
Unit 1

Introduction to Operating System: Introduction and Need
of operating system, Layered Architecture/Logical Structure
of Operating system, Type of OS(Multiprogramming , Time
Sharing, Real Time ,Networked, Distributed, Clustered,
Hand Held), Operating system as Resource Manager and
Virtual Machine, OS Services, BIOS, System Calls/Monitor
Calls, Firmware- BIOS, Boot Strap Loader. Threads-
processes versus threads, threading, concepts, models,
kernel & user level threads, thread usage, benefits,
multithreading models.

• Operating System Definition and Function
• In the Computer System (comprises of Hardware and software),

Hardware can only understand machine code (in the form of 0 and
1) which doesn't make any sense to a naive user.

• We need a system which can act as an intermediary and manage all
the processes and resources present in the system.

• An Operating System can be defined as an interface between user and hardware. It is
responsible for the execution of all the processes, Resource Allocation, CPU management,
File Management and many other tasks.

• The purpose of an operating system is to provide an environment in which a user can execute
programs in convenient and efficient manner.

• Structure of a Computer System
• A Computer System consists of:Users (people who are using the computer)
• Application Programs (Compilers, Databases, Games, Video player, Browsers, etc.)
• System Programs (Shells, Editors, Compilers, etc.)
• Operating System (A special program which acts as an interface between user and hardware)
• Hardware (CPU, Disks, Memory, etc)

https://www.javatpoint.com/cpu-full-form

• Operating System can be defined as an interface
between user and the hardware. It provides an
environment to the user so that, the user can
perform its task in convenient and efficient way.
In the Computer System (comprises of Hardware
and software), Hardware can only understand
machine code (in the form of 0 and 1) which
doesn't make any sense to a naive user.

• We n e e d a s y s t e m w h i c h c a n a c t a s a n
intermediary and manage all the processes and
resources present in the system.

• Why to Learn Operating System?
• An Operating System (OS) is an interface between

a computer user and computer hardware. An
operating system is a software which performs all
the basic tasks like file management, memory
management, process management, handling
input and output, and controlling peripheral
devices such as disk drives and printers.

• Some popular Operating Systems include Linux
Operating System, Windows Operating System,
unix , linux,MAC os.

Disadvantages of an Operating system

• Expensive
• Virus Threat
• System Failure

Layered Structure of
Operating System

• The layered structure approach breaks up the
operating system into different layers and retains
much more control on the system. The bottom
layer (layer 0) is the hardware, and the topmost
layer (layer N) is the user interface. These layers
are so designed that each layer uses the functions
of the lower-level layers only. It simplifies the
debugging process as if lower-level layers are
debugged, and an error occurs during debugging.
The error must be on that layer only as the lower-
level layers have already been debugged.

• This allows implementers to change the inner
workings and increases modularity.

• As long as the external interface of the routines
doesn't change, developers have more freedom
to change the inner workings of the routines.

• The main advantage is the s implic ity of
construct ion and debugg ing . The main
difficulty is defining the various layers.

• The main disadvantage of this structure is that
the data needs to be modified and passed on
at each layer, which adds overhead to the
system. Moreover, careful planning of the
layers is necessary as a layer can use only
lower-level layers. UNIX is an example of this
structure.

There are six layers in the layered operating system. A diagram
demonstrating these layers is as follows:

• Hardware: This layer interacts with the system
hardware and coordinates with all the peripheral
devices used, such as a printer, mouse, keyboard,
scanner, etc. These types of hardware devices are
m a n a g e d i n t h e h a r d w a r e l a y e r .
The hardware layer i s the l owest and most
authoritative layer in the layered operating system
architecture. It is attached directly to the core of the
system.

• CPU Scheduling: This layer deals with scheduling the
processes for the CPU. Many scheduling queues are
used to handle processes. When the processes enter
the system, they are put into the job queue .
The processes that are ready to execute in the main
memory are kept in the ready queue. This layer is
responsible for managing how many processes will be
allocated to the CPU and how many will stay out of
the CPU.

• Memory Management: Memory management deals with
memory and moving processes from disk to primary
memory for execution and back again. This is handled by
the third layer of the operating system. All memory
management is associated with this layer. There are
various types of memories in the computer like RAM, ROM.
If you consider RAM, then it is concerned with swapping in
and swapping out of memory. When our computer runs,
some processes move to the main memory (RAM) for
execution, and when programs, such as calculator, exit, it
is removed from the main memory.

