1>fl+—><"$+—x'§-!-—>f-l
o] 8 8 8 8

5
s

= (3125, 2.875)

-

—

|

L
1l

1

04

1
—(1,1
64()+

1) -:-E,(E, 3+

i

J P {’i(”-{] }Jl’ IHJ i

(4 3+ —- (6 4)
¢ : y
‘—)x4v|---]—--x6, %Z-x']4-‘2__2x3+--?—x3+--lv—>f.4
64 64 (rd 64 64 (G

3

3 1
S+ (6, 9)

[y

3 3 o

3 2 2 3
1—§) P, +33[1—§) P, +3(§J (1—3}1} +(§) P,
2 L 2 3/ "\a

9 27 27

64
9
64
9

289 217
[64 64}

= (45156, 3.375)
P(1) = iy =(6,4)

The Fig. 9.7 shows the calculated points of the Bezier curve and curve passing through it

SR+ 2P +2lp + 2P
1 2 64 3 3

64

2,3+ 37— L9 % (6.4)

1 27 27 1 9 27 27
— X1+ %2+ xd+—x6, —x1+—x3+— —
[64 7 +64x +64 x 6 *x1+—x3+ x3+64x4]

64 64 64

Computer Graphics 276

Curves

5 -
(4.5156, 3.375)
4] (6.4)
\ '
[}
t
3t X
1
I
! (3.125. 2.875)
27 :
1
:
1
11 1
1
1
1
i :
0 6 7

Fig. 9.7 Plotted Bezier curved

Another approach to construct the Bezier curve is called midpoint approach. In this
approach the Bezier curve can be constructed simply by taking midpoints. In midpoint
approach midpoints of the lines connecting four control points (A, B, C, D) are determined

D

A

Fig. 9.8 Subdivision of a Bezier spline

{AB, BC, CD). These wmidpoints are
connected by line segiments and their
midpoints ABC and BCD are determined.
Finally these two midpoints are connected
by line segments and its midpoint ABCD
is determined. This is illustrated in
Fig. 9.8.

The point ABCD on the Bezier curve
divides the original curve into two
sections. This makes the points A, AB,
ABC and ABCD are the control points for
the first section and the points ABCD,
BCD, CD and D are the control points for
the second section. By considering two
sections separately we can get two more
sections for each separate section ie. the
original Bezier curve gets divided into
four different curves. This process can be
repeated to split the curve into smaller
sections until we have sections so short
that they can be replaced by straight lines
or even until the sections are not bigger
than individual pixels.

Computer Gr;
'_-_-_—_'-———.

Algorithm

L Get for
2. Divide
Xag = (.

Yag = {

Xyc = O
Yec = ()
Xp=0
Yeo=10
Xagc = (
Yase = (
Xpep =
Yecp = (
XaBCD =

Yascp =
Repeat t
Repeat s

U

Replace :
Stop

'C' code for

(Softcopy of this
#includ

o,

tinclud
#includ
int gq,:
float x:

/* Funct

speci

void lir
{
line (xxx
xxx[0])][0
xxx[0] [1
1

Curves

soach. In this

In midpoint
v determined
idpoints are
ts and their
e determined.
are connected
dpoint ABCD
iustrated in

» Bezier curve
ve into two
points A, AB,
wrol poil'lts for
points ABCD,
itrol points for
nsidering two
\ get two more
section i.e. the
3 divided into
process can be
e into smaller
ctions so short
wy straight lines
are not bigger

Computer Graphics 277

Curves

Algorithm

1.

Get four control points say A (x4, ya), B (xg, y;5), C (xc ve) D (xpr y1))

2. Divide the curve represented by points A, B, C and D in two sections

A A

Xap = (X5 +xg) /2
Yag={ya+ye) /2

Xpe = {xg+ %)/ 2
yec={ys + o) / 2

Xep = (X +xp) / 2
Yep={yc+yp) /2

Xapc = {(Xap + Xpc) / 2
Yasc = (YaB *+¥nc) / 2
Xpen = (Xpe *+ Xcpd / 2
Yoo = (Yee + Yen) / 2
Xapcn = (Xape *+ Xacp) / 2
Yasco = (Yasc + Yoco) / 2
Repeat the step 2 for section A, AB, ABC and ABCD and section ABCI1), BCD, CD and

Repeat step 3 until we have sections so short that thev can be replaced by straight lines.
Replace small sections by straight lines.
Stop

'C' code for Drawing Bezier Curve

{Softcopy of this program is available at vtubooks.com)

#include <stdio.h>
#include <graphics.h>
#include <conio.h>
int gd, gm,maxx,maxy;
float xxx[4])[2]):

/* Function to draw line from relative position

specified in array Xxk-------------——--—————- */

void linel (fleoat x2, fleat y2)

{

line (xxx[07 (0], xxx{0][1],x2,y2);
*xx[0] (0]1=x2;

xxx (0} {1]=y2;

}

Computer Graphics 278

Curves

/+ Berier functiorn

pezier (fiocat #b, float yb,float
{
float xab, yab, xbc, ybe, xcd, yad;
tloat xabe, yabe, xbed, ybed;
float xabcd, yabed:
it (n==0)

!

linel (xb, vb);

linel (xc, yu)

linel (xd, yd);

else

{

®ab = (xux[0]([0]+xb)/2;
yais = {xxx[01{1li+yb)/2;
xbec = (xbixc) /2;

ybo = (yb+veh/2;

xcd = (xc+xd)/2;

ycd = (yc+yd)/2;

xabc = (xab+xbec)/2:
yabc = {yab+ybc)}/2;
xbcd = (xbc+xed)/2;

ybcd = (ybe+tyed) /2;
xabcd = (xabc+xbed)/2;
yabed = (yabc+ybed) /2;

n=n-1:

xc, float yo,float xd, float yd,int n)

bezier (xab, yab, xabc, yabe, xabed, yabed, n) ;

bezier (xbed, ybed, xed, yod, xd, yd, n) ;

/* Function to initialise graphics

void igraph ()
{
detectgraph (&gd, sgm) ;

Computer Gr;

main{

1
9.5 B-Spline

We have s¢
dependent on :
between the cu
The Bezier curv
number of spe
defines the curv
The only way t
conversely the
vertices. The se
nonzero for all
changes the ent
curve.

Curves

o yd,int m

Computer Graphics 279 Curves

if {gd<0)

{

pucs {"CANNOT DETECT A GRAPHICS CARD");

exictil);

}
initygraph (kgd, &gm, "L\ \te"))
)

main()
!
int i:
float templ, tempd:
igraph();

/* Read two ond points and tw . conrvol poincs of the curve

for(i=0;1i<4;i+4+)

{

printf {"Bnter (x,y} coordinates i pointid ", i+1);
scanf ("L, %f", &stempl, Stemwnl) ;

xxx{i}f0] = rempl:;

#®xx[1]1 (1) = tempZ:

}

bezier (xxx[1100], xxx (1] [11,xxx[2)[0),xxx[2} (1), %xxx{3]) [0}, xxx
(3)011,8)y; 4

getch{);
closegraphi):
}

9.5 B-Spline Curves

We have seen that, a curve generated by using the vertices of a defining polygon is
dependent on some interpolation or approximation scheme to establish the relationship
between the curve and the polygon. This scheme is provided by the choice of basis function.
The Bezier curve produced by the Bernstein basis function has a limited flexibility. First the
number of specified polygon vertices fixes the order of the resulting polynomial which
defines the curve. For example, polygon with four vertices results a cubic polynomial curve.
The only way to reduce the degree of the curve is to reduce the number of vertices, and
conversely the only way to increase the degree of the curve is to increase the number of
vertices. The second limiting characteristics is that the value of the blending function is
nonzero for all parameter values over the entire curve. Due to this change in one vertex,
changes the entire curve and this eliminates the ability to produce a local change with in a
curve.

Computer Graphics 280 Curves

There is another basis function, called the B-spline basis, which contains the Bernstein
basis as a special case. The B-spline basis is nonglobal. Itis nonglobal because each vertex B;
is associated with a unique basis function. Thus, each vertex affects the shape of the curve
only over a range of parameter values where its associated basis function is nonzero. The
B-spline basis also allows the order of the basis function and hence the degree of the
resulting curve is independent on the number of vertices. It is possible to change the degree
of the resulting curve without changing the number of vertices of the defining polygon.

If P(u) be the position vectors along the curve as a function of the parameter u, a B-spline
curve is given by
n_+ 1
Pu) = 2 BN;) (Wuy, Su<uy,,, 2<ksn+l .(97)
Ps 1
where the B; are the position vectors of the n + 1 defining polygon vertices and the N;
are the normalized B-spline basis functions. For the i normalized B-spline basis function of
order k, the basis function N, (u)are defined as

N (u) 1 if x;fu<xg,,
. ul =
1 |0 Otherwise

(u-x)N; | p(u) +(xi+k —WN;, (W)

Xjek-1"%

... (9.8)

and N; () =
Xiek X4

The values of x; are the elements of a knot vector satisfying the relation x; < x; ;. The
parameter u varies from u,, to u,, along the curve P(u). The choice of knot vector has a
significant influence on the B-spline basis functions N; | (u) and hence on the resulting
B-spline curve. There are three types of knot vector : uniform, open uniform and
nonuniform.

In a uniform knot vector, individual knot values are evenly spaced. For example,
{01234]

For a given order k, uniform knot vectors give periodic uniform basis functions for
which
Nj k() = Ny (u-1)=N;,, (u+l)
An open uniform knot vector has multiplicity of knot values at the ends equal to the
order k of the B-spline basis function. Internal knot values are evenly spaced. Examples are,

k =2[001233)
k =3[00012333]
k = 4[000012222]
Generally, an open uniform knot vector is given by,
x; = 0 Igigk
x; =i-k k+l<i<n+1
x; =n-k+2 n+t2<isn+k+1 .. (9.9)

Computer ¢
—

The cur
curves, In fa
B-spline bag
Bernstein ba

Ex.9.3 C

kr
Sol.: We hi
three, therefc

Now, fro;
IR |

Nji(u) =

N, o (u) =

N; 3(u) =

Nj 3(u)=

1fu<c2
Ny (u)=1
N3 5 (u) =

N, (u)="

N4,3(U)=('

Ex.94 Cons

(4,

Sol.: Heren:

x=[0000
0<u<1
Ny (u=1;
N3 2 (W)= (1
N2 3(u)=(1
Ny, 3 () =u’
N, (w=(-
N; 4w =2u

Curves

w Bernstein
ch vertex B,
of the curve
onzero. The
-gree of the
¢ the degree
polygon.

u, a B-spline

+1 ..(97)

and the N, |
is function of

,_(u_) (9.8)

GOE Xy The
 vector has a
the resulting
uniform and

xample,

. functions for

Is equal to the
Ixamples are,

.99

Computer Graphics 281 Curves

The curves resulted by the use of open uniform basis function are nearly like Bezier
curves. In fact, when the number of defining polygon vertices is equal to the order of the

B-spline basis and an open uniform knot vector is used, the B-spline basis reduces to the
Bernstein basis. Hence, the resulting B-spline curve is a Bezier curve.

Ex.9.3 Calculate the four third-order basis function N 7,300, 1=1,2,3, 4with an open uniform
knot vector.

Sol.: We have to calculate four basis functions, therefore n = (4 - 1} = 3 and it is of order
three, therefore k = 3. From equation 9.9 the open uniform knot vector is given as
[XI =[0001222)

Now, from equation 9.8, the basis functions for various parameters are as foliows :

0<u<l

Na,](u)=_1} N; ;(u)=0, i=3

Npau)=1-w; Nj,(u=u N;,u=0 i2, 3

N; s =(1-u?; N2_3(u}=u(1—u)+(2;u)u
W2

Ns,g(u)=72 N; 3(w)y=0; i=1,2,3

1<u<2

Ny (w=1; N; ((w)y=0, i=4

N, 5 (u) = (2 - 4); Ny 2W=@-1); N, ,(u)=0,iz3, 4

N2'3(“)=(2_zuy; N3 a0=22"9 0 00y u-1);

Ny 3w =@-1% N; s(u)=0 i=#2 3,4

Ex.9.4 Construct the B-spline curve of order 4 and with 4 polygon vertices A(1, 1), B(2, 3)
C(4, 3} and D(s, 2).

Sol.: Heren =3 and k = 4 from equation 9.9 we have open uniform knot vector as

x=[00001111)and from equation 9.8 we have basis functions are
0<u<l

Ny (w=1 N; (w=0, iz4

N;,(uw)=(1-u) Ng,2{u)=u, N, ,(u)}=0, i3, 4
N, s(u)=(1-u)?; N3 s(uy=24(1-u);

N, sw=u?; N, ;W=0; i=2 3 4
N,A(u)=(1~t)3; N; W) =u(l-u)? +2u(l —u)? =3u(l —u)?;
Nj 4w =2u?(1~w)+(1-uu? =3u?Q —u); N, (u)=u’

Computer Graphics 282 Curves

Using equation 1 the parametric B-spline is

Let us take u =

= P(0)

)

-
——
Sl e
M

P(u) = AN, 4(11)+BN“(u)+CN”(u)+DNH(u)
L P = (1-w*A +3u(l -w?B+3u’ (1—u)C+u D

]
>
i

(1-1) A+3§(1-%fm[%f(]_%)cﬁfo
=(%JA‘+-(-§-Z-JB+(;%)C+(5‘;1D
[(1, 1)+~(2 3)+ w_(4 3)+—-(6 2)]

= gzx]+£x2+ix4+lxﬁ,__le+—2-2 3+—9—x3+—1~x2]
64 64 64

64 64 64 64 64

= [1.9218, 2.14]

afrest o2

= lA+§B+13—C+1D
8 8 8 8

i 3 3 1

bu,n+ga,a+§m;n+gwgﬂ
[1X1+§X2+§x4+1x6,1X]+§x3+§x3+lx2:|
8 8 8 8 '8 8 8 8

_[25 21

B [_8" 8}

= [3.125, 2.625]

3 2 2 3
= [1—2) A+32[1—§) B+3(§] (1-§)C+(3) D
4 4 4 4 4
1 9 27

= —~A+—B+ -——C+~—D
64 64 64 64

- un f@@ —ma+3mm
=[i><1+i 2+zz 4+ 6——xl i><3+Z><3+-21><2]
64 64 64 64 64 64 64 64

[289 163]
64 64

Computer G

——

The Fig. ¢
it.

