Chapter 16: Recovery System



Chapter 16

Failure Classification
Storage Structure
Recovery and Atomicity
Log-Based Recovery
Remote Backup Systems

. Recovery System



Failure Classification

® Transaction failure :
Logical errors: transaction cannot complete due to some internal
error condition
System errors: the database system must terminate an active
transaction due to an error condition (e.g., deadlock)
m System crash: a power failure or other hardware or software failure
causes the system to crash.
Fail-stop assumption: non-volatile storage contents are assumed
to not be corrupted by system crash
Database systems have numerous integrity checks to prevent
corruption of disk data
m Disk failure: a head crash or similar disk failure destroys all or part of
disk storage

Destruction is assumed to be detectable: disk drives use
checksums to detect failures



Recovery Algorithms

Consider transaction T, that transfers $50 from account A to account B
Two updates: subtract 50 from A and add 50 to B

Transaction T; requires updates to A and B to be output to the
database.

A failure may occur after one of these modifications have been
made but before both of them are made.

Modifying the database without ensuring that the transaction will
commit may leave the database in an inconsistent state

Not modifying the database may result in lost updates if failure
occurs just after transaction commits

Recovery algorithms have two parts

Actions taken during normal transaction processing to ensure
enough information exists to recover from failures

Actions taken after a failure to recover the database contents to a
state that ensures atomicity, consistency and durability



Storage Structure

®m Volatile storage:
does not survive system crashes
examples: main memory, cache memory
® Nonvolatile storage:
survives system crashes

examples: disk, tape, flash memory,
non-volatile (battery backed up) RAM

but may still fail, losing data
m Stable storage:
a mythical form of storage that survives all failures

approximated by maintaining multiple copies on distinct
nonvolatile media

See book for more details on how to implement stable storage



Stable-Storage Implementation

Maintain multiple copies of each block on separate disks

copies can be at remote sites to protect against disasters such as
fire or flooding.

Failure during data transfer can still result in inconsistent copies: Block
transfer can result in

Successful completion
Partial failure: destination block has incorrect information
Total failure: destination block was never updated

Protecting storage media from failure during data transfer (one
solution):

Execute output operation as follows (assuming two copies of each
block):

Write the information onto the first physical block.

When the first write successfully completes, write the same
information onto the second physical block.

The output is completed only after the second write
successfully completes.



Stable-Storage Implementation (Cont.)

®m Protecting storage media from failure during data transfer (cont.):

m Copies of a block may differ due to failure during output operation. To
recover from failure:

First find inconsistent blocks:
Expensive solution: Compare the two copies of every disk block.
Better solution:

Record in-progress disk writes on non-volatile storage (Non-
volatile RAM or special area of disk).

Use this information during recovery to find blocks that may be
iInconsistent, and only compare copies of these.

Used in hardware RAID systems

If either copy of an inconsistent block is detected to have an error (bad
checksum), overwrite it by the other copy. If both have no error, but are
different, overwrite the second block by the first block.



Data Access

Physical blocks are those blocks residing on the disk.
Buffer blocks are the blocks residing temporarily in main memory.

Block movements between disk and main memory are initiated
through the following two operations:

iInput(B) transfers the physical block B to main memory.

output(B) transfers the buffer block B to the disk, and replaces the
appropriate physical block there.

We assume, for simplicity, that each data item fits in, and is stored
inside, a single block.



Example of Data Access
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Data Access (Cont.)

Each transaction T; has its private work-area in which local copies of
all data items accessed and updated by it are kept.

Ti's local copy of a data item X is called x;.

Transferring data items between system buffer blocks and its private
work-area done by:

read(X) assigns the value of data item X to the local variable x;.

write(X) assigns the value of local variable x; to data item {X} in
the buffer block.

Note: output(By) need not immediately follow write(X). System
can perform the output operation when it deems fit.
Transactions

Must perform read(X) before accessing X for the first time
(subsequent reads can be from local copy)

write(X) can be executed at any time before the transaction
commits



Recovery and Atomicity

® To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying the
database itself.

m We study log-based recovery mechanisms in detail
We first present key concepts
And then present the actual recovery algorithm
®m Less used alternative: shadow-copy and shadow-paging (brief

details in book)
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Log-Based Recovery

A log is kept on stable storage.

The log is a sequence of log records, and maintains a record of
update activities on the database.

