

5.1 BASICS OF MEMORY MANAGEMENT

⚫ The main purpose of a computer system is to execute programs. These

programs, along with their data, must at least be partially present in

the main memory during execution.

⚫ To greatly enhance the utilisation of the CPU and its response time to

users, many programs exist in the main memory. Thus various memory

management methods are present to manage memory in different

situations.

⚫ Memory Management provides the functionality of allocating and de-

allocating the main memory to the processes. It helps the operating

system to keep a record of all the memory locations which are allocated

to any process or are freely available.

Memory hierarchy:

Different places at which data is stored in a computer system in a

hierarchical manner.

1) Registers:

⚫ A CPU register is one of a small number of data storage areas found

within the computer processor.

⚫ Registers are a type of computer memory that is used to execute programs

quickly and efficiently by storing data that is often used. The sole function

of a register is to allow for quick retrieval of data for processing.

Fig. 5.1 Different Types of Register

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

153

⚫ The CPU has direct access to registers; it can retrieve data from registers

in a single clock cycle.

2) Cache memory:

⚫ Cache memory is a volatile computer memory that saves frequently used

applications and enables high-speed data access to a CPU.

⚫ Cache memory is more expensive than main memory or disc memory,

but it is less expensive than registers. It serves as a buffer between the

processor and the main memory.

⚫ Cache memory is used to lower the average time to access data from

the main memory by storing copies of data from frequently accessed

main memory locations. It is smaller and faster than the main memory.

Fig. 5.2 Levels of memory hierarchy

 154

3) Main memory:

It’s also known as read–write memory, primary memory, or main

memory.

⚫ Because the data is lost when the power is switched off, it is a volatile

memory.

⚫ Random Access Memory is another name for it (RAM). It is the portion of

the computer that contains the operating system, software applications,

and other data for the processor. The term “random access” refers to

the fact that the CPU can go to any portion of the main memory without

having to proceed in sequence.

i) DRAM:

The most prevalent type of main memory in a computer is DRAM. In

PCs, it is a common memory source. DRAM is continually recovering

whatever data is currently stored in memory. It sends millions of pulses

per second to the memory cells to refresh the data.

ii) SRAM:

It’s a popular choice for embedded devices. SRAM data does not need

to be refreshed on a regular basis. When the power is turned off, the

information in this RAM stays as a static image until it is overwritten or

destroyed. When not in use, it is less dense and more energy efficient.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

155

4) Secondary memory:

⚫ It is non–volatile and persistent computer memory that cannot be accessed directly by

a computer.

⚫ Primary memory has limited storage capacity and is volatile; this limitation is overcome

by secondary memory.

⚫ It is slower in data accessing. Typically main memory is at least six times faster than

the secondary memory.

Address space:

Fig. 5.3 Memory Hierarchy Design

⚫ An address space is the collection of all the addresses that are allocated to the program

for its storage and execution. The memory locations in the address space can be

accessed by the programs or the processes.

Classification of address space:

⚫ Address space can be logical address space for storing the program or can be physical

address space for executing the program.

C
h

a
p

te
r

5

M
e

m
o

ry

M

a
n

a
g

e
m

e
n

t

156

1) Logical address space:

⚫ CPU generates logical addresses.

⚫ It is used by the CPU to access the physical memory location as a

reference.

⚫ The set of all logical addresses generated from a program’s point of

view is known as the logical address space.

2) Physical address space:

⚫ In memory, a physical address represents the physical location of

requested data. The user never interacts with the physical address

directly but can access it via its logical address.

⚫ The logical address is generated by the user software.

⚫ The hardware mechanism that converts a logical address to its physical

address is the Memory-Management Unit (MMU).

⚫ MMU must first map the logical address to the physical address.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

157

Fig. 5.4 Translation of Logical Address into Physical Address

Linker and loader:

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

158

Linking and loading:

1) Linking:

A program has multiple modules in it, which we compile together in order

to generate a single executable code that can be loaded into the main

memory for its execution. There are some codes which are reused, again

and again; they are known as library functions. All different object files and

library functions are combined into a single executable code; this process

is known as linking. It can be done in two ways:

i) Static linking:

⚫ Static linking is done during the compile time. In static linking, all

the object modules and the library functions are combined in an

executable file.

⚫ Static linking is performed by special programs called linkers.

⚫ Linker appends, all the library functions needed to execute the

object file, which is generated by the compiler/assembler.

Advantage:

Programs in which all the modules and library functions are linked

statically are faster than the programs in which all the modules and

library functions are linked during run time.

Disadvantage:

⚫ Executable file becomes very large, so loading time becomes more.

⚫ If any library is replaced by a new version, all the programs must be

re-compiled and re-linked to the new library version.

ii) Dynamic linking:

⚫ Dynamic linking is a mechanism for linking a library into memory at

runtime, retrieving variable and function addresses, executing the

functions, and unloading the program from memory.