• Process Management: This layer is responsible for managing
the processes, i.e., assigning the processor to a process and
deciding how many processes will stay in the waiting
schedule. The priority of the processes is also managed in
this layer. The different algorithms used for process
scheduling are FCFS (first come, first served), SJF (shortest
job first), priority scheduling, round-robin scheduling, etc.

• I/O Buffer: I/O devices are very important in
computer systems. They provide users with the means
of interacting with the system. This layer handles the
buffers for the I/O devices and makes sure that they
w o r k c o r r e c t l y .
Suppose you are typing from the keyboard. There is a
keyboard buffer attached with the keyboard, which
stores data for a temporary time. Similarly, all
input/output devices have some buffer attached to
them. This is because the input/output devices have
slow processing or storing speed. The computer uses
buffers to maintain the good timing speed of the
processor and input/output devices.

• User Programs: This is the highest layer in the
layered operating system. This layer deals with the
many user programs and applications that run in an
operating system, such as word processors, games,
browsers, etc. You can also call this an application
layer because it is concerned with application
programs.

• Following are some of important functions of an
operating System.

• Memory Management
• Processor Management
• Device Management
• File Management
• Security
• Control over system performance
• Job accounting
• Error detecting aids
• Coordination between other software and users

What does an Operating system do?

• Process Management
• Process Synchronization
• Memory Management
• CPU Scheduling
• File Management
• Security

Memory Management

• Memory management refers to management of Primary Memory
or Main Memory. Main memory is a large array of words or bytes
where each word or byte has its own address.

• Main memory provides a fast storage that can be accessed directly
by the CPU. For a program to be executed, it must in the main
memory. An Operating System does the following activities for
memory management −

• Keeps tracks of primary memory, i.e., what part of it are in use by
whom, what part are not in use.

• In multiprogramming, the OS decides which process will get
memory when and how much.

• Allocates the memory when a process requests it to do so.
• De-allocates the memory when a process no longer needs it or has

been terminated.

Processor Management

• In multiprogramming environment, the OS decides
which process gets the processor when and for how
much time. This function is called process scheduling.
An Operating System does the following activities for
processor management −

• Keeps tracks of processor and status of process. The
program responsible for this task is known as traffic
controller.

• Allocates the processor (CPU) to a process.
• De-allocates processor when a process is no longer

required.

Device Management

• A n O p e r a t i n g S y s t e m m a n a g e s d e v i c e
communication via their respective drivers. It
d o e s t h e fo l l o w i n g a c t i v i t i e s fo r d e v i c e
management −

• Keeps tracks of all devices. Program responsible
for this task is known as the I/O controller.

• Decides which process gets the device when and
for how much time.

• Allocates the device in the efficient way.
• De-allocates devices.

File Management

• A file system is normally organized into directories for
easy navigation and usage. These directories may
contain files and other directions.

• An Operating System does the following activities for
file management −

• Keeps track of information, location, uses, status etc.
The collective facilities are often known as file system.

• Decides who gets the resources.
• Allocates the resources.
• De-allocates the resources.

• Following are some of the important activities that an Operating
System performs −

• Security − By means of password and similar other techniques, it
prevents unauthorized access to programs and data.

• Control over system performance − Recording delays between
request for a service and response from the system.

• Job accounting − Keeping track of time and resources used by
various jobs and users.

• Error detecting aids − Production of dumps, traces, error messages,
and other debugging and error detecting aids.

• Coordination between other softwares and users − Coordination
and assignment of compilers, interpreters, assemblers and other
software to the various users of the computer systems.

Types of Operating Systems

• Simple Batch System
• Multiprogramming Batch System
• Multiprocessor System
• Time-Sharing Operating System
• Distributed Operating System
• Clustered System
• Realtime Operating System

Batch operating system

• The users of a batch operating system do not interact with
the computer directly. Each user prepares his job on an off-
line device like punch cards and submits it to the computer
operator. To speed up processing, jobs with similar needs
are batched together and run as a group. The programmers
leave their programs with the operator and the operator
then sorts the programs with similar requirements into
batches.

• The problems with Batch Systems are as follows −
• Lack of interaction between the user and the job.
• CPU is often idle, because the speed of the mechanical I/O

devices is slower than the CPU.
• Difficult to provide the desired priority.

