5 Memory Management

5.1 BASICS OF MEMORY MANAGEMENT

0 The main purpose of a computer system is to execute programs. These
programs, along with their data, must at least be partially present in
the main memory during execution.

) To greatly enhance the utilisation of the CPU and its response time to
users, many programs exist in the main memory. Thus various memory
management methods are present to manage memory in different
situations.

0 Memory Management provides the functionality of allocating and de-
allocating the main memory to the processes. It helps the operating
system to keep a record of all the memory locations which are allocated
to any process or are freely available.

Memory hierarchy:

Storage
. Cache Main Secondary
Registers
memory memory memory

Different places at which data is stored in a computer system in a

hierarchical manner.

1) Registers:

¢ A CPU register is one of a small number of data storage areas found
within the computer processor.

¢ Registers are atype of computer memory that is used to execute programs
quickly and efficiently by storing data that is often used. The sole function
of a register is to allow for quick retrieval of data for processing.

e ™
cPU
MAR PC IR
S
MDR R ALU
RI
R,
R
’ cu
R

S~ "y

Fig. 5.1 Different Types of Register

(s3)

Memory Management

Classification of
CPU Register

—— Accumulator

—— Memory address register (MAR)

—— Memory data register (MDR)

—— General purpose register

—— Program counter

—— Instruction register (IR)

The CPU has direct access to registers; it can retrieve data from registers
in a single clock cycle.

Cache memory:

Cache memory is a volatile computer memory that saves frequently used
applications and enables high-speed data access to a CPU.

Cache memory is more expensive than main memory or disc memory,
but it is less expensive than registers. It serves as a buffer between the
processor and the main memory.

Cache memory is used to lower the average time to access data from
the main memory by storing copies of data from frequently accessed
main memory locations. It is smaller and faster than the main memory.

——» Cache —— Primary — Secondary
CPU 4— Memory <— Mmemory memory

»
L

4+—

r' 3

Fig. 5.2 Levels of memory hierarchy

Data transfer is in words between CPU and cache memory and in block
between cache and main memory.

3) Main memory:
It's also known as read-write memory, primary memory, or main
memory.

¢ Because the data is lost when the power is switched off, it is a volatile
memory.

¢ Random Access Memory is another name for it (RAM). It is the portion of
the computer that contains the operating system, software applications,
and other data for the processor. The term “random access” refers to
the fact that the CPU can go to any portion of the main memory without
having to proceed in sequence.

' |

Dynamic random Static random
access memory (DRAM) access memory (SRAM)

Data transfer between main memory and secondary memory is done by
the operating system.

i) DRAM:
The most prevalent type of main memory in a computer is DRAM. In
PCs, it is a common memory source. DRAM is continually recovering
whatever data is currently stored in memory. It sends millions of pulses
per second to the memory cells to refresh the data.

ii) SRAM:
It's a popular choice for embedded devices. SRAM data does not need
to be refreshed on a regular basis. When the power is turned off, the
information in this RAM stays as a static image until it is overwritten or
destroyed. When not in use, it is less dense and more energy efficient.

155

Memory Management

Chapter 5

Memory Management

Increase in cost per bit

Secondary memory:

It is non-volatile and persistent computer memory that cannot be accessed directly by
a computer.

Primary memory has limited storage capacity and is volatile; this limitation is overcome
by secondary memory.

It is slower in data accessing. Typically main memory is at least six times faster than
the secondary memory.

CPU
registers

Level O

Cache memory
(SRAMS)

Level 1

Main memory Level 2
(DRAMS)

Magnetic disk
(Disk Storage)

Level 3

\ Level 4

Magnetic tape \

Increase in Capacity & Access Time

Optical disk

Fig. 5.3 Memory Hierarchy Design

Address space:

An address space is the collection of all the addresses that are allocated to the program
for its storage and execution. The memory locations in the address space can be
accessed by the programs or the processes.

Classification of address space:

Address space can be logical address space for storing the program or can be physical
address space for executing the program.

Address
Space

! !

Logical address space Physical address space

Logical address space:

CPU generates logical addresses.

It is used by the CPU to access the physical memory location as a
reference.

The set of all logical addresses generated from a program’s point of
view is known as the logical address space.

Physical address space:

In memory, a physical address represents the physical location of
requested data. The user never interacts with the physical address
directly but can access it via its logical address.

The logical address is generated by the user software.

The hardware mechanism that converts a logical address to its physical
address is the Memory-Management Unit (MMU).

MMU must first map the logical address to the physical address.

Logical Address — Generated by CPU

I— LAS: The set of all

logical addresses.

