UNIT -2

Greedy Method in Algorithm Design — Detailed Explanation

Overview

The Greedy Method is an algorithmic paradigm used for solving optimization problems. It builds
up a solution piece by piece, always choosing the next piece that offers the most immediate
benefit (i.e., the "greedy" choice), without considering the global consequences.

It does not always produce the optimal solution for all problems, but for some problems, it does
lead to the globally optimal solution.

Key Characteristics of Greedy Algorithms

1. Greedy Choice Property: A global optimum can be arrived at by selecting a local
optimum.

2. Optimal Substructure: A problem has an optimal substructure if an optimal solution can
be constructed from optimal solutions of its subproblems.

If a problem has both properties, a greedy algorithm is often an appropriate solution.

¥ General Approach of Greedy Method:
1. Start with an empty solution.
2. Repeat:

o Choose the best option based on a local decision (e.g., max profit, min weight,
etc.).

o Add it to the solution.

3. Stop when you reach the goal or no more choices are possible.



4. Return the solution.

@3 General Structure of a Greedy Algorithm

text

Copy code

1. Initialize a solution set (often empty).

2. While the solution is not complete:
a. Choose the best possible option based on the current state (greedy choice).
b. Add this choice to the solution set.
c. Update the state.

3. Return the solution set.

~~ Greedy vs Dynamic Programming
Feature Greedy Method Dynamic Programming

Local optimal

Decision Making ] Optimal choice based on subproblems
choice

Solution ) Always optimal (for problems with optimal
Not always optimal

Guarantee substructure)

Time Complexity  Often faster Generally more time-consuming

Space Complexity Low Higher due to memoization

| When Not to Use Greedy Algorithms
e When the problem lacks optimal substructure.

e When the local optimum choice leads to a globally suboptimal solution.



e Example: 0/1 Knapsack Problem — Greedy fails to give optimal result.

Simple Example: Coin Change Problem (Greedy Version)
Problem:

You need to make change for ¥30 using the minimum number of coins.
Available coins: 1, %2, X5, %10

Greedy Strategy:

Always take the highest denomination coin that doesn’t exceed the remaining amount.

Step-by-step Solution:
text
Copy code

Remaining Amount = 30

- Take ¥10 » Remaining = 20
- Take ¥10 » Remaining = 10

- Take ¥10 » Remaining = 0

Coins used: [10, 10, 10]

Minimum number of coins = 3

Advantages of Greedy Algorithms
e Simple to design and implement.
e Generally efficient and fast.

e Uses less memory compared to dynamic programming.



X Disadvantages
e Doesn't always give the optimal solution.

¢ Not suitable for all problem types.

I Definition of Fractional Knapsack Problem

The Fractional Knapsack Problem is an optimization problem in which you are given a set of
items, each with a value and a weight, and a knapsack with a maximum weight capacity.

The goal is to maximize the total value in the knapsack by selecting items. Unlike the 0/1

Knapsack problem, you can take fractions of an item rather than having to take it entirely or not
at all.

Key Point:

You are allowed to break items and take only a part of them to fill the knapsack optimally.

@ Example:
If an item has:
¢ Value =X100

e Weight=10kg
And the knapsack has only 5 kg space left,
You can take half of the item, gaining X50 in value.

Problem Statement
You are given:
e Aknapsack with capacity W

e nitems, each with:



o value[i] —value of item i
o weight[i] — weight of item i

¢ Goal: Maximize total value placed into the knapsack.

¢ Condition: You can take fractions of items (unlike the 0/1 knapsack).

&3 Greedy Approach
The greedy strategy:
1. Calculate value per unit weight (value/weight) for each item.
2. Sort items by this ratio in descending order.
3. Pick items in this order:
o If the entire item fits, take it.

o If not, take the fraction that fits.

