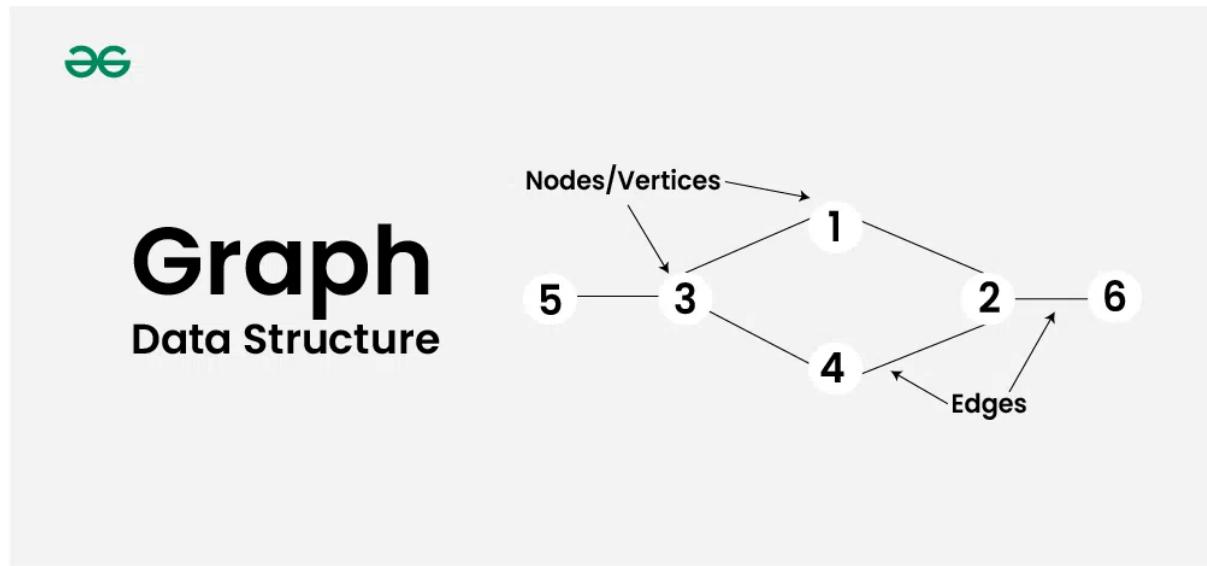


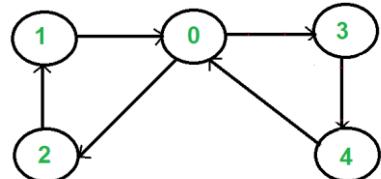
**ISKI MAX CHIZE DISCRETE STRUCTURES KE GRAPH
UNIT ME HI HE.**

1. Graph Definitions and Concepts



Definition:

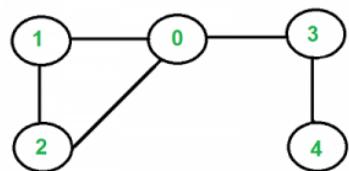
A graph $G = (V, E)$ is a set of **vertices** (V) and **edges** (E), where edges connect pairs of vertices.



Types of Graphs:

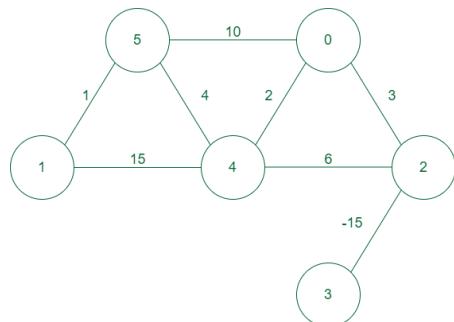
1. Directed Graph (Digraph):

- Edges have a direction.
- Example: A->B.



2. Undirected Graph:

- Edges have no direction.
- Example: A-B.

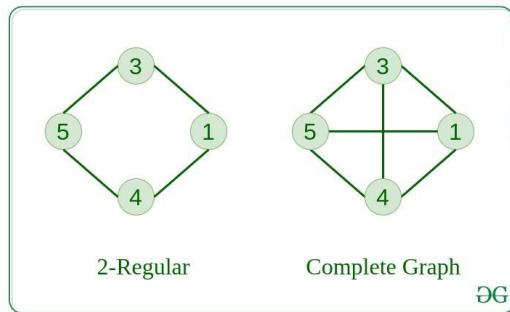


Weighted Graph:

- Each edge has a weight.
- Example: Distance or cost.

