
Chapter 16: Recovery System

Chapter 16: Recovery System

 Failure Classification

 Storage Structure

 Recovery and Atomicity

 Log-Based Recovery

 Remote Backup Systems

Failure Classification

 Transaction failure :

 Logical errors: transaction cannot complete due to some internal

error condition

 System errors: the database system must terminate an active

transaction due to an error condition (e.g., deadlock)

 System crash: a power failure or other hardware or software failure

causes the system to crash.

 Fail-stop assumption: non-volatile storage contents are assumed

to not be corrupted by system crash

 Database systems have numerous integrity checks to prevent

corruption of disk data

 Disk failure: a head crash or similar disk failure destroys all or part of

disk storage

 Destruction is assumed to be detectable: disk drives use

checksums to detect failures

Recovery Algorithms

 Consider transaction Ti that transfers $50 from account A to account B

 Two updates: subtract 50 from A and add 50 to B

 Transaction Ti requires updates to A and B to be output to the

database.

 A failure may occur after one of these modifications have been

made but before both of them are made.

 Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state

 Not modifying the database may result in lost updates if failure

occurs just after transaction commits

 Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure

enough information exists to recover from failures

2. Actions taken after a failure to recover the database contents to a

state that ensures atomicity, consistency and durability

Storage Structure

 Volatile storage:

 does not survive system crashes

 examples: main memory, cache memory

 Nonvolatile storage:

 survives system crashes

 examples: disk, tape, flash memory,

non-volatile (battery backed up) RAM

 but may still fail, losing data

 Stable storage:

 a mythical form of storage that survives all failures

 approximated by maintaining multiple copies on distinct

nonvolatile media

 See book for more details on how to implement stable storage

Stable-Storage Implementation

 Maintain multiple copies of each block on separate disks

 copies can be at remote sites to protect against disasters such as
fire or flooding.

 Failure during data transfer can still result in inconsistent copies: Block
transfer can result in

 Successful completion

 Partial failure: destination block has incorrect information

 Total failure: destination block was never updated

 Protecting storage media from failure during data transfer (one
solution):

 Execute output operation as follows (assuming two copies of each
block):

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the same
information onto the second physical block.

3. The output is completed only after the second write
successfully completes.

Stable-Storage Implementation (Cont.)

 Protecting storage media from failure during data transfer (cont.):

 Copies of a block may differ due to failure during output operation. To

recover from failure:

1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.

2. Better solution:

 Record in-progress disk writes on non-volatile storage (Non-

volatile RAM or special area of disk).

 Use this information during recovery to find blocks that may be

inconsistent, and only compare copies of these.

 Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have an error (bad

checksum), overwrite it by the other copy. If both have no error, but are

different, overwrite the second block by the first block.

Data Access

 Physical blocks are those blocks residing on the disk.

 Buffer blocks are the blocks residing temporarily in main memory.

 Block movements between disk and main memory are initiated

through the following two operations:

 input(B) transfers the physical block B to main memory.

 output(B) transfers the buffer block B to the disk, and replaces the

appropriate physical block there.

 We assume, for simplicity, that each data item fits in, and is stored

inside, a single block.

Example of Data Access

X

Y

A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)

disk

work area

of T1

work area

of T2

memory

x2

Data Access (Cont.)

 Each transaction Ti has its private work-area in which local copies of

all data items accessed and updated by it are kept.

 Ti's local copy of a data item X is called xi.

 Transferring data items between system buffer blocks and its private

work-area done by:

 read(X) assigns the value of data item X to the local variable xi.

 write(X) assigns the value of local variable xi to data item {X} in

the buffer block.

 Note: output(BX) need not immediately follow write(X). System

can perform the output operation when it deems fit.

 Transactions

 Must perform read(X) before accessing X for the first time

(subsequent reads can be from local copy)

 write(X) can be executed at any time before the transaction

commits

Recovery and Atomicity

 To ensure atomicity despite failures, we first output information

describing the modifications to stable storage without modifying the

database itself.

 We study log-based recovery mechanisms in detail

 We first present key concepts

 And then present the actual recovery algorithm

 Less used alternative: shadow-copy and shadow-paging (brief

details in book)

shadow-copy

Log-Based Recovery

 A log is kept on stable storage.