~~ Algorithm Steps
Step-by-step procedure:
1. Calculate value/weight ratio for all items.
2. Sortitems based on this ratio in descending order.
3. Initialize total_value = 0 and remaining_capacity = W.
4. For each item:
o If item weight < remaining capacity:
» Take the full item
= Add its value to total_value

= Subtract weight from remaining_capacity

= Take the fractional part that fits

= Add corresponding value



= Break (knapsack is full)

5. Return total_value.

=1 Algorithm (Pseudo-Code)
plaintext

Copy code

function fractionalKnapsack(W, items):

for each item:

compute value_per_weight = value / weight

sort items by value_per_weight in descending order

total_value=0

for item in sorted_items:
if item.weight < W:
W =W - item.weight
total_value += item.value
else:
fraction = W / item.weight

total_value += item.value * fraction
break // knapsack is full

return total_value

Example



Let:
e Capacity W =50
e Items:

Item Value Weight Value/Weight

A 60 10 6.0

B 100 20 5.0

C 120 30 4.0

Sorted Order:

A>B>C

Fill Knapsack:
e Take A (10) - Remaining = 40 = Value = 60
e Take B (20) = Remaining = 20 - Value = 160
e Take 20/30 of C = Value = 120 x (20/30) = 80

Total Value = 60 + 100 + 80 = 240

Advantages

Feature Description
¢ Simplicity Easy to understand and implement
¢ Fast Efficient with time complexity O(n log n) (due to sorting)

¢ Optimal Result Always gives optimal result for fractional version

¢ Useful in real life Applies to problems like cutting, packing, budgeting

X Disadvantages



Limitation

Explanation

X Doesn't work for 0/1 knapsack Greedy may miss better combinations

X Assumes divisibility Not all items in real-life can be split (e.g., laptop)

X May be misleading For certain coin or resource problems, greedy fails

(® Time Complexity
e Sorting items by ratio: O(n log n)

e lIterating through items: O(n)
Total Time Complexity: O(n log n)

Space Complexity: O(1) (or O(n) if storing additional data)

@ Use Cases

Budget planning with divisible resources

Resource allocation (e.g., allocating computing power)

Industrial cutting or material use where splitting is allowed

Bandwidth allocation problems

Summary

Aspect Detail

Problem Type Optimization

Strategy Greedy — pick based on value/weight

Can take fractions? [ Yes

Optimal solution? Yes for fractional, ) No for 0/1 version

Time Complexity O(n logn)



Would you like a Python, C++, or Java implementation, or a visual diagram for this example?
You said:
defination

ChatGPT said:

Job Sequencing with Deadlines
Definition
The Job Sequencing with Deadlines problem is an optimization problem where:
e You are given a list of jobs.
e Each job has a deadline and a profit.
e Each job takes one unit of time to complete.
¢ Only one job can be done at a time.

Your goal is to schedule jobs in such a way that the total profit is maximized and no job is
scheduled after its deadline.

Approach (Greedy Algorithm)

The Greedy approach schedules the most profitable jobs first, ensuring they are done before
their deadlines, if possible.

) steps:
1. Sort all jobs in descending order of profit.
2. Create a time slot array of size = max deadline.
3. For each job:
o Tryto place itin the latest available time slot < its deadline.
o Ifaslotisfound, schedule the job.

4. Repeat until all jobs are checked or all slots are filled.



@ Algorithm (Pseudocode)
plaintext
Copy code
function jobSequencing(jobs):
sort jobs by descending profit
maxDeadline = max(jobs.deadline)

slots = array of size maxDeadline, initialized to None

for job in jobs:
for j in range(min(job.deadline, maxDeadline) - 1, -1, -1):
if slots[j] is None:
slots[j] = job

break

return slots, total profit

Advantages

Advantage Description
Fast and efficient  O(n log n) due to sorting
@5 Simple logic Easy to implement using greedy
§ Maximizes profit  Selects best jobs based on returns

< Good for scheduling Used in OS task scheduling, manufacturing

X Disadvantages



Disadvantage Explanation

X Assumes unit job time Doesn’t handle variable-duration jobs

X Needs sorting Sorting overhead for large inputs

X Not always optimal For jobs with dependencies or setup times

Y Deadlines must be known Can’t work in real-time dynamic scenarios

Real-Life Applications

e Job/task scheduling in operating systems

¢ Manufacturing & assembly line optimization
e CPU time slot allocation

e Advertising slot scheduling

' Summary

Feature Description

Problem Type Greedy — maximize profit with constraints
Time Complexity O(n log n + nxd) where d = max deadline
Output Job order that gives maximum profit

Input Assumption Jobs take 1 unit time and no overlap

Let me know if you want the code implementation in a specific language, a flowchart, or more
practice questions!