-_—

Properties of 1

* The sun
. n_+
Le,

* Each bas

* Except &
* The ma>
polygon
* The deg
defining
* B-spline
shape of
function

* The curn
oscillate

* The curv:
* Any affin

defining
* The curv

Curves

(1)
2°D

64

.3+32x2]
64

Computer Graphics 283 Curves

it.

14.5156, 2.5468]

(1) = D=16,2]

The Fig. 9.9 shows the calculated points of the B-spline curve and curve passing through

54
41
B C
I Kmmmem %
_________________ '
) R AR A *D
1 1 | 1
1 1 1 1 :
i 1 1 ! H
A : L ,
14---- 1 1 1 ! :
| 1 1] ! |
| ' 1 1 ! h
1 ! ! ! : (
: \ N R ! \
0 1 2 3 4 5 6 7

Fig. 9.9 Plotted B-spline curve

Properties of B-spline curve

* The sumof the B-spline basis functions for any parameter value u is 1.

n+ 1
ie. 3 Nj (w=1
i1
Each basis function is positive or zero for all parameter values, i.e., N; 20
Except for k = 1 each basis function has precisely one maximum value.

The maximum order of the curve is equal to the number of vertices of defining
polygon.

The degree of B-spline polynomial is independent on the number of vertices of
defining polygon (with certain limitations).

B-spline allows local control over the curve surface because each vertex affects the
shape of a curve only over a range of parameter values where its associated basis
function is nonzero.

The curve exhibits the variation diminishing property. Thus the curve does not
oscillate about any straight line move often than its defining polygon.

The curve generally follows the shape of defining polygon.

Any affine transformation can be applied to the curve by applying it to the vertices of
defining polygon.

The curve line within the convex hull of its defining polygon.

Computer Graphics 284 Curves

9.6 Parametric Bicubic Surfaces

Parametric bicubic surfaces are a generalization of parametric cubic curves. In
section 9.3 we have seen the general form of parametric cubic curve

Py = U-M-G
If we now allow the points in G to vary in 3D along some path that is parameterized on ¢,
we have
G (0
G (1)
G
Gy(b)

Pu,t) = U-M-G)=U-M- ...(9.10)

Now, different values of t between 0 to 1 we get different curves. For slight different
values of t we get slightly different curves. The set of all such curves arbitrarily close to each
other for values of t between 0 and 1 defines a surface. If the Gy(t) are themselves cubics, the
surface is said to be a parametric bicubic surface, and G,(t} can be represented as

G{t) = U-M-G; _ .. (9.11)
where G, = g 82 8 gul’ and
g, is the first element of the geometry vector for curve G; (t).
The transpose of equation (9.11) can be given as
G’ = GT-M"-UT (A-B-C)T=C"-BT.AT
Substituting the above result in equation (9.10)
We have
u-M-GT-M" .U
U-M-(gi 82 8o 8l M -UT
gn 81z 83 8u

U.-M- gz 8n Bz Bxu | Tyl .. (9.12)
831 83 Bxn Bu

ga 8u 84 Bu
U-M-G -M'-UT where 0<u,t<1 ... (9.13)
In terms of x, y, z separately the above equation can be written as
x(u bt = UM-G, M -UT
yH = U-M-G, -M" .U
z(u t) = UM-G, -M'.UT ... (9.14)

P (u, t)

n

Computer «
.

9.6.1 Her
The par

where

The abOV:
[Pty F

where,

Taking tra
B
Py(t)

DR (t)
DF,{t)

Curves

curves. In

sterized ont,

...(9.10)

ght different
close to each
es cubics, the
as _

R CARY

...{9.12)

... (9.13)

... (9.14)

Computer Graphics 285 Curves
9.6.1 Hermite Surfaces
The parametric bicubic equation for Hermite surface can be given as
B (t)
P,) = U-M,y-Gult) =U-M,,- g;,l(::) .. (9.15)
DP, (t)
&1]
where Pty = U-M,- &
AL
(814
(521]
Py(t) = U-M, (52
En
824
(81]
DP(t) = U-M,, 5%
g33
(&34
_ 3
DP,(t) = U-M,-|5®
_ B
(544
The above four equations can be rewritten together as
[Py(t) Py(t) DP,(t) DP(1)]=U My -G ... (9.16)
where,
(81 812 81 8n
G, = Bz Bn Bn B
£31 Bn £33 Bu
| 841 B2 B4z Bau
Taking transpose of both sides we have
P (t) Su 812 813 B |
Ps(t) | |8Ba 82 8z 8au T
DP ()| |8a1 82 83 &u My U= Gy My, - UT - O17)
DP,(t)] |8 812 843 Bas

Computer Graphics 286 Curves

Substituting the equation (9.17) in equation (9.15) we have,
P(u, t) = U-M,,-Gy-MJ, - UT ... (9.18)

In terms of x, y, z separately the above equation can be written as
x(u, t) = U-My- G- Mj; -UT
y(u, t) U'MH'GI!)-'M'L Ut
z(u, t) = U-My-Gy, M}, -U" .. (9.19)
9.6.2 B-Spline Surfaces

Applying similar procedure as that of Hermite surface we can represent B-spline surface

i

as
x(u, £) = U-Mpg-Gyg,-MEg-UT
ylu,) = U'MKS'GBSy'MES'UT
z(u, t) = U-Mpg-Ggs, MEg - UT ... (9.20)

9.6.3 Bezier Surface

Applying similar procedure as that of Hermite surface we can represent Bezier surface

as)
U‘MB’GBK'M{;'UT

U‘MB’GB)‘.‘M'};‘UT

U-M; Gy, M}-UT ... (9.21)

x(u, t)
ylu, t)
z{u, t)

H

Review Questions

1. Explain the true curve generation algorithm.

2. List the problems in true curve generation algorithm.

3. What is interpolation ? Explain Lagrangian interpolation method.

4. What is spline ?

5. Differentiate between interpolation spline and approximation spline.
6. Give the various methods for specifying spline curve.

7. Why to use cubic polynominals 7

8. Write a short note on B-spline curve.

9. List the properties of B-spline curve.

10. Write a short note on Bezier curve.

11. Explain the properties of Bezier curve.

University Questions

1. Write detailed note on cubic B-splines (Dec-96, May-97, May-2001)
2. What do you understand by cubic B-splines? Discuss with suitable mathematical models.
{Dec-97)

Computer G
e

3. Temp.
Write

4. What

5. Give]
Bezier
using .

6. Give n
Clurves

7. How t}

the prc
8. Write a
9. Show ¢

where
continu

10. What a
B-splin
11. Derive

12, Explain

13. Explain
two cur
they joir

14. Write a 1
in the X}

15. Give imyj

16. Write a s

Curves

.. (9.18)

... {9.19)

ne surface

... (9.20)

ier surface

.. (9.21)

37, May-2001)
al models.
(Dec-97)

Computer Graphics 287 Curves

3.

4,

Temperature recorded at hourly intervals over a 24 hour period are stored in an array "temp”,
Write a program to display this as a "smooth” curve. {Dec-97)

What are the properties associated with curves ? Explain significance of each of them,

(May-98)

- Give the mathematical representation for Bezier curve ? Specify highlights and drawbacks of

Bezier curve. If the Bezier curve is to be generated for Py (0,00, P,(1,3), P4 (4, 2)and P, (2, 1)
using six intervals of parameter u, find out the co-ordinates positions for every value of u.

(May-98)

6. Give mathematical representation for B-spline curves. What aré the properties of B-spline
curves ? (Dec-98)

7. How the description for curved surface is obtained from the equation of Bezier curve ? State
the properties of Bezier curves. i (Dec-98)

8. Write a short note on B-spline curves {May-99)

9. Show that two curves ¥(t) = (€ - 2t, 1y and n{t) = (¥ + 1, t + 1) are both C' and G’ continuous

10.

11.

12.

13.

14,

15.
16.

where they join at (1) =x(0). Note that C" represents parametric continuity and G ™ geometric

continuity. {Dec-99)
What are the properties associated with curves ? Explain a mathematical representation for
B-spline curves. {May-2000, Dec-2000)

Derive a mathematical representation for Bezier curves and state their properties.
(May-2000, May-2002)
Explain how a curved surface can be obtained from the definition of a Bezier curve.

{May-2000, May-2002)

Explain parametric continuity conditions and geometric continuity conditions. Show that
two curves n(t) = (* + 2t =2, ¥) and ()= +2t+1,t+ 1) are both C? and G continuous where
they join at n{1) = r(0). Do they meet C' and G' continuity ? (May-2001)
Write a program to display a two dimensional Bezier curve given a set of four control points
in the xy plane. (Dec-2001)
Give important properties for designing curves and illustrate them. {May-2003)
Write a short note on Bezier curve. {May-2003)

aao

Light Shading

10.1 Introduction

So far we have seen how to construct three-dimensional objects, parallel and perspective
projections of the objects, and removal of hidden surfaces and lines. In this chapter, we will
see the shading of the three-dimensional objects and its model. The shading model is also
called illumination model or lighting model. This model is used to calculate the intensity of
light that we should see at a given point on the surface of an object.

Later part of this chapter gives the information about the colour models

10.2 Diffuse lllumination

An objects illumination is as important as its surface properties in computing its
intensity. The object may be illuminated by light which does not come from any particular
source but which comes from all directions. When such illumination is uniform from all
directions, the illumination is called diffuse illumination. Usually, diffuse illumination is a
background light which is reflected from walls, floor, and ceiling.

When we assume that going up, down, right and left is of same amount then we can say
that the reflections are constant over each surface of the object and they are independent of
the viewing direction. Such a reflection is called diffuse reflection. In practice, when object
is illuminated, some part of light energy is absorbed by the surface of the object, while the
rest is reflected. The ratio of the light reflected from the surface to the total incoming light to
the surface is called coefficient of reflection or the reflectivity. It is denoted by R. The value
of R varies from 0 to 1. It is closer to 1 for white surface and closer to 0 for black surface. This
is because white surface reflects nearly all incident light whereas black surface absorbs most
of the incident light. Reflection coefficient for gray shades is in between 0 to 1. In case of
colour object reflection coefficient are various for different colour surfaces.

Lambert's Law

We have seen that, the diffuse reflections from the surface are scattered with equal
intensity in all directions, independent of the viewing direction. Such surfaces are
sometimes referred to as ideal diffuse reflectors. They are also called Lambertian reflector,
since radiated light energy from any point on the surface is governed by Lambert's cosine
law. This law states that the reflection of light from a perfectly diffusing surface varies as the

(288)

Comguter (

cosine of th
to the surfa
reflected
Fig. 10.1.

Thus if
source is per
a perpendict
illuminated,
angle of illw
the surface n
point drops ¢
be squeezed .
effect is the
surface is unq
in Fig. 10.2.]
that the redy
cosine of a
increase in th,
points within

A similar
observed as tF
from the vie
farther from
coming from
large area. Tk
square of dist.
light reaching
same factor. T,
by the size of 1
moved farthe
appears smalie
there is less ligi
surface remain

The expres
background lig

where I, is
reflection coeff;
surface which is
light or dark sc
particular objec
more realistic st

yerspective
ter, we will
odel is also
intensity of

nputing its
y particular
-m from all
lination is a

: We can say
spendent of
when object
't, while the
aing light to
2. The value
.urface. This
bsorbs most
1. In case of

with equal
surfaces are
an reflector,
rert's cosine
varies as the

Computer Graphics 289 Light Shading
cosine of the angle between the normal Normal

to the surface and the direction of the

reflected ray. This is illustrated in

Fig. 10.1. Light

Thus if the incident light from the
source is perpendicular to the surface at

a perpendicular point, that point is fully R
illuminated. On the otherhand, as the 90°
angle of illumination moves away from m’mmnmmmmmmm%
the surface normal, the brightness of the Surface

point drops off; but the points appear to
be squeezed closer together, and the net
effect is that the brightness of the
surface is unchanged. This is illustrated
in Fig. 10.2. In other words we can say
that the reduction in brightness due to
cosine of angle gets cancelled by
increase in the number of light-emitting G
points within the area of view.

Fig. 10.1 The direction of light is measured from the
surface normal

A similar cancellation effect can be
observed as the surface is moved farther
from the view point. As we move
farther from the view port, the light
coming from the surface spreads over a
large area. This area increases by the
square of distance, thus the amount of
light reaching the eye decreases by the
same factor. This factor is compensated
by the size of the object. When object is
moved farther from the viewport, it
appears smaller. Therefore, eventhough
there is less light, it is applied to a smaller area on the retina and hence the brightness of the
surface remains unchanged.

