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Transaction Concept

 A transaction is a unit of program execution that accesses and  

possibly updates various data items.

 E.g., transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Two main issues to deal with:

 Failures of various kinds, such as hardware failures and 

system crashes

 Concurrent execution of multiple transactions



Required  Properties of a Transaction

 Consider a transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Atomicity requirement

 If the transaction fails after step 3 and before step 6, money will be 

“lost” leading to an inconsistent database state

 Failure could be due to software or hardware

 The system should ensure that updates of a partially executed 

transaction are not reflected in the database

 Durability requirement — once the user has been notified that the 

transaction has completed (i.e., the transfer of the $50 has taken place), the 

updates to the database by the transaction must persist even if there are 

software or hardware failures.



Required Properties of a Transaction (Cont.)

 Consistency requirement in above example:

 The sum of A and B is unchanged by the execution of the transaction

 In general, consistency requirements include 

 Explicitly specified integrity constraints such as primary keys and 

foreign keys

 Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan 

amounts must equal value of cash-in-hand

 A transaction, when starting to execute,  must see a consistent database.

 During transaction execution the database may be temporarily 

inconsistent.

 When the transaction completes successfully the database must be 

consistent

 Erroneous transaction logic can lead to inconsistency



Required Properties of a Transaction (Cont.)

 Isolation requirement — if between steps 3 and 6 (of the fund transfer 

transaction) , another transaction T2 is allowed to access the partially 

updated database, it will see an inconsistent database (the sum  A + B

will be less than it should be).

T1                                        T2

1. read(A)

2. A := A – 50

3. write(A)

read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

 Isolation can be ensured trivially by running transactions serially

 That is, one after the other.   

 However, executing multiple transactions concurrently has significant 

benefits, as we will see later.



ACID Properties

 Atomicity. Either all operations of the transaction are properly reflected 

in the database or none are.

 Consistency. Execution of a transaction in isolation preserves the 

consistency of the database.

 Isolation. Although multiple transactions may execute concurrently, 

each transaction must be unaware of other concurrently executing 

transactions.  Intermediate transaction results must be hidden from other 

concurrently executed transactions.  

 Durability.  After a transaction completes successfully, the changes it 

has made to the database persist, even if there are system failures. 

A  transaction is a unit of program execution that accesses and possibly 

updates various data items. To preserve the integrity of data the database 

system must ensure:



Transaction State

 Active – the initial state; the transaction stays in this state while it is 

executing

 Partially committed – after the final statement has been executed.

 Failed -- after the discovery that normal execution can no longer 

proceed.

 Aborted – after the transaction has been rolled back and the 

database restored to its state prior to the start of the transaction.  

Two options after it has been aborted:

 Restart the transaction

 can be done only if no internal logical error

 Kill the transaction

 Committed – after successful completion.



Transaction State (Cont.)



Concurrent Executions

 Multiple transactions are allowed to run concurrently in the 

system.  Advantages are:

 Increased processor and disk utilization, leading to 

better transaction throughput

 E.g. one transaction can be using the CPU while 

another is reading from or writing to the disk

 Reduced average response time for transactions: short 

transactions need not wait behind long ones.

 Concurrency control schemes – mechanisms  to achieve 

isolation

 That is, to control the interaction among the concurrent 

transactions in order to prevent them from destroying the 

consistency of the database



Schedules

 Schedule – a sequences of instructions that specify the 

chronological order in which instructions of concurrent transactions 

are executed

 A schedule for a set of transactions must consist of all 

instructions of those transactions

 Must preserve the order in which the instructions appear in 

each individual transaction.

 A transaction that successfully completes its execution will have a 

commit instructions as the last statement 

 By default transaction assumed to execute commit instruction 

as its last step

 A transaction that fails to successfully complete its execution will 

have an abort instruction as the last statement 



Schedule 1

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.

 An example of a  serial schedule in which T1 is followed by T2 :



Schedule 2

 A serial schedule in which T2 is followed by T1 :



Schedule 3

 Let T1 and T2 be the transactions defined previously. The following 
schedule is not a serial schedule, but it is equivalent to Schedule 1.

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved.



Schedule 4

 The following concurrent schedule does not preserve the sum  

of  “A + B”



Serializability

 Basic Assumption – Each transaction preserves database 

consistency.

 Thus, serial execution of a set of transactions preserves 

database consistency.

 A (possibly concurrent) schedule is serializable if it is 

equivalent to a serial schedule.  Different forms of schedule 

equivalence give rise to the notions of:

1. conflict serializability

2. view serializability



Simplified view of transactions

 We ignore operations other than read and write instructions

 We assume that transactions may perform arbitrary 

computations on data in local buffers in between reads and 

writes.  

