
Unit II

Relational Model: Structure of Relational Databases, Relational

Algebra, Relational Calculus, Extended Relational Algebra Operations,

Views, Modifications of the Database. Domains, Tuples, Attributes,

Relations, Characteristics of Relations, Joins and its type. Keys, Key

Attributes of Relation, Relational database, Schemas, Integrity

Constraints. Referential Integrity, Intension and Extension.

Structure of Relational Database

• A relational database consists of a collection of tables, each of

which is assigned a unique name.

• Each table has a structure.

• we represented E-R databases by tables.

• A row in a table represents a relationship among a set of

values.

Basic Structure

• Consider the account table. It has three column headers:

account-number, branch-name, and balance.

Basic Structure Cont…

• Following the terminology of the relational model, we refer to

these headers as attributes. For each attribute, there is a set of

permitted values, called the domain of that attribute.

• For example, for the attribute branch-name, the domain is the

set of all branch names.

• Let D1 denote the set of all account numbers, D2 the set of all

branch names, and D3 the set of all balances.

• Any row of account must consist of a v1, v2, v3, where v1 is

an account number (that is, v1 is in domain D1), v2 is a branch

name (that is, v2 is in domain D2), and v3 is a balance (that is,

v3 is in domain D3).

• In general, account will contain only a subset of the set of all

possible rows. Therefore, account is a subset of D1 × D2 × D3

Database Schema
• When we talk about a database, we must differentiate between the

database schema, which is the logical design of the database, and a

database instance, which is a snapshot of the data in the database at

a given instant in time.

• We adopt the convention of using lowercase names for relations,

and names beginning with an uppercase letter for relation schemas.

• Following this notation, we use Account-schema to denote the

relation schema for relation account. Thus,

Account-schema = (account_number, branch_name, balance)

• We denote the fact that account is a relation on Account-schema by

account(Account-schema)

• In general, a relation schema consists of a list of attributes and their

corresponding domains.

Database Schema Cont…

• Branch-schema = (branch_name, branch_city, branch_code)

• Customer-schema = (customer_name, customer_street,

customer_city)

• Depositor -schema = (customer_name, account_number)

• Loan-schema = (loan_number, branch_name, amount)

• Borrower-schema = (customer_name, loan_number)

E-R diagram for the Banking Enterprise

Schema Diagram

• A database schema, along with primary key and foreign key

dependencies, can be depicted pictorially by schema diagrams.

• Figure (in next slide) shows the schema diagram for our

banking enterprise.

• Each relation appears as a box, with the attributes listed inside

it and the relation name above it.

• If there are primary key attributes, a horizontal line crosses the

box, with the primary key attributes listed above the line.

• Foreign key dependencies appear as arrows from the foreign

key attributes of the referencing relation to the primary key of

the referenced relation.

Schema Diagram for the Banking Enterprise

Query Languages

• A query language is a language in which a user requests

information from the database.

• Query languages can be categorized as either procedural or

nonprocedural.

• In a procedural language, the user instructs the system to

perform a sequence of operations on the database to compute

the desired result.

• In a nonprocedural language, the user describes the desired

information without giving a specific procedure for obtaining

that information.

• The relational algebra is procedural, whereas the tuple

relational calculus and domain relational calculus are

nonprocedural.

The Relational Algebra

• The relational algebra is a procedural query language. It

consists of a set of operations that take one or two relations as

input and produce a new relation as their output.

• The fundamental operations in the relational algebra are:

• Select

• Project

• Union

• Set difference

• Cartesian product and

• Rename

Fundamental Operations

• The select, project, and rename operations are called unary

operations, because they operate on one relation.

• The other three operations operate on pairs of relations and

are, therefore, called binary operations.

• In addition to the fundamental operations, there are several

other operations—namely:

• Set intersection

• Natural join

• Division and

• Assignment

Select Operation

• The select operation selects tuples that satisfy a given

predicate. We use the lowercase Greek letter sigma (σ) to

denote selection. The predicate appears as a subscript to σ.