Fig. 10.2 Surface brightness

The expression for the brightness of an object illuminated by diffuse ambient or
background light can be given as

Izlmbt:lil‘f = ka la!
where I, is the intensity of the ambient light or background light, k, is the ambient
reflection coefficient and I.,.4 is the intensity of diffuse reflection at any point on the
surface which is exposed only to ambient light. Using above equation it is possible, to create
light or dark scenes or gray shaded objects. But in this simple model, every plane on a
particular object will be shaded equally. The real shaded object does not look like this. For
more realistic shading model we also have to consider the point sources of illumination.

Computer Graphics 290 Light Shading

Ul

s
{a) Surface facing light source receives more light

10.3 Point-Source lllumination

Point sources emits rays from a
single point and they can approximate l l I
77

real world sources such as a small
incandescent bulbs or candles. A point
source is a direction source, whose all
the rays come from the same direction,
therefore, it can be used to represent
the distant sun by approximating it as
an infinitely distant point source.

'

The modelling of point sources
requires additional work because their
effect depends on the surface's
orientation. If the surface is normal
(perpendicular) to the incident light
rays, it is brightly illuminated. The
surfaces turned away from the light
source (oblique surfaces) are less
brightly illuminated. This s
iltustrated in Fig. 10.3.

{b) Surface turned away from light source receives less light

For oblique surfaces, the Fig. 10.3

llumination decreases by a factor of
cos I, where 1is the angle between the
direction of the light and the direction
normal to the surface plane. The angle |
I'is know as angle of incidence. (See
Fig. 10.4)

Normal

Light

.
o I T 2

The factor cos [is given as

cosI= N-L Fig. 10.4 The angle of incidence

where L is the vector of length 1 units pointing towards the light source and N is the
vector of length 1 in the direction normal to the surface plane.

Considering both diffuse illumination and point source illumination, the shade of the
visible surface of an object is given as
Lai = koL, +kql; (cosT)
=k, I, +kyI; (N-L)
where k, I, is the intensity of light coming from visible surface due to diffuse
illumination, -

I; is the intensity of light comes from the point source, k, is the diffuse reflectivity
coefficient and vector dot product (L.N) gives the cosine of the angle of incidence.

“ght, we ¢
reflection o,
called Spec
be not in its

The Fig
surface. The
angles me;
sides of the
vector N
Fig. 105 R i:
direction
reflection, 1
directed tov
source and
pointing to
surface posit

The angl
(perfect mirr.
case, we can

10.4.1 The

Phong By
assumes that
increases. Thi
parameter de
hundred, dep
used for very
reflector, n is
Fig 10.7 show

ht Shading

.re light

ives lass light

ht

v

ce

and N is the

shade of the

1e to diffuse

se reflectivity
-nee.

Computer Graphics 291 Light Shading

10.4 Specular Reflection

When we illuminate a shiny surface such as polished metal or an apple with a bright
light, we observe highlight or bright spot on the shiny surface. This phenomenon of
reflection of incident light in a concentrated region around the specular reflection angle is
called specular reflection. Due to specular reflection, at the highlight, the surface appears to
be not in its original colour, but white, the colour of incident light.

The Fig. 10.5 shows the specular reflection direction at a point on the illuminated
surface. The specular reflection angle equals the angle of the incident light, with the two
angles measured on opposite
sides of the unit normal surface
vector N. As shown in the
Fig. 10.5, R is the unit vector in the
direction of ideal specular
reflection, L is the unit vector
directed toward the point light
source and V is the unit vector
pointing to the viewer from the :
surface position. ' Fig. 10.5 Specular reflection

The angle ¢ between vector R and vector V is called viewing angle. For an ideal reflector
(perfect mirror), incident light is reflected only in the specular reflection direction. In such
case, we can see reflected light only when vector V and R coincide, i.e., ¢ = 0.

10.4.1 The Phong lllumination Model

Phong Bui-Tuong developed a popular illumination model for nonperfect reflectors. It
asswmes that maximum specular reflection occurs when ¢ is zero and falls off sharply as ¢
increases. This rapid fall-off is approximated by cos" ¢, where n is the specular reflection
parameter determined by the type of surface. The valueg of n typically vary from 1 to several
hundred, depending on the surface material. The larger values (say, 100 or more) of n are
used for very shiny surface and smaller values are used for dull surfaces. For a perfect
reflector, n is infinite. For rough surface, such as chalk, n would be near to 1. Fig. 10.6 and
Fig 10.7 show the effect of n on the angular range of specular reflection.

N N
L L
Shiny surface Dull surface
(Large n) {Small n}

Fig. 10.6 Effect of n on the angular range of specular reflection

Computer Graphics 292 Light Shading
2 8 64
1pmel0S ¢ 1 €05 ¢ In COS ¢ 1, cos &
oﬁﬁ\\\\ o[iiiib. J?&S___ okx____
g° ape o® a0° o° g0° 0 ao°

Fig. 10.7 Different values of cos” ¢ used in the Phong illumination model

The amount of incident light specularly reflected depends on the angle of incidence 8,
material properties of surface, polarization and colour of the incident light. The model is
approximated for monochromatic specular intensity variations using a specular-reflection
coefficient, W(8), for each surface. We can write the equation for Phong specular reflection
model as :

Lipee = WO}, cos"
wherel, is the intensity of the light source and ¢ is the angle between viewing vector and
specular reflection vector R.

W(B) is typically set to a constant k,, the material's specular-reflection coefficient, which
ranges from between 0 to 1. The value of k; is selected experimentally to produce
aesthetically pleasing results. Note that V and R are the unit vectors in the viewing and
specular-reflection directions, respectively. Therefore, we can calculate the value of cos ¢
with the dot product V-R. Considering above changes we can rewrite the equation for
intensity of the specular reflection as

Lpee = kI, (V-R)

The vector R in the above equation
can be calculated in terms of vector L
and N. This calculation requires
mirroring L about N. As shown in
Fig. 10.8, this can be accomplished with
some simple geometry. Since N and L
are normalized, the projection of L onto
Nis N cos 0. Note that R =N cos @ + S,
where |S| is sin 8. But, by vector
subtraction and congruent triangles, S

is just N cos @ — L. Therefore, g
Fig. 10.8 Calculating the reflection vector
Ncosé + Ncos9-L
= 2Ncos8-L
Substituting N - L for cos § we have,
R = 2N{(N-L)-L

R

il

Computer G

10.4.2 The

More sim
vector H. It e
of the light s¢

—— e

—

If we reple
the empirical
halfway vecto;

When the)
computational
place of V-R it

For given li
the surface that
H is also referr

10.5 Combir

For a single
point on the ilh

For a multij

Therefore, iy
given by sumim

1t Shading

a0

.widence @,
-» model is
r-reflection
1 reflection

- vector and

‘ient, which
o produce
iewing and
ue of cos ¢
quation for

vector

Computer Graphics 293 Light Shading

10.4.2 The Halfway Vector

More simplified way of formulation of Phong's illumination model is the use of halfway
vector HL It is called halfway vector because its direction is halfway between the directions
of the light source and the viewer as shown in the Fig. 10.9.

N

14

Fig. 10.9 Halfway vector H

It we replace V- R in the Phong model with the dot product N - H, this simply replaces
the empirical cos ¢ calculation with the empirical cos « caleulation (Refer Fig. 10.9). The
halfway vector is given as

L4V
L+ V}

When the light source and the viewer are both at infinity, then the use of N - H offers a
computational advantage, since H is constant for all surface points. Substituting N-H. in
place of V - R the intensity for specular reflection is given as

Lo = K 3; (N-H)

B
For given light-source and viewer positions, vector H gives the orientation direction for
the surface that would produce maximum specular reflection in the viewing dirgction. Thus,
H is also referred to as the surface orientation direction for maximum highlights.

10.5 Combined Diffuse and Specular Reflections

For a single point light source, the combined diffuse and specular reflections from any
point on the illuminated surface is given as

I = ldii’t’ + I:\Pl'C
=k, I, +k;I;, (N-L) + kI, (N-H)"
For a multiple peint light source the above equation can be modified as

Il
1= K, 0+ D 0, [ky (N-L)+ Kk, (N-H)"
i= |

Therefore, in case of multiple point light sources the light reflected at any surface point is
given by summing the contributions from the individual sources.

ter Graphics 294 Light Shading

hading Algorithms

From L previous discussion it is clear that we can shade any surface !J_v calcudating the
sutlace ntn'm:ll a1 cach visible point and applying the dcsircd‘ iIILu‘n?natmn m'ndcl at th:‘tt
puint. Unlortunately, this shading method is expensive. In thfs section, woe ‘(Till-i(.‘.lnl.ll:::jl:l.’\l)l(.‘
ellicient shading melthods for surfaces defined by po_l}'gun.w. Iach pf)l}fg()n (.dl".l 1}_ ‘l'aIvn
with a single intensily, or with different intensity obtained ot cach point on the surface. Let
1% see various shading methods.

10.6.1 Constant-intensity Shading

The fast and simplest method for N
shading polygon is conslant shading,
also known as faceted shading or flat
shading. in this mcthod, illumination
modet s applied only once for cach
polyvgon to determine single intensity
value. The entire polygon is then _ Ny
displayed with the single intensity
value,

This method is valid for the

Fig. 10.10 Polygons and their surface normals
following assumptions :

L. he light source is at infinity, s0 N L is constant across the polygon face.

2. The viewer is at infinity, so V - R is constant over the surface.
3. The polygon represents the actual surface being modeled, and is not an

approximation to a curved surface.

I cither of the first two assumptions arc not true still we can use constant mtcnsltyf
shading approach; however, we require some method to determine a single value for ecach o
Land V YOCtors.

10.6.2 Geuraud Shading

In this method, the intensity interpelation technique developed b)’ G(hmrau.c'i is u;‘.ed,
hence the name. The polygon surface is displayed by linearly interpolating intensity va uesf
’ 5 i LT W
across the surface. Here, intensity values for each polygon are matched }Nlt[‘l 'thL Vc“llLlL‘b’O
adjacent polygons along the common edges. This eliminates the intensity discontinuities
that can occur in flat shading.

By performing following caleulations we can display polygon surface with Gouraud
shading, :

1. Determine the average unit normal vector at cach polygon vertex.

2. Apply an illumination model to each polygon vertex to determine the vertex intensity.

3. Linearly interpolate the vertex intensities over the surface of the polygon.

We can obtain a normal vector at each polygon vertex by averaging the surface normals
of all polygons sharing that vertex. This is illustrated in Fig. 10.11.

Computer Gr:

As shown
sharing vertex

In general,
can obtain
equation

where n
normals of pol:

The next st
find vertex ind
vertex normals
be determined
maodel to each]
polygon is shac
vertex intensiti
between edges
illustrated in Fi

For each sc
intersection of 1
edge is linea
intensities at
example, in Fi;
with endpoint v
by the scan line
and I, as

Similarly, w
intensity values

Once the in
intensity of an ir

ht Shading

culating the
oded at that
1SCLISS T
n be drawn
surface. Let

e 2
3
e normals
e

is not an

ant intensity
ue for each of

raud is used,
ensity values
the values of
iscontinuities

vith Gouraud
rtex intensity.

LIRR

~face normals

Computer Graphics 295 Light Shading

As shown in the Fig. 10L11, there are three surface normals N, N, and N, of polygon
sharing vertex V. Therefore, normal veetor ot vertex V is given as

In general, for any vertex position V, we
can obtain the unit vertex normal by
vquation

N;
i
N;

bY
Ny =i——
2

s Fig. 10.11 Calculation of normal

where n is the number of surface
nurmals of polygons sharing that vertex,

vector at polygon vertex V

The next step in Gouraud shading is to
find vertex intensities. Once we have the
vertex normals, their vertex intensitics can 3
be determined by applying illumination
model to each polygon vertex. Finally, each
polygon is shaded by linear interpolating of 1
vertex intensities along each edge and then

between edges along each scan tine. This is P Scan line
illustrated in Fig. 10.12. a\/b
For each scan line, the intensity at the 2
intersection of the scan line with a polygon
edge is linearly interpolated from the x

intensities at the edge endpoints. For
example, in Fig. 10.12, the polygon edge Fig. 10.12

with endpoint vertices 1 and 2 is intersected

by the scan line at point 'a". The intensity at point ‘a’ can be interpolated from intensities 1,
and [; as

ln\ = Ya— Y2 I|+ Vi—=¥.a 12
Yi—¥a2 Yi—¥a2

Similarly, we can interpolate the intensity value for right intersection (point b) from
intensity values I, and I; as

I, = Yo~ Y2 13+}3_)'la I,
Ya—-¥2 Ya—Y¥Ya
Omnce the intensities of intersection points a and b are calculated for a scan line, the
intensity of an interior point (such as P in Fig. 10.12) can be determined as

Computer Graphics 296 Light Shading

During the scan conversion process, usually incremental caleulations are used to obtain
the successive edge inlensity values between the scan lines and to oblain successive
intensily along a scan line. this climinales the repeatative calculations.

If the intensity at edge position (x, y) is inlerpolated as
. Yyoy. l,

Yi—¥o2 Yio¥a

thenn we can obtain the inlensity along this edge for the next scan line, y = T as (see
Fig. 10.13)

1, -1

"= [P
Yy—yo

y
3
4
y-1 : Scan lines

V)
11
1
I: 2
[}
i
[}
11 x
xx+

Fig. 10.13 Calculation of incremental interpolation of intensity values along a polygon edge for
successive scan lines

Similarly, we can obtain intensities at successive horizontal pixel positions along each
scan line (see Fig. 10.14) as .
[, -1
I'= 1+ 2
Xp = X,
Advantages
1. It removes the intensity discontinuities exists in constant shading model.

