Unit 11

Relational Model: Structure of Relational Databases, Relational
Algebra, Relational Calculus, Extended Relational Algebra Operations,
Views, Modifications of the Database. Domains, Tuples, Attributes,
Relations, Characteristics of Relations, Joins and its type. Keys, Key
Attributes of Relation, Relational database, Schemas, Integrity
Constraints. Referential Integrity, Intension and Extension.

Structure of Relational Database

* A relational database consists of a collection of tables, each of
which is assigned a unique name.

« Each table has a structure.
« we represented E-R databases by tables.

« A row In a table represents a relationship among a set of
values.

Basic Structure

 Consider the account table. It has three column headers:
account-number, branch-name, and balance.

account-number | branch-name | balance
A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill 350

The account relation.

Basic Structure Cont...

Following the terminology of the relational model, we refer to
these headers as attributes. For each attribute, there Is a set of
permitted values, called the domain of that attribute.

For example, for the attribute branch-name, the domain is the
set of all branch names.

Let D1 denote the set of all account numbers, D2 the set of all
branch names, and D3 the set of all balances.

Any row of account must consist of a v1, v2, v3, where v1 is
an account number (that is, v1 Is in domain D1), v2 is a branch
name (that is, v2 Is in domain D2), and v3 is a balance (that is,
v3 is in domain D3).

In general, account will contain only a subset of the set of all
possible rows. Therefore, account is a subset of D1 x D2 x D3

Database Schema

When we talk about a database, we must differentiate between the
database schema, which is the logical design of the database, and a
database instance, which is a snapshot of the data in the database at
a given instant in time.

We adopt the convention of using lowercase names for relations,
and names beginning with an uppercase letter for relation schemas.

Following this notation, we use Account-schema to denote the
relation schema for relation account. Thus,

Account-schema = (account_number, branch_name, balance)
We denote the fact that account is a relation on Account-schema by
account(Account-schema)

In general, a relation schema consists of a list of attributes and their
corresponding domains.

Database Schema Cont...

Branch-schema = (branch_name, branch_city, branch_code)

Customer-schema = (customer_name, customer_street,
customer_city)

Depositor -schema = (customer_name, account_number)
Loan-schema = (loan_number, branch_name, amount)

Borrower-schema = (customer_name, loan_number)

E-R diagram for the Banking Enterprise

mb@ (balame>
\ /\

account

depositor

customer
customer-name customer—citb
\—_

customer-street

borrower

@1 -number Qmmmt >

—

@nch—cit_tb

_—

@nch-name assets

account-branch

branch

loan

DN

Schema Diagram

A database schema, along with primary key and foreign key
dependencies, can be depicted pictorially by schema diagrams.

Figure (in next slide) shows the schema diagram for our
banking enterprise.

Each relation appears as a box, with the attributes listed inside
It and the relation name above It.

If there are primary key attributes, a horizontal line crosses the
box, with the primary key attributes listed above the line.

Foreign key dependencies appear as arrows from the foreign
key attributes of the referencing relation to the primary key of
the referenced relation.

Schema Diagram for the Banking Enterprise

branch

branch-name

branch—city
assets

A

account

depositor

customer

account-number *—I_

branch-name
balance

customer—name
account—number

—

customer-name

customer—street
customer—city

loan

borrower

loan—number

branch-name
amount

customer—name
loan-number

Query Languages

A query language Is a language In which a user requests
Information from the database.

Query languages can be categorized as either procedural or
nonprocedural.

In a procedural language, the user instructs the system to
perform a sequence of operations on the database to compute
the desired result.

In a nonprocedural language, the user describes the desired
Information without giving a specific procedure for obtaining
that information.

The relational algebra is procedural, whereas the tuple
relational calculus and domain relational calculus are
nonprocedural.

The Relational Algebra

The relational algebra iIs a procedural query language. It
consists of a set of operations that take one or two relations as
Input and produce a new relation as their output.

The fundamental operations in the relational algebra are:
Select

Project

Union

Set difference

Cartesian product and

Rename

Fundamental Operations

The select, project, and rename operations are called unary
operations, because they operate on one relation.

The other three operations operate on pairs of relations and
are, therefore, called binary operations.