 The log is a sequence of log records, and maintains a record of
update activities on the database.

 When transaction Ti starts, it registers itself by writing a
<Ti start>log record

 Before Ti executes write(X), a log record
<Ti, X, V1, V2>

is written, where V1 is the value of X before the write (the old value),
and V2 is the value to be written to X (the new value).

 When Ti finishes it last statement, the log record <Ti commit> is written.

 Two approaches using logs

 Deferred database modification

 Immediate database modification

Immediate Database Modification

 The immediate-modification scheme allows updates of an
uncommitted transaction to be made to the buffer, or the disk itself,
before the transaction commits

 Update log record must be written before database item is written

 We assume that the log record is output directly to stable storage

 (Will see later that how to postpone log record output to some
extent)

 Output of updated blocks to stable storage can take place at any time
before or after transaction commit

 Order in which blocks are output can be different from the order in
which they are written.

 The deferred-modification scheme performs updates to buffer/disk
only at the time of transaction commit

 Simplifies some aspects of recovery

 But has overhead of storing local copy

Transaction Commit

 A transaction is said to have committed when its commit log record is

output to stable storage

 all previous log records of the transaction must have been output

already

 Writes performed by a transaction may still be in the buffer when the

transaction commits, and may be output later

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050

A = 950

B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

BB , BC

<T1 commit>

BA

 Note: BX denotes block containing X.

BC output before T1

commits

BA output after T0

commits

Concurrency Control and Recovery

 With concurrent transactions, all transactions share a single disk

buffer and a single log

 A buffer block can have data items updated by one or more

transactions

 We assume that if a transaction Ti has modified an item, no other

transaction can modify the same item until Ti has committed or

aborted

 i.e. the updates of uncommitted transactions should not be visible

to other transactions

 Otherwise how to perform undo if T1 updates A, then T2

updates A and commits, and finally T1 has to abort?

 Can be ensured by obtaining exclusive locks on updated items

and holding the locks till end of transaction (strict two-phase

locking)

 Log records of different transactions may be interspersed in the log.

Undo and Redo Operations

 Undo of a log record <Ti, X, V1, V2> writes the old value V1 to X

 Redo of a log record <Ti, X, V1, V2> writes the new value V2 to X

 Undo and Redo of Transactions

 undo(Ti) restores the value of all data items updated by Ti to their

old values, going backwards from the last log record for Ti

 each time a data item X is restored to its old value V a special

log record <Ti , X, V> is written out

 when undo of a transaction is complete, a log record

<Ti abort> is written out.

 redo(Ti) sets the value of all data items updated by Ti to the new

values, going forward from the first log record for Ti

 No logging is done in this case

Undo and Redo on Recovering from Failure

 When recovering after failure:

 Transaction Ti needs to be undone if the log

 contains the record <Ti start>,

 but does not contain either the record <Ti commit> or <Ti abort>.

 Transaction Ti needs to be redone if the log

 contains the records <Ti start>

 and contains the record <Ti commit> or <Ti abort>

 Note that If transaction Ti was undone earlier and the <Ti abort> record

written to the log, and then a failure occurs, on recovery from failure Ti is

redone

 such a redo redoes all the original actions including the steps that

restored old values

 Known as repeating history

 Seems wasteful, but simplifies recovery greatly

Immediate DB Modification Recovery

Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

(a) undo (T0): B is restored to 2000 and A to 1000, and log records
<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is
restored to 700. Log records <T1, C, 700>, <T1, abort> are written out.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

respectively. Then C is set to 600

Checkpoints

 Redoing/undoing all transactions recorded in the log can be very slow

1. processing the entire log is time-consuming if the system has run

for a long time

2. we might unnecessarily redo transactions which have already

output their updates to the database.

 Streamline recovery procedure by periodically performing

checkpointing

1. Output all log records currently residing in main memory onto

stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint L> onto stable storage where L

is a list of all transactions active at the time of checkpoint.

 All updates are stopped while doing checkpointing

Checkpoints (Cont.)

 During recovery we need to consider only the most recent transaction

Ti that started before the checkpoint, and transactions that started

after Ti.