2. It can be combined with a hidden surface algovithm to fill in the visible polygons
along cach scan line.

Computer

—_—_—

Fig. 1¢,

Disadvanta;
1. Hig
2. The

app
ban

numl:

3. Sha

10.6.3 Pho

Phong sl
surface normr
display polyg

1. Deternr

2. Linearl

3. Apply
intensi

The first s
second step th
is illustrated i
imlersection P
interpolating |

Like, Gour
between scan
cvaluated the
miodel.

1t Shading

'd o obtain
SUCLCSSive

- | as (see

—

jon edge for

1s along each

sdel.

ble polygons

Computer Graphics 297 Light Shading

Scan ling

o R

— X

Fig. 10.14 Calculation of incremental interpolation of intensity values aleng a scan line

Disadvantages

1. Highlights on the surface are sometimes displayed with anomalous shapes.

2. The lincar intensity interpolation can resuit bright or dark intensity streaks to
appear oo the surface. These bright or dark intensity streaks, are called Mach
bands. The mach band effect can be reduced by breaking the surface into a greater

number of smaller polygons.

3. Sharp drop of intensity values on the polygon surface can not be displaved.

10.6.3 Phong Shading

Phong shading, also known as normal-vector interpolation shading, interpolates the
surface normal vector N, instead of the intensity. By performing following steps we can
display polygon surface using Phong shading.

1. Determine the average unit normal vector at each polygon vertex.

2, Linearly interpolate the vertex normals over the surface of the polygon.

3. Apply an illumination model along each scan line to determine projected pixel
intensities for the surface points.

The first steps in the Phong shading is same as first step in the Gouraud shading. In the
second step the vertex normals are linearly interpolated over the surface of the polygon. This
is Blustrated in Fig. 10.15. As shown in the Fig. 10.15, the normal vector N for the scan line
intersection point along the edge between vertices 1 and 2 can be obtained by vertically
interpolating between edge endpoint normals

N = Y=Y NI + Yooy N2
Y1=Y2 Yi—Yaz
Like, Gouraud shading, here also we can use incremental methods to evaluate normals
between scan lines and along each individual scan line. Once the surface normals are

evaluated the surface intensity at that point is determined by applving the illumination
model.

Computer Graphics 298 Light Shading

Y4

¥4

Y2

Ll

Fig. 10.15 Calculation of interpolation of surface normals atong a polygon edge
Advantages
1. It displays more realistic highlights on a surface. (See Fig. 10.16 d)
2. It greatly reduces the Mach-band effect.
3. It gives more accurate results.
Disadvantage

1. It requires more calculations and greatly increases the cost of shading steeply.

Fig. 10.16 shows the improvement in display of polygon surface using Phong shading
over Gouraud shading.

{2} (b} {c) (d)

Gouraud shading
Fig. 10.16

Gotraud shading Pheng shading Phong shading

Method of Speeding Up Phong Shading Technigue

Phong shading is applied by determining the average unit normal vector at each
polygon vertex and then linearly interpolating the vertex normals over the surface of the
polygon. Then apply an illumination model along each scan line to calculate projected pixel
intensities for the surface points. Phong shading can be speeded up by the intensity
calculations using a Taylor- Series expansion and triangular surface patches. Since phong
shading interpolates normal vectors from vertex normals, we can express the surface normal
N at any point (X, y) over a triangle as

N =A+8B+C
where A, B, C are determined from three vertex equations

Computer G;

Nk = Axk
reflectivity ay
from a surfac

Now the

Where pa
express the de
inxand y.

where eac

Using forv
cach pixel pos:
Thus the fast y

10.6.4 Halft(

Many disp
levels. In sucl
number of ava
into the displa-
large viewing.
the overall int
available inter
halftoning. Th
newspapers, i
halftones.

In compute
regions, say 2>
patterns. Fig. 1

jht Shading

‘dge

teeply.
wng shading

{d)
j shading

————————

sector at each
surface of the
srojected pixel

the intensity
5. Since phong
surface normal

Computer Graphics 299 Light Shading

Ny = Ax + By, +C k=1,2, 3 with{x,, y) denoting a vertex positions. Discarding the
reflectivity and attenuation parameters, the calculations for light source diffuse reflection
from a surface point (x, y) as

L-N L-(A,+B, +()
IL} IN] L[TA + B, +C]
LAY x+ (L-B)y+ L-C

“l 1A\ }B\ l'Cl

Liz (X,)

Now the expression can be rewritten in the form as
ax-i by -+ ¢

L, ¥) =~ e y

(dx® +exy+ fy = + gx4 hy +)7
Where parameters a, b, ¢ and d are used to represent the various dot products. We can
express the denominator as a Taylor - series expansion and retain terms up to second degree
inxandy. e a e .
L 06 y) = Tox™ + Tyxy+ Tyy = 4 Tox+ Ty + 1

where cach Ty is a functions of parameter a, b, ¢ and so forth.

Using forward differences, we can evaluate above equation with only two additions for
cach pixel position (x, y) once the initial forward difference parameters have been evaluated.
Thus the fast phong shading technique reduces the calculations and speed up the process.

10.6.4 Halftone Shading

Many displays and hardcopy devices are bilevel. They can only produce two intensity
levels. In such displays or hardcopy devices we can create an apparent increase in the
number of available intensities. This is achieved by incorporating multiple pixels positions
into the display of each intensity value. When we view a very small area from a sufticiently
large viewing distance, our eyes average fine details within the smatl area and record only
the overall intensity of the area. This phenomenon of apparent increase in the number of
available intensities by considering combine intensity of multiple pixels is known as
halftoning. The halftoning is commonly used in printing black and white photographs in
newspapers, magazines and books. The pictures produced by halftoning process are called
halftones.

In computer graphics, halftone reproductions are approximated using rectangular pixel
regions, say 2x 2 pixels or 3x 3 pixels. These regions are called halftone patterns or pixel
patterns. Fig. 10.17 shown the halftone patterns to create number of intensity levels.

7 7 Y
. N, N N
PN N N - \O
5 -'1 A k/‘B\/ _/4
Z

0<1<0.2 0.251<04 04<I<06 06<1<08 0B<I<10

Fig. 10.17 (a} 2 = 2 Pixel patterns for creating five intensity levels

Computer Graphics 300 Light Shading
7 7
N, A N,
7 T ZEN <N PV Z
\ A A A \\J\J
0 1 2 . 3 4
0<1<01 0.1<1<0.2 0.2<1<0.3 03<1<04 04<1<0.5
Y /) Y /\/\f) Y N
N, N, N, A A A N N N
/j/‘“\m N 2 I 7) 272 2R P 2
N A A AN A N AN N A A A A A
VAN SN 2 NN N ZE i
A Y, / A A N/ A A/
5 6 7 8 9
0.5<1<0.6 06<1<07 0.751<0.8 08<1<039 09<1<1.0

Fig. 10.17 (b} 3 <3 Pixel patterns for creating ten intensiiy levels
10.6.5 Dithering Techniques

Dithering refers to techniques for approximating halftones without reducing resolution,
as pixel grid patterns do. The term dithering is also applied to halftone approximation
methods using pixel grids, and sometimes it is used to refer to colour halftone
approximations only.

Random values added to pixel intensities to break up contours are often referred as
dither noise. Number of methods are used to generate intensity variations, Ordered dither
methods generate intensity variations with a one-to-one mapping of points in a scene to the
display pixels. To obtain n” intensity levels, it is necessary to setupannxn dither matrix D

whose clements are district positive integers in the range of 0 ton” - 1. For e.g. it is possible to
generate four intensity levels with

31

D, = 0 2} and it is possible to generate nine intensity levels with
[7 2 6

D, =14 01
(3 8 5

The matrix elements for D, and D, are in the same order as the pixel mask for setting up
2 x 2 and 3 x 3 pixel grids respectively. For bilevel system, we have to determine display
intensity values by comparing input intensities to the matrix elements. Each input intensity
is first scaled to the range 0 < I < n? If the intensity 1 is to be applied to screen position (x, y),
we have to calculate row and column numbers for the either matrix as

= (xmodn) +1, j={(ymodn)+1

IfI>D, (i,j) the pixel at position (x, y) is turned on; otherwise the pixel is not turned on.
Typically, the number of intensity levels is taken to be a multiple of 2. High order dither
matrices can be obtained from lower order matrices with the recurrence refation.

Computer Gr

assuming

Another r
pPixels is error
pixelin tensity
and below the

10.7 Transg

e e e e,

In the shaq
surface, in get
cocfficient T a
tmnsparcncy ¢
depends expor
expression for

Where t i
material which
is transmitted ;
is the coefficien
how quickly the
light, d is the d
object.

When light
media it chang
Fig. 10.18. This
cffect of refracti
of light is differ:
different path fc
light is specifiec
called the index

incidence@;, the

refraction n.oft

In practice, t
incident light, s
angles. The trans
when we are &
absorption coeffi

1ht Shading

ag resolution,
pproximation
lour halttone

on referred as
srdered dither
1 a scene to the
ther matrix D,
itis possible to

“levels with

k for setting up
armine display
Jnput intensity
| position (X, ¥)

1

s ot turned on.
ch order dither
afion.

Computer Graphics 301 Light Shading

_ 4D, +0D:(1, NYu,,, 4 D,/ +D,(1,2) u,
n 4Dll!’2 +D2(2,]}Lll.“.rz 41)"!2 +[)2 {2,2) "'I'IJ"‘.’_

D

assuming n > 4. Parameter u, , is the unity matrix.

Another method for mapping a picture with m x n points to a display arca with m x n
pixels is error diffusion. Here, the error between an input intensity value and the displayed
pixel intensity level ata given position is dispersed, or diffused to pixel positions to the right
and below the current pixel position.

10.7 Transparency

In the shading models we have not considered the transparent objects. A transparent
surface, in general, produces both reflected and transmitted light. 1t has a transparency
cocfficient T as well as values for reflectivity and specular reflection. The cocfficient of
transparency depends on the thickness of the object because the transmission of fight
depends expenentially on the distance which the light ray must travel within the object. The
expression for coefficient of transparency is given as

T =™ Incident
Where t is the coefficient of property of light

material which determines how much of the dight
is transmitted at the surface instead of reflected, a
is the coefficient of property of material which tells
how quickly the material absorbs or attenuates the -
light, d is the distance the light must travel in the
object.

Reflection
direction

Transparent
object

When light crosses the boundary between two
media it changes the direction as shown in the
Fig. 10.18. This effect is called refraction. The
effect of refraction is observed because the speed
of light is different in different materials resulting Fig. 10.18 Refraction
different path for refracted light from that of incident light. The direction of the refracted
light is specified by the angle of refraction (8,). It is the function of the property materials
called the index of refraction (n). The angle of refraction 8, is calculated from the angle of
incidence 8;, the index of refraction n; of the incident material (usually air), and the index of
refraction n, of the refracting material according to Snell's law :

. n; .
sinf, = —sin®,
r
In practice, the index of refraction of a material is a function of the wave length of the
incident light, 50 that the different colour components of a light ray refracts at different
angles. The transparency and absorption coefficients are also depend on colour. Therefore,

when we are dealing with colour objects we require three pairs of transparency and
absorption coefficients.

Computer Graphics 302 Light Shading

Refraction
direction

T direction

Fig. 10.19 Refraction direction and angle of refraction 0,

For modeling of transparent surface we have to consider contributions from the light
reflected from the surface and the light coming from behind the object. If we assume for a
given surface that

+ The transparency cocfficient for the object is a constant

» Refraction effects are negligible and

« No light source can be seen directly through the object,

then the light coming through the object is given as,

v e ovo+ty

where v is the total amount of light,

v, is the amount of light reflected from the surface,

tis the transparency coefficient and,

v, is the light coming from behind the object.

To get more realistic images we have to consider the angular behavior of the reflection
v,, transmission at the surface and also the attenuation due to thickness. The simple
approximation for this behavior can be given as

t = (tm.\x - tmin) (N E)(jt + tmin
where (N- E)}* is the cosine of the angle between the eye and the surface normal raised to
g Y

the power. This angle decides the distance the light must travel through the object. When
viewed straight on, angle is 0 i.e. cosine of angle is 1 (highest) and the distance travelled by
light is minimum. When viewed at a glancing angle, cosine is less than 1 and the distance
travelled by light is more. Therefore, we can say that cosine of angle is maximum when
surface is viewed straight on and it drops off for glancing views. The power of angle
represented by a enhances the effect. The values of o of 2 or 3 give reasonable effects.

10.8 Shadows

A shadowed object is one which is hidden from the light source. It is possible to use
hidden surface algorithms to locate the areas where light sources produce shadows. In order
to achieve this we have to repeat the hidden-surface caleulation using light source as the
viewpoint. This calculation divides the surfaces into shadowed and unshadowed groups.
The surfaces that are visible from the light source are not in shadow; those that are not
visible from the light source are in shadow. Surfaces which are visible and which are also

Computer ¢
__—_-—_

visible from
light-suurc(;
source are d

—_——

Another-

Ligh
o
'

-

10.9 Ray-T)

Fig. 10.22 A ray

pixel pos

: Shading

v the light
sume fora

the retlection
. The simple

rmal raised to

+ object. When
-¢ travelled by
4 the distance
wimum when
awer of angle
de effects.

J—
possible to use
wdows. In order
1t source as the
dowed groups.
we that are not
[which are also

Computer Graphics 303 Light Shading

visible from the light source are shown with both the background illumination and the
light-scurce illumination. Surfaces which are visible but which are hidden from the light
source are displayed with only the background illumination, as shown in the Fig. 10.20.