In addition to the fundamental operations, there are several
other operations—namely:

Set intersection
Natural join
Division and
Assignment

Select Operation

« The select operation selects tuples that satisfy a given
predicate. We use the lowercase Greek letter sigma (o) to
denote selection. The predicate appears as a subscript to o.

« The argument relation is in parentheses after the ¢. Thus, to
select those tuples of the loan relation where the branch is
“Perryridge,” we write

Gpranch-name =“Perryridge” (Ioan)
« We can find all tuples in which the loan amount is more than
1200Rs. by writing

O amount>1200 (Ioan)

Select Operation

 In general, we allow comparisons using =, #, <, <, >, >in the
selection predicate.

« Furthermore, we can combine several predicates into a larger
predicate by using the connectives and (A), or (V) and not (—).

* Find those tuples pertaining to loans of more than 1200Rs.
made by the Perryridge branch, we write

Opranch-name =“Perryridge”A amount>1200 (Ioan)

Project Operation

The project operation is a unary operation that returns its
argument relation, with certain attributes left out.

In this operation, any duplicate rows are eliminated.
Projection is denoted by the uppercase Greek letter pi (IT).

We list those attributes that we wish to appear in the result as a
subscript to I1. The argument relation follows in parentheses.

Write the query to list all loan numbers and the amount of the
loan.

1_[Ioan-number, amount(loan)

Project Operation

* Find the names of all customers with a loan in the bank.
chstomer_name(borrower)

* Find the names of all customers with an account in the bank.

chstomer_name(deposito r

Composition of Relational Operations

The result of a relational operation is itself a relation.

Since the result of a relational-algebra operation is of the same
type (relation) as its inputs, relational-algebra operations can
be composed together into a relational-algebra expression.

For EX: Find those customers who live in Indore.

chstomer_name(chstomer-city =“Indore”(CUSt0mer))

Union Operation

Find the names of all bank customers who have either an account or
a loan or both.

To answer the query, we need the union of two sets; that is, we need
all customer names that appear in either or both of the two relations.

We find these data by the binary operation union, denoted, as in set
theory, by U.

So the expression needed Is
chstomer_name(borrower) U chstomer_name(depositor)

Union Operation

e For a union operation r U s to be valid, we require that two
conditions hold:

1. The relations r and s must be of the same arity. That is, they
must have the same number of attributes.

2. The domains of the it" attribute of r and the it attribute of s
must be the same, for all 1.

* Note that r and s can be, in general, temporary relations that
are the result of relational algebra expressions.

Set Difference Operation

« The set-difference operation, denoted by — , allows us to find
tuples that are in one relation but are not in another.

 The expression r — s produces a relation containing those
tuples inr but not in s.

« We can find all customers of the bank who have an account
but not a loan.

chstomer-name(depoSitor) o chstomer-name(borrower)

Set Difference Operation

« As with the union operation, we must ensure that set
differences are taken between compatible relations. Therefore,
for a set difference operation r — s to be valid, If,

« The relations r and s be of the same arity, and

« The domains of the it" attribute of r and the it attribute of s be
the same.

Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (%),
allows us to combine information from any two relations.

We write the Cartesian product of relations rl and r2 as
rlxr2

However, since the same attribute name may appear in both rl
and r2, we need to devise a naming schema to distinguish
between these attributes.

We do so here by attaching to an attribute the name of the
relation from which the attribute originally came.

Cartesian-Product Operation

For example, the relation schema for r = borrower x loan is
(borrower.customer_name,borrower.loan_number,
loan.loan_number, loan.branch_name, loan.amount)

With this schema, we can distinguish borrower.loan-number
from loan.loan-number.

For those attributes that appear in only one of the two
schemas, we shall usually drop the relation-name prefix. This
simplification does not lead to any ambiguity.