You said:
guestion n=4,[p1,p2,p3,p4]=[70,12,18,35]and[d1,d2,d3,d4]=[2,1,2,1]

ChatGPT said:



Let's solve the Job Sequencing with Deadlines problem using the given values:

=! Given:
e Number of Jobs,n=4
e Profits = [70, 12, 18, 35]
e Deadlines=[2,1,2,1]
We can denote the jobs as:

Job Profit (P) Deadline (D)

J1 70 2
12 12 1
J3 18 2
J4 35 1

Step 1: Sort Jobs by Profit (Descending)

Sorted list:

Job Profit Deadline

J1 70 2
J4 35 1
J3 18 2
2 12 1

Step 2: Initialize Time Slots
¢ Max deadline=2

e Create slots = [None, None] = represents slot 1 and slot 2



Step 3: Assign Jobs to Latest Possible Slot < Deadline
¢ TryJ1 (Profit 70, Deadline 2):

e Slot 2 is free - assign J1 to slot 2
slots = [None, J1]

¢ Try J4 (Profit 35, Deadline 1):

e Slot1isfree - assignlJ4 toslot 1
slots = [J4, J1]

¢ TryJ3 (Profit 18, Deadline 2):

e Slot 2 is taken - check slot 1 - also taken
Cannot schedule J3

¢ TryJ2 (Profit 12, Deadline 1):

e Slot1istaken
Cannot schedule J2

# Result
e Scheduled Jobs: J4, J1 (at slot 1 and 2)

+ Total Profit: 35 + 70 = X105

Final Job Schedule:
Slot Job Profit
1 J4 35

2 J1 70



4 Minimum-Cost Spanning Tree (MST)

Definition:

A Minimum-Cost Spanning Tree (MST) is a subset of the edges of a connected, undirected,
weighted graph that:

e Connects all the vertices together,
e Has no cycles (i.e., it's a tree),

e And has the minimum possible total edge weight among all such spanning trees.

Key Properties of an MST:

e Includes all vertices (V) in the graph.
e Contains V - 1 edges (no cycles).

o Total edge weight is minimized.

e There may be multiple MSTs if weights allow ties.

&5 Why MST is Important (Applications)
e Network design (e.g., wiring, computer networks, roads).
¢ Reducing cost in connecting all components.
e Clustering data in machine learning.

e Image processing (e.g., segmentation).

Two Main MST Algorithms:
Algorithm Basis Best for
Prim’s Grow a single tree Dense graphs

Kruskal’s Build forest, then merge Sparse graphs



& Prim’s Algorithm (Greedy Tree Expansion)

Definition

Prim’s Algorithm is a greedy algorithm used to find the Minimum Spanning Tree (MST) of a
connected, undirected, weighted graph by growing the MST one vertex at a time, always
choosing the minimum weight edge that connects a visited node to an unvisited node.

Key Idea
e Start from any vertex.
o Repeatedly add the cheapest edge connecting the tree to a vertex not in the tree.

¢ Continue until all vertices are included in the MST.

) step-by-Step Approach

1. Initialize:
e Start from any arbitrary vertex.
e Mark it as visited.

e Use a min-heap (priority queue) to keep track of the cheapest edge to an unvisited

vertex.

2. Loop:

e Pick the minimum-weight edge from the heap that connects to an unvisited vertex.
e Add that vertex to the MST.

e Mark it as visited.

e Add all its outgoing edges (to unvisited vertices) to the heap.

e Repeat until all vertices are included.

< Data Structures Used:



Structure Purpose
Min-Heap / Priority Queue To efficiently select the next minimum edge
Visited Array To track which nodes are already in MST

Adjacency List To represent the graph efficiently

&3 Time Complexity
Version Time Complexity
Naive (adj. matrix)  O(V?)