Light

Viewere====x5

Fig. 10.20 Shadow

Another way to locate shadow areas is the use of shadow velumes. A shadow volume is
Light | defined by the light source and an object and is

N bounded by a sct of invisible shadow polygons,

W Objet as shown in the Fig. 10.21. This volume is also

‘\\\\ < i., 5

k known as polygon's shadow volume. By
comparing visible polygon with this volume we
can identify the portions which lie inside of the
volume and which are outside of the volume.
The portions which lic inside of the volume are
shadowed, and their intensity calcudations do
not include a term from the light source. the
polygons or portions of polygons which lie
outside the shadow volume are not shaded by

this polygon, but might be shaded by some other
Fig. 10.21 polygon so they still must be checked against the
other shadow volume.

10.9 Ray-Tracing

1f we consider the line of sight from a pixel

' position on the view plane through a scene, as

’ in Fig. 10.22, we can determine which objects in

A‘ . the scene (if any) intersect this line. From the

intersection points with different object, we can
identify the visible surface as the one whose
intersection point is closest to the pixel. Ray
tracing is an extension of this basic idea. Here,
instead of identifying for the visible surface for
each pixel, we continue o bounce the ray
around the picture. This is illustrated in
Fig. 10.23. When the ray is bouncing from one
surface to another surface, it contributes the

Fig. 10.22 A ray along the line of sight from a
pixe! position through a scene

Computer Graphics 304

Light Shading

Light path backward
from pixel to scene

" N

Pixel
posilion on
projection plane

Z Projection
refe.rence
point

Fig. 10.23 Bouncing of ray around the scene

intensity for that surfaces. This is a
simple and powerful rendering
technique for obtaining global refllection
and transmission effects.

As shown in the Fig, 10.23, usually
pixel positions are designated in the xy
plane and projection reference point lie
on the 7 axas, i the pixel sereen area is
centered on viewing coordinate origin.
Wilh ihis coordinate system the
contributions loa pixelis determined by
tracing a light path backward from the
pixel to the picture.

For cach pixel ray, cach surface is
tested in the picture to determine if it s

intersected by the ray. If surface is intersected, the distance from the pixel to the surface
intersection point is calculated. The smallest calculated intersection distance identifies tha
visible surface for that pixel. Once the visible surface is identified the ray is reflected off the
visible surface along a specular path where the angle reflection equals angle of incidence. ff
the surface is Bransparent, the rav is passed through the surface in the refraction diveclion.
The ray reflected from the visible surface or passed through Lhe transparent surface in the
refraction direction is called secondary ray. The rav after reflection or refraction strikes
another visible surtace. This process is repeated recursively Lo produce the next generations
of reflection and refraction paths. These paths are represented by ray tracing tree as shown

in the Fig, 10.24.

Fig. 10.24 Binary ray-tracing tree

As shown in the Fig. 10.24, the left
branches in the binary ray tracing tree
are used to represent reflection paths,
and right branches are used to represent
transmission paths. The recursion depth
for ray tracing tree is determined by the
amount of storage available, or by the
user. The ray path is terminated when
predetermined depthis reached or if ray
strikes a light source. As we go from top
to bottom of the tree, surface intensities
are attenuated by distance from the
parent surface. The surface intensities of
all the nodes are added traversing the
ray tree from bottom to top to determine
the intensity of the pixel.

Computer (
--_‘_-———-

Ifpixel
asstgned to
assigned the

path of the j
'—____n_

R

Fig. 10.25 Sy
and

IFany obj

the surface an
shadow with
along L is refe
the surface ig
the surface i
specular-refle.
(H.N)"-. We

direction for)
the incoming 1

In a transp
material and w
material. Refer
and N as

where 1, a
meterial, respe.

10.9.1 Ray S

The ray equ

Shading

his s 2
endering
-oflection

3, usually
in the xy
» point lie
cnoarea s
e origin.
tem the
mined by
from the

surface is
yine if il s
ace surface
ntifies the
ted off the
cidence. It
direction.
face in the
ion strikes
encrations
2 as shown

24, the left
racing tree
tion paths,
o represent
-sion depth
ined by the
, or by the
waked when
wd orifray
20 from top
» intensities
: from the
atensities of
versing the
o determine

Computer Graphics 305 Light Shading

i pixel ray does not intersect toany surface then the intensity value of the background is
assigned to the pixel. If a pixel ray intersects a nonreflecting light source, the pixel can be
assigned the intensity of the source, although light sources are usually placed beyond the
path of the initial ravs,

Rellected The Fig. 10.25 shows a surface intersected by a
@ i/ | vay and unit vectors needed for the reflected
/ “| light-intensity calculations. Here, u is the unit
y L . vector in the direction of the ray path, N is the unit

- surface normal, R is the unit reflection vector, L is
T the unit vector pointing to the light source, and H is
=N the unit vector halfway between V (viewer) and |,
(light source).
LY H .
Ihcoming ray

Fig. 10.25 Surface intersected by aray Reflected
and the unit vectors ray

It any objuct intersects the path along L between

the surface and the point light source, the surface is in
shadow with respect to that source. Hence a path 0
along L is referred to as shadow ray. Ambient light at =~
the surface is given as K, |, diffuse reflection due to
the surface is proportional to K, (N.L), and the
specular-reflection compenent is proportienal to K
(H.N)Y"-. We know that, the specudar reflection

direction for R depends on the surfoce normal and

; ; : N Ingoming ray
the incoming ray direction. It is given as

R=u-QRu.N)N Fig. 10.26 Refracted ray through the
NERT transparent material
In a transparent material light passes through the P terl
material and we have to calculate intensity contributions from light transmitted through the

material. Referring the Fig. 10.26, we can obtain the unit transmission vector from vectors u
and N as

T = mu—(cosﬂ,. —n—iCOSUi)N
1, t

where 1; and v, are the indices of relfection in the incident material and the refracting
meterial, respectively. The angle of refraction 8, is given by Snell’s taw

2
cosf, = 1—[i] (1—c0529i)

10.9.1 Ray Surface Intersection Calculations
The ray equation is given as

P =PF,+su

Computer Graphics 306 . Light Shading

Where 1%, is the initial position of ray, I’ is any point along the ray path at distance s from
[, and u is the unit direction vector. The ray equation gives the coordinates of any point I’
along the ray path at a distance s from P, {nitially, Py is set to the position of the pixel on the
projection plane, or it is chosen as a projection reference point. Unit vector u s initially
obtained from the position of the pixel through which the ray passes and the projection
reference point
I I’

pixel T prepe

U= —

P P

a7V e
1 |

Vectors Py and u are updated for the secondary rays at the ray-surface intersection puing
al cach intersected surface. For the secondary rays, reflection direction for uis R and the
transmission direction is T. We can locate the surface intersections by simultancously
solving the ray equation and the surface equation for the individual objeets in the scene.

The simplest object to ray trace is sphere, i.e. we can easily identify that whether the ray
does intersect the sphere or not; and if it intersects we can casily obtain the surface
intersection coordinates from the ray equation. Consider the sphere of radio r and center
pusition P, as shown in Fig. 10.27. P is any point on the sphere which satisfics the sphere
equation :

z k]
P=FPl" -7 =0
Substituting the value of I’ from ray equation we can write above equation as

h -
|PU FEy T P\'! - =0

Fig. 10.27 A ray intersecting a sphere having radius r centered on position P¢
If we assume AP = P — P, and expand the dot product, we get the quadratic equation

s -2(u-AP)s +(A Ptj -t =0
By solving quadratic equation we get,
s = u-AP=+ -J(u-A P? -|aP|* +r?

Computer

In lhe z
intersect thy
rav equatio
re————

—_———

Fig. 10.28 F

Where N

above cquati

for stria.
W Can sav b

and the d

The abow
face. howeve
boundaries. T
we have to pe

In case of
procedure to

10.9.2 Redy

When sce
spent in chec,
earlier, adjace
or a box, We ¢
bounding vol
volumes, Tha
out the intersg
then if necess:

it Shading

nee s from
ny point P
ixel on the
is initially
projuction

ction point
- R and the
tancousty
e sCene.
‘her the ray
the surface
and center
the sphere

as

Pc
¢ equation

Computer Graphics 307 Light Shading

In the above equation jf the disceiminant is negative we can sav that the rav does not
mtersect the sphere; otherwise the surface intersection coordinates can be oblained from the
rav equation.

in case of polyhedra more processing, is
required to locate the surface intersections.
For this reason instcad of doing intersection
calcutations directly, first the intersection
test is carried out on bounding volume, as
shown in Fig. 10.28; and it the ray intersects
the bounding volume further tests and
infersection caleulations are carried oul. As
shown in Fig. 10.28, the polyhedron is
bounded by a sphere. I a ray does not
intersect the sphere, we do not need to do
any further testing on the polvhedron. But if
ray does intersect the sphere, we have to
locate front faces with the Lest

u

Fig. 10.28 Polyhedron bounded by a sphere

w-N < 0
Where Nis a surface normal. For cach face of the polyhedron that satisfies incquality in
above equation, we have to solve the plane equation as
NP = -D
for suciace position P that also satisfies the rav equation. With these initiad calculations
we can sav that the position 17 is both on thu plance and on the ray path if
N - (%, + Su)
and the distance from the initial ray positiun to the planc is
D+ N-P,
N-u
The above calculations gives us a position on the infinite plane that contain the polygon
face, however they do not satisty that the position is inside or outside the polvgon

boundaries. Therefore, to determine whether the ray intersected this face of the polyhedron,
we have to performi an inside-outside test discussed in section 3.5.

[n case of other objects, such as quadric or spline surfaces we have to follow the same
procedure to calculate ray-surface intersection positions.

5 =

10.9.2 Reducing Object-Intersection Calculations

When scene contains more than one objects, most of the processing time for each ray is
spent in checking objects that are not visible along the ray path. Therefore, as discussed
carlier, adjacent objects are enclosed in groups within a bounding volume, such as a sphere
or a box. We can then proceed for intersection calculations only when the ray intersects the
bounding volume. This approach can be extended to include a hierarchy of bounding
volumes. That is, we enclose several bounding volumes within a larger volume and carry
out the intersection test hierarchically. In this, we first test the outer bounding volume and
then if necessary test the smaller inner bounding volumes and so on.

Computer Graphics 308 _Light Shading Computer Gr:

Another melhod known as
e space-subdivision method is also used
- = P 1o reduce intersection caleulations, In this We have
[T method, the scene is enclosed within a vectors are ali
:] A cube and a cube then successively {1, 1,0, then £
I // subdivided until cach subregion (cell)
2 containg no more than a preset maximum
P /// number of surfaces, For example, one | _
N | surface per cell. We then trace rays where u =
n L through the individual cells of the cube, 10.9.3 Antia
performing intersection tests only within Traditiona’

those cells containing surfaces. Thereis a
trade-ofl between the cell size and the
number of surfaces per cell. If we set the maximum number of surfaces per cell too low, cell

Fig. 10.29 Subdivision of cube into cells computer graj
rendered imag

are not quite a:

sIZ can become o small and cell number can become too large increasing cell-traversal sharp, reflectic
processing, _ being used to a
N, Initially, we have to determine the inlersection point on Tl‘{ree basic
the front face of the cube. It can be determined by checking sampling, adag
- . - . 3
S the intersection coordinates against the cell boundars Is treated as a
. ' ¢
o positions. We then need to process the ray through the cells 10.9.3.1 Super ¢
Pt by determining the entry and oxit points as shown in the
ot N b b) ¥ _ ‘
/ ~C | Fig. 10.30, for each celt raversed by the ray until ray interseet
and objecl surface or exit the cube. —
Na I a ray direction is u and a ray entry pointis P, for a cell, ~—
Fig. 10.30 Traversal of ray the potential exit faces are those for which
through a cell ™
u-N, >0
where N; are the normal vectors. If these vectors are aligned with coordinate axes,
then
[(x1,0,0) ' Projection

) i reference poin

N, = <(0,z1.0

l .
10,0,£1) Fig. 1

illustrated in Fi;

and to determine the three candidate exits plane we have to check only the sign of each .
/ each subpixel ¢

component of u. The exit position on each candidate plane can be obtained from the ray
equation as

? - |
I vul, b 7 L n Tt Sk u
where S, is the distance along the ray from Py, to P, |- Substituting the ray equationinto
the plane equation for each face of the cell we have,
¥ —
Nk‘[uul.k - _D
Now, the ray distance to each candidate exit face can be given as

v as
b used
. Inthis
aithin a
cossively
- {eell)
SAXTIMLUT
ple, one
e rays
rhe cube,
ly within
Yhereisa
»and the
o, cell
-traversal

1 peint on
~checking
boundar
I the cells
avnoin Lhe
v intersect

W foracell,

¢ anes,

sign of each
-om the ray

Jquation into

Computer Graphics 309 Light Shading
g = D= Ne Py
b Ny -u

We have to select smallest S,. The above calculations are simple when the normal
vectors are aligned with the candidate axes. For example, if a candidate normal vector is
(0, 1, 0), then for that plane we have

Sk=

Xx = Xn
uy
where u = (u,, u,, u}, and x, is the value of the right boundary face for the cell,

10.9.3 Antialiased Ray Tracing

Traditional ray tracing systems suffer from aliasing artifacts. The term aliasing in
computer graphics is loosely defined. It can mean almost anything unwanted in the
rendered image. Typically aliasing is used to describe jagged edges. In the real world things
are not quite as perfect as in a computer generated world-cdges and boundaries are not as
sharp, reflections are not as perfect, and things can be in and out of focus. If a renderer is
being used to approximate reality then these things must be taken into account.