1. Scan backwards from end of log to find the most recent

<checkpoint L> record

 Only transactions that are in L or started after the checkpoint

need to be redone or undone

 Transactions that committed or aborted before the checkpoint

already have all their updates output to stable storage.

 Some earlier part of the log may be needed for undo operations

1. Continue scanning backwards till a record <Ti start> is found for

every transaction Ti in L.

 Parts of log prior to earliest <Ti start> record above are not

needed for recovery, and can be erased whenever desired.

Example of Checkpoints

 T1 can be ignored (updates already output to disk due to checkpoint)

 T2 and T3 redone.

 T4 undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

Recovery Algorithm

 So far: we covered key concepts

 Now: we present the components of the basic recovery algorithm

 Later: we present extensions to allow more concurrency

Recovery Algorithm

 Logging (during normal operation):

 <Ti start> at transaction start

 <Ti, Xj, V1, V2> for each update, and

 <Ti commit> at transaction end

 Transaction rollback (during normal operation)

 Let Ti be the transaction to be rolled back

 Scan log backwards from the end, and for each log record of Ti of

the form <Ti, Xj, V1, V2>

 perform the undo by writing V1 to Xj,

 write a log record <Ti , Xj, V1>

– such log records are called compensation log records

 Once the record <Ti start> is found stop the scan and write the log

record <Ti abort>

 Recovery from failure: Two phases

 Redo phase: replay updates of all transactions, whether they

committed, aborted, or are incomplete

 Undo phase: undo all incomplete transactions

 Redo phase:

1. Find last <checkpoint L> record, and set undo-list to L.

2. Scan forward from above <checkpoint L> record

1. Whenever a record <Ti, Xj, V1, V2> or <Ti, Xj, V2> is found,

redo it by writing V2 to Xj

2. Whenever a log record <Ti start> is found, add Ti to undo-list

3. Whenever a log record <Ti commit> or <Ti abort> is found,

remove Ti from undo-list

Recovery Algorithm (Cont.)

Recovery Algorithm (Cont.)

 Undo phase:

1. Scan log backwards from end

1. Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in
undo-list perform same actions as for transaction rollback:

1. perform undo by writing V1 to Xj.

2. write a log record <Ti , Xj, V1>

2. Whenever a log record <Ti start> is found where Ti is in undo-
list,

1. Write a log record <Ti abort>

2. Remove Ti from undo-list

3. Stop when undo-list is empty

 i.e. <Ti start> has been found for every transaction in
undo-list

 After undo phase completes, normal transaction processing can
commence

Example of Recovery

Log Record Buffering

 Log record buffering: log records are buffered in main memory, instead

of of being output directly to stable storage.

 Log records are output to stable storage when a block of log records

in the buffer is full, or a log force operation is executed.

 Log force is performed to commit a transaction by forcing all its log

records (including the commit record) to stable storage.

 Several log records can thus be output using a single output operation,

reducing the I/O cost.

Log Record Buffering (Cont.)

 The rules below must be followed if log records are buffered:

 Log records are output to stable storage in the order in which they

are created.

 Transaction Ti enters the commit state only when the log record

<Ti commit> has been output to stable storage.

 Before a block of data in main memory is output to the database,

all log records pertaining to data in that block must have been

output to stable storage.

 This rule is called the write-ahead logging or WAL rule

– Strictly speaking WAL only requires undo information to be

output

Database Buffering

 Database maintains an in-memory buffer of data blocks

 When a new block is needed, if buffer is full an existing block needs to

be removed from buffer

 If the block chosen for removal has been updated, it must be output to

disk

 The recovery algorithm supports the no-force policy: i.e., updated blocks

need not be written to disk when transaction commits

 force policy: requires updated blocks to be written at commit

 More expensive commit

 The recovery algorithm supports the steal policy:i.e., blocks containing

updates of uncommitted transactions can be written to disk, even before

the transaction commits

Database Buffering (Cont.)

 If a block with uncommitted updates is output to disk, log records with
undo information for the updates are output to the log on stable storage
first

 (Write ahead logging)

 No updates should be in progress on a block when it is output to disk.
Can be ensured as follows.

