
Chapter 4: Transactions

Transaction and Concurrency Control: Physical Data Structures, Query

Optimization: Join Algorithm, Statistics and Cost based Optimization.

Transaction Processing, Concurrency Control and Recovery Management:

Transaction Model properties, State Serializability, Lock base protocols,

Two Phase Locking, Time Stamping Protocols for Concurrency Control,

and Validation Based Protocol, Multiple Granularities, Granularity of Data

Item. Multi version schemes, Recovery with Concurrent Transaction,

Recovery technique based on Deferred Update and Immediate Update,

Shadow Paging, Recovery in MultiDatabase System and Database Backup

and Recovery from Catastrophic Failure

Outline

 Transaction Concept

 Transaction State

 Concurrent Executions

 Serializability

 Recoverability

 Implementation of Isolation

 Transaction Definition in SQL

 Testing for Serializability.

Transaction Concept

 A transaction is a unit of program execution that accesses and

possibly updates various data items.

 E.g., transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Two main issues to deal with:

 Failures of various kinds, such as hardware failures and

system crashes

 Concurrent execution of multiple transactions

Required Properties of a Transaction

 Consider a transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Atomicity requirement

 If the transaction fails after step 3 and before step 6, money will be

“lost” leading to an inconsistent database state

 Failure could be due to software or hardware

 The system should ensure that updates of a partially executed

transaction are not reflected in the database

 Durability requirement — once the user has been notified that the

transaction has completed (i.e., the transfer of the $50 has taken place), the

updates to the database by the transaction must persist even if there are

software or hardware failures.

Required Properties of a Transaction (Cont.)

 Consistency requirement in above example:

 The sum of A and B is unchanged by the execution of the transaction

 In general, consistency requirements include

 Explicitly specified integrity constraints such as primary keys and

foreign keys

 Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan

amounts must equal value of cash-in-hand

 A transaction, when starting to execute, must see a consistent database.

 During transaction execution the database may be temporarily

inconsistent.

 When the transaction completes successfully the database must be

consistent

 Erroneous transaction logic can lead to inconsistency

Required Properties of a Transaction (Cont.)

 Isolation requirement — if between steps 3 and 6 (of the fund transfer

transaction) , another transaction T2 is allowed to access the partially

updated database, it will see an inconsistent database (the sum A + B

will be less than it should be).

T1 T2

1. read(A)

2. A := A – 50

3. write(A)

read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

 Isolation can be ensured trivially by running transactions serially

 That is, one after the other.

 However, executing multiple transactions concurrently has significant

benefits, as we will see later.

ACID Properties

 Atomicity. Either all operations of the transaction are properly reflected

in the database or none are.

 Consistency. Execution of a transaction in isolation preserves the

consistency of the database.

 Isolation. Although multiple transactions may execute concurrently,

each transaction must be unaware of other concurrently executing

transactions. Intermediate transaction results must be hidden from other

concurrently executed transactions.

 Durability. After a transaction completes successfully, the changes it

has made to the database persist, even if there are system failures.

A transaction is a unit of program execution that accesses and possibly

updates various data items. To preserve the integrity of data the database

system must ensure:

Transaction State

 Active – the initial state; the transaction stays in this state while it is

executing

 Partially committed – after the final statement has been executed.

 Failed -- after the discovery that normal execution can no longer

proceed.

 Aborted – after the transaction has been rolled back and the

database restored to its state prior to the start of the transaction.

Two options after it has been aborted:

 Restart the transaction

 can be done only if no internal logical error

 Kill the transaction

 Committed – after successful completion.

Transaction State (Cont.)

Concurrent Executions

 Multiple transactions are allowed to run concurrently in the

system. Advantages are:

 Increased processor and disk utilization, leading to

better transaction throughput

 E.g. one transaction can be using the CPU while

another is reading from or writing to the disk

 Reduced average response time for transactions: short

transactions need not wait behind long ones.

 Concurrency control schemes – mechanisms to achieve

isolation

 That is, to control the interaction among the concurrent

transactions in order to prevent them from destroying the

consistency of the database

Schedules

 Schedule – a sequences of instructions that specify the

chronological order in which instructions of concurrent transactions

are executed

 A schedule for a set of transactions must consist of all

instructions of those transactions

 Must preserve the order in which the instructions appear in

each individual transaction.

 A transaction that successfully completes its execution will have a

commit instructions as the last statement

 By default transaction assumed to execute commit instruction

as its last step

 A transaction that fails to successfully complete its execution will

have an abort instruction as the last statement

Schedule 1

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.

 An example of a serial schedule in which T1 is followed by T2 :

Schedule 2

 A serial schedule in which T2 is followed by T1 :

Schedule 3

 Let T1 and T2 be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1.