When transaction T, starts, it registers itself by writing a
<T, start>log record

Before T, executes write(X), a log record

<T, X, V;, V,>
IS written, where V, is the value of X before the write (the old value),
and V, is the value to be written to X (the new value).

When T, finishes it last statement, the log record <T, commit> is written.
Two approaches using logs

Deferred database modification

Immediate database maodification



Immediate Database Modification

The immediate-modification scheme allows updates of an
uncommitted transaction to be made to the buffer, or the disk itself,
before the transaction commits

Update log record must be written before database item is written
We assume that the log record is output directly to stable storage

(Will see later that how to postpone log record output to some
extent)

Output of updated blocks to stable storage can take place at any time
before or after transaction commit

Order in which blocks are output can be different from the order in
which they are written.

The deferred-modification scheme performs updates to buffer/disk
only at the time of transaction commit

Simplifies some aspects of recovery
But has overhead of storing local copy



Transaction Commit

A transaction is said to have committed when its commit log record is
output to stable storage

all previous log records of the transaction must have been output
already

Writes performed by a transaction may still be in the buffer when the
transaction commits, and may be output later



Immediate Database Modification Example

Log Write Output

<T, start>
<T,, A, 1000, 950>
<T,, B, 2000, 2050
A =950
B = 2050
<T, commit>
<T, start>

o B. output before T
i C 1
Bg, B

C

<T, commit>

BA
j B, output after T, }
® Note: By denotes block containing X. commits




Concurrency Control and Recovery

m  With concurrent transactions, all transactions share a single disk
buffer and a single log

A buffer block can have data items updated by one or more
transactions

® We assume that if a transaction T; has modified an item, no other
transaction can modify the same item until T, has committed or
aborted

l.e. the updates of uncommitted transactions should not be visible
to other transactions

Otherwise how to perform undo if T1 updates A, then T2
updates A and commits, and finally T1 has to abort?

Can be ensured by obtaining exclusive locks on updated items
and holding the locks till end of transaction (strict two-phase
locking)

®m Log records of different transactions may be interspersed in the log.



Undo and Redo Operations

® Undo of alog record <T;, X, V,;, V,> writes the old value V, to X
® Redo of alog record <T, X, V;, V,> writes the new value V, to X
® Undo and Redo of Transactions

undo(T,) restores the value of all data items updated by T, to their
old values, going backwards from the last log record for T,

each time a data item X is restored to its old value V a special
log record <T, , X, V> is written out

when undo of a transaction is complete, a log record
<T, abort> is written out.

redo(T;) sets the value of all data items updated by T, to the new
values, going forward from the first log record for T,

No logging is done in this case



Undo and Redo on Recovering from Failure

® When recovering after failure:
Transaction T, needs to be undone if the log
contains the record <T; start>,
but does not contain either the record <T;, commit> or <T; abort>.
Transaction T, needs to be redone if the log
contains the records <T, start>
and contains the record <T,commit> or <T; abort>

® Note that If transaction T, was undone earlier and the <T, abort> record
written to the log, and then a failure occurs, on recovery from failure T, is
redone

such a redo redoes all the original actions including the steps that
restored old values

Known as repeating history
Seems wasteful, but simplifies recovery greatly



Immediate DB Modification Recovery
Example

Below we show the log as it appears at three instances of time.

<T, start> <T, start> <T, start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>
<T, commit> <T, commit>
<T, start> <T; start>
<T,, C, 700, 600> <T,, C, 700, 600>
<T; commit>

(a) (b) ()

Recovery actions in each case above are:

(a) undo (T,): B is restored to 2000 and A to 1000, and log records
<T,, B, 2000>, <T,, A, 1000>, <T,, abort> are written out

(b) redo (T,) and undo (T,): A and B are set to 950 and 2050 and C is
restored to 700. Log records <T,, C, 700>, <T,, abort> are written out.

(c) redo (T,) and redo (T,): A and B are set to 950 and 2050
respectively. Then C is set to 600



Checkpoints

® Redoing/undoing all transactions recorded in the log can be very slow

processing the entire log is time-consuming if the system has run
for a long time

we might unnecessarily redo transactions which have already
output their updates to the database.

m  Streamline recovery procedure by periodically performing
checkpointing

Output all log records currently residing in main memory onto
stable storage.

Output all modified buffer blocks to the disk.

Write a log record < checkpoint L> onto stable storage where L
Is a list of all transactions active at the time of checkpoint.