We can then write the relation schema for r as
(customer_name, borrower.loan_number, loan.loan_number,
branch_name, amount)

Example

Find the names of all customers who have a loan at the
Perryridge branch. We write,

Gbranch_name =“Perryridge”(borrower X Ioan)

| customer-name | loan-number |

| loan-number | branch-name | amount |

L-11 Round Hill 000 Adams L-16
[L-14 Downtown 1500 Curry [-03
L-15 Perryridge 1500 Hayes L-15
L-16 Perryridge 1300 Jackson L-14
L-17 Downtown | 1000 Jones L-17
L-23 Redwood 2000 bm}th L-11
[.-03 Mianus 500 Smith 1.:23

Williams L-17

The loan relation. _
The borrower relation

Result of borrower X |oan

borrotper. _
customer-name | logn-number Ir:-'a'rr-nu mber | branch-name | amount
Adams L-1& L-11 Round Hill a0
Adams L-1& L-14 Downtown LS00
Adams L-1& L-15 Perryridge 1500
Adams L-16 L-1é4 Perryridge 1300
Adams L-1& L-17 Downtown LD
Adams L-1& L-23 Redwood 2000
Adams L-1& L-93 MMianus SO0
Curry L-93 L-11 Round Hill Q00
Curry L-93 L-14 Downitowm 1500
Curry L-93 L-15 Perryvridge 1500
Curry L-93 L-164 Perryridge 1300
Curry L-93 L-17 Downtown 1000
Curry L-93 L-23 Redwood 2000
Curry L-93 L-93 Mianus S0
Hawes L-15 L-11 Q00
Hawes L-15 L-14 1 S0
Hawes L-15 L-15 1 S0
Hawes L-15 L-l& LS00
Hawes L-15 L-17 1 W
Haves L-15 L-23 2000
Hawes L-15 L-93 S0
Smith -3 L-11 Round Hill Q00
Smith L-23 L-14 Dowrmitown LS50
Smith L-23 L-15 Perryridge 1500
Smith L-23 L-14 Perryridge 1 300
Smith L-23 L-17 Downtown L0
Smith L-23 L-23 Redwood 2000
Smith L-23 L-93 MMianus S0
williams L-17 L-11 Round Hill Q00
wWilliams L-17 L-14 Dowrnitown LS00
Williams L-17 L-15 Perryridge 1500
Williams L-17 L-16 Perryridge 1300
wWilliams L-17 L-17 Downtown D0
Williams L-17 L-23 Redwood 2000
williams L-17 L-93 MMianus SO0

« The customer-name column may contain customers who do
not have a loan at the Perryridge branch. (Because the
Cartesian product takes all possible pairings of each tuple from
borrower with each tuple of loan.)

 Since the Cartesian-product operation associates every tuple of
loan with every tuple of borrower, we know that, If a customer
has a loan in the Perryridge branch, then there is some tuple in
borrowerx|loan that contains his name, and
borrower.loan_number= loan.loan_number. So, if we write

Gborrower.Ioan_number:Ioan.Ioan_number(Gbranch_name=“Perryridge”(borrowerx Ioan))

« we get only those tuples of borrower x loan that pertain to
customers who have a loan at the Perryridge branch.

* Finally, since we want only customer-name, we do a
projection:
I1

customer_name (Gborrower.loan_number =loan.loan_number
(Gbranch_name =“Perryridge”(borrower X IOan)))

« The result of this expression, shown in Figure.

| customer-name |

Adams
Hayes

Rename Operation

The rename operator, denoted by the lowercase Greek letter rho (p).

For example, consider a relational-algebra expression E, the
expression

px(E)
returns the result of expression E under the name x.

A relation r by itself is considered a relational-algebra expression.
Thus, we can also apply the rename operation to a relation r to get
the same relation under a new name.

A second form of the rename operation is as follows.
Assume that a relational algebra expression E has arity n. Then, the

the name x, and with the attributes renamed to A1,A2, . . . An.

Example

Find the names of all customers who live on the same street
and in the same city as Smith.

chstomer_street, customer_city (chstomer_name = “Smith”(CUStomer))

However, in order to find other customers with this street and
city, we must reference the customer relation a second time. In
the following query, we use the rename operation on the
preceding expression to give its result the name smith-addr,
and to rename its attributes to street and city, instead of
customer-street and customer-city.

chstomer.customer_name(ccustomer.customer_street:smith_addr.street A

customer.customer_city:smith_addr.city(CUStomer X psmith_addr(street,city)
(chstomer_street, customer_city (chstomer_name = “Smith”(CUStomer)))))

Set-Intersection Operation

* Set intersection operation denoted by symbol ().

« Suppose that we wish to find all customers who have both a
loan and an account.

