
                                                                              UNIT -2 

    

Greedy Method in Algorithm Design – Detailed ExplanaƟon 

 

脥� Overview 

The Greedy Method is an algorithmic paradigm used for solving opƟmizaƟon problems. It builds 
up a soluƟon piece by piece, always choosing the next piece that offers the most immediate 
benefit (i.e., the "greedy" choice), without considering the global consequences. 

It does not always produce the opƟmal soluƟon for all problems, but for some problems, it does 
lead to the globally opƟmal soluƟon. 

 

꺜 Key CharacterisƟcs of Greedy Algorithms 

1. Greedy Choice Property: A global opƟmum can be arrived at by selecƟng a local 
opƟmum. 

2. OpƟmal Substructure: A problem has an opƟmal substructure if an opƟmal soluƟon can 
be constructed from opƟmal soluƟons of its subproblems. 

If a problem has both properƟes, a greedy algorithm is oŌen an appropriate soluƟon. 

 

 

 

 

굓굔굕굖 General Approach of Greedy Method: 

1. Start with an empty soluƟon. 

2. Repeat: 

o Choose the best opƟon based on a local decision (e.g., max profit, min weight, 
etc.). 

o Add it to the soluƟon. 

3. Stop when you reach the goal or no more choices are possible. 



4. Return the soluƟon. 

 

 

��� General Structure of a Greedy Algorithm 

text 

Copy code 

1. IniƟalize a soluƟon set (oŌen empty). 

2. While the soluƟon is not complete: 

   a. Choose the best possible opƟon based on the current state (greedy choice). 

   b. Add this choice to the soluƟon set. 

   c. Update the state. 

3. Return the soluƟon set. 

 

 

굂굃굄 Greedy vs Dynamic Programming 

Feature Greedy Method Dynamic Programming 

Decision Making 
Local opƟmal 
choice 

OpƟmal choice based on subproblems 

SoluƟon 
Guarantee 

Not always opƟmal 
Always opƟmal (for problems with opƟmal 
substructure) 

Time Complexity OŌen faster Generally more Ɵme-consuming 

Space Complexity Low Higher due to memoizaƟon 

 

 When Not to Use Greedy Algorithms 

 When the problem lacks opƟmal substructure. 

 When the local opƟmum choice leads to a globally subopƟmal soluƟon. 



 Example: 0/1 Knapsack Problem – Greedy fails to give opƟmal result. 

 

Simple Example: Coin Change Problem (Greedy Version) 

�� Problem: 

You need to make change for ₹30 using the minimum number of coins. 
Available coins: ₹1, ₹2, ₹5, ₹10 

脥� Greedy Strategy: 

Always take the highest denomination coin that doesn’t exceed the remaining amount. 

 

것겄겅겆겇 Step-by-step Solution: 

text 

Copy code 

Remaining Amount = 30 

 

- Take ₹10 → Remaining = 20 

- Take ₹10 → Remaining = 10 

- Take ₹10 → Remaining = 0 

 

Coins used: [10, 10, 10] 

脥� Minimum number of coins = 3 

 

脥� Advantages of Greedy Algorithms 

 Simple to design and implement. 

 Generally efficient and fast. 

 Uses less memory compared to dynamic programming. 



 

 Disadvantages 

 Doesn't always give the opƟmal soluƟon. 

 Not suitable for all problem types. 

 

 

궀궔궂궃 DefiniƟon of FracƟonal Knapsack Problem 

The FracƟonal Knapsack Problem is an opƟmizaƟon problem in which you are given a set of 
items, each with a value and a weight, and a knapsack with a maximum weight capacity. 

The goal is to maximize the total value in the knapsack by selecƟng items. Unlike the 0/1 
Knapsack problem, you can take fracƟons of an item rather than having to take it enƟrely or not 
at all. 

 

꺜 Key Point: 

You are allowed to break items and take only a part of them to fill the knapsack opƟmally. 

 

��� Example: 

If an item has: 

 Value = ₹100 

 Weight = 10 kg 
And the knapsack has only 5 kg space leŌ, 
You can take half of the item, gaining ₹50 in value. 

 

脥� Problem Statement 

You are given: 

 A knapsack with capacity W 

 n items, each with: 



o value[i] – value of item i 

o weight[i] – weight of item i 

꼡 Goal: Maximize total value placed into the knapsack. 

꼡 CondiƟon: You can take fracƟons of items (unlike the 0/1 knapsack). 