⚫ It’s frequently used to create software plugins. This method is used

by Apache Web Server to load a dynamic shared object (*.dso) files

at runtime.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

159

Advantage:

⚫ If any library is replaced by a new version, all the programs that

reference the library will automatically use the new version without

the need for recompilation.

Disadvantage:

⚫ Program startup time is slower because during the execution, it

checks all linked files if they are in main memory or not.

2) Loading:

⚫ Initially executable code of every program is present in the secondary

storage. But for the execution of the executable file, it must be present in

the main memory.

⚫ Bringing the code from secondary memory and storing it in the main

memory is known as loading.

⚫ It is done by the loader.

⚫ Loader is a special program that takes the executable code present in

the secondary memory, which is generated by the linker, and loads it into

main memory. It can be done in two ways:

i) Static loading:

⚫ Static loading refers to loading the entire executable file in the main

memory before its execution starts.

Advantage:

⚫ Program execution will be fast.

Disadvantage:

⚫ Inefficient utilisation of main memory because even if the entire

code need not be executed at once, loader still loads the whole code

in main memory, thus occupying the main memory unnecessarily.

⚫ Also, the size of the process which can be loaded into the main memory

is limited by the size of the main memory. Thus, any process whose

size is more than the size of the main memory cannot be executed.

ii) Dynamic loading:

⚫ A routine in dynamic loading is not loaded until it is called.

⚫ The main program is loaded into the memory and gets executed;

other routines are kept on the disk in a relocatable format.

⚫ When a routine needs to call another routine, the calling routine

first checks whether the other routine has been loaded.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

160

⚫ If it is not, the relocatable linking loader is called to load the desired

routine into the memory.

⚫ This type of loading is useful when the large number of codes are

needed to handle infrequently occurring cases, such as error routines.

Advantage:

⚫ Unused routine is never loaded into the main memory; thus main

memory can be efficiently used.

Disadvantage:

⚫ Program execution will be slower.

Address binding:

⚫ Address Binding is the process of connecting application program

instructions and data into physical memory locations.

⚫ It refers to the process of converting one address space to another.

⚫ The physical address relates to the location in the memory unit, but

the logical address is generated by the CPU during execution.

1) Compile time address binding:

⚫ If you know where the process will live in memory during compile time,

an absolute address is generated, i.e. the physical address is given to

the program’s executable fire during compilation.

⚫ Address binding is the responsibility of the compiler.

⚫ It will be completed before the application is loaded into memory.

⚫ To achieve compile–time address binding, the compiler must

communicate with an OS memory management.

C
h

a
p

te
r

5

M
e

m
o

ry

M

a
n

a
g

e
m

e
n

t

161

2) Load time address binding:

⚫ If the location of the process is unknown at compile-time, a relocatable

address will be produced. The relocatable address is converted to an

absolute address by the loader.

⚫ The loader generates an absolute address by adding the process’s base

address in the main memory to all logical addresses.

⚫ It will be completed after the application has been loaded into memory.

⚫ The OS memory manager, or loader, will handle this form of address

binding.

Note:

If the process’s base address changes during load time, address binding,

the process must be reloaded.

3) Execution time/dynamic address binding:

⚫ The CPU executes instructions of a process which are stored in memory.

⚫ If a process can be relocated from one memory location to another

during execution, this is employed.

⚫ Even after the program has been loaded into memory, the address

binding will be delayed. Until the program is finished, the application

program will keep modifying the memory locations.

⚫ The CPU does this type of address binding during program execution.

⚫ It’s compatible with dynamic absolute addresses.

C
h

a
p

te
r

5

M
e

m
o

ry

M

a
n

a
g

e
m

e
n

t

162

Fig. 5.5 Multistep Processing of a User Program

C
h

a
p

te
r

5

M
e

m
o

ry

M

a
n

a
g

e
m

e
n

t

163

Swapping:

⚫ A process must be in memory to be executed however, it can be temporarily

moved to a backing store/secondary memory/nonvolatile storage, and then

returned to main memory for further execution.

⚫ Swapping allows the entire physical address space of all processes to

surpass the system’s actual physical (RAM) memory.

⚫ Swapping is another technique for increasing the degree of multiprogramming

in a system.

Fig. 5.6 Swapping of Two Processes Using a Disk as a Backing Store

C
h

a
p

te
r

5

M
e

m
o

ry

M

a
n

a
g

e
m

e
n

t

164

The concept of swapping has divided into two parts:

Objectives of memory management system:

1) Relocation:

⚫ The ability to shift processes around in memory without having any

impact on their execution.

⚫ Memory is managed by the operating system rather than the programmer,

and processes can be moved into the memory.

⚫ Memory Management (MM) is responsible for translating logical addresses

to physical addresses.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

166

Static relocation:

Before or during the loading of the process into memory, the program must

be relocated.

Relocator must be executed again if the program is not loaded into the

same address space in memory.

Dynamic relocation:

In memory, processes can freely move about. At runtime, a virtual–to–

physical address space mapping is performed.

2) Protection:

⚫ To prevent data and instructions from being over–written.