 Before writing a data item, transaction acquires exclusive lock on
block containing the data item

 Lock can be released once the write is completed.

 Such locks held for short duration are called latches.

 To output a block to disk

1. First acquire an exclusive latch on the block

1. Ensures no update can be in progress on the block

2. Then perform a log flush

3. Then output the block to disk

4. Finally release the latch on the block

Buffer Management (Cont.)

 Database buffer can be implemented either

 in an area of real main-memory reserved for the database, or

 in virtual memory

 Implementing buffer in reserved main-memory has drawbacks:

 Memory is partitioned before-hand between database buffer and

applications, limiting flexibility.

 Needs may change, and although operating system knows best

how memory should be divided up at any time, it cannot change

the partitioning of memory.

Buffer Management (Cont.)

 Database buffers are generally implemented in virtual memory in spite
of some drawbacks:

 When operating system needs to evict a page that has been
modified, the page is written to swap space on disk.

 When database decides to write buffer page to disk, buffer page
may be in swap space, and may have to be read from swap space
on disk and output to the database on disk, resulting in extra I/O!

 Known as dual paging problem.

 Ideally when OS needs to evict a page from the buffer, it should
pass control to database, which in turn should

1. Output the page to database instead of to swap space (making
sure to output log records first), if it is modified

2. Release the page from the buffer, for the OS to use

Dual paging can thus be avoided, but common operating systems
do not support such functionality.

Fuzzy Checkpointing

 To avoid long interruption of normal processing during
checkpointing, allow updates to happen during checkpointing

 Fuzzy checkpointing is done as follows:

1. Temporarily stop all updates by transactions

2. Write a <checkpoint L> log record and force log to stable
storage

3. Note list M of modified buffer blocks

4. Now permit transactions to proceed with their actions

5. Output to disk all modified buffer blocks in list M

 blocks should not be updated while being output

 Follow WAL: all log records pertaining to a block must be
output before the block is output

6. Store a pointer to the checkpoint record in a fixed position
last_checkpoint on disk

Fuzzy Checkpointing (Cont.)

 When recovering using a fuzzy checkpoint, start scan from the

checkpoint record pointed to by last_checkpoint

 Log records before last_checkpoint have their updates

reflected in database on disk, and need not be redone.

 Incomplete checkpoints, where system had crashed while

performing checkpoint, are handled safely

……

<checkpoint L>

…..

<checkpoint L>

…..

Log

last_checkpoint

Failure with Loss of Nonvolatile Storage

 So far we assumed no loss of non-volatile storage

 Technique similar to checkpointing used to deal with loss of non-
volatile storage

 Periodically dump the entire content of the database to stable
storage

 No transaction may be active during the dump procedure; a
procedure similar to checkpointing must take place

 Output all log records currently residing in main memory onto
stable storage.

 Output all buffer blocks onto the disk.

 Copy the contents of the database to stable storage.

 Output a record <dump> to log on stable storage.

Recovering from Failure of Non-Volatile Storage

 To recover from disk failure

 restore database from most recent dump.

 Consult the log and redo all transactions that committed after

the dump

 Can be extended to allow transactions to be active during dump;

known as fuzzy dump or online dump

 Similar to fuzzy checkpointing

Recovery with Early Lock Release and

Logical Undo Operations

Recovery with Early Lock Release

 Support for high-concurrency locking techniques, such as those used

for B+-tree concurrency control, which release locks early

 Supports “logical undo”

 Recovery based on “repeating history”, whereby recovery executes

exactly the same actions as normal processing

Logical Undo Logging

 Operations like B+-tree insertions and deletions release locks early.

 They cannot be undone by restoring old values (physical undo),
since once a lock is released, other transactions may have updated
the B+-tree.

 Instead, insertions (resp. deletions) are undone by executing a
deletion (resp. insertion) operation (known as logical undo).

 For such operations, undo log records should contain the undo operation
to be executed

 Such logging is called logical undo logging, in contrast to physical
undo logging

 Operations are called logical operations

 Other examples:

 delete of tuple, to undo insert of tuple

– allows early lock release on space allocation information

 subtract amount deposited, to undo deposit

– allows early lock release on bank balance

Physical Redo

 Redo information is logged physically (that is, new value for each

write) even for operations with logical undo

 Logical redo is very complicated since database state on disk may

not be “operation consistent” when recovery starts

 Physical redo logging does not conflict with early lock release

Operation Logging

 Operation logging is done as follows:

1. When operation starts, log <Ti, Oj, operation-begin>. Here Oj is a

unique identifier of the operation instance.