With Min-Heap & List O(E log V)

2 Example

Graph:

mathematica

Copy code

Vertices: A, B, C, D

Edges:

A-B (1)

A-C(3)

B-C (1)

B-D (6)

C-D (4)

= Execution (Start from A):
1. Aisadded to MST
2. Add edges A-B(1), A-C(3) to heap - pick A-B

3. Add Bto MST



4. Add B-C(1), B-D(6) to heap = pick B-C
5. Add Cto MST
6. Add C-D(4) - pickit
7. Add D to MST
Final MST Edges:
e A-B(1),B-C(1), C-D (4)

e Total Cost=6

Prim's Algorithm - Pseudocode
plaintext
Copy code
function PrimMST(graph):
Initialize: visited = [False] * n
minHeap =[]

MST =[]

Add (0, source_node) to minHeap

while minHeap is not empty:

(weight, u) = minHeap.pop()

if u is already visited:

continue

mark u as visited

add edge to MST



for all neighbors v of u:

if v not visited:

push (weight(u, v), v) to minHeap

return MST

Advantages of Prim’s Algorithm

Advantage Description

Efficient on dense graphs Because it avoids sorting all edges
Builds tree incrementally Easy to track and control growth

Deterministic result Produces consistent MST with same start

X Disadvantages

Disadvantage Explanation

X Needs extra data structures Requires priority queue & visited tracking
X Slower on sparse graphs ~ Compared to Kruskal in some cases

> Only for connected graphs Doesn’t handle disconnected graphs

B Use Cases
e Designing least-cost communication networks
e Laying cables and pipes efficiently
e Road or electrical wiring planning

e Image segmentation



' Summary

Feature Description
Algorithm Type Greedy
Graph Type Undirected, connected, weighted

Data Structures Used Min-heap (priority queue), visited array
Time Complexity O(E log V) with binary heap

Output Minimum-cost spanning tree
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Definition

Kruskal’s Algorithm is a greedy algorithm used to find the Minimum Spanning Tree (MST) of a
connected, undirected, weighted graph by selecting the lowest-weight edges first and
ensuring that no cycles are formed.



Key Idea
e Sort all edges in increasing order of weight.

Use a Disjoint Set (Union-Find) data structure to check for cycles.

e Repeatedly add the smallest edge that doesn’t form a cycle until MST is complete.
Concept: Spanning Tree

A spanning tree:

e Connects all vertices.

e Has no cycles.

e Has exactly V - 1 edges for V vertices.

) step-by-Step Approach

1. Sort all edges in non-decreasing order by weight.

2. Initialize:
e Each vertex is its own disjoint set (component).
e Create an empty list for MST.
3. Iterate over sorted edges:
e For each edge (u, v):
o Ifuand v belong to different sets (no cycle), add edge to MST.

o Merge the sets using Union-Find.

4. Repeat until MST contains V - 1 edges.

&3 Time Complexity

Step Complexity

Sorting edges O(E log E)



Step Complexity
Union-Find operations O(E log V) (with path compression + union by rank)

Overall O(E log V)

¢ Data Structures Used

Structure Purpose

Edge List To sort and iterate edges by weight
Union-Find (DSU) To detect cycles efficiently

MST Edge List To store result edges

) Example

Graph:

mathematica

Copy code

Vertices: A, B, C, D

Edges:

A-B (1)

A-C(3)

B-C (1)

B-D (6)

C-D (4)

Step 1: Sort edges

Sorted by weight:
e A-B(1)

e B-C(1)



e AC(3)

e C-D(4)

e B-D(6)
Step 2: Initialize DSU
Step 3: Add edges to MST

e A-B-> [4 (nocycle)

B-C > 4 (no cycle)

A-C > X (would form cycle)

C-D > 4 (nocycle)

B-D > X (already connected)
Final MST:
« Edges: A-B (1), B-C (1), C-D (4)

o Total cost: 6

' Pseudocode of Kruskal’s Algorithm
plaintext
Copy code
function KruskalMST(graph):
result =]
sort all edges in increasing weight

create disjoint sets for all vertices

for each edge (u, v) in sorted edge list:
if find(u) # find(v):

add edge to result



union(u, v)

return result

Advantages of Kruskal’s Algorithm

Advantage Description

Efficient for sparse graphs Fewer edges to check, especially in graphs with V >> E
Simple logic Straightforward to understand and implement

Handles disconnected graphs Can find minimum spanning forest

X Disadvantages

Disadvantage Explanation

X Requires edge sorting Sorting edges adds O(E log E) overhead

Y Needs Union-Find structure More complex implementation than Prim’s basic form

X Slower on dense graphs More edges = more sorting and comparisons

[ Applications of Kruskal’s Algorithm
¢ Network design (LAN, road, power grid)
e Image segmentation
e Clustering in machine learning