 

��� Greedy Approach 

The greedy strategy: 

1. Calculate value per unit weight (value/weight) for each item. 

2. Sort items by this raƟo in descending order. 

3. Pick items in this order: 

o If the enƟre item fits, take it. 

o If not, take the fracƟon that fits. 

 

굂굃굄 Algorithm Steps 

Step-by-step procedure: 

1. Calculate value/weight raƟo for all items. 

2. Sort items based on this raƟo in descending order. 

3. IniƟalize total_value = 0 and remaining_capacity = W. 

4. For each item: 

o If item weight ≤ remaining capacity: 

 Take the full item 

 Add its value to total_value 

 Subtract weight from remaining_capacity 

o Else: 

 Take the fracƟonal part that fits 

 Add corresponding value 



 Break (knapsack is full) 

5. Return total_value. 

 

곸곹곺곻과곽 Algorithm (Pseudo-Code) 

plaintext 

Copy code 

funcƟon fracƟonalKnapsack(W, items): 

    for each item: 

        compute value_per_weight = value / weight 

 

    sort items by value_per_weight in descending order 

 

    total_value = 0 

 

    for item in sorted_items: 

        if item.weight ≤ W: 

            W = W - item.weight 

            total_value += item.value 

        else: 

            fracƟon = W / item.weight 

            total_value += item.value * fracƟon 

            break  // knapsack is full 

 

    return total_value 

 

����� Example 



Let: 

 Capacity W = 50 

 Items: 

Item Value Weight Value/Weight 

A 60 10 6.0 

B 100 20 5.0 

C 120 30 4.0 

Sorted Order: 

A > B > C 

Fill Knapsack: 

 Take A (10) → Remaining = 40 → Value = 60 

 Take B (20) → Remaining = 20 → Value = 160 

 Take 20/30 of C → Value = 120 × (20/30) = 80 

脥� Total Value = 60 + 100 + 80 = 240 

 

脥� Advantages 

Feature DescripƟon 

꼡 Simplicity Easy to understand and implement 

꼡 Fast Efficient with Ɵme complexity O(n log n) (due to sorƟng) 

꼡 OpƟmal Result Always gives opƟmal result for fracƟonal version 

꼡 Useful in real life Applies to problems like cuƫng, packing, budgeƟng 

 

 Disadvantages 



LimitaƟon ExplanaƟon 

 Doesn't work for 0/1 knapsack Greedy may miss beƩer combinaƟons 

 Assumes divisibility Not all items in real-life can be split (e.g., laptop) 

 May be misleading For certain coin or resource problems, greedy fails 

 

꽎꽏꽐꽇꽑 Time Complexity 

 SorƟng items by raƟo: O(n log n) 

 IteraƟng through items: O(n) 

脥� Total Time Complexity: O(n log n) 

脥� Space Complexity: O(1) (or O(n) if storing addiƟonal data) 

 

굓굔굕굖 Use Cases 

 Budget planning with divisible resources 

 Resource allocaƟon (e.g., allocaƟng compuƟng power) 

 Industrial cuƫng or material use where spliƫng is allowed 

 Bandwidth allocaƟon problems 

 

脥� Summary 

Aspect Detail 

Problem Type OpƟmizaƟon 

Strategy Greedy – pick based on value/weight 

Can take fracƟons? 脥� Yes 

OpƟmal soluƟon? 脥� Yes for fracƟonal,  No for 0/1 version 

Time Complexity O(n log n) 



 

Would you like a Python, C++, or Java implementaƟon, or a visual diagram for this example? 

You said: 

definaƟon  

ChatGPT said: 

 

�� Job Sequencing with Deadlines 

脥� DefiniƟon 

The Job Sequencing with Deadlines problem is an opƟmizaƟon problem where: 

 You are given a list of jobs. 

 Each job has a deadline and a profit. 

 Each job takes one unit of Ɵme to complete. 

 Only one job can be done at a Ɵme. 

Your goal is to schedule jobs in such a way that the total profit is maximized and no job is 
scheduled aŌer its deadline. 

 

것겄겅겆겇 Approach (Greedy Algorithm) 

The Greedy approach schedules the most profitable jobs first, ensuring they are done before 
their deadlines, if possible. 

脥깩깪 Steps: 

1. Sort all jobs in descending order of profit. 

2. Create a Ɵme slot array of size = max deadline. 

3. For each job: 

o Try to place it in the latest available Ɵme slot ≤ its deadline. 

o If a slot is found, schedule the job. 