• The argument relation is in parentheses after the σ. Thus, to

select those tuples of the loan relation where the branch is

“Perryridge,” we write

σbranch-name =“Perryridge” (loan)

• We can find all tuples in which the loan amount is more than

1200Rs. by writing

σamount>1200 (loan)

Select Operation

• In general, we allow comparisons using =, ≠ , < , ≤ , >, ≥ in the

selection predicate.

• Furthermore, we can combine several predicates into a larger

predicate by using the connectives and (∧), or (∨) and not (￢).

• Find those tuples pertaining to loans of more than 1200Rs.

made by the Perryridge branch, we write

σbranch-name =“Perryridge”∧ amount>1200 (loan)

Project Operation

• The project operation is a unary operation that returns its

argument relation, with certain attributes left out.

• In this operation, any duplicate rows are eliminated.

• Projection is denoted by the uppercase Greek letter pi (Π).

• We list those attributes that we wish to appear in the result as a

subscript to Π. The argument relation follows in parentheses.

• Write the query to list all loan numbers and the amount of the

loan.

Πloan-number, amount(loan)

Project Operation

• Find the names of all customers with a loan in the bank.

Πcustomer_name(borrower)

• Find the names of all customers with an account in the bank.

Πcustomer_name(depositor)

Composition of Relational Operations

• The result of a relational operation is itself a relation.

• Since the result of a relational-algebra operation is of the same

type (relation) as its inputs, relational-algebra operations can

be composed together into a relational-algebra expression.

• For Ex: Find those customers who live in Indore.

Πcustomer_name(σcustomer-city =“Indore”(customer))

Union Operation

• Find the names of all bank customers who have either an account or

a loan or both.

• To answer the query, we need the union of two sets; that is, we need

all customer names that appear in either or both of the two relations.

• We find these data by the binary operation union, denoted, as in set

theory, by ∪.

• So the expression needed is

Πcustomer_name(borrower) ∪ Πcustomer_name(depositor)

Union Operation

• For a union operation r ∪ s to be valid, we require that two
conditions hold:

1. The relations r and s must be of the same arity. That is, they
must have the same number of attributes.

2. The domains of the ith attribute of r and the ith attribute of s
must be the same, for all i.

• Note that r and s can be, in general, temporary relations that
are the result of relational algebra expressions.

Set Difference Operation

• The set-difference operation, denoted by − , allows us to find

tuples that are in one relation but are not in another.

• The expression r − s produces a relation containing those

tuples in r but not in s.

• We can find all customers of the bank who have an account

but not a loan.

Πcustomer-name(depositor) − Πcustomer-name(borrower)

Set Difference Operation

• As with the union operation, we must ensure that set

differences are taken between compatible relations. Therefore,

for a set difference operation r − s to be valid, If,

• The relations r and s be of the same arity, and

• The domains of the ith attribute of r and the ith attribute of s be

the same.

Cartesian-Product Operation

• The Cartesian-product operation, denoted by a cross (×),

allows us to combine information from any two relations.

• We write the Cartesian product of relations r1 and r2 as

r1 × r2

• However, since the same attribute name may appear in both r1

and r2, we need to devise a naming schema to distinguish

between these attributes.

• We do so here by attaching to an attribute the name of the

relation from which the attribute originally came.

Cartesian-Product Operation

• For example, the relation schema for r = borrower × loan is

(borrower.customer_name,borrower.loan_number,

loan.loan_number, loan.branch_name, loan.amount)

• With this schema, we can distinguish borrower.loan-number

from loan.loan-number.

• For those attributes that appear in only one of the two

schemas, we shall usually drop the relation-name prefix. This

simplification does not lead to any ambiguity.

• We can then write the relation schema for r as

(customer_name, borrower.loan_number, loan.loan_number,

branch_name, amount)

Example

• Find the names of all customers who have a loan at the

Perryridge branch. We write,

σbranch_name =“Perryridge”(borrower × loan)

Result of borrower × loan

• The customer-name column may contain customers who do

not have a loan at the Perryridge branch. (Because the

Cartesian product takes all possible pairings of each tuple from

borrower with each tuple of loan.)