⚫ For data and instructions security purposes, OS is protected from user

processes and on the same note, user processes are protected from

other user processes.

⚫ The reason behind this is many of the languages compute address of

memory during runtime.

3) Sharing:

⚫ Different processes may need to run the same operation or even access

the same data at times.

⚫ Different processes must access the same memory address when they

signal or wait for the same semaphore.

Memory allocation:

Contiguous memory allocation:

The RAM is frequently partitioned into two parts: one for the operating the

system, and the other for user processes.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

167

Fig. 5.7 Contiguous Memory Allocation

⚫ Unused memory space is allocated to the same location in contiguous

memory.

⚫ Processes are faster in execution.

⚫ Processes are easier for the OS to control.

⚫ Address translation is minimum while executing a process.

⚫ It suffers from both Internal and external fragmentation.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

168

Grey Matter Alert!

Internal fragmentation:

When memory blocks associated with a process have unused space

within the block, it is called internal fragmentation.

Fig. 5.8 Internal Fragmentation

External fragmentation:

When there is enough space within the memory to satisfy a method’s

memory request, but the process’ memory request cannot be

completed because the memory is spread in a non-contiguous manner,

several approaches, such as compaction, are applied to solve external

fragmentation.

Fig. 5.9 External Fragmentation

In the above figure P1, P2 and P3 have been allocated in RAM, leaving

holes of 20KB and 10KB which are not contiguous. When a process P

of 30KB request for space in memory; it cannot be allocated because

available space is not contiguous.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

169

Fixed partitioning:

⚫ This is the simplest technique used to store more than one process at

a time in the main memory.

⚫ In this partitioning, a number of non-overlapping partitions in physical

Advantages:

Fig. 5.10 Fixed Size Partition

1) Implementation is easy

2) Fixed partitioning processing necessitates less CPU resources, and

minimal OS overhead.

3) Fixed partitioning does not suffer from external fragmentation.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

170

Disadvantages:

1) Internal Fragmentation is suffered in the fixed partition.

2) Because partitions are made before execution, it limits the degree of

multiprogramming. For example, if there are ‘x’ partitions in RAM and ‘y’

is the number of processes, then the ‘y’ = ‘x’ requirement must be met.

In fixed partitioning, processes that are larger than partitions (in terms

of quantity) are invalid.

3) It restricts the size of the process since it cannot support processes

larger than the partition size.

4) Spanning a process into two partitions is not possible.

Variable partitioning:

Initially, the whole user space of memory is free, and partitions are created

as needed after the arrival of processes.

⚫ The total number of partitions is not fixed and is determined by the

number of incoming processes and the amount of RAM available.

⚫ The operating system takes up the first partition, and the remaining

space is dynamically partitioned.

Advantages:

Fig. 5.11 Variable Partitioning

1) There is no internal fragmentation because the main memory space is

allocated based on the needs of the process. There will be no unused

partition space remaining.

2) There are no restrictions on the amount of multiprogramming that can

be done.

3) There is no limit on the size of the process requesting RAM.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

171

Disadvantages:

1) Implementation is complex as the allocation of memory is at runtime.

2) It suffers from external fragmentation.

In the above figure P
1
, P

2
, P

3
and P

4
has been allocated in RAM. Process P

1
and

Process P3 have been executed and freed up space of 3MB and 1MB, which

are not contiguous. When process P5 of 4MB requests for space in memory,

but it cannot be allocated because available space is not contiguous.

Allocation policies:

When there are multiple partitions available to accommodate a process, a

partition must be chosen using one of the partition allocation policies.

1) First fit:

It assigns the first available free partition (hole) that is large enough. It

begins scanning the memory from the beginning and selects the first large

enough block available. Among the several allocation policies, it is the

quickest.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

172

2) Best fit:

⚫ It allocates the smallest sufficient free block that can hold the process.

⚫ It gives the worst performance overall in terms of allocation time, as

every time the smallest hole is found by searching in the whole memory.

⚫ It will give least internal fragmentation.

⚫ Compaction is done here more often.

⚫ Best fit is an efficient allocation policy for fixed partitioning.

3) Worst fit:

⚫ It allocates the largest block among all available blocks that is big

enough.

⚫ It is the opposite of best fit allocation.

⚫ Worst fit is efficient allocation policy for variable partitioning as it will

create holes of larger size so that other small processes can be placed

in those memory holes. .

4) Next fit:

Next fit will start searching from last allocated partition; rest is the same

as that of the first fit.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

Rack Your Brain

Compaction:

173

SOLVED EXAMPLES

Sol: Range: 101–101

Case 1:

Case 2:

Case 3:

Non–contiguous allocation:

In contrast to contiguous allocation, it is a mechanism that allocates memory space in

different locations to the process according to its needs.

All of the available vacant space is dispersed across.

This memory allocation strategy helps to prevent memory waste, which eventually leads

to internal and external fragmentation.

M

e
m

o
ry

M

a
n

a
g

e
m

e
n

t

Ǫ2