Three basic techniques are used to perform antialiased ray tracing. These are super
sampling, adaptive sampling and stochastic sampling. In these sampling methods, the pixel
is treated as a finite square area instead of a single point.
10.9.3.1 Super Sampling

fn supersampling, multiple,

/ evenly spaced rays (samples) are

~ tﬂk@n over cach pixel area. The

4 Fig. 10.31 shows a simple

/ supersampling procedure with

|~ four rays per pixel, one at each
/

pixel corner. To determine the

“-q.\
\\‘ + * -
overall pixel intensity, the
S oo overall pixel intensity
e Or':‘erggi’t‘ig’:ilane intensity of these pixel rays are
2" P averaged. However, if the
—

intensities for the four rays are

[not appropriately equal, or if

Projection some small object lies between
reference point the four rays, we have to divide
Fig. 10.31 Super sampling procedure the pixel area into subpixels and

repeat the process. This is
illustrated in Fig. 10.32. Here, pixel area divided into nine subpixels using 16 rays, one at
each subpixel corner.

Fig. 10.32 Subdivision of pixel into nine subpixels

Computer Graphics 310 Light Shading

10.9.3.2 Adaptive Sampling

In adaplive simnpling, multiple, uncvenly spaced rays (samples) are taken in some
rc;.,mns of the pixel arca. For example, more rays can be taken near object edges to obtain a
s ae ol the pixed intensitics. Again, to determine the overall pixel intensity where
maltiple rays are uased, the intensity of rays from subpixels are averaged. However, the
subpixels that do not have nearly equal intensity rays are further subdivided until cach
subpixel has approximately equal inlensity rays or an upper bound, say, 256, has been
reached for the number of rays per pixel.

10.9.3.3 Stochastic Sampling / Distributed Ray Tracing

Distributed ray tracing is a stochastic sampling method. It

* . _is not ray tracing on a distributed system. It is a ray tracing
M method based on randomly distributed rays over the pixel
. * | . area (Refer Fig. 10.33) used to reduce aliasing effect. In this
. method, the multiple samples are taken and averaged

* L]

together. The location of where the sample is random so that
the resulting average in an approximation of a finite area
covered by the samples.

Fig. 10.33 The random

distribution of rays The random distribution of a number of rays over the

pixel surface is achieved by the technque called jittering. In
this technique, initially, pixel area is divided into the 16 subareas as shown in the Fig. 10.33.
Then random ray positions are obtained by jittering the center coordinates of each subpixel
area by small amounts say 3x and 3y, where both 8x and 8y are assigned values in the
inverter (- 0.5, 0.5). Therefore, if center position of a cell is specified as (x, y) then the jitter
position is (x + &x, y + dy).

10.9.3.4 Advantages of Distributed Ray Tracing

The intensity of a point in a scene can be represented analytically by an integral over the
illumination function and the reflectance function. The evaluation of this integral, while
extremely accurate, is too expansive for most graphics applications. Traditional ray tracing
makes assumptions about the components of this integral to simplify evaluation. For
example, the Phong model assumes that diffuse light is reflected equally in all directions,
and specular light is at full intensity in the reflected direction and falls off exponentially with
the cosine of the angle away from this direction. In addition, light sources are modeled as
single points, su the light that emanates from a source and hits a surface can be represented
by a single ray.

Distributed ray tracing uses a slightly better approximation for the illumination and
reflectance integrals. The idea is based in the theory of oversampling. Instead of
approximating an integral by a single scalar value, the function is point sampled and these
samples are used to define a more accurate scalar value. The practical benefits of this are :

Computer G

* Gloss
* Trans)
* Soft st
* Depth
* Motiot
Gloss

Tradition
representing
do the relfect
glossy and re
of the surfac
reflections, ¢
distributing r.
direction, a p:
reflectance cap
rays.

Transluce

Traditionz
represenhng t
blurred image
translucent sy
transmitted ra
then averaged

Soft Shad

Shadows i)
is checked to s
the point, othe:
fairly accurate
SOUICES Or sout
of shadows are
light source to-
from fuliy shac

light sources, a
approximate s¢
see if it is in sh.
amount of light
the number of ¢
standard Phon

Depth of Fi

Both the hu
depth of field. C
Almost all com
model all obje
advantageous

Shading

in some
o obtain a
ity where
cever, the
until cach
has been

method. It
ay tracing
+ the pixel
act. In this

averaged
lom 50 that
finite area

ys over the
iittering. In
-+ Fig. 10.33.
.ch subpixel
lues in the
.en the jitter

sral over the
egral, while
! ray tracing
Juation. For
il directions,
entiatly with
: modeled as
s represented

nination and
+ Instead of
fed and these
5 of this are:

Computer Graphics 311 Light Shading

* Gloss (fuzzy reflections)
* Translucency

* Soft shadows

* Depth of field

* Motion blur

Gloss '

Traditional ray tracing is good at representing perfect reflecting surfaces, but poor at
representing glossy or partially reflecting surfaces. Only when surfaces are perfect mirrors
do the relfections look identical to the scene they are reflecting. More often surfaces are
glossy and reflect a blurred image of the scene. This is due to the light scattering properties
of the surface. Reflections in traditional ray tracing are always sharp, even partial
reflections. Glossy surfaces are generated in distributed ray tracing by randomly
distributing rays reflected by a surface. Instead of casting a single ray out in the reflecting
direction, a packet of rays arc sent out around the reflecting direction. The actual value of

reflectance can be found by taking the statistical mean of the values returned by each of these
rays.)

Translucency

Traditional ray tracing is good at representing perfectly transparent surfaces, but poor at
representing translucent surfaces. Real surfaces that are translucent generally transmit a
blurred image of the scene behind them. Distirbuted ray tracing achieves this type of
transtucent surface by casting randomly distributed rays in the general direction of the
transmitted ray from traditional ray tracing. The value computed from each of these rays is
then averaged to form the true translucent component.

Soft Shadows

Shadows in traditional ray tracing are discrete. When shading a point, each light source
is checked to see if it is visible. If the source is visible it has a contribution to the shading of
the point, otherwise it does not. The light source itself is modeled by a single point, which is
fairly accurate for sources that are a great distance away, but a poor representation for large
sources ot soutces that are close. The result of this discrete decision making is that the edges
of shadows are very sharp. There is a distinct transition from when points are visible to the
light source to when they are not. Shadows in the real world are much softer. The transition
from fully shadowed to partially shadowed is gradual. This is due to the finite area of real
light sources, and scattering of light of other surfaces. Distributed ray tracing attempts to
approximate soft shadows by modeling light sources as spheres. When a point is tested to
see if it is in shadow, a set of rays are cast about the projected area of the light source. The
amount of light transmitted from the source to the point can be approximated by the ratio of
the number of rays that hit the source to the number of rays cast. This ratio can be used in the
standard Phong lighting calculations to scale the amount of light that hits a surface,

Depth of Field

Both the human eye and cameras have a finite lens aperture, and thercfore have a finite
depth of field. Objects that are two far away or two close will appear unfocused and blurry.
Almost all computer graphics rendering techniques use a pinhole camera model. In this
model all objects are in perfect focus regardless of distance. In many ways this is
advantageous, blurring due to lack of focus is often unwanted in images. However,

Computer Graphics 312 Light Shading

simulating depth of field can lead to more realistic looking images because it more
accurately models true optical systems. Distributed ray tracing creates depth of field by
placing an artificial lens in front of the view plane. Randomly distributed rays are used once
again to simulate the blurring of depth of field. The first ray cast is not modified by the lens.
Itis assumed that the focal point of the lens is at a fixed distance along this ray. The rest of the
rays sent out for the same pixel will be scattered about the surface of the lens. At the point of
the lens they will be bent to pass through the focal point. Points in the scene that are close to
the focal point of the lens will be in sharp focus. Points closer or further away will be blurred.

Motion Blur

Animation in computer graphics is produced by generating a sequence of still images
and then playing them back in order. This is yet another sampling process, but it is temporal
rather than spatial. In movie cameras, each frame represents an average of the scene during
the time that the camera shutter is open. If objects in the scene are in motion relative to the
camera, then they will appear blurred on the film. Distributed ray tracing can simulate this
blurring by distributing rays temporally as well as spatially. Before each ray is cast, objects
are translated or rotated to their correct position for that frame. The rays are then averaged
afterwards to give the actual value. Objects with the most motion will have the most
blurring in the rendered image.

10.10 Colour Models

A colour model is a specification of a 3D colour coordinate system and a visible subset in
the coordinate system within which all colours in a particular colour range lie. For example,
RGB colour model is the unit cube subset of the 3D Cartesian coordinate system. The colour
model allows to give convenient specification of colours in the specific colour range or
gamut. There are three hardware oriented colour models : RGB, used for colour CRT
monitors, YIQ used for the broadcast TV colour system, and CMY (Cyan, Magenta, Yellow)
used for some colour printing devices. However, these models are not easy to use because
they does not relate directly to intuitive colour notions of hue, saturation, and brightness.
Therefore, another class of colour model has been developed. These include HSV, HLS and
HVC models. In this chapter we are going to study RGB, CMY, HSV and HLS models.

10.10.1 Properties of Light

A light source produced by a sun or electric bulb emits all frequencies within the visible
range to give white light. When this light is incident upon an object, some frequencies are
absorbed and some are reflected by the object. The combination of reflected frequencies
decides.the colour of the object. If the lower frequencies are predominant in the reflected
frequencies, the object colour is red. In this case, we can say that the perceived light has a
dominant frequency at the red end of the spectrum. Therefore, the dominant frequency
decides the colour of the object. Due to this reason dominant frequency is also called the hue
or simply the colour.

Apart from the frequency there are two more properties which describe various
characteristics of light. These are : brightness and saturation (purity). The brightness refers
to the intensity of the perceived light. The saturation describes the purity of the colour.
Pastels and pale colours are described as less pure or less saturatéd: When the two

Computer ¢

properties |
characteristi

We knoy
used to pro
produce wh
and magent.
model use ¢
gamut for th
are called pr

10.10.2 C1I
f

1.5

1.0

0.5

|/

Fig. 10.34 An

Colour matching CIE amount

They specify

The advar
values and ot

Any colot

where X,
Y and Z repre

With abo

luminance (X

Notice tha
description of
values can be.

t Shading

g it more
f field by
used once
y the lens.
rest of the
1€ point of
ire close to
e blurred.

till images
s temporal
zne during
itive to the
nulate this
ast, objects
n averaged
2 the most

le subsetin
r example,
The colour
Ar range or
:olour CRT
1ta, Yellow)
Jse because
brightness.
V,HLS and
nodels.

n the visible
Juencies are
frequencies
he reflected
1light has a
1t frequency

illed the hue_

ribe various
htness refers
f the colour.
aen the two

Computer Graphics 313 Light Shading

properties purity and dominant frequency are used collectively to describe the colour
characteristics, are referred to as chromaticity.

We know that two different colour light sources with suitably chosen intensities can be
used to produce a range of other colour. But when two colour sources are combined to
produce white colour, they are referred to as complementary colours. Red and cyan, green
and magenta, and blue and yellow are complementary colour pairs. Usually, the colour
mode! use combination of three colours to produce wide range of colours, called the colour
gamut for that model. The basic colours used to produce colour gamut in particular model
are called primary colours.

10.10.2 CIE Chromaticity Diagram

f Matching and therefore
i defining a coloured light with
combination of three fixed prinury
colours is desirable approach o
specify colour. In 1931, the
Commission Internationale de
I’ Eelairage (CIE} defined three
standard primaries, called X, Y and
Z to replace red, green and blue.
Here, X, Y and Z represent vectors
in a three-dimensional, additive
colour space. The three standard
primaries are imaginary colours.
They are defined mathemalically

Fig. 10.34 Amounts of CIE primaries needed todisplay with positive colour-matching
spectral colours

-
an

G571

Colour matching CIE amount
o

0 400 500 600 700 2(nm)
Wavelength

functions, as shown in Fig. 10.34.
They specify the amount of each primary needed to describe any spectral colour. :

The advantage of using CIE primaries is that they eliminate matching of negative colour
values and other problems associated with selecting a set of real primaries.

Any colour (C,) using CIE primaries can be expressed as
C, = XX+YY+ZZ
where X, Y and Z are the amounts of the standard primaries needed to match C, and X,
Y and Z represent vectors in a three-dimensional, additive colour space.

With above expression we can define chromaticity values by normalizing against

luminance (X + Y + Z). The normalizing amounts can be given as

X X Z
XE————, ¥y = ——, A ——
X+¥+Z X+¥Y+2Z X+¥Y+2Z

Notice that x + y +z = 1. Thatis, x, y and z are on the (X + Y + Z = 1) plane. The complete
description of colour is typically given with the three values x, y and Y. The remaining
values can be calculated as follows :

Computer Graphics 314 Light Shading

s=l-x-y, X=2Y, z=Z2Y
y y

\ Chromaticity values depend
only on dominant wavelength and
saturation and are independent of
the amount of luminous energy. By
plotting x and y for all visible colours,
we obtain the CIE chromaticity
diagram shown in Fig. 10.35, which is
the projection onto the (X, Y) plane of
the (X + Y + Z = 1) plane.

The interior and boundary of the
tongue-shaped region represent all
visible chromaticity values. The
points on the boundary are the pure
colours in the electromagnetic
spectrum, labeled according to
wavelength in nanometers from the
red end to the violet end of the

Fig. 10.35 spectrum. A standard white light, is
formally defind by a light source illuminant C, marked by the center dot. The line joining the
red and violet spectral points is called the purple line, which is not the part of the spectrum.