• Since the Cartesian-product operation associates every tuple of

loan with every tuple of borrower, we know that, if a customer

has a loan in the Perryridge branch, then there is some tuple in

borrower×loan that contains his name, and

borrower.loan_number= loan.loan_number. So, if we write

σborrower.loan_number=loan.loan_number(σbranch_name=“Perryridge”(borrower×loan))

• we get only those tuples of borrower × loan that pertain to

customers who have a loan at the Perryridge branch.

• Finally, since we want only customer-name, we do a

projection:

Πcustomer_name (σborrower.loan_number =loan.loan_number

(σbranch_name =“Perryridge”(borrower × loan)))

• The result of this expression, shown in Figure.

Rename Operation

• The rename operator, denoted by the lowercase Greek letter rho (ρ).

• For example, consider a relational-algebra expression E, the

expression

ρx(E)

returns the result of expression E under the name x.

• A relation r by itself is considered a relational-algebra expression.

Thus, we can also apply the rename operation to a relation r to get

the same relation under a new name.

• A second form of the rename operation is as follows.

• Assume that a relational algebra expression E has arity n. Then, the

expression ρx(A1,A2,...,An)(E) returns the result of expression E under

the name x, and with the attributes renamed to A1,A2, . . .,An.

Example

• Find the names of all customers who live on the same street

and in the same city as Smith.

Πcustomer_street, customer_city (σcustomer_name = “Smith”(customer))

• However, in order to find other customers with this street and

city, we must reference the customer relation a second time. In

the following query, we use the rename operation on the

preceding expression to give its result the name smith-addr,

and to rename its attributes to street and city, instead of

customer-street and customer-city.

Πcustomer.customer_name(σcustomer.customer_street=smith_addr.street ∧

customer.customer_city=smith_addr.city(customer × ρsmith_addr(street,city)

(Πcustomer_street, customer_city (σcustomer_name = “Smith”(customer)))))

Set-Intersection Operation

• Set intersection operation denoted by symbol (∩).

• Suppose that we wish to find all customers who have both a

loan and an account.

• Using set intersection, we can write

Πcustomer_name (borrower) ∩ Πcustomer_name (depositor)

Natural-Join Operation

• Usually, a query that involves a Cartesian product includes a

selection operation on the result of the Cartesian product.

• Consider the query “Find the names of all customers who have

a loan at the bank, along with the loan number and the loan

amount.”

Natural-Join Operation

• To solve this query, we first form the Cartesian product of the

borrower and loan relations. Then, we select those tuples that

pertain to only the same loan-number, followed by the

projection of the resulting customer-name, loan-number, and

amount.

Πcustomer_name, loan.loan_number, amount (σborrower.loan_number

=loan.loan_number(borrower × loan))

Natural-Join Operation

• The natural join is a binary operation that allows us to combine

certain selections and a Cartesian product into one operation.

• It is denoted by the “join” symbol

• The natural-join operation forms a Cartesian product of its two

arguments, performs a selection forcing equality on those

attributes that appear in both relation schemas, and finally

removes duplicate attributes.

• Find the names of all customers who have a loan at the bank,

and find the amount of the loan.

Πcustomer_name, loan_number, amount (borrower loan)

Example

• Find the names of all branches with customers who have an

account in the bank and who live in Indore.

Example

• Find the names of all branches with customers who have an

account in the bank and who live in Indore.

Πbranch_name(σcustomer_city=“Indore”(customer account depositor))

Extended Relational-Algebra Operations

Generalized Projection

• The generalized-projection operation extends the projection

operation by allowing arithmetic functions to be used in the

projection list.

• The generalized projection operation has the form

ΠF1,F2,...,Fn(E)

• where E is any relational-algebra expression, and each of F1,

F2, . . . , Fn is an arithmetic expression involving constants

and attributes in the schema of E.

Generalized Projection

• For example, suppose we have a relation credit-info, which

lists the credit limit and expenses so far (the credit-balance on

the account).