« Using set intersection, we can write

chstomer_name (bOI‘I’OWCI’) M chstomer_name (depositor)

Natural-Join Operation

« Usually, a query that involves a Cartesian product includes a
selection operation on the result of the Cartesian product.

e Consider the query “Find the names of all customers who have
a loan at the bank, along with the loan number and the loan

amount.”

Natural-Join Operation

« To solve this query, we first form the Cartesian product of the
borrower and loan relations. Then, we select those tuples that
pertain to only the same loan-number, followed by the
projection of the resulting customer-name, loan-number, and
amount.

I1

customer_name, loan.loan_number, amount (Gborrower.loan_number
:Ioan.Ioan_number(borrower X Ioan))

Natural-Join Operation

The natural join Is a binary operation that allows us to combine
certain selections and a Cartesian product into one operation.

It is denoted by the “join” symbol X

The natural-join operation forms a Cartesian product of its two
arguments, performs a selection forcing equality on those
attributes that appear in both relation schemas, and finally
removes duplicate attributes.

Find the names of all customers who have a loan at the bank,
and find the amount of the loan.

chstomer_name, loan_number, amount (borrower X Ioan)

Example

* Find the names of all branches with customers who have an
account in the bank and who live in Indore.

Example

 Find the names of all branches with customers who have an
account in the bank and who live in Indore.

1_Ibranch_name(ccustomer_city=“Indore”(CuStomer M accounti depositor))

Extended Relational-Algebra Operations

Generalized Projection

« The generalized-projection operation extends the projection
operation by allowing arithmetic functions to be used in the
projection list.

« The generalized projection operation has the form
1_[Fl,FZ Fn(E)

« where E is any relational-algebra expression, and each of F1,
F2, . .., Fn iIs an arithmetic expression involving constants
and attributes in the schema of E.

Generalized Projection

* For example, suppose we have a relation credit-info, which
lists the credit limit and expenses so far (the credit-balance on
the account).

customer-name | limit | credit-balance
Curry 2000 1750
Hayes 1500 1500
Jones 6000 700
Smith 2000 400

 |f we want to find how much more each person can spend, we
can write the following expression:

chstomer_name, limit — credit_balance (CI’Ed |t_| nfo)

Generalized Projection

The attribute resulting from the expression limit -
credit_balance does not have a name. We can apply the rename
operation to the result of generalized projection in order to
give it a name. As a notational convenience, renaming of
attributes can be combined with generalized projection as
Illustrated below:

chstomer_name, (limit — credit_balance) as credit_available (Cred It_' nfo)

Aggregate Functions

Aggregate functions take a collection of values and return a
single value as a result.

For example, the aggregate function sum takes a collection of
values and returns the sum of the values.

The aggregate function avg returns the average of the values.

The aggregate function count returns the number of the
elements in the collection.

Aggregate functions min and max, return the minimum and
maximum values in a collection.

The relational-algebra operation ¢ signifies that aggregation is
to be applied, and its subscript specifies the aggregate
operation to be applied.

The symbol Gis the letter G in calligraphic font; read it as
“calligraphic G.”

Aggregate Functions

To illustrate the concept of aggregation, we shall use the

pt-works relation for part-time employees.

| employee-name | branch-name | salary |

Adams
Brown
Gopal
Johnson
Loreena
Peterson
Rao

Sato

Perryridge
Perryridge
Perryridge
Downtown
Downtown
Downtown
Austin

Austin

1500
1300
5300
1500
1300
2500
1500
1600

The pt-works relation

Suppose that we want to find out the total sum of salaries

of all the part-time employees in the bank.

The relational-algebra expression for this query is:
G sum(salary)(pt'works)

Aggregate Functions

Suppose we want to find the total salary sum of all part-time
employees at each branch of the bank separately, rather than
the sum for the entire bank.

To do so, we need to partition the relation pt-works into groups
based on the branch, and to apply the aggregate function on
each group.

The following expression using the aggregation operator G
achieves the desired result:

branch_name G sum(salary)(pt'works)
In the expression, the attribute branch_name in the left-hand
subscript of & Indicates that the input relation pt-works must
be divided into groups based on the value of branch-name.