700

0,110.2 03 04 05 06 07 08 x

The CIE chromaticity diagram is useful in many ways :

* ltallows us to measure the dominant wavelength and the purity of any colour by
matching the colour with a mixture of the three CIE primaries.

* It identifies the complementary colours.

* It allows to define colour gamuts or colour ranges, that show the effect of adding
colours together.

The Fig. 1036 represents the
y complementary colours on the
chromaticity diagram. The straight
line joining colours represented by
points D and E passes through point
C (represents white light). This
means that when we mix proper
amounts of the two colours D and E
c in Fig. 10.36, we can obtain white

E light. Therefore, colours D and E are
complementary colours, and with
point C on the chromaticity diagram
we can identify the complement
- colour of the known colour.

Fig. 10.36 Complementary colours on chromaticity
diagram

Computer

Fig. 10

Fig. 10.38 De

10.10.3 R¢

The red
raster grapi
contributior

We can
shown in th

The ver
vertices rep
diagonal of

ght Shading

cs depend
elength and
ependent of
; energy. By
sible colours,
chromaticity
135, whichis
<, Y} plane of

3

wndary of the
represent all
values. The
are the pure
ctromagnetic
ccording to
ters from the
end of the
vhite light, is
nejoining the
e spectrum.

/ colour by

of adding

'presents the
ws on the
The straight
‘presented by
through point

light). This
' mix proper
lours D and E
obtain white
s D and E are
rs, and with
ticity diagram
complement
lour.

Computer Graphics 315

Light Shading

X

Fig. 10.37 Definition of colour gamuts on the
chromaticity diagram

X

Fig. 10.38 Determination of dominant wavelength on the

chromaticity diagram

10.10.3 RGB Colour Model

Colour gamuts are represented
on the chromaticity diagram as a
straight line or as a polygon. Any
two colours say A and B can be
added to produce any colour along
their connecting line by mixing their
appropriate amounts. The colour
gamut for three points, such as L,
and F in Fig. 10.37, is a triangle with
three colour points as vertices. The
triangle DEF in Fig. 10.37, shows that
three primaries can only generate
colours inside or on the bounding,
edges of Lhe triangle. '

The chromaticity diagram is also
useful to determine the dominant
wavelength of a colour. For colour
point D in the Fig. 10.38, we can draw
a straight line from C through D to
intersect the spectral curve at point L.
The colour D can then be represented
as a combination of white light C and
the spectral colour E. Thus, the
dominant wavelength of D is k. This
method for determining dominant
wavelength will not work for colour
points that are between C and the
purple line because the purple line is
not a part of spectrum.

The red, green and blue (RGB) colour model used in colour CRT monitors and colour
raster graphics employs a Cartesian coordinate system. In this model, the individual
contribution of red, green and blue are added together to get the resultant colour.

We can represent this colour model with the unit cube defined on R, G, and B axes, as

shown in the Fig. 10.39 (See Fig. 10.39 on next page).

The vertex of the cube on the axes represent the primary colours, and the remainiag
vertices represent the complementary colour for each of the primary colours. The main
diagonal of the cube, with equal amounts of each primary represents the gray levels. The

Computer Graphics 316

Light Shading

end at the origin of the diagonal represents black (0, 0, 0) and other end represents white

(1,1,1).

Gi

Green
{0,1,0}

Yellow

Cyan
{,1,1)

Black

{0.0.0}

White

7| (11,1

N
AN

(1,1,0)

Blue
{0.0,1)

Magenta
{(1.0,1}

Red

{1.0.0)

Gray
scale

Fig. 10.39 The RGB cube

08

08

07

0.6

0.5

0.4

G2

0.2

a1

01802 03 04 05 06 07 08

x

Fig. 10.40 Colour gamut for CIE standard RGB primaries

10.10.4 CMY Colour Model

Each colour point within the
bounds of the cube is represented as
the triple (R, G, B), where value for R,
G, B are assigned in the range from 0
to 1. As mentioned earlier, it is an
additive model. Intensities of the
primary colours are added to get the
resultant colour. Thus, the resultant
colour C, is expressed in RGB
component as

C, = RR+GG + BB

The RGB chromaticity
coordinates for the CIE RGB colour
model as given as R (0.735, 0.265), G
(0.274, 0.717), B (0.167, 0.009). The
Fig. 10.40 shows the colour gamut for
the CIE standard RGB primaries.

In this model cyan, magenta and yellow colours are used as a primary colours. This
model is used for describing colour output to hard-copy devices. Unlike video monitor,
which produce a colour pattern by combining light from the screen phosphors, hard-copy
devices such as plotters produce a colour picture by coating a paper with colour pigments.

Compu

The
RGB exy
specifie(
blackne:s
when w
compon
subtract:
compong
and biue

——

Itis pe

The un
for black. 7

10.10.5 H

We knc
In contrast,
intuitive ap
spectral col
shades, tint
and value {
Saturation :

1t Shading

-nts white

within the
resented as
valueforR,
inge from 0
ier, it is an
ties of the
'd to get the
ae resultant
d in RGB

+ BB

‘hromaticity
RGB colour
35, 0.265), G
0.009). The
- r gamut for
| imaries.

wlours. This
leo monitor,
s, hard-copy
pigments.

Computer Graphics 317 Light Shading

The subset of the Cartesian coordinate system for the CMY model is the same as that for
RGB except that white (full light) instead of black (no light) is at the origin. Colours are
specified by what is removed or subtracted from white light, rather than by what is added to
blackness. We know that, cyan can be formed by adding green and blue light. Therefore,
when white light is reflected from cyan coloured ink, the reflected light does not have red
component. That is, red light is absorbed or subtracted, by the ink. Si milarly, magenta ink
subtracts the green component from incident light, and yellow subtracts the blue

component. Therefore, cyan, magenta, and yellow are said to be complements of red, green
and blue respectively. .

The Fig. 1041 shows the cube
M, ' representation for CMY model

As shownin the Fig. 10.41, point (1,1,
Magenta 1) represents black, because all
Blue components of the incident light are
Red | subtracted. The point (0, 0, 0), the origin
Black ' represents white light. The main
diagonal represents equal amount of
primary colours, thus the gray colours. A
combination of cyan and yellow
Yellow Groen produces green light, because the red
and blue components of the incident

White Fal
Cyan

light are absorbed. Other colour

combinations are obtained by a similar

Fig. 10.41 The CMY cube .
subtractive process.

It is possible to get CMY representation from RGB representation as follows

C 1] IR
M| = [1[-|G
Y 1] | B

The unit column vector is the RGB representation for white and the CMY representation
for black. The conversion from RGB to CMY is then can be given as

R] [17 [cC
Gl={1]-|Mm
B| {1} Y

10.10.5 HSV Colour Model

We know that RGB and CMY models which we have seen are hardware oriented model.
In contrast, HSV colour model is user oriented. It uses colour descriptions that have a more
intuitive appeal to a user. The colour specification in HSV model can be given by selecting a
spectral colour and the amounts of white and black that are to be added to obtain different
shades, tints, and tones. This model uses three colour parameter : hue (H), saturation (5),
and value (V). Hue distinguishes among colours such as red, green, purple and yellow.
Saturation refers to how far colour is from a gray of equal intensity. For example, red is

B L S

Computer Graphics 318

Light Shading

Cyan

Green
’ Cyan Yellow
Blue Red
B R
Magenta
RGB color cube Color hexagon
(a) (b)

Fig. 10.43 Top of hexcone

highly saturated whereas pink is
relatively unsaturated. The value
V indicates the level of brightness.

This model uses cylindrical
coordinate system, and the subset
of the space within which model is
defined is a hexcone, or six-sided
pyramid, as shown in the
Fig. 10.42.

The top of the hexcone is
derived from the RGB cube. If we
imagine viewing the cube along
the main diagonal from the white
vertex to the origin (black), we see
an outline of the cube that has the
hexagon shape shown in Fig. 10.43.
This boundary of cube is used as a
top if hexcone and it represents
various hues,

Hue, or H, is measured by the
angle around the vertical axis, with
red at 0%, green at 120°and so on as
shown in the Fig. 1042
Complementary colours in the
HSV hexcone are 180° apart
saturation parameter varies from 0
to 1. Its value is the ratio ranging
from 0 on the center line (V axis) to
1 on the triangular sides of the
hexcone. The value V varies from 0
at the apex of the hexcone to 1 at
the top. The apex represents black.

At tl.e top of the hexcone, colours have their maximum intensity. WhenV=1andS=1, we
have the pure hues. For example, pureredisatH=0,V=1and$=1, pure greenis at H = 120,
V=1and$ =1, pureblue isat H=240, V =1and S = 1 and so on. The required colour can be
obtained by adding either white or black to the pure hue. Black can be added to the selected
hue by decreasing the setting for V while S is held constant. On the other hand, white can be
added to the selected hue by decreasing S while keeping V constant. To add some black and
some white we have to decrease both V and 5. The point S =0 and V = 1 we have white
colour. The intermediate values of V for S =0 (on the center line) are gray shades. Thus,
when S = 0, the value of H is irrelevant. When $ is not zero, H is relevant. At the apex V
coordinate is 0. At this point, the values of H and S are irrelevant.

Compute;
——

Fig. 10,44 ¢

10.10.6 H

shading

- pink 13
¢ value
~hiness.

indrical
-+ subset
nodel is
~ix-sided
in the

LCOne is
e, If we
e along
e white
.}, we sec
.t has the
ig. 10.43.
used asa
-.;3presents

»d by the
wxis, with
-1soonas
10.42.

i in the
30° apart
cies from 0
‘o ranging
:(V axis) to
des of the
iries from O
cne to 1 at
-mts black.
dS5=1, we
;atH=120,
four can be
ne selected
shite canbe
:» black and
have white
wades. Thus,
“the apex V

Computer Graphics 319

4V
. Tints Pure Hue
White » (S=1 .V=1}
Tones
Grays
\ Shades
S——— S
Black

-

Fig. 10.44 Cross sectional plane of the HSV showing

tints, tones and shades

10.10.6 HLS Colour Model

Light Shading

Fig. 10.44 shows the cross sectional
plane of the HSV hexcone. This plane
represents the colour concepts
associated with the terms shades, tints

and tones. As shown in Fig. 10.44, we
can add to

black colour to pure hue to produce
different shades of the colour.

white colour to pure hue to produce
different tints of the colour.

* both white and black colours to

pure hue to produce tones of the
colour.

Gray scale

L=1(white)

L{lightness)

H {Hue Angle)

Saturation

Fig. 10.45 Double-hexcone HLS colour model

Computer Graphics 320 Light Shading

Another model based on intuitive colour parameters is the HLS colour model used by
Tektronix. The three colour parameters in this model are : hue (H), lightness (L) and
saturation (). It is represented by double hexcone, as shown in the Fig. 10,45,

The hue specifies the angle around the vertical axis of the double hexcone. In this model,
H = 0°corresponds to blue. The remaining colours are specified around the perimeter of the
hexcone in the same order as in the HSV model. Magneta is at 60% red is at 120° and yellow is
located at H = 180° Again, complementary colours are 180°apart on the double hexcone.

The vertical axis in this model represents the lightness, L. At L =0, we have black and at
L = 1, we have white. In between value of L we have gray levels. The saturation parameters S
varies from 0 to 1 and it specifies relative purity of a colour.

At S =0, we have the gray scale and at S = 1 and L = 0.5, we have maximum saturated
{(pure) hue. As S decrease, the hue saturation decreases i.e. hue becomes less pure.

In HLS model a hue can be selected by selecting hue angle H, and the desired shade, tint,
or tone can be obtained by adjusting L and S. The colours can be made lighter by increasing L
and can be made darker by decreasing L. The colours can be moved towards gray by
decreasing S, '

Review Questions

1. Define : diffuse illumination, diffuse reflection and coefficient of reflection.

2. Explain the Lambert's cosine law.

3. What is diffused reflection ? Give the illumination model that incorporate this reflection.
4, What is specular reflection ? Give the illumination model that incorporate this reflection.
5. Derive the illumination model with combine diffuse and specular reflections.

6. Describe the Phong's illumination model.

7. What is halfway vector ? Where it is used ?

8. Explain constant intensity shading algorithm.

9. Explain Gouraud shading algorithm ? Discuss its advantages and disadvantages.

10. Explain Phong shading model. Give its merits and demerits.

11. What is halftoning ? Explain the halftone shading.

12. What is a matchband effect ?

13. Compare Gouraud shading and Phong's shading.

14. Write a short note on transparency

15. What is refraction effect ?

16. Write a short note on shadows.

17. Write a note on visible surface ray tracing.

18. Discuss the properties of light.

19. Define chromaticity, complementary colours, colour gamut and primary colours.

21. Draw and explain the CIE chromaticity diagram.
% } g

Computer
22. Ex
23 Ex
24. Ex;
25. Exj
26. De.
27 Exy

University |

1. Dey
2.Expl

3 Whe
cons
4. Expl

5. Writ
6. Wha
spec
7. Expli
othe:

8. Write

9. Whal
refle

10. Expl:

11. How
inten

12. How
13. Exple
14. Comy

15. State
16, Descr

17. Expia
Phon:

18. Write
19, Expla

20. Expla:
tracin

ihading
used by
(L) and

+ model,
er of the
rellow is
xcone.

‘k and at
meters S

aturated

ade, tint,
‘casing L
gray by

action.

action.