All updates are stopped while doing checkpointing



Checkpoints (Cont.)

During recovery we need to consider only the most recent transaction
T, that started before the checkpoint, and transactions that started
after T..

Scan backwards from end of log to find the most recent
<checkpoint L> record

Only transactions that are in L or started after the checkpoint
need to be redone or undone

Transactions that committed or aborted before the checkpoint
already have all their updates output to stable storage.

Some earlier part of the log may be needed for undo operations

Continue scanning backwards till a record <T; start> is found for
every transaction T, in L.

Parts of log prior to earliest <T, start> record above are not
needed for recovery, and can be erased whenever desired.



Example of Checkpoints

Tc Tf 3
Tl
adoes
[ | T3
55 9P
A
checkpoint system failure

® T, can be ignored (updates already output to disk due to checkpoint)
® T,and T;redone.
® T,undone



Recovery Algorithm

m So far: we covered key concepts
® Now: we present the components of the basic recovery algorithm
m Later: we present extensions to allow more concurrency



Recovery Algorithm

® Logging (during normal operation):
<T, start> at transaction start
<T;, X;, V;, V,>for each update, and
<T, commit> at transaction end
® Transaction rollback (during normal operation)
Let T, be the transaction to be rolled back

Scan log backwards from the end, and for each log record of T, of
the form <T;, X;, V,, V,>

perform the undo by writing V; to X;,
write a log record <T;, X;, V;>
such log records are called compensation log records

Once the record <T, start> is found stop the scan and write the log
record <T; abort>



Recovery Algorithm (Cont.)

® Recovery from failure: Two phases

Redo phase: replay updates of all transactions, whether they
committed, aborted, or are incomplete

Undo phase: undo all incomplete transactions

® Redo phase:
Find last <checkpoint L> record, and set undo-listto L.
Scan forward from above <checkpoint L> record

Whenever a record <T;, X;, V;, V,>or <T,, X, V,> s found,
redo It by writing V, to X

Whenever a log record <T; start> is found, add T, to undo-list

Whenever a log record <T, commit> or <T, abort> is found,
remove T, from undo-list



Recovery Algorithm (Cont.)

® Undo phase:
Scan log backwards from end

Whenever a log record <T;, X;, V;, V,>Is found where T; is in
undo-list perform same actions as for transaction rollback:

perform undo by writing V, to X
write a log record <T;, X;, V;>

Whenever a log record <T, start> is found where T, is in undo-
list,

Write a log record <T,; abort>
Remove T, from undo-list
Stop when undo-list is empty

l.e. <T, start> has been found for every transaction in
undo-list

® After undo phase completes, normal transaction processing can
commence



Example of Recovery

Start log records

Beginning of log

older ~ <Tostart> tr]:nusr;?::i?)rnz”in
<T,, B, 2000, 2050> .
undo list

< T, start> T, rollback

Redo Pass

<checkpoint {T,, T;}> (during normal
<T,, C, 700, 600> operation)
<T, commit> begins

<T, start>

End of log <T,, A. 500, 400> T, roIIback]
at crash! <T, B, 2000> complete
~<T, abort> rTz is incomplete Y
Log records \ at crash Undo list: T,  Undo Pass
added during <Tz, A, 500> e

recovery < T, abort> T, rolled back
Y bn undo pass
newer




Log Record Buffering

Log record buffering: log records are buffered in main memory, instead
of of being output directly to stable storage.

Log records are output to stable storage when a block of log records
in the buffer is full, or a log force operation is executed.

Log force is performed to commit a transaction by forcing all its log
records (including the commit record) to stable storage.

Several log records can thus be output using a single output operation,
reducing the 1/O cost.



Log Record Buffering (Cont.)

®m The rules below must be followed if log records are buffered:

Log records are output to stable storage in the order in which they
are created.

Transaction T, enters the commit state only when the log record
<T, commit> has been output to stable storage.

Before a block of data in main memory is output to the database,
all log records pertaining to data in that block must have been
output to stable storage.