Disadvantages of
Batch OS
1. Starvation
Batch processing
suffers from
starvation.
For Example:

• There are five jobs J1, J2, J3, J4, and J5,
present in the batch. If the execution time
of J1 is very high, then the other four jobs
will never be executed, or they will have to
wait for a very long time. Hence the other
processes get starved.

• 2. Not Interactive
• Batch Processing is not suitable for jobs

that are dependent on the user's input. If a
job requires the input of two numbers from
the console, then it will never get it in the
batch processing scenario since the user is
not present at the time of execution.

Multiprogramming Operating System

• Multiprogramming is an extension to
batch processing where the CPU is
always kept busy. Each process needs
two types of system time: CPU time
and IO time.

• In a multiprogramming environment,
when a process does its I/O, The
CPU can start the execution of other
p r o c e s s e s . T h e r e f o r e ,
multiprogramming improves the
efficiency of the system.

• Advantages of Multiprogramming OS
• Throughout the system, it increased as

the CPU always had one program to
execute.

• Response time can also be reduced.
• Disadvantages of Multiprogramming

OS
• Multiprogramming systems provide an

environment in which various systems
resources are used efficiently, but they
do not provide any user interaction
with the computer system.

multitasking operating system
The multitasking operating system is a logical
extension of a multiprogramming system that
enables multiple programs simultaneously. It
a l lows a user to per form more than one
computer task at the same time..
Advantages of Multitasking operating system
Thi s operat ing sys tem i s more su i ted to
supporting multiple users simultaneously.
The multitasking operating systems have well-
defined memory management.
Disadvantages of Multitasking operating system
The multiple processors are busier at the same
time to complete any task in a multitasking
environment, so the CPU generates more heat.

multitasking operating system

• The multitasking operating system is a logical
extension of a multiprogramming system that
enables multiple programs simultaneously. It
allows a user to perform more than one
computer task at the same time.

Multiprocessor Systems

• I n M u l t i p r o c e s s i n g , P a r a l l e l
computing is achieved. There are
more than one processors present in
the system which can execute more
than one process at the same time.
This will increase the throughput of
the system.

• Advantages of Multiprocessing operating
system:

• I n c r e a s e d r e l i a b i l i t y : D u e t o t h e
multiprocessing system, processing tasks
can be distributed among several processors.
This increases reliability as if one processor
fails, the task can be given to another
processor for completion.

• Increased throughout: As several processors
increase, more work can be done in less.

• Disadvantages of Multiprocessing operating
System

• Multiprocessing operating system is more
complex and sophisticated as it takes care
of multiple CPUs simultaneously.

• Time-Sharing Operating System
• In the Time Sharing operating system,

computer resources are allocated in a
time-dependent fashion to several
programs simultaneously. Thus it helps
to provide a large number of user's
direct access to the main computer. It
i s a l o g i c a l e x t e n s i o n o f
multiprogramming. In time-sharing,
the CPU is switched among multiple
programs given by different users on a
scheduled basis.

Network Operating System

• An Operating system, which includes software
and associated protocols to communicate with other
computers via a network conveniently and cost-
effectively, is called Network Operating System.

• Advantages of Network Operating System
• In this type of operating system, network traffic

reduces due to the division between clients and the
server.

• This type of system is less expensive to set up and
maintain.

• Disadvantages of Network Operating System
• In this type of operating system, the failure of any

node in a system affects the whole system.
• Security and performance are important issues. So

trained network administrators are required for
network administration

Real Time Operating System

• In Real-Time Systems, each job carries a certain
deadline within which the job is supposed to be
completed, otherwise, the huge loss will be there, or
even if the result is produced, it will be completely
useless.

• The Application of a Real-Time system
exists in the case of military applications, if
you want to drop a missile, then the missile
is supposed to be dropped with a certain
precision.

• Examples of the real-time operating systems: Airline
traffic control systems, Command Control Systems,
Airlines reservation system, Robot etc

Advantages of Real-time operating
system:
Easy to layout, develop and execute real-
time applications under the real-time
operating system.
In a Real-time operating system, the
maximum utilization of devices and
systems.
Disadvantages of Real-time operating
system:
Real-time operating systems are very
costly to develop.
Real-time operating systems are very
complex and can consume critical CPU
cycles.