4. Repeat unƟl all jobs are checked or all slots are filled. 



 

굓굔굕굖 Algorithm (Pseudocode) 

plaintext 

Copy code 

funcƟon jobSequencing(jobs): 

    sort jobs by descending profit 

    maxDeadline = max(jobs.deadline) 

    slots = array of size maxDeadline, iniƟalized to None 

 

    for job in jobs: 

        for j in range(min(job.deadline, maxDeadline) - 1, -1, -1): 

            if slots[j] is None: 

                slots[j] = job 

                break 

 

    return slots, total profit 

 

脥� Advantages 

Advantage DescripƟon 

겜겝겞겟겠겢겣겤겡 Fast and efficient O(n log n) due to sorƟng 

��� Simple logic Easy to implement using greedy 

곈곉 Maximizes profit Selects best jobs based on returns 

귑귒귓귔귕귖 Good for scheduling Used in OS task scheduling, manufacturing 

 

 Disadvantages 



Disadvantage ExplanaƟon 

 Assumes unit job Ɵme Doesn’t handle variable-duraƟon jobs 

 Needs sorƟng SorƟng overhead for large inputs 

 Not always opƟmal For jobs with dependencies or setup Ɵmes 

 Deadlines must be known Can’t work in real-Ɵme dynamic scenarios 

 

ꍵ퍡퍢ꍷ遠퍣퍤퍥퍦퍧퍨퍩쟖퍪ꍸꍹ飄퍫飅飆퍬퍭퍮 Real-Life ApplicaƟons 

 Job/task scheduling in operaƟng systems 

 Manufacturing & assembly line opƟmizaƟon 

 CPU Ɵme slot allocaƟon 

 AdverƟsing slot scheduling 

 

괘괙괚괛궨궩궪궫궬 Summary 

Feature DescripƟon 

Problem Type Greedy – maximize profit with constraints 

Time Complexity O(n log n + n×d) where d = max deadline 

Output Job order that gives maximum profit 

Input AssumpƟon Jobs take 1 unit Ɵme and no overlap 

 

Let me know if you want the code implementaƟon in a specific language, a flowchart, or more 
pracƟce quesƟons! 

You said: 

quesƟon n=4,[p1,p2,p3,p4]=[70,12,18,35]and[d1,d2,d3,d4]=[2,1,2,1] 

ChatGPT said: 



Let's solve the Job Sequencing with Deadlines problem using the given values: 

 

������ Given: 

 Number of Jobs, n = 4 

 Profits = [70, 12, 18, 35] 

 Deadlines = [2, 1, 2, 1] 

We can denote the jobs as: 

Job Profit (P) Deadline (D) 

J1 70 2 

J2 12 1 

J3 18 2 

J4 35 1 

 

脥� Step 1: Sort Jobs by Profit (Descending) 

Sorted list: 

Job Profit Deadline 

J1 70 2 

J4 35 1 

J3 18 2 

J2 12 1 

 

脥� Step 2: IniƟalize Time Slots 

 Max deadline = 2 

 Create slots = [None, None] → represents slot 1 and slot 2 



 

脥� Step 3: Assign Jobs to Latest Possible Slot ≤ Deadline 

꼡 Try J1 (Profit 70, Deadline 2): 

 Slot 2 is free → assign J1 to slot 2 

脥 slots = [None, J1] 

꼡 Try J4 (Profit 35, Deadline 1): 

 Slot 1 is free → assign J4 to slot 1 

脥 slots = [J4, J1] 

꼡 Try J3 (Profit 18, Deadline 2): 

 Slot 2 is taken → check slot 1 → also taken 

脥 Cannot schedule J3 

꼡 Try J2 (Profit 12, Deadline 1): 

 Slot 1 is taken 

脥 Cannot schedule J2 

 

蚭蚯蚮 Result 

 Scheduled Jobs: J4, J1 (at slot 1 and 2) 

 Total Profit: 35 + 70 = ₹105 

 

脥� Final Job Schedule: 

Slot Job Profit 

1 J4 35 

2 J1 70 

 

 

 



芤芥 Minimum-Cost Spanning Tree (MST) 

 

脥� DefiniƟon: 

A Minimum-Cost Spanning Tree (MST) is a subset of the edges of a connected, undirected, 
weighted graph that: 

 Connects all the verƟces together, 

 Has no cycles (i.e., it's a tree), 

 And has the minimum possible total edge weight among all such spanning trees. 