This rule is called the write-ahead logging or WAL rule

Strictly speaking WAL only requires undo information to be
output



Database Buffering

Database maintains an in-memory buffer of data blocks

When a new block is needed, if buffer is full an existing block needs to
be removed from buffer

If the block chosen for removal has been updated, it must be output to
disk

The recovery algorithm supports the no-force policy: i.e., updated blocks
need not be written to disk when transaction commits

force policy: requires updated blocks to be written at commit
More expensive commit

The recovery algorithm supports the steal policy:i.e., blocks containing
updates of uncommitted transactions can be written to disk, even before
the transaction commits



Database Buffering (Cont.)

m If a block with uncommitted updates is output to disk, log records with
undo information for the updates are output to the log on stable storage
first

(Write ahead logging)

® No updates should be in progress on a block when it is output to disk.
Can be ensured as follows.

Before writing a data item, transaction acquires exclusive lock on
block containing the data item

Lock can be released once the write is completed.
Such locks held for short duration are called latches.
® To output a block to disk
First acquire an exclusive latch on the block
Ensures no update can be in progress on the block
Then perform a log flush
Then output the block to disk
Finally release the latch on the block



Buffer Management (Cont.)

m Database buffer can be implemented either
in an area of real main-memory reserved for the database, or
In virtual memory

®m Implementing buffer in reserved main-memory has drawbacks:

Memory is partitioned before-hand between database buffer and
applications, limiting flexibility.

Needs may change, and although operating system knows best
how memory should be divided up at any time, it cannot change
the partitioning of memory.



Buffer Management (Cont.)

m Database buffers are generally implemented in virtual memory in spite
of some drawbacks:

When operating system needs to evict a page that has been
modified, the page is written to swap space on disk.

When database decides to write buffer page to disk, buffer page
may be in swap space, and may have to be read from swap space
on disk and output to the database on disk, resulting in extra 1/O!

Known as dual paging problem.

ldeally when OS needs to evict a page from the buffer, it should
pass control to database, which in turn should

Output the page to database instead of to swap space (making
sure to output log records first), if it is modified

Release the page from the buffer, for the OS to use

Dual paging can thus be avoided, but common operating systems
do not support such functionality.



Fuzzy Checkpointing

® To avoid long interruption of normal processing during
checkpointing, allow updates to happen during checkpointing

® Fuzzy checkpointing is done as follows:
Temporarily stop all updates by transactions

Write a <checkpoint L> log record and force log to stable
storage

Note list M of modified buffer blocks

Now permit transactions to proceed with their actions

Output to disk all modified buffer blocks in list M
blocks should not be updated while being output

Follow WAL: all log records pertaining to a block must be
output before the block is output

Store a pointer to the checkpoint record in a fixed position
last _checkpoint on disk



Fuzzy Checkpointing (Cont.)

® When recovering using a fuzzy checkpoint, start scan from the
checkpoint record pointed to by last checkpoint

Log records before last checkpoint have their updates
reflected in database on disk, and need not be redone.

Incomplete checkpoints, where system had crashed while
performing checkpoint, are handled safely

last_checkpoint———L 1]




Failure with Loss of Nonvolatile Storage

m So far we assumed no loss of non-volatile storage

®m Technique similar to checkpointing used to deal with loss of non-
volatile storage

Periodically dump the entire content of the database to stable
storage

No transaction may be active during the dump procedure; a
procedure similar to checkpointing must take place

Output all log records currently residing in main memory onto
stable storage.

Output all buffer blocks onto the disk.
Copy the contents of the database to stable storage.
Output a record <dump> to log on stable storage.



Recovering from Failure of Non-Volatile Storage

® To recover from disk failure
restore database from most recent dump.

Consult the log and redo all transactions that committed after
the dump

® Can be extended to allow transactions to be active during dump;
known as fuzzy dump or online dump

Similar to fuzzy checkpointing



Recovery with Early Lock Release and
Logical Undo Operations



Recovery with Early Lock Release

Support for high-concurrency locking techniques, such as those used
for B*-tree concurrency control, which release locks early

Supports “logical undo”

Recovery based on “repeating history”, whereby recovery executes
exactly the same actions as normal processing



Logical Undo Logging

®m Operations like B*-tree insertions and deletions release locks early.

They cannot be undone by restoring old values (physical undo),
since once a lock is released, other transactions may have updated
the B*-tree.

Instead, insertions (resp. deletions) are undone by executing a
deletion (resp. insertion) operation (known as logical undo).