Distributed Operating System

• The Distributed Operating system is not
installed on a single machine, it is divided
into parts, and these parts are loaded on
d i f f e r e n t ma ch i n e s . A p a r t o f t h e
distributed Operating system is installed on
each machine to make their communication
possible. Distributed Operating systems are
m u c h m o r e c o m p l e x , l a r g e , a n d
sophisticated than Network operating
systems because they also have to take care
of varying networking protocols.

•

Advantages of Distributed Operating
System
The distributed operating system
provides sharing of resources.
This type of system is fault-tolerant.
D i s a d v a n t a g e s o f D i s t r i b u t e d
Operating System
Protocol overhead can dominate
computation cost.

Operating System as Resource
Manager

• Now-a-days all modern computers consist of processors, memories, timers,
network interfaces, printers, and so many other devices.

• The operating system provides for an orderly and controlled allocation of
the processors, memories, and I/O devices among the various programs in
the bottom-up view.

• Operating system allows multiple programs to be in memory and run at
the same time.

• Resource management includes multiplexing or sharing resources in two
different ways: in time and in space.

• In time multiplexed, different programs take a chance of using CPU. First
one tries to use the resource, then the next one that is ready in the queue
and so on. For example: Sharing the printer one after another.

• In space multiplexing, Instead of the customers taking a chance, each one
gets part of the resource. For example − Main memory is divided into
several running programs, so each one can be resident at the same time.

• With the help of system call, we can access
the services of os.

system call

• What is System Call in Operating System?
• A system call is a mechanism that provides the

interface between a process and the operating
system. It is a programmatic method in which a
computer program requests a service from the
kernel of the OS.

• System call offers the services of the operating
system to the user programs via API (Application
Programming Interface). System calls are the only
entry points for the kernel system.

System call in OS

As you can see in the above-given System Call example diagram.
Step 1) The processes executed in the user mode till the time a system call
interrupts it.
Step 2) After that, the system call is executed in the kernel-mode on a priority
basis.
Step 3) Once system call execution is over, control returns to the user mode.,
Step 4) The execution of user processes resumed in Kernel mode.

• Why do you need System Calls in OS?
• Following are situations which need system calls in OS:
• Reading and writing from files demand system calls.
• If a file system wants to create or delete files, system calls are

required.
• System calls are used for the creation and management of new

processes.
• Network connections need system calls for sending and receiving

packets.
• Access to hardware devices like scanner, printer, need a system call.
•

Types of System calls
Here are the five types of System Calls in OS:
Process Control
File Management
Device Management
Information Maintenance
Communications

• Process Control
• This system calls perform the task of process

creation, process termination, etc.
• Functions:
• End and Abort
• Load and Execute
• Create Process and Terminate Process
• Wait and Signal Event
• Allocate and free memory

• File Management
• File management system calls handle file

manipulation jobs like creating a file, reading, and
writing, etc.

• Functions:
• Create a file
• Delete file
• Open and close file
• Read, write, and reposition
• Get and set file attributes

• Device Management
• Device management does the job of device

manipulation like reading from device buffers,
writing into device buffers, etc.

• Functions:
• Request and release device
• Logically attach/ detach devices
• Get and Set device attributes

• Information Maintenance
• It handles information and its transfer

between the OS and the user program.
• Functions:
• Get or set time and date
• Get process and device attributes

• Communication:
• These types of system calls are specially used

for interprocess communications.
• Functions:
• Create, delete communications connections
• Send, receive message
• Help OS to transfer status information
• Attach or detach remote devices

Important System Calls Used in OS

• wait()
• In some systems, a process needs to wait for

another process to complete its execution
• fork()
• Processes use this system call to create

processes that are a copy of themselves. With
the help of this system Call parent process
creates a child process,

• kill():
• The kill() system call is used by OS to send a

termination signal to a process that urges the process
to exit.

• exec()
• This system call runs when an executable file in the

context of an already running process that replaces the
older executable file.

• exit():
• The exit() system call is used to terminate program

execution

What is Process?

• A process is an instance of a program that is being
executed. When we run a program, it does not execute
directly. It takes some time to follow all the steps required
to execute the program, and following these execution
steps is known as a process.