2. While operation is executing, normal log records with physical redo

and physical undo information are logged.

3. When operation completes, <Ti, Oj, operation-end, U> is logged,

where U contains information needed to perform a logical undo

information.

Example: insert of (key, record-id) pair (K5, RID7) into index I9

<T1, O1, operation-begin>

….

<T1, X, 10, K5>

<T1, Y, 45, RID7>

<T1, O1, operation-end, (delete I9, K5, RID7)>

Physical redo of steps in insert

Operation Logging (Cont.)

 If crash/rollback occurs before operation completes:

 the operation-end log record is not found, and

 the physical undo information is used to undo operation.

 If crash/rollback occurs after the operation completes:

 the operation-end log record is found, and in this case

 logical undo is performed using U; the physical undo information

for the operation is ignored.

 Redo of operation (after crash) still uses physical redo information.

Transaction Rollback with Logical Undo

Rollback of transaction Ti is done as follows:

 Scan the log backwards

1. If a log record <Ti, X, V1, V2> is found, perform the undo and log a

al <Ti, X, V1>.

2. If a <Ti, Oj, operation-end, U> record is found

 Rollback the operation logically using the undo information U.

– Updates performed during roll back are logged just like

during normal operation execution.

– At the end of the operation rollback, instead of logging an

operation-end record, generate a record

<Ti, Oj, operation-abort>.

 Skip all preceding log records for Ti until the record

<Ti, Oj operation-begin> is found

Transaction Rollback with Logical Undo

(Cont.)

 Transaction rollback, scanning the log backwards (cont.):

3. If a redo-only record is found ignore it

4. If a <Ti, Oj, operation-abort> record is found:

 skip all preceding log records for Ti until the record

<Ti, Oj, operation-begin> is found.

5. Stop the scan when the record <Ti, start> is found

6. Add a <Ti, abort> record to the log

Some points to note:

 Cases 3 and 4 above can occur only if the database crashes while a

transaction is being rolled back.

 Skipping of log records as in case 4 is important to prevent multiple

rollback of the same operation.

Transaction Rollback with Logical Undo

 Transaction rollback during normal
operation

Failure Recovery with Logical Undo

Transaction Rollback: Another Example

 Example with a complete and an incomplete operation

<T1, start>

<T1, O1, operation-begin>

….

<T1, X, 10, K5>

<T1, Y, 45, RID7>

<T1, O1, operation-end, (delete I9, K5, RID7)>

<T1, O2, operation-begin>

<T1, Z, 45, 70>

 T1 Rollback begins here

<T1, Z, 45>  redo-only log record during physical undo (of incomplete O2)

<T1, Y, .., ..>  Normal redo records for logical undo of O1

…

<T1, O1, operation-abort>  What if crash occurred immediately after this?

<T1, abort>

Recovery Algorithm with Logical Undo

Basically same as earlier algorithm, except for changes described
earlier for transaction rollback

1. (Redo phase): Scan log forward from last < checkpoint L> record till
end of log

1. Repeat history by physically redoing all updates of all
transactions,

2. Create an undo-list during the scan as follows

 undo-list is set to L initially

 Whenever <Ti start> is found Ti is added to undo-list

 Whenever <Ti commit> or <Ti abort> is found, Ti is deleted
from undo-list

This brings database to state as of crash, with committed as well as
uncommitted transactions having been redone.

Now undo-list contains transactions that are incomplete, that is,
have neither committed nor been fully rolled back.

Recovery with Logical Undo (Cont.)

Recovery from system crash (cont.)

2. (Undo phase): Scan log backwards, performing undo on log records

of transactions found in undo-list.

 Log records of transactions being rolled back are processed as

described earlier, as they are found

 Single shared scan for all transactions being undone

 When <Ti start> is found for a transaction Ti in undo-list, write a

<Ti abort> log record.