Outer Join

« The outer-join operation is an extension of the join operation
to deal with missing information.

e Suppose that we have the relations with the following
schemas, which contain data on full-time employees:

employee (employee-name, street, city)
ft-works (employee-name, branch-name, salary)

« Consider the employee and ft-works relations in Figure(next
slide).

Outer Join

employee-name | street city
Coyote Toon Hollywood
Rabbit Tunnel Carrotville
Smith Revolver | Death Valley
Williams Seaview | Seattle
employee-name | branch-name | salary
Coyote Mesa 1500
Rabbit Mesa 1300
Gates Redmond 5300
Williams Redmond 1500

Suppose that we want to generate a single relation with all the
Information (street, city, branch name, and salary) about full-time
employees.

A possible approach would be to use the natural join operation as

follows:
employee X ft-works

employee-name street city branch-name | salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500

Notice that we have lost the street and city information about
Smith, since the tuple describing Smith is absent from the ft-
works relation;

similarly, we have lost the branch name and salary information
about Gates, since the tuple describing Gates is absent from the
employee relation.

Outer Join

« We can use the outer-join operation to avoid this loss of
Information.

» There are actually three forms of the operation: left outer join,
denoted by I, right outer join denoted by < and full outer
join, denoted by 2<C.

« All three forms of outer join compute the join, and add extra
tuples to the result of the join.

L_eft Outer Join

« The left outer join 21 takes all tuples In the left relation that
did not match with any tuple in the right relation, pads the
tuples with null values for all other attributes from the right

relation, and adds them to the result of the natural join.

« All information from the left relation is present in the result of

the left outer join.

employee-name street city branch-name | salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500
Smith Revolver | Death Valley null null

Result of employee A ft-works

Right Outer Join

« The right outer joinp<C 1s symmetric with the left outer join: It
pads tuples from the right relation that did not match any from
the left relation with nulls and adds them to the result of the

natural join.

« All information from the right relation is present in the result

of the right outer join.

employee-name street city branch-name | sala ry
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Gates null null Redmond 5300

Result of employee XC ft-works

Full Outer Join

« The full outer join 2<C. does both of those operations, padding
tuples from the left relation that did not match any from the
right relation, as well as tuples from the right relation that did
not match any from the left relation, and adding them to the
result of the join.

employee-name street city branch-name | salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Smith Revolver | Death Valley | null null
Gates null null Redmond 5300

Result of employee 2T ft-works

Modifications of the Database

Deletion

* We can delete only whole tuples; we cannot delete values on
only particular attributes.

 In relational algebra a deletion is expressed by
r<—1r—E

« where ris a relation and E is a relational-algebra query.

Deletion Example

* Delete all of Smith’s account records.

depositor < depositor — o (depositor)

customer name =“Smith”

» Delete all loans with amount in the range 0 to 50.

loan < loan — Gamount> 0 and amount <50 (Ioan)

Insertion

To Insert data into a relation, we either specify a tuple to be
Inserted or write a query whose result is a set of tuples to be
Inserted.

The attribute values for inserted tuples must be members of the
attribute’s domain.

Similarly, tuples inserted must be of the correct arity.
The relational algebra expresses an insertion by
r—rUE
where r is a relation and E is a relational-algebra expression.

View

Any relation that is not part of the logical model, but is made
visible to a user as a virtual relation, i1s called a view.

We define a view by using the create view statement.

To define a view, we must give the view a name, and must
state the query that computes the view.

The form of the create view statement Is
create view v as <guery expression>

where<query expression>is any legal relational-algebra query
expression.

The view name Is represented by v.

View
As an example, consider the view consisting of branches and
their customers. This view to be called all_customer.
We define this view as follows:
create view all_customer as
1_Ibranch_name, customer_name (depositor[><] account) U

1_[branch_name, customer_name (borrower X Ioan)

Once we have defined a view, we can use the view name to
refer to the virtual relation that the view generates.

Using the view all_customer, we can find all customers of the
Perryridge branch by writing:

chstomer_name(Gbranch_name =“Perryridge” (al I_customer))

Relational Data Model

The relational Model of Data is based on the concept of a Relation.
A Relation is a mathematical concept based on the ideas of sets.

The strength of the relational approach to data management comes
from the formal foundation provided by the theory of relations.