User can view the
logical address

Logical address can
be used by the user
to access the
physical address

Memory Management

Memory Management

Physical Address — location in a RAM

|— PAS is a set of all

physical addresses

Users can never view
physical address

Computed by MMU

Physical address can
be accessed
indirectly

T
Relocation

) register)
logical physical

CPU address + address Memory

420 14220
13800

MMU

—

Fig. 5.4 Translation of Logical Address into Physical Address

Linker and loader:

Definition

The utility programs Linker and Loader play an important part in the
execution of a program. Before being executed, a program’s source
code passes via the compiler, assembler, linker, and loader in that
order.

Linking and loading:

. Object Executable
Compiler Code Linker files Loader Memory

Source Additional
Code files
1) Linking:

A program has multiple modules in it, which we compile together in order
to generate a single executable code that can be loaded into the main
memory for its execution. There are some codes which are reused, again
and again; they are known as library functions. All different object files and
library functions are combined into a single executable code; this process
is known as linking. It can be done in two ways:

i) Static linking:

¢ Static linking is done during the compile time. In static linking, all
the object modules and the library functions are combined in an
executable file.
Static linking is performed by special programs called linkers.
Linker appends, all the library functions needed to execute the
object file, which is generated by the compiler/assembler.

Advantage:

Programs in which all the modules and library functions are linked
statically are faster than the programs in which all the modules and
library functions are linked during run time.

Disadvantage:
¢ Executable file becomes very large, so loading time becomes more.

¢ If any library is replaced by a new version, all the programs must be
re-compiled and re-linked to the new library version.

ii) Dynamic linking:

¢ Dynamic linking is a mechanism for linking a library into memory at
runtime, retrieving variable and function addresses, executing the
functions, and unloading the program from memory.

0 It's frequently used to create software plugins. This method is used
by Apache Web Server to load a dynamic shared object (*.dso) files
at runtime.

Memory Management

Memory Management

Advantage:

¢ If any library is replaced by a new version, all the programs that
reference the library will automatically use the new version without
the need for recompilation.

Disadvantage:

¢ Program startup time is slower because during the execution, it
checks all linked files if they are in main memory or not.

2) Loading:

Initially executable code of every program is present in the secondary
storage. But for the execution of the executable file, it must be present in
the main memory.

Bringing the code from secondary memory and storing it in the main
memory is known as loading.

It is done by the loader.

Loader is a special program that takes the executable code present in
the secondary memory, which is generated by the linker, and loads it into
main memory. It can be done in two ways:

i) Static loading:
0 Static loading refers to loading the entire executable file in the main
memory before its execution starts.

Advantage:
¢ Program execution will be fast.

Disadvantage:

0 Inefficient utilisation of main memory because even if the entire
code need not be executed at once, loader still loads the whole code
in main memory, thus occupying the main memory unnecessarily.

0 Also, the size ofthe process which can be loaded into the main memory
is limited by the size of the main memory. Thus, any process whose
size is more than the size of the main memory cannot be executed.

ii) Dynamic loading:

¢ Avroutine in dynamic loading is not loaded until it is called.

¢ The main program is loaded into the memory and gets executed;
other routines are kept on the disk in a relocatable format.

¢ When a routine needs to call another routine, the calling routine
first checks whether the other routine has been loaded.

0 Ifitis not, the relocatable linking loader is called to load the desired
routine into the memory.

¢ This type of loading is useful when the large number of codes are
needed to handle infrequently occurring cases, such as error routines.

Advantage:
¢ Unused routine is never loaded into the main memory; thus main
memory can be efficiently used.

Disadvantage:
¢ Program execution will be slower.

Address binding:

¢ Address Binding is the process of connecting application program
instructions and data into physical memory locations.
It refers to the process of converting one address space to another.
The physical address relates to the location in the memory unit, but
the logical address is generated by the CPU during execution.

Address Binding
Compile time Load time Execution time
address binding address binding address binding

Compile time address binding:

If you know where the process will live in memory during compile time,
an absolute address is generated, i.e. the physical address is given to
the program’s executable fire during compilation.

Address binding is the responsibility of the compiler.

It will be completed before the application is loaded into memory.

To achieve compile-time address binding, the compiler must
communicate with an OS memory management.

Chapter 5

Memory Management

Chapter 5

Memory Management

Load time address binding:

If the location of the process is unknown at compile-time, a relocatable
address will be produced. The relocatable address is converted to an
absolute address by the loader.

The loader generates an absolute address by adding the process’s base
address in the main memory to all logical addresses.

It will be completed after the application has been loaded into memory.
The OS memory manager, or loader, will handle this form of address
binding.

If the process’s base address changes during load time, address binding,
the process must be reloaded.

3)

Execution time/dynamic address binding:

The CPU executes instructions of a process which are stored in memory.
If a process can be relocated from one memory location to another
during execution, this is employed.

Even after the program has been loaded into memory, the address
binding will be delayed. Until the program is finished, the application
program will keep modifying the memory locations.

The CPU does this type of address binding during program execution.
It's compatible with dynamic absolute addresses.

