
 

Sorting Concepts 

Sorting refers to the process of arranging elements in a particular order, 
usually in ascending or descending order. Sorting is a fundamental 
operation in computer science and is widely used in various algorithms and 
applications. Sorting can be classified into different types based on the 
underlying algorithms and their characteristics. 

Types of Sorting Algorithms 

1. Comparison-based Sorting: 

o These algorithms work by comparing elements to determine their order. 

o Examples: Bubble Sort, Selection Sort, Merge Sort, Quick Sort, Heap Sort. 

2. Non-comparison-based Sorting: 

o These algorithms don’t rely on comparisons and use other mechanisms, 
like counting the occurrences of elements. 

o Examples: Radix Sort, Counting Sort, Bucket Sort. 

 

 

Stable vs Unstable Sorting 

• Stable Sorting: A sorting algorithm is said to be stable if, when two elements have 
equal values, their relative order remains unchanged after sorting. In other words, 
if element A appears before element B in the input, and both A and B are equal, A 
will appear before B in the output. 

o Examples of Stable Sorts: 

▪ Bubble Sort 

▪ Merge Sort 

▪ Insertion Sort 

o Applications of Stable Sorts: 

▪ Maintaining order of equal elements: In a dataset, when equal 
elements need to maintain their relative order (e.g., sorting 
employees by name while maintaining the order of employees with 
the same name based on their joining date). 

• Unstable Sorting: A sorting algorithm is unstable if, when two elements have equal 
values, their relative order is not guaranteed to be preserved after sorting. 

o Examples of Unstable Sorts: 

▪ Quick Sort 

▪ Selection Sort 

▪ Heap Sort 

o Applications of Unstable Sorts: 



 

▪ In cases where the relative order of equal elements does not 
matter, unstable sorts may be preferred due to better efficiency in 
terms of time complexity. 

 

 

CONCEPT OF Insertion Sort, Selection sort, Bubble sort, Quick Sort, Merge Sort, 
Heap & Heap Sort, Shell Sort & Radix sort. 

 

1. Insertion Sort 

o Concept: Insertion sort is a comparison-based sorting algorithm that builds 
the final sorted array one element at a time. It takes one element at a time 
from the unsorted portion and places it in the correct position in the sorted 
portion. This is done by shifting elements in the sorted portion of the array 
to make space for the current element. The algorithm is simple and 
efficient for small datasets or nearly sorted data. 

2. Selection Sort 

o Concept: Selection sort works by selecting the smallest (or largest) element 
from the unsorted portion of the array and swapping it with the first 
unsorted element. It repeats this process, moving the boundary of the 
unsorted portion of the array. Despite being simple, it performs poorly on 
large lists, as it makes O(n²) comparisons regardless of the initial 
arrangement of elements. 

3. Bubble Sort 

o Concept: Bubble sort compares adjacent elements of the array and swaps 
them if they are in the wrong order. This process is repeated until no swaps 
are required, which means the array is sorted. Although simple and easy to 
implement, bubble sort is inefficient for large datasets because it requires 
multiple passes over the array, resulting in O(n²) time complexity in the 
worst and average cases. 

4. Quick Sort 

o Concept: Quick sort is a divide-and-conquer algorithm. It works by 
selecting a pivot element and partitioning the array into two subarrays: 
elements less than the pivot and elements greater than the pivot. It then 
recursively sorts these subarrays. Quick sort is highly efficient with an 
average time complexity of O(n log n) but can degrade to O(n²) if the pivot 
selection is poor, making it crucial to choose a good pivot. 



 

5. Merge Sort 

o Concept: Merge sort is another divide-and-conquer algorithm that divides 
the array into two halves, sorts each half recursively, and then merges the 
sorted halves. It requires additional space for the merging process, making 
it less space-efficient. However, merge sort is very efficient for large 
datasets with a time complexity of O(n log n) in all cases, ensuring stable 
and predictable performance. 

6. Heap Sort 

o Concept: Heap sort is based on the heap data structure, where a binary 
heap is built from the input data. The heap is then used to repeatedly 
extract the maximum (or minimum) element, which is placed in its correct 
position. The heap property ensures that the largest (or smallest) element 
is always at the root. Heap sort has a time complexity of O(n log n) and is 
useful when constant time retrieval of the maximum or minimum element 
is needed. 

7. Shell Sort 

o Concept: Shell sort is an improvement on insertion sort, where elements 
that are far apart are compared and sorted first, progressively reducing the 
gap between elements. This allows elements to be moved into their correct 
positions more quickly. The choice of gap sequence significantly affects its 
efficiency. The time complexity of Shell sort is O(n log n) in the best case 
but can vary depending on the gap sequence used. 

8. Radix Sort 

o Concept: Radix sort is a non-comparative sorting algorithm that works by 
sorting elements digit by digit, starting from the least significant digit (LSD) 
or the most significant digit (MSD). It uses a stable sub-sorting algorithm, 
typically counting sort, to sort digits. Radix sort works best when the range 
of input values is small, and it can sort integers or strings in linear time, 
O(n), but its efficiency depends on the number of digits. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Algorithms: 
 

1. Insertion Sort 

Algorithm: 

• Start. 

• Input the array and size. 

• For each element in the array: 

o Set the current element as the key. 

o Shift all larger elements to the right until the correct position for the key is 
found. 

o Place the key in its correct position. 

• Display sorted array. 

• Stop. 

 

Time Complexity: 

• Best Case: O(n) (already sorted) 

• Average and Worst Case: O(n²) 

Space Complexity: 

• O(1) (in-place sorting) 

 

2. Selection Sort 

Algorithm: 

• Start. 

• Input the array and size. 

• For each element: 

o Find the smallest element in the unsorted portion of the array. 

o Swap it with the first unsorted element. 

• Display sorted array. 

• Stop. 

 

Time Complexity: 

• Best, Average, and Worst Case: O(n²) 

Space Complexity: 

• O(1) (in-place sorting) 

 



 

3. Bubble Sort 

Algorithm: 

• Start. 

• Input the array and size. 

• Repeatedly compare each adjacent pair: 

o If the first element is greater, swap them. 

• Continue until no swaps are needed. 

• Display sorted array. 

• Stop. 

 

Time Complexity: 

• Best Case: O(n) (already sorted) 

• Average and Worst Case: O(n²) 

Space Complexity: 

• O(1) (in-place sorting) 

 

4. Quick Sort 

Algorithm: 

• Start. 

• Input the array and size. 

• If the array has more than one element: 

o Choose a pivot element. 

o Partition the array into two subarrays: one with elements smaller than the 
pivot and the other with elements greater. 

o Recursively apply quick sort to both subarrays. 

• Display sorted array. 

• Stop. 

 

Time Complexity: 

• Best and Average Case: O(n log n) 

• Worst Case: O(n²) (occurs when the pivot is poorly chosen) 

Space Complexity: 

• O(log n) (due to recursion stack) 

 

 

5. Merge Sort 



 

Algorithm: 

• Start. 

• Input the array and size. 

• If the array has more than one element: 

o Divide the array into two halves. 

o Recursively sort each half. 

o Merge the two sorted halves back into a single sorted array. 

• Display sorted array. 

• Stop. 

Time Complexity: 

• Best, Average, and Worst Case: O(n log n) 

Space Complexity: 

• O(n) (additional space for merging) 

 

 