 Our simplified schedules consist of only read and write 

instructions.



Conflicting Instructions 

 Let li and lj be two Instructions of transactions Ti and Tj

respectively.  Instructions li and lj conflict if and only if there 

exists some item Q accessed by both li and lj, and at least one of 

these instructions wrote Q.

1. li = read(Q), lj = read(Q).   li and lj don’t conflict.

2. li = read(Q),  lj = write(Q).  They conflict.

3. li = write(Q), lj = read(Q).   They conflict

4. li = write(Q), lj = write(Q).  They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal 

order between them.  

 If li and lj are consecutive in a schedule and they do not 

conflict, their results would remain the same even if they had 

been interchanged in the schedule.



Conflict Serializability

 If a schedule S can be transformed into a schedule S´
by a series of swaps of non-conflicting instructions, we 

say that S and S´ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is 

conflict equivalent to a serial schedule



Conflict Serializability (Cont.)

 Schedule 3 can be transformed into Schedule 6 -- a serial schedule where 

T2 follows T1, by a series of swaps of non-conflicting instructions.  

Therefore, Schedule 3 is conflict serializable.

Schedule 3 Schedule 6



Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to 

obtain either the serial schedule < T3, T4 >, or the serial 

schedule < T4, T3 >.



Precedence Graph

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph — a direct graph where the vertices are 

the transactions (names).

 We draw an arc from Ti to Tj if the two transaction conflict, 

and Ti accessed the data item on which the conflict arose 

earlier.

 We may label the arc by the item that was accessed.

 Example







Testing for Conflict Serializability

 A schedule is conflict serializable if and only if its 

precedence graph is acyclic.

 Cycle-detection algorithms exist which take order 

n2 time, where n is the number of vertices in the 

graph.  

 (Better algorithms take order n + e where e is 

the number of edges.)

 If precedence graph is acyclic, the serializability 

order can be obtained by a topological sorting of 

the graph. 

 That is, a linear order consistent with the 

partial order of the graph.

 For example, a serializability order for the 

schedule (a)  would be one of either (b) or (c)



Recoverable Schedules

 Recoverable schedule — if a transaction Tj reads a data item 

previously written by a transaction Ti , then the commit operation of Ti

must appear before the commit operation of Tj.

 The following schedule is not recoverable if T9 commits immediately 

after the read(A) operation.

 If T8 should abort, T9 would have read (and possibly shown to the user) 

an inconsistent database state.  Hence, database must ensure that 

schedules are recoverable.



Cascading Rollbacks

 Cascading rollback – a single transaction failure leads to a 

series of transaction rollbacks.  Consider the following schedule 

where none of the transactions has yet committed (so the 

schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

 Can lead to the undoing of a significant amount of work



Concurrency Control

 A database must provide a mechanism that will ensure that all 

possible schedules are both:

 Conflict serializable. 

 Recoverable and preferably cascadeless

 A policy in which only one transaction can execute at a time 

generates serial schedules, but provides a poor degree of 

concurrency

 Concurrency-control schemes tradeoff between the amount of 

concurrency they allow and the amount of overhead that they incur

 Testing a schedule for serializability after it has executed is a little 

too late! 

 Tests for serializability help us understand why a concurrency 

control protocol is correct

 Goal – to develop concurrency control protocols that will assure 

serializability.



View Serializability

 Let S and S´ be two schedules with the same set of transactions.  S

and S´ are view equivalent if the following three conditions are met, 

for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in 

schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value 

was produced by transaction Tj (if any), then in schedule S’ also 

transaction Ti must read the value of Q that was produced by the 

same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation 

in schedule S must also perform the final write(Q) operation in 

schedule S’.

 As can be seen, view equivalence is also based purely on reads and 

writes alone.







View Serializability (Cont.)

 A schedule S is view serializable if it is view equivalent to a serial 

schedule.

 Every conflict serializable schedule is also view serializable.

 Below is a schedule which is view-serializable but not conflict 

serializable.

 What serial schedule is above equivalent to?

 Every view serializable schedule that is not conflict serializable has 

blind writes.







Test for View Serializability

 The precedence graph test for conflict serializability cannot be used 

directly to test for view serializability.

 Extension to test for view serializability has cost exponential in the 

size of the precedence graph.

 The problem of checking if a schedule is view serializable falls in the 

class of NP-complete problems. 

 Thus, existence of an efficient algorithm is extremely unlikely.

 However ,practical algorithms that just check some sufficient

conditions for view serializability can still be used.