• If we want to find how much more each person can spend, we

can write the following expression:

Πcustomer_name, limit − credit_balance (credit_info)

Generalized Projection

• The attribute resulting from the expression limit −

credit_balance does not have a name. We can apply the rename

operation to the result of generalized projection in order to

give it a name. As a notational convenience, renaming of

attributes can be combined with generalized projection as

illustrated below:

Πcustomer_name, (limit − credit_balance) as credit_available (credit_info)

Aggregate Functions
• Aggregate functions take a collection of values and return a

single value as a result.

• For example, the aggregate function sum takes a collection of

values and returns the sum of the values.

• The aggregate function avg returns the average of the values.

• The aggregate function count returns the number of the

elements in the collection.

• Aggregate functions min and max, return the minimum and

maximum values in a collection.

• The relational-algebra operation signifies that aggregation is

to be applied, and its subscript specifies the aggregate

operation to be applied.

• The symbol is the letter G in calligraphic font; read it as

“calligraphic G.”

Aggregate Functions

• To illustrate the concept of aggregation, we shall use the

pt-works relation for part-time employees.

• Suppose that we want to find out the total sum of salaries

of all the part-time employees in the bank.

• The relational-algebra expression for this query is:

sum(salary)(pt-works)

Aggregate Functions

• Suppose we want to find the total salary sum of all part-time

employees at each branch of the bank separately, rather than

the sum for the entire bank.

• To do so, we need to partition the relation pt-works into groups

based on the branch, and to apply the aggregate function on

each group.

• The following expression using the aggregation operator G

achieves the desired result:

branch_name sum(salary)(pt-works)

• In the expression, the attribute branch_name in the left-hand

subscript of indicates that the input relation pt-works must

be divided into groups based on the value of branch-name.

Outer Join

• The outer-join operation is an extension of the join operation

to deal with missing information.

• Suppose that we have the relations with the following

schemas, which contain data on full-time employees:

employee (employee-name, street, city)

ft-works (employee-name, branch-name, salary)

• Consider the employee and ft-works relations in Figure(next

slide).

Outer Join

Suppose that we want to generate a single relation with all the

information (street, city, branch name, and salary) about full-time

employees.

A possible approach would be to use the natural join operation as

follows:
employee ft-works

Notice that we have lost the street and city information about

Smith, since the tuple describing Smith is absent from the ft-

works relation;

similarly, we have lost the branch name and salary information

about Gates, since the tuple describing Gates is absent from the

employee relation.

Outer Join

• We can use the outer-join operation to avoid this loss of

information.

• There are actually three forms of the operation: left outer join,

denoted by , right outer join denoted by and full outer

join, denoted by

• All three forms of outer join compute the join, and add extra

tuples to the result of the join.

Left Outer Join

• The left outer join takes all tuples in the left relation that

did not match with any tuple in the right relation, pads the

tuples with null values for all other attributes from the right

relation, and adds them to the result of the natural join.

• All information from the left relation is present in the result of

the left outer join.

Right Outer Join

• The right outer join is symmetric with the left outer join: It

pads tuples from the right relation that did not match any from

the left relation with nulls and adds them to the result of the

natural join.

• All information from the right relation is present in the result

of the right outer join.

Full Outer Join

• The full outer join does both of those operations, padding

tuples from the left relation that did not match any from the

right relation, as well as tuples from the right relation that did

not match any from the left relation, and adding them to the

result of the join.

Modifications of the Database

Deletion

• We can delete only whole tuples; we cannot delete values on

only particular attributes.

• In relational algebra a deletion is expressed by

r ← r − E

• where r is a relation and E is a relational-algebra query.

Deletion Example

• Delete all of Smith’s account records.

depositor ← depositor − σcustomer_name =“Smith” (depositor)

• Delete all loans with amount in the range 0 to 50.

loan ← loan − σamount≥ 0 and amount ≤50 (loan)

Insertion

• To insert data into a relation, we either specify a tuple to be

inserted or write a query whose result is a set of tuples to be

inserted.

• The attribute values for inserted tuples must be members of the

attribute’s domain.

• Similarly, tuples inserted must be of the correct arity.

