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1. Linked List as an ADT: 

A Linked List is a linear data structure where each element (called a node) 
contains data and a reference (or link) to the next node in the sequence. 
Unlike arrays, linked lists don't have a fixed size and can dynamically grow 
or shrink during program execution. 

• Operations: 

o Insert: Add a new node. 

o Delete: Remove an existing node. 

o Traverse: Visit each node to access or print its data. 

o isEmpty: Checks whether the linked list is empty 

o isFull: hecks whether the linked list has run out of memory. 



Dynamic Memory Allocation 

Dynamic memory allocation refers to the process of allocating 
memory during runtime instead of compile-time, allowing more 
flexibility in the management of memory. This process is essential 
when we don't know in advance how much memory is required, 
which is a common scenario in data structures like linked lists. 

Key Concepts: 

• Memory Allocation: Memory is allocated at runtime, and the program can 
request memory for a variable or object as needed. 

• Memory Deallocation: After the memory is no longer needed, it is 
deallocated (freed) to prevent memory leaks and optimize resource use. 

Functions in C/C++: 

1. malloc(size_t size): 
Allocates a block of memory of the specified size and returns a pointer to 
the first byte of that block. 

int* ptr = (int*)malloc(sizeof(int));  // Allocates memory for one 
integer. 

2. calloc(size_t num, size_t size): 
Allocates memory for an array of num elements of size bytes each, and 
initializes all bytes to 0. 

int* arr = (int*)calloc(5, sizeof(int));  // Allocates memory for 5 
integers. 

3. realloc(void ptr, size_t size):* 
Resizes previously allocated memory block. If the new size is larger, it may 
also move the memory to a new location. 

ptr = (int*)realloc(ptr, 10 * sizeof(int));  // Resizes the memory 
block for 10 integers. 

4. free(void ptr):* 
Frees previously allocated memory, making it available for reuse. 

free(ptr);  // Frees the allocated memory. 

Benefits: 

• Allows the creation of dynamic structures like linked lists, where the size can 
change during execution. 

• Efficient use of memory by allocating space only when needed. 
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1. Singly Linked List (SLL): 

• Definition: 

o A Singly Linked List consists of nodes where each node has two 
parts: 

▪ Data: Stores the value. 

▪ Next pointer: A reference or pointer to the next node in the 
list. 

• Structure: 

o The list is linear, and each node points to the next node. 

o The last node’s next pointer is NULL, indicating the end of the list. 

• Advantages: 

o Dynamic memory allocation. 

o Can grow and shrink in size as needed. 

• Disadvantages: 

o Accessing an element requires traversing from the head node. 

o Searching for a specific node can take linear time. 

 

2. Doubly Linked List (DLL): 

• Definition: 

o A Doubly Linked List is an extension of the singly linked list where 
each node has three parts: 

▪ Data: Stores the value. 

▪ Next pointer: Points to the next node in the list. 

▪ Previous pointer: Points to the previous node in the list. 

• Structure: 

o Each node has two pointers (next and previous), allowing traversal in 
both directions. 

o The first node’s previous pointer and the last node’s next pointer are 
NULL. 

• Advantages: 



o Easier to traverse in both directions. 

o More efficient insertion and deletion from both ends. 

• Disadvantages: 

o Requires more memory for the previous pointer. 

o More complex to implement than a singly linked list. 

 

3. Circular Linked List (Singly Circular Linked List): 

• Definition: 

o In a Singly Circular Linked List, the last node’s next pointer points 
back to the first node, making the list circular. 

o Unlike a singly linked list, there is no NULL to mark the end of the list; 
the list loops back to the first node. 

• Structure: 

o There is no NULL value at the end of the list, so traversal can 
continue indefinitely from the last node back to the first node. 

o The first node is the head, and the last node points to the head. 

• Advantages: 

o Efficient for circular queues and round-robin scheduling. 

o Continuous traversal without checking for NULL. 

• Disadvantages: 

o Requires careful handling to avoid infinite loops during traversal. 

o More complex than a singly linked list. 

 

4. Doubly Circular Linked List: 

• Definition: 

o A Doubly Circular Linked List combines the features of both a doubly 
linked list and a circular linked list. 

o The last node’s next pointer points to the first node, and the first 
node’s previous pointer points to the last node. 

• Structure: 

o Each node has three parts: data, next, and previous. 

o The first node’s previous pointer points to the last node, and the last 
node’s next pointer points to the first node, making the list circular. 

• Advantages: 

o Allows for bidirectional traversal and circular traversal. 



o More flexible for operations that require circular navigation. 

• Disadvantages: 

o Requires more memory due to two pointers (next and previous) in 
each node. 

o More complex to implement than singly circular linked lists. 

 

To learn In Short Types of Linked Lists: 

1. Singly Linked List: One pointer (next) per node, linear structure. 

2. Doubly Linked List: Two pointers (next, previous) per node, allows 
bidirectional traversal. 

3. Singly Circular Linked List: Circular structure where the last node points to 
the first. 

4. Doubly Circular Linked List: Circular structure with two pointers per node, 
allowing bidirectional and circular traversal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