The model was first proposed by Dr. E.F. Codd of IBM in 1970 in
the following paper: "A Relational Model for Large Shared Data
Banks," Communications of the ACM, June 1970.

The above paper caused a major revolution in the field of Database
management and earned Ted Codd the coveted ACM Turing Award.

INFORMAL DEFINITIONS

« RELATION: Atable of values
— A relation may be thought of as a set of rows.

— A relation may alternately be though of as a set of
columns.

— Each row represents a fact that corresponds to a real-world
entity or relationship.

— Each row has a value of an item or set of items that
uniquely identifies that row in the table.

— Sometimes row-ids or sequential numbers are assigned to
Identify the rows in the table.

— Each column typically is called by its column name or
column header or attribute name.

FORMAL DEFINITIONS

A Relation may be defined in multiple ways.
The Schema of a Relation: R (Al, A2,An)
Relation schema R is defined over attributes Al, A2,An
For Example -
CUSTOMER (Cust-id, Cust-name, Address, Phone#)

Here, CUSTOMER i1s a relation defined over the four
attributes Cust-1d, Cust-name, Address, Phone#

Each of which has a domain or a set of valid values.
For example, the domain of Cust-id is 6 digit numbers.

FORMAL DEFINITIONS

A tuple is an ordered set of values
Each value is derived from an appropriate domain.

Each row in the CUSTOMER table may be referred to as a
tuple in the table and would consist of four values.

<632895, "John Smith", "101 Main St. Atlanta, GA
30332","'(404)894-2000"> i1s a tuple belonging to the
CUSTOMER relation.

A relation may be regarded as a set of tuples (rows).
Columns In a table are also called attributes of the relation.

FORMAL DEFINITIONS

« A domain has a logical definition: e.g.“phone_numbers” are
the set of 10 digit phone numbers valid in the country.

« A domain may have a data-type or a format defined for it. The
phone_numbers may have a format: (ddd)-ddd-dddd where
each d is a decimal digit. E.g., Dates have various formats such
as month_name, date, year or yyyy-mm-dd, or dd mm,yyyy
etc.

 An attribute designates the role played by the domain. E.g.,
the domain Date may be used to define attributes “Invoice-
date” and “Payment-date”.

FORMAL DEFINITIONS

The relation is formed over the Cartesian product of the sets;
each set has values from a domain; that domain is used in a
specific role which is conveyed by the attribute name.

For example, attribute Cust-name Is defined over the domain
of strings of 25 characters. The role these strings play in the
CUSTOMER relation is that of the name of customers.

Formally,
Given R(A Ay e VA
r(R) c dom (A;) X dom (A,) X ...X dom(A,)
R: schema of the relation
r of R: a specific "value" or population of R.
R is also called the intension of a relation
r is also called the extension of a relation

FORMAL DEFINITIONS

Let S1={0,1}
Let S2 = {a,b,c}

Let R S1 X S2

Then for example: r(R) = {<0,a>, <0,b>, <1,c> }

1s one possible “state” or “population” or “extension” r of the
relation R, defined over domains S1 and S2. It has three tuples.

DEFINITION SUMMARY

Informal Terms Formal Terms
Table Relation
Column Attribute/Domain
Row Tuple
Values in a column Domain
Table Definition Schema of a Relation
Populated Table Extension

Relation name

/

Example

Attributes

/

BN

STUDENT Name SSN HomePhone OfficePhone |Age | GPA
Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 | 321
Katherine Ashly 381-62-1245 375-4409 125 Kirby Road null 18 | 2.89
/ Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 | 25 | 353
e Charles Cooper 489-22-1100 376-9821 265 Lark Lane 7496492 | 28 | 393
| BarbaraBenson 533-69-1238 839-8461 7384 Fontana Lane null 19 | 325

CHARACTERISTICS OF RELATIONS

* Ordering of tuples in a relation r(R): The tuples are not
considered to be ordered, even though they appear to be in the
tabular form.

« Ordering of attributes in a relation schema R (and of values
within each tuple): We will consider the attributes in R(A,, A,,
..., A,) and the values in t=<v, v,, ..., v,> to be ordered .

 Values in a tuple: All values are considered atomic
(indivisible).

« A special null value is used to represent values that are
unknown or inapplicable to certain tuples.