 

 Key ProperƟes of an MST: 

 Includes all verƟces (V) in the graph. 

 Contains V - 1 edges (no cycles). 

 Total edge weight is minimized. 

 There may be mulƟple MSTs if weights allow Ɵes. 

 

��� Why MST is Important (ApplicaƟons) 

 Network design (e.g., wiring, computer networks, roads). 

 Reducing cost in connecƟng all components. 

 Clustering data in machine learning. 

 Image processing (e.g., segmentaƟon). 

 

껩 Two Main MST Algorithms: 

Algorithm Basis Best for 

Prim’s Grow a single tree Dense graphs 

Kruskal’s Build forest, then merge Sparse graphs 



芤芥 Prim’s Algorithm (Greedy Tree Expansion) 

 

脥� DefiniƟon 

Prim’s Algorithm is a greedy algorithm used to find the Minimum Spanning Tree (MST) of a 
connected, undirected, weighted graph by growing the MST one vertex at a Ɵme, always 
choosing the minimum weight edge that connects a visited node to an unvisited node. 

 

것겄겅겆겇 Key Idea 

 Start from any vertex. 

 Repeatedly add the cheapest edge connecƟng the tree to a vertex not in the tree. 

 ConƟnue unƟl all verƟces are included in the MST. 

 

脥깩깪 Step-by-Step Approach 

1. IniƟalize: 

 Start from any arbitrary vertex. 

 Mark it as visited. 

 Use a min-heap (priority queue) to keep track of the cheapest edge to an unvisited 
vertex. 

2. Loop: 

 Pick the minimum-weight edge from the heap that connects to an unvisited vertex. 

 Add that vertex to the MST. 

 Mark it as visited. 

 Add all its outgoing edges (to unvisited verƟces) to the heap. 

 Repeat unƟl all verƟces are included. 

 

귑귒귓귔귕귖 Data Structures Used: 



Structure Purpose 

Min-Heap / Priority Queue To efficiently select the next minimum edge 

Visited Array To track which nodes are already in MST 

Adjacency List To represent the graph efficiently 

 

��� Time Complexity 

Version Time Complexity 

Naive (adj. matrix) O(V²) 

With Min-Heap & List O(E log V) 

 

������ Example 

Graph: 

mathemaƟca 

Copy code 

VerƟces: A, B, C, D 

Edges: 

A-B (1) 

A-C (3) 

B-C (1) 

B-D (6) 

C-D (4) 

������� ExecuƟon (Start from A): 

1. A is added to MST 

2. Add edges A-B(1), A-C(3) to heap → pick A-B 

3. Add B to MST 



4. Add B-C(1), B-D(6) to heap → pick B-C 

5. Add C to MST 

6. Add C-D(4) → pick it 

7. Add D to MST 

脥� Final MST Edges: 

 A-B (1), B-C (1), C-D (4) 

 Total Cost = 6 

 

껩 Prim's Algorithm - Pseudocode 

plaintext 

Copy code 

funcƟon PrimMST(graph): 

    IniƟalize: visited = [False] * n 

                minHeap = [] 

                MST = [] 

 

    Add (0, source_node) to minHeap 

 

    while minHeap is not empty: 

        (weight, u) = minHeap.pop() 

 

        if u is already visited: 

            conƟnue 

 

        mark u as visited 

        add edge to MST 



 

        for all neighbors v of u: 

            if v not visited: 

                push (weight(u, v), v) to minHeap 

 

    return MST 

 

脥� Advantages of Prim’s Algorithm 

Advantage DescripƟon 

脥� Efficient on dense graphs Because it avoids sorƟng all edges 

脥� Builds tree incrementally Easy to track and control growth 

脥� DeterminisƟc result Produces consistent MST with same start 

 

 Disadvantages 

Disadvantage ExplanaƟon 

 Needs extra data structures Requires priority queue & visited tracking 

 Slower on sparse graphs Compared to Kruskal in some cases 

 Only for connected graphs Doesn’t handle disconnected graphs 

 

궀궔궂궃 Use Cases 

 Designing least-cost communicaƟon networks 

 Laying cables and pipes efficiently 

 Road or electrical wiring planning 

 Image segmentaƟon 



 

괘괙괚괛궨궩궪궫궬 Summary 

Feature DescripƟon 

Algorithm Type Greedy 

Graph Type Undirected, connected, weighted 

Data Structures Used Min-heap (priority queue), visited array 

Time Complexity O(E log V) with binary heap 

Output Minimum-cost spanning tree 

  

 

 

 

 

 脥� DefiniƟon 

Kruskal’s Algorithm is a greedy algorithm used to find the Minimum Spanning Tree (MST) of a 
connected, undirected, weighted graph by selecƟng the lowest-weight edges first and 
ensuring that no cycles are formed. 