®m For such operations, undo log records should contain the undo operation
to be executed

Such logging is called logical undo logging, in contrast to physical
undo logging

Operations are called logical operations
Other examples:
delete of tuple, to undo insert of tuple
allows early lock release on space allocation information
subtract amount deposited, to undo deposit
allows early lock release on bank balance



Physical Redo

® Redo information is logged physically (that is, new value for each
write) even for operations with logical undo

Logical redo is very complicated since database state on disk may
not be “operation consistent” when recovery starts

Physical redo logging does not conflict with early lock release



Operation Logging

m Operation logging is done as follows:

When operation starts, log <T;, O;, operation-begin>. Here O; Is a
unique identifier of the operation instance.

While operation is executing, normal log records with physical redo
and physical undo information are logged.

When operation completes, <T;, O;, operation-end, U> is logged,
where U contains information needed to perform a logical undo
information.

Example: insert of (key, record-id) pair (K5, RID7) into index 19

<T1, O1, operation-begin>

<T1, X, 10, K5> Physical redo of steps in insert
<T1,Y, 45, RID7>

<T1, O1, operation-end, (delete 19, K5, RID7)>



Operation Logging (Cont.)

m If crash/rollback occurs before operation completes:

the operation-end log record is not found, and

the physical undo information is used to undo operation.
m If crash/rollback occurs after the operation completes:

the operation-end log record is found, and in this case

logical undo is performed using U; the physical undo information
for the operation is ignored.

®m Redo of operation (after crash) still uses physical redo information.




Transaction Rollback with Logical Undo

Rollback of transaction T, is done as follows:
® Scan the log backwards
If a log record <T,, X, V,, V,>is found, perform the undo and log a
al <T;, X, V>.
If a <T;, O;, operation-end, U>record is found
Rollback the operation logically using the undo information U.

Updates performed during roll back are logged just like
during normal operation execution.

At the end of the operation rollback, instead of logging an
operation-end record, generate a record

<T, O;, operation-abort>.

Skip all preceding log records for T, until the record
<T, O; operation-begin> is found



1 TAllodClLOlN ROHDACK WiILTIl LOJgiCal UT1Uo
(Cont.)

Transaction rollback, scanning the log backwards (cont.):
If a redo-only record is found ignore it
If a <T;, O;, operation-abort> record is found:

skip all preceding log records for T; until the record
<T;, O;, operation-begin> is found.

Stop the scan when the record <T;, start> is found
Add a <T;, abort> record to the log

Some points to note:

Cases 3 and 4 above can occur only if the database crashes while a
transaction is being rolled back.

Skipping of log records as in case 4 is important to prevent multiple
rollback of the same operation.



Transaction Rollback with Logical Undo

® Transaction rollback during normal

operation

TO
decides
to abort

If T,aborts before
operation O, ends, undo of
update to C will be physical

T, has completed operation}
on G, releases lower-level
lock; physical undo cannot be
done anymore, logical undo
will add 100 to C B

Beginning of log

<T, start>

<T, B, 2000, 2050>

<T,, O,, operation-begin>
<T, C, 700, 600>
<T, O,, operation-end, (C, +100)>
<T, start>

<T,, O, operation-begin>

<T,, C, 600, 400>

T, can update C since T, has |
released lower-level lock on C

; T, releases lower-level lock ’
iog, operation-end, (G, +200)> < ol

[

<T,, C, 400, 500> | Logical undo of O, adds 100 ’
<T, O, operation-aboM to G

<T, B, 2000> \ O, undo complete |

<T,, abort>

<T,, commit>



Failure Recovery with Logical Undo

End of
log at
crash!

Records
added
during

recovery

®

/

Beginning of log
<T, start>
<T, B, 2000, 2050>
<T, commit>
<T, start>
<T,, B, 2050, 2100>
<T,, O, operation-begin>
<checkpoint {T}>
<T,, C, 700, 400>

<T,, O, operation-end, (C, +300)>

<T,, Os; operation-begin>
<T,, C, 400, 300>

Start log records
found for all
transactions in

undo list

Redo Pass

Y
Undo list: T,, 7. Undo Pass

<T,, C, 400>
< T, abort>
<T,, C, 400, 700>
<T,, O, operation-abort>
<T,, B, 2050>

<T, abort>

/@date of C was part of O, undon
physically during recovery since

O; did not complete

Logical undo of O, adds 300 to@




Transaction Rollback: Another Example

m Example with a complete and an incomplete operation

<T1, start>

<T1, O1, operation-begin>

<T1, X, 10, K5>

<T1,Y, 45, RID7>

<T1, O1, operation-end, (delete 19, K5, RID7)>
<T1, O2, operation-begin>

<T1, Z, 45, 70>
< T1 Rollback begins here

<T1, Z, 45> < redo-only log record during physical undo (of incomplete O2)

<Tl,Y, ..,..> < Normal redo records for logical undo of O1

<T1, O1, operation-abort> < What if crash occurred immediately after this?