CHARACTERISTICS OF RELATIONS

* Notation:

- We refer to component values of a tuple t by t[A;] = v; (the
value of attribute A, for tuple t).

Similarly, t[A,, A, ..., A,] refers to the subtuple of t containing
the values of attributes A, A, ..., A, respectively.

CHARACTERISTICS OF RELATIONS

STUDENT Name SSN HomePhone Address OfficePhone Age |GPA
Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 25 | 353
Barbara Benson 533-69-1238 839-8461 7384 Fontana Lane null 19 | 325
Charles Cooper 489-22-1100 376-9821 265 Lark Lane 749-6492 28 | 3.93
Katherine Ashly 381-62-1245 375-4409 125 Kirby Road null 18 | 2.89
Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 | 321

Relational Integrity Constraints

. Constraints are conditions that must hold on all valid
relation instances.

« There are three main types of constraints:
1. Key constraints
2. Entity integrity constraints
3. Referential integrity constraints

Key Constraints

Superkey of R: A set of attributes SK of R such that no two
tuples in any valid relation instance r(R) will have the same
value for SK. That is, for any distinct tuples t1 and t2 in r(R),
t1[SK] # t2[SK].

Key of R: A "minimal" superkey; that iIs, a superkey K such
that removal of any attribute from K results in a set of
attributes that is not a superkey.

Example: The CAR relation schema:
CAR(State, Reg#, SerialNo, Make, Model, Year) has two keys

Keyl = {State, Reg#}, Key2 = {SerialINo}, which are also
superkeys.
If a relation has several candidate keys, one iIs chosen
arbitrarily to be the primary key. The primary key attributes
are underlined.

Entity Integrity

Relational Database Schema: A set S of relation schemas that
belong to the same database. S Is the name of the database.

S={R,R,, .., R}

Entity Integrity: The primary key attributes(PK) of each
relation schema R in S cannot have null values in any tuple of
r(R). This is because primary key values are used to identify
the individual tuples.

t[PK] # null for any tuple t in r(R)

Note: Other attributes of R may be similarly constrained to
disallow null values, even though they are not members of the
primary key.

Referential Integrity

« A constraint involving two relations (the previous constraints
Involve a single relation). Used to specify a relationship
among tuples In two relations: the referencing relation and
the referenced relation.

» Tuples in the referencing relation R, have attributes FK (called
foreign key attributes) that reference the primary key
attributes PK of the referenced relation R,. Atuple t; in Ry IS
said to reference a tuple t, in R, if t;[FK] = t,[PK].

« A referential integrity constraint can be displayed In a
relational database schema as a directed arc from R;.FK to R,.

Referential Integrity Constraint

Statement of the constraint

« The value in the foreign key column (or columns) FK of the
the referencing relation R, can be either:

(1) a value of an existing primary key value of the
corresponding primary key PK in the referenced relation R,

Or..

(2) a null.

In case (2), the FK in R, should not be a part of its own primary
Key.

Other Types of Constraints

Semantic Integrity Constraints:

- based on application semantics and cannot be expressed by the
model per se

- E.g., “the max. no. of hours per employee for all projects he or
she works on iIs 56 hrs per week”

- A constraint specification language may have to be used to
express these

- SQL-99 allows triggers and ASSERTIONS to allow for some
of these

Schema diagram for the COMPANY relational
database schema; the primary keys are underlined.

EMPLOYEE

FNAME MINIT LNAME SSN | BDATE | ADDRESS SEX | SALARY | SUPERSSN DNO

DEPARTMENT
DNAME DNUMBER MGRSSN MGRSTARTDATE

DEPT_LOCATIONS
DNUMBER DLOCATION

PNAME | PNUMBER | PLOCATION DNUM

WORKS_ON

DEPENDENT
ESSN | DEPENDENT_NAME SEX BDATE | RELATIONSHIP

Referential integrity constraints displayed
on the COMPANY relational database schema diagram.

SALARY SUPERSSN DNC

MGRSTARTDATE

BDATE RELATIONSHIP

Exercise

Consider the following relations for a database that keeps track
of student enrollment in courses and the books adopted for
each course:

STUDENT(SSN, Name, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)
BOOK_ADOPTION(Course#, Quarter, Book ISBN)
TEXT(Book ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign
keys for this schema.