 Stop scan when <Ti start> records have been found for all Ti in

undo-list

 This undoes the effects of incomplete transactions (those with neither

commit nor abort log records). Recovery is now complete.

ARIES Recovery Algorithm

ARIES

 ARIES is a state of the art recovery method

 Incorporates numerous optimizations to reduce overheads during
normal processing and to speed up recovery

 The recovery algorithm we studied earlier is modeled after
ARIES, but greatly simplified by removing optimizations

 Unlike the recovery algorithm described earlier, ARIES

1. Uses log sequence number (LSN) to identify log records

 Stores LSNs in pages to identify what updates have already
been applied to a database page

2. Physiological redo

3. Dirty page table to avoid unnecessary redos during recovery

4. Fuzzy checkpointing that only records information about dirty
pages, and does not require dirty pages to be written out at
checkpoint time

 More coming up on each of the above …

ARIES Optimizations

 Physiological redo

 Affected page is physically identified, action within page can be
logical

 Used to reduce logging overheads

– e.g. when a record is deleted and all other records have to be
moved to fill hole

» Physiological redo can log just the record deletion

» Physical redo would require logging of old and new values
for much of the page

 Requires page to be output to disk atomically

– Easy to achieve with hardware RAID, also supported by some
disk systems

– Incomplete page output can be detected by checksum
techniques,

» But extra actions are required for recovery

» Treated as a media failure

ARIES Data Structures

 ARIES uses several data structures

 Log sequence number (LSN) identifies each log record

 Must be sequentially increasing

 Typically an offset from beginning of log file to allow fast access

– Easily extended to handle multiple log files

 Page LSN

 Log records of several different types

 Dirty page table

ARIES Data Structures: Page LSN

 Each page contains a PageLSN which is the LSN of the last log

record whose effects are reflected on the page

 To update a page:

 X-latch the page, and write the log record

 Update the page

 Record the LSN of the log record in PageLSN

 Unlock page

 To flush page to disk, must first S-latch page

 Thus page state on disk is operation consistent

– Required to support physiological redo

 PageLSN is used during recovery to prevent repeated redo

 Thus ensuring idempotence

ARIES Data Structures: Log Record

 Each log record contains LSN of previous log record of the same transaction

 LSN in log record may be implicit

 Special redo-only log record called compensation log record (CLR) used to

log actions taken during recovery that never need to be undone

 Serves the role of operation-abort log records used in earlier recovery

algorithm

 Has a field UndoNextLSN to note next (earlier) record to be undone

 Records in between would have already been undone

 Required to avoid repeated undo of already undone actions

LSN TransID PrevLSN RedoInfo UndoInfo

LSN TransID UndoNextLSN RedoInfo

1 2 3 4 4' 3'
2' 1'

ARIES Data Structures: DirtyPage Table

 DirtyPageTable

 List of pages in the buffer that have been updated

 Contains, for each such page

 PageLSN of the page

 RecLSN is an LSN such that log records before this LSN have

already been applied to the page version on disk

– Set to current end of log when a page is inserted into dirty

page table (just before being updated)

– Recorded in checkpoints, helps to minimize redo work

ARIES Data Structures

ARIES Data Structures: Checkpoint Log

 Checkpoint log record

 Contains:

 DirtyPageTable and list of active transactions

 For each active transaction, LastLSN, the LSN of the last log

record written by the transaction

 Fixed position on disk notes LSN of last completed

checkpoint log record

 Dirty pages are not written out at checkpoint time

 Instead, they are flushed out continuously, in the background

 Checkpoint is thus very low overhead

 can be done frequently

ARIES Recovery Algorithm

ARIES recovery involves three passes

 Analysis pass: Determines

 Which transactions to undo

 Which pages were dirty (disk version not up to date) at time of crash

 RedoLSN: LSN from which redo should start

 Redo pass:

 Repeats history, redoing all actions from RedoLSN

 RecLSN and PageLSNs are used to avoid redoing actions

already reflected on page

 Undo pass:

 Rolls back all incomplete transactions

 Transactions whose abort was complete earlier are not undone

– Key idea: no need to undo these transactions: earlier undo

actions were logged, and are redone as required

Aries Recovery: 3 Passes

 Analysis, redo and undo passes

 Analysis determines where redo should start

 Undo has to go back till start of earliest incomplete transaction

Last checkpoint

Log

Time

End of Log

Analysis pass
Redo pass

Undo pass

ARIES Recovery: Analysis

Analysis pass

 Starts from last complete checkpoint log record

 Reads DirtyPageTable from log record

 Sets RedoLSN = min of RecLSNs of all pages in DirtyPageTable

 In case no pages are dirty, RedoLSN = checkpoint record’s

LSN

 Sets undo-list = list of transactions in checkpoint log record

 Reads LSN of last log record for each transaction in undo-list from

checkpoint log record

 Scans forward from checkpoint

 .. Cont. on next page …

ARIES Recovery: Analysis (Cont.)

Analysis pass (cont.)

 Scans forward from checkpoint

 If any log record found for transaction not in undo-list, adds

transaction to undo-list

 Whenever an update log record is found

 If page is not in DirtyPageTable, it is added with RecLSN set to

LSN of the update log record

 If transaction end log record found, delete transaction from undo-list

 Keeps track of last log record for each transaction in undo-list

 May be needed for later undo

 At end of analysis pass:

 RedoLSN determines where to start redo pass

 RecLSN for each page in DirtyPageTable used to minimize redo work

 All transactions in undo-list need to be rolled back

ARIES Redo Pass

Redo Pass: Repeats history by replaying every action not already

reflected in the page on disk, as follows:

 Scans forward from RedoLSN. Whenever an update log record is

found:

1. If the page is not in DirtyPageTable or the LSN of the log record is

less than the RecLSN of the page in DirtyPageTable, then skip

the log record

2. Otherwise fetch the page from disk. If the PageLSN of the page

fetched from disk is less than the LSN of the log record, redo the

log record

NOTE: if either test is negative the effects of the log record have

already appeared on the page. First test avoids even fetching the

page from disk!

ARIES Undo Actions

 When an undo is performed for an update log record

 Generate a CLR containing the undo action performed (actions
performed during undo are logged physicaly or physiologically).

 CLR for record n noted as n’ in figure below

 Set UndoNextLSN of the CLR to the PrevLSN value of the update log
record

 Arrows indicate UndoNextLSN value

 ARIES supports partial rollback

 Used e.g. to handle deadlocks by rolling back just enough to release
reqd. locks

 Figure indicates forward actions after partial rollbacks

 records 3 and 4 initially, later 5 and 6, then full rollback

1 2 3 4 4' 3' 5 6 5' 2' 1'6'

ARIES: Undo Pass

Undo pass:

 Performs backward scan on log undoing all transaction in undo-list

 Backward scan optimized by skipping unneeded log records as follows:

 Next LSN to be undone for each transaction set to LSN of last log

record for transaction found by analysis pass.

 At each step pick largest of these LSNs to undo, skip back to it and

undo it

 After undoing a log record

– For ordinary log records, set next LSN to be undone for

transaction to PrevLSN noted in the log record

– For compensation log records (CLRs) set next LSN to be undo

to UndoNextLSN noted in the log record

» All intervening records are skipped since they would have

been undone already

 Undos performed as described earlier

Recovery Actions in ARIES

Other ARIES Features

 Recovery Independence

 Pages can be recovered independently of others

 E.g. if some disk pages fail they can be recovered from a backup

while other pages are being used

 Savepoints:

 Transactions can record savepoints and roll back to a savepoint

 Useful for complex transactions

 Also used to rollback just enough to release locks on deadlock

Other ARIES Features (Cont.)

 Fine-grained locking:

 Index concurrency algorithms that permit tuple level locking on

indices can be used

 These require logical undo, rather than physical undo, as in

earlier recovery algorithm

 Recovery optimizations: For example:

 Dirty page table can be used to prefetch pages during redo

 Out of order redo is possible:

 redo can be postponed on a page being fetched from disk,

and

performed when page is fetched.

 Meanwhile other log records can continue to be processed

Remote Backup Systems

Remote Backup Systems

 Remote backup systems provide high availability by allowing transaction

processing to continue even if the primary site is destroyed.