¢ Finding connected components

Kruskal’s vs. Prim’s Algorithm



Feature Kruskal’s Algorithm Prim’s Algorithm

Strategy Edge-based Vertex-based

Suitable for Sparse graphs Dense graphs

Data Structure Disjoint Set (Union-Find) Priority Queue (Min Heap)
Time Complexity O(E log V) O(E log V)

Cycle Detection Union-Find Visited array

i Summary
o Kruskal’s Algorithm builds MST by selecting the smallest edges while avoiding cycles.

o It is efficient for sparse graphs and often easier to implement than Prim’s for edge list
representations.

e Uses Union-Find to maintain disjoint sets for cycle checking.

Would you like:
. Python / C++ / Java code?
. A visual diagram for Kruskal’s algorithm?
. Practice problems with solutions?

Let me know how you'd like to continue!
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Definition

Dijkstra’s Algorithm is a greedy algorithm that finds the shortest path from a single source
vertex to all other vertices in a weighted graph (with non-negative edge weights).

Key Idea

e Continuously select the closest unvisited node and update the shortest distances to its
neighbors.

e Repeat until all vertices are visited.



Assumptions
¢ Works on directed or undirected graphs
e All edge weights must be 2 0 (non-negative)

e Input: Graph G(V, E), source vertex S

Data Structures Used
Structure Purpose
Distance Array Store shortest known distances
Priority Queue Get the next closest node efficiently

Visited Set Keep track of already processed nodes

&3 Algorithm Steps
Step 1: Initialize
o dist[source] =0
o dist[others] = oo
¢ Use a min-priority queue to pick the next vertex with the minimum distance.
Step 2: Loop until the queue is empty
e Extract the node u with the smallest dist[u]
e For each neighbor v of u:
o If dist[v] > dist[u] + weight(u, v):
= Update dist[v]
= Push (dist[v], v) into the priority queue

Step 3: Repeat until all nodes have been visited.

! python Pseudocode



python
Copy code

import heapq

def dijkstra(graph, source):
n = len(graph)
dist = [float('inf')] * n
dist[source] =0

pq = [(0, source)] # (distance, node)

while pq:
d, u = heapg.heappop(pq)
if d > dist[u]: # Already found better path
continue
for v, w in graph[ul:
if dist[v] > dist[u] + w:
dist[v] = dist[u] + w
heapg.heappush(pq, (dist[v], v))

return dist

) Example

Il Graph

Let’s say we have the following graph with 5 nodes (A—E = 0-4):
mathematica

Copy code

A---2--B



~1-E

Edges (with weights):
A-B (2), A-C (4), B—C (1), B-D (3), C-D (5), C-E (1), D-E (2)
Step-by-step from source A (0):

Iteration Node Distance Updates Final dist[]

Init —  A=0, others=eo [0, o0, 0, 00, o]
1 A B=2,C=4 [0, 2, 4, oo, o]
2 B C=3, D=5 [0,2,3,5, %]

3 C E=4 [0,2,3,5,4]

4 E D=4 [0,2,3,4,4]

5 D — Final distances

Final shortest distances from A:
mathematica

Copy code

A->A=0

A->B=2

A->C=3

A->D=4

AS>E=4



~~ Time Complexity

Implementation Type Time Complexity
Simple array (no heap) 0o(Vv?)

Binary heap + adjacency list O((V + E) log V)

Fibonacci heap (advanced) O(E +V log V)

Advantages
¢ Efficient for sparse graphs with non-negative weights
¢ Always finds the shortest path

¢ Simple and intuitive

X Disadvantages
o Does not work with negative edge weights
e Slightly slower than A* in some heuristic problems

e Not suitable for dynamic graphs unless recomputed

< Applications
e GPS/ Navigation systems
e Network routing (e.g., OSPF, RIP)
e Game Al pathfinding
¢ Robot motion planning

¢ Real-time traffic apps

¢ Summary



Feature Description

Input Graph + source vertex

Output  Shortest path from source to all others
Type Greedy algorithm

Limitation Cannot handle negative weights

Efficiency O((V + E) log V) with a min-heap
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