Hardware support for address mappings, such as base and limit registers
are required for dynamic address binding.

source
program

compiler or compile
assembler time

object
module
other
object
modules
linkage
editor
load load
module time
system
library
loader

dynamically

loaded
system
library]
iN—-rmemory execution
dynamic binary time
linking memaory (run time)

image

Fig. 5.5 Multistep Processing of a User Program

163

Chapter 5

Memory Management

Chapter 5

Memory Management

Swapping:

¢ A process must be in memory to be executed however, it can be temporarily
moved to a backing store/secondary memory/nonvolatile storage, and then
returned to main memory for further execution.

¢ Swapping allows the entire physical address space of all processes to
surpass the system’s actual physical (RAM) memory.

¢ Swappingisanothertechnique forincreasing the degree of multiprogramming
in a system.

4) Y

operating __—-—/
system
process P,
@ swap out
process P,
@ swap in
user backing store

K space /

main memory

Fig. 5.6 Swapping of Two Processes Using a Disk as a Backing Store

Definition

Swapping is a memory management technique that allows any the
process to be temporarily switched from main memory to secondary
memory to free up main memory for other processes.

The concept of swapping has divided into two parts:

! |

Swap-out Swap-in

Method of removing a Method of removing a
process from RAM and program from a hard
adding to the hard disk. disk and putting it back

into the main memaory.

Memory Management

It aids the CPU's ability to manage several
[tasks in a single main memory.

It facilitates the creation and use of virtual

-_ memory while also increasing the use of

main memory.

It enables the CPU to handle numerous tasks
L at the same time. As a result, procedures
don't have to wait very long to be executed.

In the event that the system loses power, the

__ system user may lose all information linked
to the software, especially if there is a lot of
swapping is going on.

If the swapping algorithm isn't up to par, it
L can result in more page faults and a drop-in
overall speed.

Objectives of memory management system:

1) Relocation:

0 The ability to shift processes around in memory without having any
impact on their execution.

¢ Memory is managed by the operating system rather than the programmer,
and processes can be moved into the memory.

¢ Memory Management (MM) is responsible for translating logical addresses

to physical addresses.

! l

Static relocation Dynamic relocation

Static relocation:

Before or during the loading of the process into memory, the program must
be relocated.

Relocator must be executed again if the program is not loaded into the
same address space in memory.

Dynamic relocation:
In memory, processes can freely move about. At runtime, a virtualto-
physical address space mapping is performed.

2) Protection:
To prevent data and instructions from being over—written.
For data and instructions security purposes, OS is protected from user
processes and on the same note, user processes are protected from
other user processes.

¢ The reason behind this is many of the languages compute address of
memory during runtime.

3) Sharing:

¢ Different processes may need to run the same operation or even access
the same data at times.

¢ Different processes must access the same memory address when they
signal or wait for the same semaphore.

Memory allocation:

Memory Allocation
Contiguous memory Non — contiguous
allocation memory allocation

Contiguous memory allocation:
The RAM is frequently partitioned into two parts: one for the operating the
system, and the other for user processes.

Note:

The operating system can be installed in either a low-memory or a high-
memory location. It is determined by the Interrupt Vector’s location.

Memory Management

Memory Management

Definitions

It is basically a method in which a single contiguous part of memory
is allocated to a process.

Fig. 5.7 Contiguous Memory Allocation

Unused memory space is allocated to the same location in contiguous
memory.

Processes are faster in execution.

Processes are easier for the OS to control.

Address translation is minimum while executing a process.

It suffers from both Internal and external fragmentation.

Grey Matter Alert!

Internal fragmentation:
When memory blocks associated with a process have unused space
within the block, it is called internal fragmentation.

Used space Allocated
space

Internal
fragmentation

Internal
fragmentation

Allocated
space

Used
space

Fig. 5.8 Internal Fragmentation

External fragmentation:

When there is enough space within the memory to satisfy a method’s
memory request, but the process’ memory request cannot be
completed because the memory is spread in a non-contiguous manner,
several approaches, such as compaction, are applied to solve external
fragmentation.

40 KB P,

20 KB Space .
Space is

available
20 KB P, but not

30 KB contiguous

10 KB Space

5 KB B3

Fig. 5.9 External Fragmentation

In the above figure P1, P2 and P3 have been allocated in RAM, leaving
holes of 20KB and 10KB which are not contiguous. When a process P
of 30KB request for space in memory; it cannot be allocated because
available space is not contiguous.

Memory Management

Memory Management

!

Fixed/ static
partitioning

Fixed partitioning:

)

Variable/dynamic
partitioning

¢ This is the simplest technique used to store more than one process at
a time in the main memory.
0 In this partitioning, a number of non-overlapping partitions in physical
memory is fixed, but the size of each partition may or may not be

the same.

¢ In this, only one process is allowed per partition.