Remote Backup Systems (Cont.)

 Detection of failure: Backup site must detect when primary site has

failed

 to distinguish primary site failure from link failure maintain several

communication links between the primary and the remote backup.

 Heart-beat messages

 Transfer of control:

 To take over control backup site first perform recovery using its copy

of the database and all the long records it has received from the

primary.

 Thus, completed transactions are redone and incomplete

transactions are rolled back.

 When the backup site takes over processing it becomes the new

primary

 To transfer control back to old primary when it recovers, old primary

must receive redo logs from the old backup and apply all updates

locally.

Remote Backup Systems (Cont.)

 Time to recover: To reduce delay in takeover, backup site periodically

proceses the redo log records (in effect, performing recovery from

previous database state), performs a checkpoint, and can then delete

earlier parts of the log.

 Hot-Spare configuration permits very fast takeover:

 Backup continually processes redo log record as they arrive,

applying the updates locally.

 When failure of the primary is detected the backup rolls back

incomplete transactions, and is ready to process new transactions.

 Alternative to remote backup: distributed database with replicated data

 Remote backup is faster and cheaper, but less tolerant to failure

 more on this in Chapter 19

Remote Backup Systems (Cont.)

 Ensure durability of updates by delaying transaction commit until update is
logged at backup; avoid this delay by permitting lower degrees of durability.

 One-safe: commit as soon as transaction’s commit log record is written at
primary

 Problem: updates may not arrive at backup before it takes over.

 Two-very-safe: commit when transaction’s commit log record is written at
primary and backup

 Reduces availability since transactions cannot commit if either site fails.

 Two-safe: proceed as in two-very-safe if both primary and backup are
active. If only the primary is active, the transaction commits as soon as is
commit log record is written at the primary.

 Better availability than two-very-safe; avoids problem of lost
transactions in one-safe.

End of Chapter 16

Figure 16.01

Figure 16.02

Figure 16.03

Figure 16.04

Figure 16.05

Figure 16.06

Figure 16.08

Figure 16.09

Figure 16.10

Extra

Shadow Paging

 Shadow paging is an alternative to log-based recovery; this scheme is

useful if transactions execute serially

 Idea: maintain two page tables during the lifetime of a transaction –the

current page table, and the shadow page table

 Store the shadow page table in nonvolatile storage, such that state of the

database prior to transaction execution may be recovered.

 Shadow page table is never modified during execution

 To start with, both the page tables are identical. Only current page table is

used for data item accesses during execution of the transaction.

 Whenever any page is about to be written for the first time

 A copy of this page is made onto an unused page.

 The current page table is then made to point to the copy

 The update is performed on the copy

Sample Page Table

Example of Shadow Paging
Shadow and current page tables after write to page 4

Shadow Paging (Cont.)

 To commit a transaction :

1. Flush all modified pages in main memory to disk

2. Output current page table to disk

3. Make the current page table the new shadow page table, as follows:

 keep a pointer to the shadow page table at a fixed (known) location

on disk.

 to make the current page table the new shadow page table, simply

update the pointer to point to current page table on disk

 Once pointer to shadow page table has been written, transaction is

committed.

 No recovery is needed after a crash — new transactions can start right

away, using the shadow page table.

 Pages not pointed to from current/shadow page table should be freed

(garbage collected).

Show Paging (Cont.)

 Advantages of shadow-paging over log-based schemes

 no overhead of writing log records

 recovery is trivial

 Disadvantages :

 Copying the entire page table is very expensive

 Can be reduced by using a page table structured like a B+-tree

– No need to copy entire tree, only need to copy paths in the tree
that lead to updated leaf nodes

 Commit overhead is high even with above extension

 Need to flush every updated page, and page table

 Data gets fragmented (related pages get separated on disk)

 After every transaction completion, the database pages containing old
versions of modified data need to be garbage collected

 Hard to extend algorithm to allow transactions to run concurrently

 Easier to extend log based schemes

Block Storage Operations

Portion of the Database Log Corresponding to

T0 and T1

State of the Log and Database Corresponding

to T0 and T1

Portion of the System Log Corresponding to

T0 and T1

State of System Log and Database

Corresponding to T0 and T1