• The relational algebra expresses an insertion by

r ← r ∪ E

• where r is a relation and E is a relational-algebra expression.

View

• Any relation that is not part of the logical model, but is made

visible to a user as a virtual relation, is called a view.

• We define a view by using the create view statement.

• To define a view, we must give the view a name, and must

state the query that computes the view.

• The form of the create view statement is

create view v as <query expression>

• where<query expression>is any legal relational-algebra query

expression.

• The view name is represented by v.

View
• As an example, consider the view consisting of branches and

their customers. This view to be called all_customer.

• We define this view as follows:

create view all_customer as

Πbranch_name, customer_name (depositor account) ∪

Πbranch_name, customer_name (borrower loan)

• Once we have defined a view, we can use the view name to

refer to the virtual relation that the view generates.

• Using the view all_customer, we can find all customers of the

Perryridge branch by writing:

Πcustomer_name(σbranch_name =“Perryridge” (all_customer))

Relational Data Model
• The relational Model of Data is based on the concept of a Relation.

• A Relation is a mathematical concept based on the ideas of sets.

• The strength of the relational approach to data management comes
from the formal foundation provided by the theory of relations.

• The model was first proposed by Dr. E.F. Codd of IBM in 1970 in
the following paper: "A Relational Model for Large Shared Data
Banks," Communications of the ACM, June 1970.

• The above paper caused a major revolution in the field of Database
management and earned Ted Codd the coveted ACM Turing Award.

INFORMAL DEFINITIONS

• RELATION: A table of values

– A relation may be thought of as a set of rows.

– A relation may alternately be though of as a set of
columns.

– Each row represents a fact that corresponds to a real-world
entity or relationship.

– Each row has a value of an item or set of items that
uniquely identifies that row in the table.

– Sometimes row-ids or sequential numbers are assigned to
identify the rows in the table.

– Each column typically is called by its column name or
column header or attribute name.

FORMAL DEFINITIONS

• A Relation may be defined in multiple ways.

• The Schema of a Relation: R (A1, A2,An)

Relation schema R is defined over attributes A1, A2,An

For Example -

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

• Here, CUSTOMER is a relation defined over the four
attributes Cust-id, Cust-name, Address, Phone#

• Each of which has a domain or a set of valid values.

• For example, the domain of Cust-id is 6 digit numbers.

FORMAL DEFINITIONS

• A tuple is an ordered set of values

• Each value is derived from an appropriate domain.

• Each row in the CUSTOMER table may be referred to as a

tuple in the table and would consist of four values.

• <632895, "John Smith", "101 Main St. Atlanta, GA

30332","(404)894-2000"> is a tuple belonging to the

CUSTOMER relation.

• A relation may be regarded as a set of tuples (rows).

• Columns in a table are also called attributes of the relation.

FORMAL DEFINITIONS

• A domain has a logical definition: e.g.“phone_numbers” are
the set of 10 digit phone numbers valid in the country.

• A domain may have a data-type or a format defined for it. The
phone_numbers may have a format: (ddd)-ddd-dddd where
each d is a decimal digit. E.g., Dates have various formats such
as month_name, date, year or yyyy-mm-dd, or dd mm,yyyy
etc.

• An attribute designates the role played by the domain. E.g.,
the domain Date may be used to define attributes “Invoice-
date” and “Payment-date”.

FORMAL DEFINITIONS

• The relation is formed over the Cartesian product of the sets;
each set has values from a domain; that domain is used in a
specific role which is conveyed by the attribute name.

• For example, attribute Cust-name is defined over the domain
of strings of 25 characters. The role these strings play in the
CUSTOMER relation is that of the name of customers.

• Formally,

Given R(A1, A2,, An)

r(R)  dom (A1) X dom (A2) XX dom(An)

• R: schema of the relation

• r of R: a specific "value" or population of R.

• R is also called the intension of a relation

• r is also called the extension of a relation

FORMAL DEFINITIONS

• Let S1 = {0,1}

• Let S2 = {a,b,c}

• Let R  S1 X S2

• Then for example: r(R) = {<0,a> , <0,b> , <1,c> }

is one possible “state” or “population” or “extension” r of the

relation R, defined over domains S1 and S2. It has three tuples.