The operating system is always installed in the first partition, with the
remaining partitions being utilised to store user processes.

Partition
Size = 8 MB

Partition
Size = 8 MB

Partition
Size =16 MB

Partition
Size = 8 MB

Advantages:

1) Implementation is easy

Free = 7 MB —|
P,=1MB

—

Free =1 MB
P,=7 MB

P, =15 MB

P, =3 MB

Fig.5.10 Fixed Size Partition

Internal
fragmentatlon

2) Fixed partitioning processing necessitates less CPU resources, and

minimal OS overhead.

3) Fixed partitioning does not suffer from external fragmentation.

170

Disadvantages:

1)
2)

3)

4)

Internal Fragmentation is suffered in the fixed partition.

Because partitions are made before execution, it limits the degree of
multiprogramming. For example, if there are ‘X’ partitions in RAM and ‘y’
is the number of processes, then the ‘y’ = ‘X’ requirement must be met.
In fixed partitioning, processes that are larger than partitions (in terms
of quantity) are invalid.

It restricts the size of the process since it cannot support processes
larger than the partition size.

Spanning a process into two partitions is not possible.

Variable partitioning:
Initially, the whole user space of memory is free, and partitions are created
as needed after the arrival of processes.

0 The total number of partitions is not fixed and is determined by the
number of incoming processes and the amount of RAM available.

¢ The operating system takes up the first partition, and the remaining
space is dynamically partitioned.

Operating system
_ Partition
P, =3 MB size = 3 MB
_ Partition
P, =10 MB size = 10 MB
P,=7MB Pgrtition
size =7 MB
Empty space
remaining
Fig. 5.11 Variable Partitioning

Advantages:

1) There is no internal fragmentation because the main memory space is
allocated based on the needs of the process. There will be no unused
partition space remaining.

2) There are no restrictions on the amount of multiprogramming that can
be done.

3) There is no limit on the size of the process requesting RAM.

Memory Management

Memory Management

Disadvantages:
1) Implementation is complex as the allocation of memory is at runtime.
2) It suffers from external fragmentation.

Operating System
P,=3 MB
Executed and '\
now empty
4 MB
P,=8 MB
Pb
,=1MB
Executed and
free Space is available
but not contiguous
P, =10 MB

In the above figure P,, P,, P, and P, has been allocated in RAM. Process P, and
Process P3 have been executed and freed up space of 3MB and 1MB, which
are not contiguous. When process Ps of 4MB requests for space in memory,
but it cannot be allocated because available space is not contiguous.

Allocation policies:
When there are multiple partitions available to accommodate a process, a
partition must be chosen using one of the partition allocation policies.

Placement Algorithms

|
! ! ')

First fit Best fit Worst fit Next fit

1) Firstfit:

It assigns the first available free partition (hole) that is large enough. It
begins scanning the memory from the beginning and selects the first large
enough block available. Among the several allocation policies, it is the
quickest.

4)

Best fit:

It allocates the smallest sufficient free block that can hold the process.
It gives the worst performance overall in terms of allocation time, as
every time the smallest hole is found by searching in the whole memory.
It will give least internal fragmentation.

Compaction is done here more often.

Best fit is an efficient allocation policy for fixed partitioning.

Worst fit:

It allocates the largest block among all available blocks that is big
enough.

It is the opposite of best fit allocation.

Worst fit is efficient allocation policy for variable partitioning as it will
create holes of larger size so that other small processes can be placed
in those memory holes. .

Next fit:

Next fit will start searching from last allocated partition; rest is the same
as that of the first fit.

&

Is Bestit really the best allocation technique among others in fixed
partitioning?

Rack Your Brain

Grey Matter Alert!

Compaction:

Compaction or shuffing memory contents is a solution for external
fragmentation; all free memory is gathered into one single block.
Moving should be dynamic in order to make compaction possible. Using
a paging or segmentation technique, external fragmentation canbe
resolved.

Memory Management

Memory Management

SOLVED EXAMPLES

A memory of size 800 KB is managed using variable partitioning with no
compaction method. Memory currently has the following partitions:
Partition | — 260 KB

Partition Il — 240 KB

What is the smallest allocation request size (in KB) that could be denied?

Range: 101-101

Case 1:
150 KB Minimum allocation
260 KB request that could
Hole pe denied = 151
240 KB
150 KB
Case 2:
300 KB Minimum allocation
request that could
260 KB be denied = 301
150 KB
Case 3:
100 KB
260 KB Minimum allocation
100 KB reques’F that could
be denied = 101
150 KB
100 KB

Non-contiguous allocation:

In contrast to contiguous allocation, it is a mechanism that allocates memory space in
different locations to the process according to its needs.

All of the available vacant space is dispersed across.

This memory allocation strategy helps to prevent memory waste, which eventually leads
to internal and external fragmentation.