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved.

Schedule 4

 The following concurrent schedule does not preserve the sum

of “A + B”

Serializability

 Basic Assumption – Each transaction preserves database

consistency.

 Thus, serial execution of a set of transactions preserves

database consistency.

 A (possibly concurrent) schedule is serializable if it is

equivalent to a serial schedule. Different forms of schedule

equivalence give rise to the notions of:

1. conflict serializability

2. view serializability

Simplified view of transactions

 We ignore operations other than read and write instructions

 We assume that transactions may perform arbitrary

computations on data in local buffers in between reads and

writes.

 Our simplified schedules consist of only read and write

instructions.

Conflicting Instructions

 Let li and lj be two Instructions of transactions Ti and Tj

respectively. Instructions li and lj conflict if and only if there

exists some item Q accessed by both li and lj, and at least one of

these instructions wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t conflict.

2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal

order between them.

 If li and lj are consecutive in a schedule and they do not

conflict, their results would remain the same even if they had

been interchanged in the schedule.

Conflict Serializability

 If a schedule S can be transformed into a schedule S´
by a series of swaps of non-conflicting instructions, we

say that S and S´ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is

conflict equivalent to a serial schedule

Conflict Serializability (Cont.)

 Schedule 3 can be transformed into Schedule 6 -- a serial schedule where

T2 follows T1, by a series of swaps of non-conflicting instructions.

Therefore, Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to

obtain either the serial schedule < T3, T4 >, or the serial

schedule < T4, T3 >.

Precedence Graph

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph — a direct graph where the vertices are

the transactions (names).

 We draw an arc from Ti to Tj if the two transaction conflict,

and Ti accessed the data item on which the conflict arose

earlier.

 We may label the arc by the item that was accessed.

 Example

Testing for Conflict Serializability

 A schedule is conflict serializable if and only if its

precedence graph is acyclic.

 Cycle-detection algorithms exist which take order

n2 time, where n is the number of vertices in the

graph.

 (Better algorithms take order n + e where e is

the number of edges.)

 If precedence graph is acyclic, the serializability

order can be obtained by a topological sorting of

the graph.

 That is, a linear order consistent with the

partial order of the graph.

 For example, a serializability order for the

schedule (a) would be one of either (b) or (c)

Recoverable Schedules

 Recoverable schedule — if a transaction Tj reads a data item

previously written by a transaction Ti , then the commit operation of Ti

must appear before the commit operation of Tj.

 The following schedule is not recoverable if T9 commits immediately

after the read(A) operation.

 If T8 should abort, T9 would have read (and possibly shown to the user)

an inconsistent database state. Hence, database must ensure that

schedules are recoverable.

Cascading Rollbacks

 Cascading rollback – a single transaction failure leads to a

series of transaction rollbacks. Consider the following schedule

where none of the transactions has yet committed (so the

schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

 Can lead to the undoing of a significant amount of work

Concurrency Control

 A database must provide a mechanism that will ensure that all

possible schedules are both:

 Conflict serializable.

 Recoverable and preferably cascadeless

 A policy in which only one transaction can execute at a time

generates serial schedules, but provides a poor degree of

concurrency

 Concurrency-control schemes tradeoff between the amount of

concurrency they allow and the amount of overhead that they incur

 Testing a schedule for serializability after it has executed is a little

too late!

 Tests for serializability help us understand why a concurrency

control protocol is correct

 Goal – to develop concurrency control protocols that will assure

serializability.

View Serializability

 Let S and S´ be two schedules with the same set of transactions. S

and S´ are view equivalent if the following three conditions are met,

for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in

schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value

was produced by transaction Tj (if any), then in schedule S’ also

transaction Ti must read the value of Q that was produced by the

same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation

in schedule S must also perform the final write(Q) operation in

schedule S’.

 As can be seen, view equivalence is also based purely on reads and

writes alone.

View Serializability (Cont.)

 A schedule S is view serializable if it is view equivalent to a serial

schedule.

 Every conflict serializable schedule is also view serializable.

 Below is a schedule which is view-serializable but not conflict

serializable.

 What serial schedule is above equivalent to?

 Every view serializable schedule that is not conflict serializable has

blind writes.

Test for View Serializability

 The precedence graph test for conflict serializability cannot be used

directly to test for view serializability.

 Extension to test for view serializability has cost exponential in the

size of the precedence graph.

 The problem of checking if a schedule is view serializable falls in the

class of NP-complete problems.

 Thus, existence of an efficient algorithm is extremely unlikely.

 However ,practical algorithms that just check some sufficient

conditions for view serializability can still be used.

