Sorting Concepts

Sorting refers to the process of arranging elements in a particular order,
usually in ascending or descending order. Sorting is a fundamental
operation in computer science and is widely used in various algorithms and
applications. Sorting can be classified into different types based on the
underlying algorithms and their characteristics.

Types of Sorting Algorithms
Comparison-based Sorting:
o These algorithms work by comparing elements to determine their order.
o Examples: Bubble Sort, Selection Sort, Merge Sort, Quick Sort, Heap Sort.
Non-comparison-based Sorting:

o These algorithms don’t rely on comparisons and use other mechanisms,
like counting the occurrences of elements.

o Examples: Radix Sort, Counting Sort, Bucket Sort.

Stable vs Unstable Sorting

Stable Sorting: A sorting algorithm is said to be stable if, when two elements have
equal values, their relative order remains unchanged after sorting. In other words,
if element A appears before element B in the input, and both A and B are equal, A
will appear before B in the output.

o Examples of Stable Sorts:
* Bubble Sort
= Merge Sort
* Insertion Sort
o Applications of Stable Sorts:

* Maintaining order of equal elements: In a dataset, when equal
elements need to maintain their relative order (e.g., sorting
employees by name while maintaining the order of employees with
the same name based on their joining date).

Unstable Sorting: A sorting algorithm is unstable if, when two elements have equal
values, their relative order is not guaranteed to be preserved after sorting.

o Examples of Unstable Sorts:
» Quick Sort
= Selection Sort
= Heap Sort
o Applications of Unstable Sorts:



* |n cases where the relative order of equal elements does not
matter, unstable sorts may be preferred due to better efficiency in
terms of time complexity.

Differences Between Stable and Unstable Sorts

Property Stable Sorting Unstable Sorting

Relative order of equal Maintains relative order of equal elements May not maintain relative order of

elements equal elements
Examples Bubble Sort, Merge Sort, Insertion Sort Quick Sort, Selection Sort, Heap Sort

Use cases When preserving original order of equal When time complexity or space

elements is important efficiency is a priority

CONCEPT OF Insertion Sort, Selection sort, Bubble sort, Quick Sort, Merge Sort,
Heap & Heap Sort, Shell Sort & Radix sort.

1. Insertion Sort

o Concept: Insertion sort is a comparison-based sorting algorithm that builds
the final sorted array one element at a time. It takes one element at a time
from the unsorted portion and places it in the correct position in the sorted
portion. This is done by shifting elements in the sorted portion of the array
to make space for the current element. The algorithm is simple and
efficient for small datasets or nearly sorted data.

2. Selection Sort

o Concept: Selection sort works by selecting the smallest (or largest) element
from the unsorted portion of the array and swapping it with the first
unsorted element. It repeats this process, moving the boundary of the
unsorted portion of the array. Despite being simple, it performs poorly on
large lists, as it makes O(n?) comparisons regardless of the initial
arrangement of elements.

3. Bubble Sort

o Concept: Bubble sort compares adjacent elements of the array and swaps
them if they are in the wrong order. This process is repeated until no swaps
are required, which means the array is sorted. Although simple and easy to
implement, bubble sort is inefficient for large datasets because it requires
multiple passes over the array, resulting in O(n?) time complexity in the
worst and average cases.

4. Quick Sort

o Concept: Quick sort is a divide-and-conquer algorithm. It works by
selecting a pivot element and partitioning the array into two subarrays:
elements less than the pivot and elements greater than the pivot. It then
recursively sorts these subarrays. Quick sort is highly efficient with an
average time complexity of O(n log n) but can degrade to O(n?) if the pivot
selection is poor, making it crucial to choose a good pivot.



5. Merge Sort

o

Concept: Merge sort is another divide-and-conquer algorithm that divides
the array into two halves, sorts each half recursively, and then merges the
sorted halves. It requires additional space for the merging process, making
it less space-efficient. However, merge sort is very efficient for large
datasets with a time complexity of O(n log n) in all cases, ensuring stable
and predictable performance.

6. Heap Sort

o

Concept: Heap sort is based on the heap data structure, where a binary
heap is built from the input data. The heap is then used to repeatedly
extract the maximum (or minimum) element, which is placed in its correct
position. The heap property ensures that the largest (or smallest) element
is always at the root. Heap sort has a time complexity of O(n log n) and is
useful when constant time retrieval of the maximum or minimum element
is needed.

7. Shell Sort

@)

Concept: Shell sort is an improvement on insertion sort, where elements
that are far apart are compared and sorted first, progressively reducing the
gap between elements. This allows elements to be moved into their correct
positions more quickly. The choice of gap sequence significantly affects its
efficiency. The time complexity of Shell sort is O(n log n) in the best case
but can vary depending on the gap sequence used.

8. Radix Sort

@)

Concept: Radix sort is a non-comparative sorting algorithm that works by
sorting elements digit by digit, starting from the least significant digit (LSD)
or the most significant digit (MSD). It uses a stable sub-sorting algorithm,
typically counting sort, to sort digits. Radix sort works best when the range
of input values is small, and it can sort integers or strings in linear time,
O(n), but its efficiency depends on the number of digits.



Algorithms:

1. Insertion Sort
Algorithm:
Start.
Input the array and size.
For each element in the array:
o Set the current element as the key.

o Shift all larger elements to the right until the correct position for the key is
found.

o Place the key in its correct position.
Display sorted array.

Stop.

Time Complexity:
Best Case: O(n) (already sorted)
Average and Worst Case: O(n?)
Space Complexity:
0O(1) (in-place sorting)

2. Selection Sort
Algorithm:
Start.
Input the array and size.
For each element:
o Find the smallest element in the unsorted portion of the array.
o Swap it with the first unsorted element.
Display sorted array.

Stop.

Time Complexity:

Best, Average, and Worst Case: O(n?)
Space Complexity:

0O(1) (in-place sorting)



3. Bubble Sort

Algorithm:
Start.
Input the array and size.
Repeatedly compare each adjacent pair:

o If the first element is greater, swap them.

Continue until no swaps are needed.
Display sorted array.

Stop.

Time Complexity:
Best Case: O(n) (already sorted)
Average and Worst Case: O(n?)
Space Complexity:
0O(1) (in-place sorting)

4. Quick Sort
Algorithm:
Start.
Input the array and size.
If the array has more than one element:
o Choose a pivot element.

o Partition the array into two subarrays: one with elements smaller than the
pivot and the other with elements greater.

o Recursively apply quick sort to both subarrays.
Display sorted array.

Stop.

Time Complexity:

Best and Average Case: O(n log n)

Worst Case: O(n?) (occurs when the pivot is poorly chosen)
Space Complexity:

O(log n) (due to recursion stack)

5. Merge Sort



Algorithm:
Start.
Input the array and size.
If the array has more than one element:
o Divide the array into two halves.
o Recursively sort each half.
o Merge the two sorted halves back into a single sorted array.
Display sorted array.
Stop.
Time Complexity:
Best, Average, and Worst Case: O(n log n)
Space Complexity:
O(n) (additional space for merging)



