**ISKI MAX CHIZE DISCRETE STRUCTURES KE GRAPH
UNIT ME HI HE.**

1. Graph Definitions and Concepts

oG

Nodes/Vertices—__

Graph , \/ .
Data Structure / /

Edges

Definition:
A graph G = (V,E) is a set of vertices (V) and edges (E),
where edges connect pairs of
vertices.

Types of Graphs:
1. Directed Graph (Digraph):
o Edges have a direction.

o Example: A->B.

2. Undirected Graph:

\"/r;\\ 10 \/ ;ﬁ\"\
. Edges have no direction. P e
Y N4 2/ N3
. Example. A-B. /;\() \/;\() y;\
N/ _/)
15//)\
\'/77
[3)
N4

Weighted Graph:

. Each edge has a weight.

. Example: Distance or cost.

Connected Graph:

. Every vertex is reachable from every other vertex.

5 i

NN

2-Regular Complete Graph

.
O &

Define a graph and explain its types with an example.
Answer: A graph is a collection of vertices and edges.
Types include directed, undirected, weighted, and
connected graphs, as explained above.

Adjacency Matrix Representation

An adjacency matrix is a way of representing a graph as a matrix
of boolean (0’s and 1’s)

Let’s assume there are n vertices in the graph So, create a 2D
matrix adjMat[n][n] having dimension n x n.

If there is an edge from vertex i to j, mark adjMat[i][j] as 1.
If there is no edge from vertex i to j, mark adjMat[i][j] as 0.

Representation of Undirected Graph as Adjacency
Matrix:

The below figure shows an undirected graph. Initially, the entire
Matrix is initialized to 0. If there is an edge from source to
destination, we insert 1 to both cases

(adjMat[destination] and adjMat[destination]) because we can
go either way.

D (D
(1 - 2)
_ _/ 0 1 2
0 1 1
B L 1 1
0) 2 1 1
N
Undirected Graph Adjacency Matrix

Graph Representation of Undirected graph to Adjacency Matrix

Representation of Directed Graph as Adjacency Matrix:

The below figure shows a directed graph. Initially, the entire Matrix is
initialized to 0. If there is an edge from source to destination, we
insert 1 for that particular adjMat[destination].

https://www.geeksforgeeks.org/adjacency-matrix/

o o 0 1 2

1 1 1

Directed Graph Adjacency Matrix

Graph Representation of Directed graph to Adjacency Matrix

Incidence Matrix Representation of Matrix

The incidence matrix A of an undirected graph has a row for each
vertex and a column for each edge of the graph. The element Apiy; of
Ais 1 if the it vertex is a vertex of the j" edge and 0 otherwise.

The incidence matrix A of a directed graph has a row for each vertex
and a column for each edge of the graph. The element Ay of Ais

- 1if the it" vertex is an initial vertex of the /! edge, 1 if the it" vertex
is a terminal vertex, and O otherwise.

ISKA DIAGRAM/MATRIX BANA KR BHEJTA HU,
DS ME SE BHI DEKH SAKTE HE ISKA SAME HI HE

Graph Traversal in Detail

Graph Traversal is the process of visiting each vertex of a graph
systematically. The goal is to explore the graph structure fully, either
to find paths, search elements, or process vertices.

Traversal is broadly divided into two types:
1. Depth First Search (DFS)
2. Breadth First Search (BFS)

https://www.sciencedirect.com/topics/mathematics/terminal-vertex

1. Depth First Search (DFS)
Definition:
DFS explores a graph by starting at a vertex and moving as deep as possible

along each branch before backtracking. It uses a stack data structure (or
recursion).

Algorithm (Recursive DFS):
1. Start from the initial vertex uuu and mark it as visited.
2. Recursively visit all unvisited neighbors of uuu.

3. If no neighbors remain, backtrack to the previous vertex and repeat.

2. Breadth First Search (BFS)
Definition:

BFS explores the graph level by level. It uses a queue data structure.

Algorithm (Iterative BFS):
1. Start from the initial vertex U and mark it as visited.
2. Add U to the queue.
3. While the queue is not empty:
Remove the front vertex V and process it.

Add all unvisited neighbors of V to the queue and mark them as
visited.

Spanning Tree

A Spanning Tree is a subgraph of a connected, undirected graph that
includes all the vertices of the original graph with V-1V-1V-1 edges (where
VVV is the number of vertices). It does not contain cycles and connects all
vertices.

o Key Features:
o ltis atree (connected and acyclic).
o It spans all vertices of the graph.

o For a graph with VVV vertices, the spanning tree has V-1V-1V-1
edges.

o A graph can have multiple spanning trees.

e

[N
Graph(V,E) = |3

[

—

All Possible MST's of the above Graph

MST Cost =6 MST Cost=6 MST Cost=6 MST Cost =6

Minimum Cost Spanning Tree (MCST)

An MCST is a spanning tree with the minimum possible total edge weight. It
ensures efficient connectivity, minimizing cost.

Applications:
o Designing communication or transportation networks.

o Minimizing cost in network design (e.g., power grids, road networks).

Prim’s Algorithm (MCST)

Prim’s Algorithm grows the spanning tree vertex by vertex.
Working:

. Select an arbitrary starting vertex.

. Add the smallest weight edge connecting the tree to a new
vertex.

. Repeat until all vertices are included.

Advantages:
Best for dense graphs (many edges).
Simple to implement using priority queues.
Complexity:
Using adjacency matrix: O(V?)

Using adjacency list and min-heap: O(E log V), where E is the
number of edges.

Kruskal’s Algorithm (MCST)

Kruskal’s Algorithm grows the spanning tree edge by edge.
Working:

. Sort all edges by weight in ascending order.

. Add the smallest edge to the tree if it doesn’t form a cycle.
. Repeat until V-1V-1V-1 edges are included.
Advantages:

Best for sparse graphs (few edges).

Efficient when edges are pre-sorted or small in number.
Complexity:

Sorting edges: O(E log E).

Union-Find operations: O(E log V).

Differences Between Prim’s and Kruskal’s Algorithm

Feature Prim’s Algorithm Kruskal’s Algorithm

Approach Greedy: Adds the smallest edge connecting a Greedy: Adds the smallest edge
vertex globally

Structure Used Priority Queue Disjoint Set (Union-Find)
Best for Dense Graphs Sparse Graphs

Cycle Implicit (through visited vertices) Explicit (Union-Find)

Detection

In dono algorithm ke Exmpls same as in
discrete Structures