DEFINITION SUMMARY

Informal Terms Formal Terms

Table Relation

Column Attribute/Domain

Row Tuple

Values in a column Domain

Table Definition Schema of a Relation

Populated Table Extension

Example

CHARACTERISTICS OF RELATIONS

• Ordering of tuples in a relation r(R): The tuples are not
considered to be ordered, even though they appear to be in the
tabular form.

• Ordering of attributes in a relation schema R (and of values
within each tuple): We will consider the attributes in R(A1, A2,
..., An) and the values in t=<v1, v2, ..., vn> to be ordered .

• Values in a tuple: All values are considered atomic
(indivisible).

• A special null value is used to represent values that are
unknown or inapplicable to certain tuples.

CHARACTERISTICS OF RELATIONS

• Notation:

- We refer to component values of a tuple t by t[Ai] = vi (the

value of attribute Ai for tuple t).

Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing

the values of attributes Au, Av, ..., Aw, respectively.

CHARACTERISTICS OF RELATIONS

Relational Integrity Constraints

• Constraints are conditions that must hold on all valid

relation instances.

• There are three main types of constraints:

1. Key constraints

2. Entity integrity constraints

3. Referential integrity constraints

Key Constraints
• Superkey of R: A set of attributes SK of R such that no two

tuples in any valid relation instance r(R) will have the same
value for SK. That is, for any distinct tuples t1 and t2 in r(R),
t1[SK]  t2[SK].

• Key of R: A "minimal" superkey; that is, a superkey K such
that removal of any attribute from K results in a set of
attributes that is not a superkey.

Example: The CAR relation schema:

CAR(State, Reg#, SerialNo, Make, Model, Year) has two keys

Key1 = {State, Reg#}, Key2 = {SerialNo}, which are also
superkeys.

• If a relation has several candidate keys, one is chosen
arbitrarily to be the primary key. The primary key attributes
are underlined.

Entity Integrity

• Relational Database Schema: A set S of relation schemas that
belong to the same database. S is the name of the database.

S = {R1, R2, ..., Rn}

• Entity Integrity: The primary key attributes(PK) of each
relation schema R in S cannot have null values in any tuple of
r(R). This is because primary key values are used to identify
the individual tuples.

t[PK]  null for any tuple t in r(R)

• Note: Other attributes of R may be similarly constrained to
disallow null values, even though they are not members of the
primary key.

Referential Integrity

• A constraint involving two relations (the previous constraints
involve a single relation). Used to specify a relationship
among tuples in two relations: the referencing relation and
the referenced relation.

• Tuples in the referencing relation R1 have attributes FK (called
foreign key attributes) that reference the primary key
attributes PK of the referenced relation R2. A tuple t1 in R1 is
said to reference a tuple t2 in R2 if t1[FK] = t2[PK].

• A referential integrity constraint can be displayed in a
relational database schema as a directed arc from R1.FK to R2.

Referential Integrity Constraint

Statement of the constraint

• The value in the foreign key column (or columns) FK of the
the referencing relation R1 can be either:

(1) a value of an existing primary key value of the
corresponding primary key PK in the referenced relation R2,,

or..

(2) a null.

In case (2), the FK in R1 should not be a part of its own primary
key.

Other Types of Constraints

Semantic Integrity Constraints:

- based on application semantics and cannot be expressed by the
model per se

- E.g., “the max. no. of hours per employee for all projects he or
she works on is 56 hrs per week”

- A constraint specification language may have to be used to
express these

- SQL-99 allows triggers and ASSERTIONS to allow for some
of these

Exercise

• Consider the following relations for a database that keeps track

of student enrollment in courses and the books adopted for

each course:

• STUDENT(SSN, Name, Bdate)

• COURSE(Course#, Cname, Dept)

• ENROLL(SSN, Course#, Quarter, Grade)

• BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

• TEXT(Book_ISBN, Book_Title, Publisher, Author)

• Draw a relational schema diagram specifying the foreign

keys for this schema.

