Chapter 4: Transactions

Transaction and Concurrency Control: Physical Data Structures, Query
Optimization: Join Algorithm, Statistics and Cost based Optimization.
Transaction Processing, Concurrency Control and Recovery Management:
Transaction Model properties, State Serializability, Lock base protocols,
Two Phase Locking, Time Stamping Protocols for Concurrency Control,
and Validation Based Protocol, Multiple Granularities, Granularity of Data
ltem. Multi version schemes, Recovery with Concurrent Transaction,
Recovery technique based on Deferred Update and Immediate Update,
Shadow Paging, Recovery in MultiDatabase System and Database Backup
and Recovery from Catastrophic Failure

Outline

Transaction Concept
Transaction State
Concurrent Executions
Serializability

Recoverability
Implementation of Isolation
Transaction Definition in SQL
Testing for Serializability.

Transaction Concept

®m A transaction is a unit of program execution that accesses and
possibly updates various data items.

m E.g., transaction to transfer $50 from account A to account B:
read(A)
A=A-50
write(A)
read(B)
B:=B+50
6. write(B)
® Two main issues to deal with:

O il b

Failures of various kinds, such as hardware failures and
system crashes

Concurrent execution of multiple transactions

Required Properties of a Transaction

B Consider a transaction to transfer $50 from account A to account B;:
1. read(A)

6.

Uikl g

A=A-50
write(A)
read(B)
B:=B+50
write(B)

m Atomicity requirement

If the transaction fails after step 3 and before step 6, money will be
“lost” leading to an inconsistent database state

Failure could be due to software or hardware

The system should ensure that updates of a partially executed
transaction are not reflected in the database

® Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the $50 has taken place), the
updates to the database by the transaction must persist even if there are
software or hardware failures.

Required Properties of a Transaction (Cont.)

Consistency requirement in above example:

The sum of A and B is unchanged by the execution of the transaction
In general, consistency requirements include

Explicitly specified integrity constraints such as primary keys and
foreign keys

Implicit integrity constraints

e.g., sum of balances of all accounts, minus sum of loan
amounts must equal value of cash-in-hand

A transaction, when starting to execute, must see a consistent database.

During transaction execution the database may be temporarily
inconsistent.

When the transaction completes successfully the database must be
consistent

Erroneous transaction logic can lead to inconsistency

Required Properties of a Transaction (Cont.)

®m |[solation requirement — if between steps 3 and 6 (of the fund transfer
transaction) , another transaction T2 is allowed to access the partially
updated database, it will see an inconsistent database (the sum A +B

will be less than it should be).

T1 T2
1. read(A)
2. A:=A-50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)
5. B:=B+50
6. write(B
®m |[solation can be ensured trivially by running transactions serially
That is, one after the other.

® However, executing multiple transactions concurrently has significant
benefits, as we will see later.

ACID Properties

A transaction is a unit of program execution that accesses and possibly

updates various data items. To preserve the integrity of data the database
system must ensure:

m Atomicity. Either all operations of the transaction are properly reflected
in the database or none are.

m Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

®m [solation. Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions. Intermediate transaction results must be hidden from other
concurrently executed transactions.

®m Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

Transaction State

Active — the initial state; the transaction stays in this state while it is
executing

Partially committed — after the final statement has been executed.

Failed -- after the discovery that normal execution can no longer
proceed.

Aborted — after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

Restart the transaction
can be done only if no internal logical error
Kill the transaction
Committed — after successful completion.

Transaction State (Cont.)

partially

comm@

Concurrent Executions

Multiple transactions are allowed to run concurrently in the
system. Advantages are:

Increased processor and disk utilization, leading to
better transaction throughput

E.g. one transaction can be using the CPU while
another is reading from or writing to the disk

Reduced average response time for transactions: short
transactions need not wait behind long ones.

Concurrency control schemes — mechanisms to achieve
isolation

That is, to control the interaction among the concurrent
transactions in order to prevent them from destroying the
consistency of the database

Schedules

®m Schedule — a sequences of instructions that specify the

chronological order in which instructions of concurrent transactions
are executed

A schedule for a set of transactions must consist of all
instructions of those transactions

Must preserve the order in which the instructions appear in
each individual transaction.

m A transaction that successfully completes its execution will have a
commit instructions as the last statement

By default transaction assumed to execute commit instruction
as its last step

®m A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement

Schedule 1

m Let T, transfer $50 from A to B, and T, transfer 10% of the balance from A to B.

® Anexample of a serial schedule in which T, is followed by T, :

T, T,

read (A)

A=A-50

write (A)

read (B)

B:=B+50

write (B)

commit
read (A)
temp :=A*0.1
A=A - temp
write (A)
read (B)
B :=B + temp
write (B)
commit

Schedule 2

m A serial schedule in which T, is followed by T, :

T, T,

read (A)
temp = A*0.1
A=A -temp
write (A)
read (B)
B :=B + temp
write (B)
commit

read (A)

A=A-50

write (A)

read (B)

B =B+ 50

write (B)

commit

Schedule 3

m LetT, and T, be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1.

T T,

read (A)

A=A-50

write (A)
read (A)
temp =A% 0.1
A=A -temp
write (A)

read (B)

B:=B+50

write (B)

commit
read (B)
B := B + temp
write (B)
commit

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved.

Schedule 4

® The following concurrent schedule does not preserve the sum
Of “A + B”

T; T,

read (A)

A:=A-50
read (A)
temp == A* 0.1
A=A -temp
write (A)
read (B)

write (A)

read (B)

B:=B+50

write (B)

commit
B:=B + temp
write (B)
commit

Serializability

m Basic Assumption — Each transaction preserves database
consistency.

®m Thus, serial execution of a set of transactions preserves
database consistency.