<T1, abort>



Recovery Algorithm with Logical Undo

Basically same as earlier algorithm, except for changes described
earlier for transaction rollback

1. (Redo phase): Scan log forward from last < checkpoint L> record till
end of log

Repeat history by physically redoing all updates of all
transactions,

Create an undo-list during the scan as follows
undo-list is set to L initially
Whenever <T, start> is found T, is added to undo-list

Whenever <T, commit> or <T, abort> is found, T, is deleted
from undo-list

This brings database to state as of crash, with committed as well as
uncommitted transactions having been redone.

Now undo-list contains transactions that are incomplete, that is,
have neither committed nor been fully rolled back.



Recovery with Logical Undo (Cont.)

Recovery from system crash (cont.)

2. (Undo phase): Scan log backwards, performing undo on log records
of transactions found in undo-list.

Log records of transactions being rolled back are processed as
described earlier, as they are found

Single shared scan for all transactions being undone

When <T,; start> is found for a transaction T, in undo-list, write a
<T, abort> log record.

Stop scan when <T, start> records have been found for all T, in
undo-list

® This undoes the effects of incomplete transactions (those with neither
commit nor abort log records). Recovery is now complete.



ARIES Recovery Algorithm



ARIES

m ARIES is a state of the art recovery method

Incorporates numerous optimizations to reduce overheads during
normal processing and to speed up recovery

The recovery algorithm we studied earlier is modeled after
ARIES, but greatly simplified by removing optimizations

® Unlike the recovery algorithm described earlier, ARIES
Uses log sequence number (LSN) to identify log records

Stores LSNs in pages to identify what updates have already
been applied to a database page

Physiological redo
Dirty page table to avoid unnecessary redos during recovery

Fuzzy checkpointing that only records information about dirty
pages, and does not require dirty pages to be written out at
checkpoint time

More coming up on each of the above ...



ARIES Optimizations

Physiological redo

Affected page is physically identified, action within page can be
logical

Used to reduce logging overheads

e.g. when a record is deleted and all other records have to be
moved to fill hole

» Physiological redo can log just the record deletion

» Physical redo would require logging of old and new values
for much of the page

Requires page to be output to disk atomically

Easy to achieve with hardware RAID, also supported by some
disk systems

Incomplete page output can be detected by checksum
techniques,

» But extra actions are required for recovery
» Treated as a media failure



ARIES Data Structures

® ARIES uses several data structures
Log sequence number (LSN) identifies each log record
Must be sequentially increasing
Typically an offset from beginning of log file to allow fast access
Easily extended to handle multiple log files
Page LSN
Log records of several different types
Dirty page table



ARIES Data Structures: Page LSN

®m Each page contains a PageL SN which is the LSN of the last log
record whose effects are reflected on the page

To update a page:
X-latch the page, and write the log record
Update the page
Record the LSN of the log record in PageLSN
Unlock page

To flush page to disk, must first S-latch page
Thus page state on disk is operation consistent

Required to support physiological redo

PageL SN is used during recovery to prevent repeated redo
Thus ensuring idempotence



ARIES Data Structures: Log Record

m Each log record contains LSN of previous log record of the same transaction

LSN | TransID | PrevLSN | Redolnfo | Undolnfo

LSN in log record may be implicit

B Special redo-only log record called compensation log record (CLR) used to
log actions taken during recovery that never need to be undone

Serves the role of operation-abort log records used in earlier recovery
algorithm

Has a field UndoNextLSN to note next (earlier) record to be undone
Records in between would have already been undone
Required to avoid repeated undo of already undone actions

LSN | TransID | UndoNextLSN | Redolnfo

1ot pilEg ik (e
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ARIES Data Structures: DirtyPage Table

m DirtyPageTable
List of pages in the buffer that have been updated
Contains, for each such page
PagelL SN of the page

RecLSN is an LSN such that log records before this LSN have
already been applied to the page version on disk

Set to current end of log when a page is inserted into dirty
page table (just before being updated)