• A process can create other processes to perform multiple
tasks at a time; the created processes are known as clone
or child process , and the main process is known as
the parent process. Each process contains its own memory
space and does not share it with the other processes. It is
known as the active entity.

•

• A process in OS can remain in any of the following
states:

• NEW: A new process is being created.
• READY: A process is ready and waiting to be

allocated to a processor.
• RUNNING: The program is being executed.
• WAITING: Waiting for some event to happen or

occur.
• TERMINATED: Execution finished.

• Features of Process
• Each time we create a process, we need to make

a separate system call for each process to the OS.
The fork() function creates the process.

• Each process exists within its own address or
memory space.

• Each process is independent and treated as an
isolated process by the OS.

• P r o c e s s e s n e e d I P C (I n t e r - p r o c e s s
Communication) in order to communicate with
each other.

• What is Thread?
• A thread is the subset of a process and is also

known as the lightweight process. A process can
have more than one thread, and these threads
are managed independently by the scheduler. All
the threads within one process are interrelated to
each other. Threads have some common
information, such as data segment, code
segment, files, etc., that is shared to their peer
threads. But contains its own registers, stack, and
counter.

Types of Threads
• There are two types of threads, which are:
• 1. User Level Thread
• As the name suggests, the user-level threads

are only managed by users, and the kernel
does not have its information.

• These are faster, easy to create and manage.

• 2. Kernel-Level Thread
• The kernel-level threads are handled by the

Operating system and managed by its kernel.
These threads are slower than user-level
threads because context information is
managed by the kernel . To create and
implement a kernel-level thread, we need to
make a system call.

• Features of Thread
• Threads share data, memory, resources, files,

etc., with their peer threads within a process.
• One system call is capable of creating more

than one thread.
• Each thread has its own stack and register.
• Threads can directly communicate with each

other as they share the same address space.

Process Vs Thread

Multithreading Model:

Multithreading allows the application
to divide its task into individual
threads. In multi-threads, the same
process or task can be done by the
number of threads, or we can say that
there is more than one thread to
perform the task in multithreading.
With the use of mult ithreading,
multitasking can be achieved.

• The ma in d rawba ck o f s i n g l e
threading systems is that only one
task can be performed at a time, so
to overcome the drawback of this
s i n g l e t h r e a d i n g , t h e r e i s
multithreading that allows multiple
tasks to be performed.

• In the above example, c l ient1,
client2, and client3 are accessing the
web server without any waiting. In
multithreading, several tasks can run
at the same time.

BIOS
• The BIOS (Basic Input/Output System) is firmware stored on a computer's

motherboard that initializes hardware during the boot process and provides
runtime services for operating systems and programs. Here’s a breakdown of its
key functions and relevance to operating systems (OS):

• Key Functions of BIOS:
1. POST (Power-On Self-Test):

1. Checks hardware components like RAM, CPU, and storage devices to ensure they are
functioning properly before booting the OS.

2. Boot Loader:
1. Locates and loads the operating system into memory. It typically looks for bootable devices

(like HDD, SSD, USB) according to the configured boot order.
3. Hardware Initialization:

1. Configures and initializes hardware components, such as keyboard, mouse, and storage
devices, allowing the OS to interact with them.

4. Runtime Services:
1. Provides low-level hardware control and services that operating systems can call during

runtime, especially in legacy systems.
5. CMOS Setup:

1. Stores BIOS settings and system configuration data in CMOS memory, allowing users to
customize hardware settings (like boot sequence, CPU settings, etc.).

Bootstrap Loader
• A Bootstrap Loader (often simply called a "boot loader") is a crucial piece of

software that initializes the operating system during the startup process of a
computer. Here’s a breakdown of its functions and importance:

• Functions of a Bootstrap Loader:
1. Initial Hardware Setup:

1. After the BIOS or UEFI firmware performs its Power-On Self-Test (POST) and
initializes hardware, the boot loader takes over to start the operating system.

2. Loading the OS:
1. The boot loader locates the operating system kernel (the core component of the

OS) on the designated storage device (like a hard drive or SSD) and loads it
into memory.

3. Execution Transfer:
1. Once the kernel is loaded into memory, the boot loader transfers control to the

operating system, allowing it to begin its own initialization processes.
4. Multiple OS Support:

1. Many boot loaders can handle multiple operating systems installed on the same
machine, allowing users to select which OS to boot from at startup.