 



것겄겅겆겇 Key Idea 

 Sort all edges in increasing order of weight. 

 Use a Disjoint Set (Union-Find) data structure to check for cycles. 

 Repeatedly add the smallest edge that doesn’t form a cycle unƟl MST is complete. 

 

괂���������� Concept: Spanning Tree 

A spanning tree: 

 Connects all verƟces. 

 Has no cycles. 

 Has exactly V - 1 edges for V verƟces. 

 

脥깩깪 Step-by-Step Approach 

1. Sort all edges in non-decreasing order by weight. 

2. IniƟalize: 

 Each vertex is its own disjoint set (component). 

 Create an empty list for MST. 

3. Iterate over sorted edges: 

 For each edge (u, v): 

o If u and v belong to different sets (no cycle), add edge to MST. 

o Merge the sets using Union-Find. 

4. Repeat unƟl MST contains V - 1 edges. 

 

��� Time Complexity 

Step Complexity 

SorƟng edges O(E log E) 



Step Complexity 

Union-Find operaƟons O(E log V) (with path compression + union by rank) 

Overall O(E log V) 

 

귑귒귓귔귕귖 Data Structures Used 

Structure Purpose 

Edge List To sort and iterate edges by weight 

Union-Find (DSU) To detect cycles efficiently 

MST Edge List To store result edges 

 

脥깩깪 Example 

Graph: 

mathemaƟca 

Copy code 

VerƟces: A, B, C, D   

Edges: 

A-B (1) 

A-C (3) 

B-C (1) 

B-D (6) 

C-D (4) 

脥� Step 1: Sort edges 

Sorted by weight: 

 A-B (1) 

 B-C (1) 



 A-C (3) 

 C-D (4) 

 B-D (6) 

脥� Step 2: IniƟalize DSU 

脥� Step 3: Add edges to MST 

 A-B → 脥� (no cycle) 

 B-C → 脥� (no cycle) 

 A-C →  (would form cycle) 

 C-D → 脥� (no cycle) 

 B-D →  (already connected) 

脥� Final MST: 

 Edges: A-B (1), B-C (1), C-D (4) 

 Total cost: 6 

 

괘괙괚괛궨궩궪궫궬 Pseudocode of Kruskal’s Algorithm 

plaintext 

Copy code 

funcƟon KruskalMST(graph): 

    result = [] 

    sort all edges in increasing weight 

    create disjoint sets for all verƟces 

 

    for each edge (u, v) in sorted edge list: 

        if find(u) ≠ find(v): 

            add edge to result 



            union(u, v) 

 

    return result 

 

脥� Advantages of Kruskal’s Algorithm 

Advantage DescripƟon 

脥� Efficient for sparse graphs Fewer edges to check, especially in graphs with V >> E 

脥� Simple logic Straighƞorward to understand and implement 

脥� Handles disconnected graphs Can find minimum spanning forest 

 

 Disadvantages 

Disadvantage ExplanaƟon 

 Requires edge sorƟng SorƟng edges adds O(E log E) overhead 

 Needs Union-Find structure More complex implementaƟon than Prim’s basic form 

 Slower on dense graphs More edges = more sorƟng and comparisons 

 

궀궔궂궃 ApplicaƟons of Kruskal’s Algorithm 

 Network design (LAN, road, power grid) 

 Image segmentaƟon 

 Clustering in machine learning 

 Finding connected components 

 

�� Kruskal’s vs. Prim’s Algorithm 



Feature Kruskal’s Algorithm Prim’s Algorithm 

Strategy Edge-based Vertex-based 

Suitable for Sparse graphs Dense graphs 

Data Structure Disjoint Set (Union-Find) Priority Queue (Min Heap) 

Time Complexity O(E log V) O(E log V) 

Cycle DetecƟon Union-Find Visited array 

 

굚굝굞굛굟굠굜 Summary 

 Kruskal’s Algorithm builds MST by selecƟng the smallest edges while avoiding cycles. 

 It is efficient for sparse graphs and oŌen easier to implement than Prim’s for edge list 
representaƟons. 

 Uses Union-Find to maintain disjoint sets for cycle checking. 