®m A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule
equivalence give rise to the notions of:

1. conflict serializability
2. view serializability

Simplified view of transactions

We ignore operations other than read and write instructions

We assume that transactions may perform arbitrary

computations on data in local buffers in between reads and
writes.

Our simplified schedules consist of only read and write
instructions.

Conflicting Instructions

m letland | be two Instructions of transactions T; and T,
respectively. Instructions |; and |; conflict if and only if there
exists some item Q accessed by both |; and I, and at least one of
these instructions wrote Q.

1. l,=read(Q), |; = read(Q). [;and |, don’t conflict.
read(Q), ;= write(Q). They conflict.
write(Q), |; = read(Q). They conflict
write(Q), |; = write(Q). They conflict

= Intuitively, a conflict between |; and |, forces a (logical) temporal
order between them.

Dl
3.1
4.1

If |, and |; are consecutive in a schedule and they do not
conflict, their results would remain the same even if they had
been interchanged in the schedule.

Conflict Serializability

m If a schedule S can be transformed into a schedule S ~
by a series of swaps of non-conflicting instructions, we
say that S and S “are conflict equivalent.

m We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule

Conflict Serializability (Cont.)

m Schedule 3 can be transformed into Schedule 6 -- a serial schedule where
T, follows T,, by a series of swaps of non-conflicting instructions.
Therefore, Schedule 3 is conflict serializable.

T, T, T, T,
read (A) read (A)
write (A) write (A)
read (A) read (B)
write (A) write (B)
read (A)
e (3 write (A)
d (B)
read (B) rea. (
write (B) write (B)
Schedule 3 Schedule 6

Conflict Serializability (Cont.)

Example of a schedule that is not conflict serializable:

T Iy

read (Q)
write (Q)

write (Q)

We are unable to swap instructions in the above schedule to
obtain either the serial schedule < T3, T, >, or the serial
schedule < T,, T;>.

Precedence Graph

Consider some schedule of a set of transactions T4, T,, ..., T,

Precedence graph — a direct graph where the vertices are
the transactions (names).

We draw an arc from T, to T; If the two transaction conflict,
and T, accessed the data item on which the conflict arose
earlier.

We may label the arc by the item that was accessed.

Example

Testing for Conflict Serializability

®m A schedule is conflict serializable if and only if its /‘\
precedence graph is acyclic. \ T

m Cycle-detection algorithms exist which take order 7 ’*/\— N
n? time, where n is the number of vertices in the A i) ‘ 7‘/“
graph. i \ N T1

(Better algorithms take order n + e where e is \7_"’_//
the number of edges.) ()

m If precedence graph is acyclic, the serializability I S
order can be obtained by a topological sorting of [7) (7)
the graph. \1_,/ =g

That is, a linear order consistent with the ' 7 N\ (5)
partial order of the graph. \ } K
For example, a serializability order for the /1\ /I
schedule (a) would be one of either (b) or (c) '\ ‘1;/ LA
E3 3
)

(b)

Recoverable Schedules

m Recoverable schedule — if a transaction T, reads a data item
previously written by a transaction T,, then the commit operation of T,
must appear before the commit operation of T;.

®m The following schedule is not recoverable if T, commits immediately
after the read(A) operation.

Ty Ty
read (A)
write (A)
read (A)
commit
read (B)

m If T4 should abort, T, would have read (and possibly shown to the user)
an inconsistent database state. Hence, database must ensure that

schedules are recoverable.

Cascading Rollbacks

m Cascading rollback — a single transaction failure leads to a
series of transaction rollbacks. Consider the following schedule
where none of the transactions has yet committed (so the
schedule is recoverable)

Ty Ty Ty,

read (A)
read (B)
write (A)

read (A)

write (A)

read (A)

abort

If T,, fails, T;; and T,, must also be rolled back.
m Can lead to the undoing of a significant amount of work

Concurrency Control

A database must provide a mechanism that will ensure that all
possible schedules are both:

Conflict serializable.
Recoverable and preferably cascadeless

A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of
concurrency

Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur

Testing a schedule for serializability after it has executed is a little
too late!

Tests for serializability help us understand why a concurrency
control protocol is correct

Goal — to develop concurrency control protocols that will assure
serializability.

View Serializability

m lLetSandS~ betwo schedules with the same set of transactions. S
and S “are view equivalent if the following three conditions are met,
for each data item Q,

If in schedule S, transaction T, reads the initial value of Q, then in
schedule S’ also transaction T, must read the initial value of Q.

If in schedule S transaction T, executes read(Q), and that value
was produced by transaction T; (if any), then in schedule S’ also
transaction T, must read the value of Q that was produced by the
same write(Q) operation of transaction T; .

The transaction (if any) that performs the final write(Q) operation
in schedule S must also perform the final write(Q) operation in
schedule S’.
® As can be seen, view equivalence is also based purely on reads and
writes alone.

:
.
3

Pt

Pt

Ay ol

cVJ'-o.c._.

View Serializability (Cont.)

m A schedule S is view serializable if it is view equivalent to a serial
schedule.

m Every conflict serializable schedule is also view serializable.
®m Below is a schedule which is view-serializable but not conflict

serializable.
T27 T28 T29
read (Q)
write (Q)
write (Q)
write (Q)

® What serial schedule is above equivalent to?

®m Every view serializable schedule that is not conflict serializable has
blind writes.

e

=

Test for View Serializability

The precedence graph test for conflict serializability cannot be used
directly to test for view serializability.

Extension to test for view serializability has cost exponential in the
size of the precedence graph.

The problem of checking if a schedule is view serializable falls in the
class of NP-complete problems.

Thus, existence of an efficient algorithm is extremely unlikely.

However ,practical algorithms that just check some sufficient
conditions for view serializability can still be used.