Recorded in checkpoints, helps to minimize redo work



ARIES Data Structures
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ARIES Data Structures: Checkpoint Log

m Checkpoint log record
Contains:
DirtyPageTable and list of active transactions

For each active transaction, LastLSN, the LSN of the last log
record written by the transaction

Fixed position on disk notes LSN of last completed
checkpoint log record

m Dirty pages are not written out at checkpoint time
Instead, they are flushed out continuously, in the background
m Checkpointis thus very low overhead
can be done frequently



ARIES Recovery Algorithm

ARIES recovery involves three passes
®m  Analysis pass: Determines
Which transactions to undo
Which pages were dirty (disk version not up to date) at time of crash
RedoLSN: LSN from which redo should start
B Redo pass:
Repeats history, redoing all actions from RedoLSN

RecLSN and PageLSNs are used to avoid redoing actions
already reflected on page

® Undo pass:
Rolls back all incomplete transactions
Transactions whose abort was complete earlier are not undone

Key idea: no need to undo these transactions: earlier undo
actions were logged, and are redone as required



Aries Recovery: 3 Passes

®  Analysis, redo and undo passes
®  Analysis determines where redo should start
® Undo has to go back till start of earliest incomplete transaction

Last checkpoint End of Log
l l Time
e
—
Log Analysis pass

Redo pass >

>

Undo pass

<




ARIES Recovery: Analysis

Analysis pass
m Starts from last complete checkpoint log record
Reads DirtyPageTable from log record
Sets RedoLSN = min of RecLSNs of all pages in DirtyPageTable

In case no pages are dirty, RedoLSN = checkpoint record’ s
LSN

Sets undo-list = list of transactions in checkpoint log record

Reads LSN of last log record for each transaction in undo-list from
checkpoint log record

m  Scans forward from checkpoint
m .. Cont. on next page ...



ARIES Recovery: Analysis (Cont.)

Analysis pass (cont.)
m Scans forward from checkpoint
If any log record found for transaction not in undo-list, adds
transaction to undo-list
Whenever an update log record is found
If page is not in DirtyPageTable, it is added with RecLSN set to
LSN of the update log record
If transaction end log record found, delete transaction from undo-list
Keeps track of last log record for each transaction in undo-list
May be needed for later undo

m At end of analysis pass:
RedoLSN determines where to start redo pass

RecLSN for each page in DirtyPageTable used to minimize redo work
All transactions in undo-list need to be rolled back



ARIES Redo Pass

Redo Pass: Repeats history by replaying every action not already
reflected in the page on disk, as follows:
m Scans forward from RedoLSN. Whenever an update log record is
found:
If the page is not in DirtyPageTable or the LSN of the log record is
less than the RecLSN of the page in DirtyPageTable, then skip
the log record
Otherwise fetch the page from disk. If the PageLSN of the page
fetched from disk is less than the LSN of the log record, redo the
log record
NOTE: if either test is negative the effects of the log record have
already appeared on the page. Firsttest avoids even fetching the
page from disk!



ARIES Undo Actions

® When an undo is performed for an update log record

Generate a CLR containing the undo action performed (actions
performed during undo are logged physicaly or physiologically).

CLR for record n noted as n’ in figure below

Set UndoNextLSN of the CLR to the PrevLSN value of the update log
record

Arrows indicate UndoNextLSN value
®  ARIES supports partial rollback

Used e.g. to handle deadlocks by rolling back just enough to release
reqd. locks

Figure indicates forward actions after partial rollbacks
records 3 and 4 initially, later 5 and 6, then full rollback
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ARIES: Undo Pass

Undo pass:
m Performs backward scan on log undoing all transaction in undo-list
Backward scan optimized by skipping unneeded log records as follows:

Next LSN to be undone for each transaction set to LSN of last log
record for transaction found by analysis pass.

At each step pick largest of these LSNs to undo, skip back to it and
undo it

After undoing a log record

For ordinary log records, set next LSN to be undone for
transaction to PrevLSN noted in the log record

For compensation log records (CLRsS) set next LSN to be undo
to UndoNextLSN noted in the log record

» All intervening records are skipped since they would have
been undone already

® Undos performed as described earlier
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Other ARIES Features

® Recovery Independence
Pages can be recovered independently of others

E.g. if some disk pages fail they can be recovered from a backup
while other pages are being used

m Savepoints:
Transactions can record savepoints and roll back to a savepoint
Useful for complex transactions
Also used to rollback just enough to release locks on deadlock



Other ARIES Features (Cont.)