Computer Graphics 321 Light Shading

22. Explain the usefulness of CIE chromaticity diagram with examples.
23. Explain RGB colour model.

24. Explain CMY colour maodel.

25. Explain HSV colour model.

26. Define hue, saturation and value.

27. Explain HLS colour model.

University Questions

1. Develop an illumination model to consider ambient light, specular and diffuse reflections.
(Dec-96, Dec-2000, May-2000, Dec-2001}
2. Explain the Phong shading technique and compare this with the Gourand shading-technique.
{Dec-96, Dec-2000)
3. What do you mean by the illumination mdodel ? Develop a suitable illumination model to

consider specular and diffused reflection. {May-97)

4. Explain the Gourand shading method for shading. State its advantages and disadvantages.
(May-97)
5. Write a detailed note on colour models (May-97, Dec-97, May-2000)

6. What is an illumination model ? Develop an illumination model to consider ambient light,
specular reflection and diffused reflection. {Dec-97)

7. Explain the algorithm for Phong shading and Gaurand shading. List its advantages over the
other. (Dec-97)

8. Write a detailed note on Halftoning and Dithering techniques. (May-98, De¢-2000, May-2002)

9. What is the purpose of illumination mode ? Give the classification of light sources. Whether
reflection depends upon the surface characteristics, explain in short. (May-98)

10. Explain the method of Gouraud shading and Phong shading, State relative merits. (Dec-98)

11. How the pattern of black and white are used to give impression of intermediate

intensities ? Explain the method. (Dec-98)

12. How is shading done? Describe one method. (May-99)

13. Explain the methods of speeding up Phong, shading technique. (Dec-99)
14. Compare and Contrast Gouraud shading technique with Phong shading technique.

’ (Dec-99, May-2003)

15. State and explain the features of Phong illumination model. (Dec-99)

16. Describe Gourand shading technique in pseudocode. (Dec-99)

17. Explain Gourand Shading metho#, Discuss its advantages and disadvantages over the
Phong technique. A\l (May-2000)
N T T
_ tﬁQOT‘“\@ = (Dec-2000)
19. Explain phong illumination model in d ah\ L R

o

20. Explain advantages and ciisadvantages of E i
tracing method. \

\
18. Write a detailed note on-colour rep

{May-2001)

Computer Graphics 322 Light Shading

21. Write a detailed note on RGB colour model. (May-2001, Dec-2001, May-2002)

22. Discuss the merits and demerits of constant shading method, gouraud shading method,
phong shading method and ray casting method. (Dec-2001)
23. Write a short note on diffuse reflection ilumination model. (May-2002)
24. lllustrate HSV colour model and RGB colour mudel. {May-2003) B
25. Write a short note on dithering techniques. {May-2003) Aliasing
Angle of
Angle of
Qa0 Antialias
Antiliasir
Appel’s ¢
Area coh
Area sub
Artand ¢
Aspect ra
Axis vanis
AXOnome‘

2D clip,

B

Back-face
Back-face
Basic conc
Basic cone
Beam-pene
Bitmap
Blending fu
BMP
Boundary ¢
Boundary fil
Bounding v¢
Bresenham’

Bresenham':

vhading
lay-2002)

hod,
Jec-2001})

iay-2002)
ray-2003}
tay-2003)

Qa0

2D clipping

A

Aliasing

Angle of incidence
Angle of refraction
Antialiasing
Antiliasing of lines
Appel’s algorithm
Area coherence
Area subdivision algorithm
Art and commerce
Aspect ratio

Axis vanishing point
Axonometric

B

Back-face culling

Back-face removal algorithm
Basic concepts in circle drawing
Basic concepts in line drawing
Beam-penetration technique
Bitmap

Blending function

BMP

Boundary colour

Boundary fill algorithm
Bounding volumes

Indexl

152

59
290
301

59

59
252
249
258

28
229
228

250
261
63
45
23
16
268
9
94
93
250

Bresenham’s circle drawing algorithm

Bresenham’s line algorithm

67,70
53, 54

(323)

C
Cabinet projections 228, 229
Cameras 36
Cartesian coordinate systems 37
Cartesian reference system 37,43
Cartography 4
Cathode-ray-tube 12
Cavalier 228
Center of projection 227
Chain printers 30
Charge coupled devices 10
Chromaticity 313
CIE chromaticity diagram 313
Circle drawing 63
Circle drawing algorithms 65
Circular arc generation 265
Classification of applications 4
Clip window 152
Clipping volume 235
Ciipping window 152
Clipping 147
CMY colour model 316
Coefficient of reflection 288
Cohen-Sutherland algorithm 173
Coherence properties 98
Coherence 249
Colour 312
Colour gamut 313
Colour video monitors 22
Con'rnghne%ct!i ghfguse and specular 293
Complementary colours 313

Composition of 2D transformations 121
Computer-aided drafting and design 4
Concave polygon 89

il

Constant-intensity shading 294
Contour line 252
Convex pelygon 83
Cocrdinate representations 40
Cyrus-Beck algorithm 167,173

Cyrus-Beck line clipping algorithm 171

D
Data glove . 8
DDA algorithm 265
DDA circle drawing algorithm 65
DDA line algorithm 48
Decision variable 53, 68
Deflection plates 13
Depth buffer 256
Depth coherence 249
Depth sort algorithm 253
Diffuse illumination 288
Diffuse reflection ' 288
Digital differential analyzer 47
Digitizier 8
Direction number 92
Direct-view storage tubes 24
Display file interpreter 21
Display file . 18
Display processor 21
Dither noise 300
Dithering techniques 300
Dot matrix printers 30
Crum plotter 35
Drumn printers 29
Drum scanners 10
E
Edge coherence 249
Edge-fill . 93

Efficient visible-surface algorithms 249

(324)

Electro luminescent displays 25

Electron beam 12,13
Electrostatic deflection 12
Electrostatic plotter 35
Ellipse drawing algorithm 75
Emissive displays 25
Entering polygons 0
Error 53
Error diffusion 301
Even-odd method 91
Extents and bounding volumes 250
Exterior clipping 193
F
Face coherence 249
Faceted shading 294
Fill colour 94
Flat bed plotter 34
Flat panel displays 25
Flat shading 294
Flatbed scanners 10
Flood filt algerithm 95
Flood gun 24
Flood-fill algorithms 93
Frame buffer 16
.Frame coherence 249
G
Generalized Bresenham'’s algorithm 567
Generalized clipping 167, 192
GIF 9
Gouraud shading 294
Graphical tablet 8
H
Halftone shading 299

Hat:
Halt
Half
Halc
Han
Harc
Hidd
Hidd
Hidd
Hidd:
Hicide

Hiera
HLS ¢
Homc
Homo

Homo

HOITIO:

Homog
HSV []
Hue

[

luminz
Image ¢
image-s
Impact
Implied
Increasi
Increme
Index of
Ink jet pi
input der
Inside te
Interior a
Interpola

25
12,13
12
35
75
25
20
53
301
91
250
193

249
294
94
34
25
204
10
96
24
93
16
249

tim 57
{67, 192
9

294

8

299

Haiftones 299
Halftoning 299
Haifway vector 293
Haloed lines 253
Handheld scanners 10
Hardcopy devices ' 28
Hidden line elimination algorithms 251
Hidden line 248
Hidden line/surface algorithms 248
Hidden surface algorithms 248
Hidden surface elimination algorithms2
Hierarchy 251
HLS colour model 319

Homogeneous coordinate system 115
Homogeneous coordinates for rc:’tati<:|1n1

Homogeneous coordinates for scalinq 17

Homogeneous coordinates for translation

116
Homogeneous coordinates 115
HSV colour model 317
Hue 312
llumination model 288
Image processing as piclure analysis 2
image-space methods 248
Impact printers 29
Implied edge coherence 249
increasing resolution 59
Incremental algorithm 46
Index of refraction 301
Ink jet printer 31
Input devices 5
Inside test 91
tnterior and exterior clipping 193
Interpolation 267

(325)

Inverse transformations 130
J
Jittering 310
Joysticks 7
JPEG 9
K
Keyboard buffer 6
Keyboard 5
L
Lagrange interpolation 269
Lambert's cosine law 288
Lambert's law 288
Laser printer 32
Liang-Barsky line clipping algorithm 173
Light detectors 10
Light pen 11
Lighting mode! 288
Line clipping 153
Line drawing 45
Line drawing algorithms 46
Line printers 29
Line-display algorithms 248
Liquid crystal display 25
Liquid crystai monitors 26
M
Mach bands 297
Methods of antialiasing 59

Midpoint circle drawing algorithm 71

Midpoint subdivision algorithm 162,

Motion dynamics
Mouse

N

Nanemissive displays
Non-impact printers

Normalization transformation 148,

Normalized device coordinates
Normal-vector interpolation shading

0

Object coherence

Object precision methods
Cbject-space methods
Obtique projection

Office automation and desktop
publishing

On given view plane
On xy plane
Orientation dependent
Orthographic projection
Outcodes

Oulput devices

Qutside

|

Painter's algorithm

PEL

Pen plotter

Persistence

Perspective projection
Perspective transformation
Phong illumination model
Phong shading

Phong shading technique

164
3
6

25
29
149
148
297

249
248
248
228

232
231
50
228
163
12
170

253
16
34
27

227

249

291

297

298

(326)

Phong specular reflection model

Photomultiplier tube
Photo-paint
Photo-shop

Physical coordinate system
Physical device coordinate system

Pixel position

Pixei

Pixmap

Plasma panel display
Plasma panels
Plotters

Plotting of graphics and chart

Point clipping
Point-source illumination
Polar coordinate system
Polygon clipping

Pelygon filling

Peolygon vertices
Polygon’s shadow volume
Polyline

Palynomial methed
Primary colours

Primary gun

Principle vanishing point
Printer buffer

Printers

Process contro!
Projection reference point
Projections

Properties of light

Pure

R

Random scan
Raster scan display
Rasterization

Ray tracing tree

292
10
9

9
248
147
16
16
16
25
25
34
4
153
290
39
178
93
g9
303
88
64
313
24
229
30
29

227
226
312
314

14
15, 16

304

Ray-
Refle
Refle
Refle.
Refla
Refle
Refra
Refre:
Regio,
Repre
Repre:

Repra:
gre

Resol,
RGB ¢
Robert
Rotatio
Rotatio
Rotatio

E

Scating
Scaling
Sean co
Scan co
Scan lin
Scan lini
Scanner
Screen ¢
Seconda
Seed fill
Serial pri
Shading
Shading
Shadow |
Shadow
Shadow r
Shadow \
Shadows

| 292
10

248

em 147
16

16

16

25

25

34

153
290
39
178
93
89
303
88
64
313
24
229
30
29

227
226
312
314

14
15, 16

304

Ray-tracing 303
Reflection with respect to any plane 208
Reflection with respect to given plane208
Reflection with respect to xy plane 208

Reflection 123
Reflectivity t 288
Refraction 301
Refresh buffer 14
Region codes 153
Representation of a circle 64
Répresentation of polygons 89

Representative uses of computer
graphics .

Resolution ' 27,28
RGB colour moded 315
Robert's algorithm . 251
Rotation about an arbitrary point 121
Rotation about arbitrary axis 20
Raotation 111, 200
S
Scaling transformation 149
Scaling ' 113, 199
Scan code 6
Scan conversion 2,22
Scan line algorithm 93.96, 255
Scan line coherence 249
Scanners g
Screen coordinate system 248
Secondary ray 304
Seed fill 93
Serial printers 30
Shading algorithms 294
Shading model 288
Shadow mask grid 23
Shadow mask technique 23
Shadow ray 305
Shadow volumes 303
Shadows 302

{327)

Shear 125
Shearing relative to other reference Ii%'lgG
Sheet-fed scanners 10
Shift vector 110
Simulation and animation 4
Spaceball 7
Space-subdivision method 308
Span coherence 249
Spatial partitioning 251
Specular reflection 291
Subdivision of a Bezier spline 276
Subject polygon 191
Sutherland - Hodgeman palygon clipping
179
Sutherland and Cohen subdivision line
clipping algorithm 153, 157
T
The advantages of interactive graphics 3
The halfway vector 293
The phong itlumination model 291
Thick line segments 61
Three - dimensional midpoint subdivision
algorithm 239
Three dimensional ciipping 235
Three dimenstonal viewing 221
Tiff 9
Touch panels 10
Trackball .- 7
Transfo_[m'é'tion from world coordinate
to viewing coordinates 225
_ Fransformation matrices for general
parallel projection 231
Transformation matrix for oblique
projection onto XY plane 233
Transformation matrix for perspective
projection 234
Transformations 123

Transtation vector

Translation '

Transparency

Trigonometric method

Two dimensional transformations
Types of parallel projections
Types of perspective projections
Types of polygons

U

Unweighted area sampling
Update dynamics
User interfaces

A

Vanishing point

Vector scan/random scan display
Video display devices
View - distance

View reference point
View volume

Viewing angle

Viewing parameters
Viewing transformation
View-plane normal vector
Viewport

Visible sutface algorithms
Voice systems

W

Warnock's algorithm
Weighted area sampling
Weiler-Atherton algorithm
Winding number
Winding-number method
Window

147, 148,

110
198
301

64
110
227
229

88

60

229
14
12

222

222

235

2.

222

151

222

149

248
11

258
60
191
92
91
149

(328)

Windowing
Workstation transformation
World coordinate system

X

X shear

Y shear

Z|

Z-buffer algdrithm

@D’Hlu—-
"}Q@of?

e

Takan Bacs
(5 o~

" GE(_ !‘he

Onty
{ "'.'-3"';',‘1‘.‘:?3' & 5jfh'abus &

- . It The
Bratawv Condar. h

Yo, oa
FNAL M

—

Unbg,

147
149
147

125

125

256