 

Would you like: 

 脥� Python / C++ / Java code? 

 脥� A visual diagram for Kruskal’s algorithm? 

 脥� PracƟce problems with soluƟons? 

Let me know how you'd like to conƟnue! 



 

 

 

 

 

 

脥� DefiniƟon 

Dijkstra’s Algorithm is a greedy algorithm that finds the shortest path from a single source 
vertex to all other verƟces in a weighted graph (with non-negaƟve edge weights). 

 

것겄겅겆겇 Key Idea 

 ConƟnuously select the closest unvisited node and update the shortest distances to its 
neighbors. 

 Repeat unƟl all verƟces are visited. 

 



굋굌굍굎굏굒교굑 AssumpƟons 

 Works on directed or undirected graphs 

 All edge weights must be ≥ 0 (non-negaƟve) 

 Input: Graph G(V, E), source vertex S 

 

껩 Data Structures Used 

Structure Purpose 

Distance Array Store shortest known distances 

Priority Queue Get the next closest node efficiently 

Visited Set Keep track of already processed nodes 

 

��� Algorithm Steps 

Step 1: IniƟalize 

 dist[source] = 0 

 dist[others] = ∞ 

 Use a min-priority queue to pick the next vertex with the minimum distance. 

Step 2: Loop unƟl the queue is empty 

 Extract the node u with the smallest dist[u] 

 For each neighbor v of u: 

o If dist[v] > dist[u] + weight(u, v): 

 Update dist[v] 

 Push (dist[v], v) into the priority queue 

Step 3: Repeat unƟl all nodes have been visited. 

 

곸곹곺곻과곽 Python Pseudocode 



python 

Copy code 

import heapq 

 

def dijkstra(graph, source): 

    n = len(graph) 

    dist = [float('inf')] * n 

    dist[source] = 0 

    pq = [(0, source)]  # (distance, node) 

 

    while pq: 

        d, u = heapq.heappop(pq) 

        if d > dist[u]:  # Already found beƩer path 

            conƟnue 

        for v, w in graph[u]: 

            if dist[v] > dist[u] + w: 

                dist[v] = dist[u] + w 

                heapq.heappush(pq, (dist[v], v)) 

    return dist 

 

脥깩깪 Example 

굇굃굈굉굊 Graph 

Let’s say we have the following graph with 5 nodes (A–E = 0–4): 

mathemaƟca 

Copy code 

    A ---2--- B 



    |       / | 

    4     1   3 

    |   /     | 

    C ---5--- D 

     \       / 

      --1-- E 

 

Edges (with weights): 

A–B (2), A–C (4), B–C (1), B–D (3), C–D (5), C–E (1), D–E (2) 

Step-by-step from source A (0): 

IteraƟon Node Distance Updates Final dist[] 

Init — A=0, others=∞ [0, ∞, ∞, ∞, ∞] 

1 A B=2, C=4 [0, 2, 4, ∞, ∞] 

2 B C=3, D=5 [0, 2, 3, 5, ∞] 

3 C E=4 [0, 2, 3, 5, 4] 

4 E D=4 [0, 2, 3, 4, 4] 

5 D — Final distances 

脥� Final shortest distances from A: 

mathemaƟca 

Copy code 

A → A = 0 

A → B = 2 

A → C = 3 

A → D = 4 

A → E = 4 



 

굂굃굄 Time Complexity 

ImplementaƟon Type Time Complexity 

Simple array (no heap) O(V²) 

Binary heap + adjacency list O((V + E) log V) 

Fibonacci heap (advanced) O(E + V log V) 

 

脥� Advantages 

 Efficient for sparse graphs with non-negaƟve weights 

 Always finds the shortest path 

 Simple and intuiƟve 

 

 Disadvantages 

 Does not work with negaƟve edge weights 

 Slightly slower than A* in some heurisƟc problems 

 Not suitable for dynamic graphs unless recomputed 

 

귑귒귓귔귕귖 ApplicaƟons 

 GPS / NavigaƟon systems 

 Network rouƟng (e.g., OSPF, RIP) 

 Game AI pathfinding 

 Robot moƟon planning 

 Real-Ɵme traffic apps 

 

굓굔굕굖 Summary 



Feature DescripƟon 

Input Graph + source vertex 

Output Shortest path from source to all others 

Type Greedy algorithm 

LimitaƟon Cannot handle negaƟve weights 

Efficiency O((V + E) log V) with a min-heap 

 