® Fine-grained locking:

Index concurrency algorithms that permit tuple level locking on
Indices can be used

These require logical undo, rather than physical undo, as in
earlier recovery algorithm

®m Recovery optimizations: For example:
Dirty page table can be used to prefetch pages during redo
Out of order redo is possible:

redo can be postponed on a page being fetched from disk,
and
performed when page is fetched.

Meanwhile other log records can continue to be processed



Remote Backup Systems



Remote Backup Systems

® Remote backup systems provide high availability by allowing transaction
processing to continue even if the primary site is destroyed.

primary /MD backup
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Remote Backup Systems (Cont.)

®m Detection of failure: Backup site must detect when primary site has
failed

to distinguish primary site failure from link failure maintain several
communication links between the primary and the remote backup.

Heart-beat messages
®m Transfer of control;

To take over control backup site first perform recovery using its copy
of the database and all the long records it has received from the
primary.

Thus, completed transactions are redone and incomplete
transactions are rolled back.

When the backup site takes over processing it becomes the new
primary

To transfer control back to old primary when it recovers, old primary

must receive redo logs from the old backup and apply all updates
locally.



Remote Backup Systems (Cont.)

® Time to recover: To reduce delay in takeover, backup site periodically
proceses the redo log records (in effect, performing recovery from
previous database state), performs a checkpoint, and can then delete
earlier parts of the log.

m Hot-Spare configuration permits very fast takeover:

Backup continually processes redo log record as they arrive,
applying the updates locally.

When failure of the primary is detected the backup rolls back
iIncomplete transactions, and is ready to process new transactions.

m Alternative to remote backup: distributed database with replicated data
Remote backup is faster and cheaper, but less tolerant to failure
more on this in Chapter 19



Remote Backup Systems (Cont.)

Ensure durability of updates by delaying transaction commit until update is
logged at backup; avoid this delay by permitting lower degrees of durability.

One-safe: commit as soon as transaction’ s commit log record is written at
primary

e Problem: updates may not arrive at backup before it takes over.

Two-very-safe: commit when transaction’ s commit log record is written at
primary and backup

e Reduces avalilability since transactions cannot commit if either site fails.

Two-safe: proceed as in two-very-safe if both primary and backup are
active. If only the primary is active, the transaction commits as soon as is
commit log record is written at the primary.

e Better availability than two-very-safe; avoids problem of lost
transactions in one-safe.



End of Chapter 16
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Figure 16.02
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Figure 16.03
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Figure 16.09
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Shadow Paging

Shadow paging is an alternative to log-based recovery; this scheme is
useful if transactions execute serially

ldea: maintain two page tables during the lifetime of a transaction —the
current page table, and the shadow page table

Store the shadow page table in nonvolatile storage, such that state of the
database prior to transaction execution may be recovered.

Shadow page table is never modified during execution

To start with, both the page tables are identical. Only current page table is
used for data item accesses during execution of the transaction.

Whenever any page is about to be written for the first time
A copy of this page is made onto an unused page.
The current page table is then made to point to the copy
The update is performed on the copy
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Shadow Paging (Cont.)

® To commit a transaction :
1. Flush all modified pages in main memory to disk
2. Output current page table to disk
3. Make the current page table the new shadow page table, as follows:

keep a pointer to the shadow page table at a fixed (known) location
on disk.

to make the current page table the new shadow page table, simply
update the pointer to point to current page table on disk

® Once pointer to shadow page table has been written, transaction is
committed.

® No recovery is needed after a crash — new transactions can start right
away, using the shadow page table.

m Pages not pointed to from current/shadow page table should be freed
(garbage collected).



Show Paging (Cont.)

® Advantages of shadow-paging over log-based schemes
no overhead of writing log records
recovery is trivial
® Disadvantages:
Copying the entire page table is very expensive
Can be reduced by using a page table structured like a B*-tree

No need to copy entire tree, only need to copy paths in the tree
that lead to updated leaf nodes

Commit overhead is high even with above extension
Need to flush every updated page, and page table
Data gets fragmented (related pages get separated on disk)

After every transaction completion, the database pages containing old
versions of modified data need to be garbage collected

Hard to extend algorithm to allow transactions to run concurrently
Easier to extend log based schemes
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