Connected Graph:

- Every vertex is reachable from every other vertex.



Define a graph and explain its types with an example.

Answer: A graph is a collection of vertices and edges.

Types include directed, undirected, weighted, and connected graphs, as explained above.

Adjacency Matrix Representation

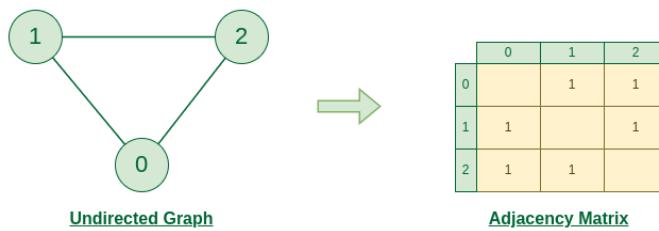
An adjacency matrix is a way of representing a graph as a matrix of boolean (0's and 1's)

Let's assume there are **n** vertices in the graph So, create a 2D matrix **adjMat[n][n]** having dimension $n \times n$.

- *If there is an edge from vertex i to j , mark **adjMat[i][j]** as **1**.*
- *If there is no edge from vertex i to j , mark **adjMat[i][j]** as **0**.*

Representation of Undirected Graph as Adjacency Matrix:

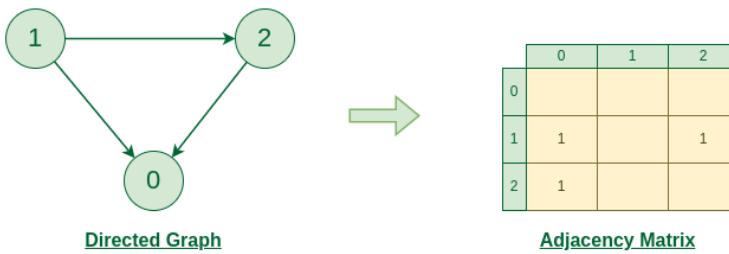
The below figure shows an undirected graph. Initially, the entire Matrix is initialized to **0**. If there is an edge from source to destination, we insert **1** to both cases (**adjMat[destination]** and **adjMat[destination]**) because we can go either way.



[Graph Representation of Undirected graph to Adjacency Matrix](#)

Representation of Directed Graph as Adjacency Matrix:

The below figure shows a directed graph. Initially, the entire Matrix is initialized to **0**. If there is an edge from source to destination, we insert **1** for that particular **adjMat[destination]**.



[Graph Representation of Directed graph to Adjacency Matrix](#)

Incidence Matrix Representation of Matrix

The *incidence matrix* A of an *undirected* graph has a row for each vertex and a column for each edge of the graph. The element $A_{[i][j]}$ of A is 1 if the i^{th} vertex is a vertex of the j^{th} edge and 0 otherwise.

The *incidence matrix* A of a *directed* graph has a row for each vertex and a column for each edge of the graph. The element $A_{[i][j]}$ of A is -1 if the i^{th} vertex is an initial vertex of the j^{th} edge, 1 if the i^{th} vertex is a [terminal vertex](#), and 0 otherwise.

ISKA DIAGRAM/MATRIX BANA KR BHEJTA HU,

DS ME SE BHI DEKH SAKTE HE ISKA SAME HI HE

Graph Traversal in Detail

Graph Traversal is the process of visiting each vertex of a graph systematically. The goal is to explore the graph structure fully, either to find paths, search elements, or process vertices.

Traversal is broadly divided into two types:

1. **Depth First Search (DFS)**
2. **Breadth First Search (BFS)**

1. Depth First Search (DFS)

Definition:

DFS explores a graph by starting at a vertex and moving as deep as possible along each branch before backtracking. It uses a stack data structure (or recursion).

Algorithm (Recursive DFS):

1. Start from the initial vertex u and mark it as **visited**.
2. Recursively visit all **unvisited neighbors** of u .
3. If no neighbors remain, **backtrack** to the previous vertex and repeat.

2. Breadth First Search (BFS)

Definition:

BFS explores the graph level by level. It uses a queue data structure.

Algorithm (Iterative BFS):

1. Start from the initial vertex U and mark it as visited.
2. Add U to the queue.
3. While the queue is not empty:

Remove the front vertex V and process it.

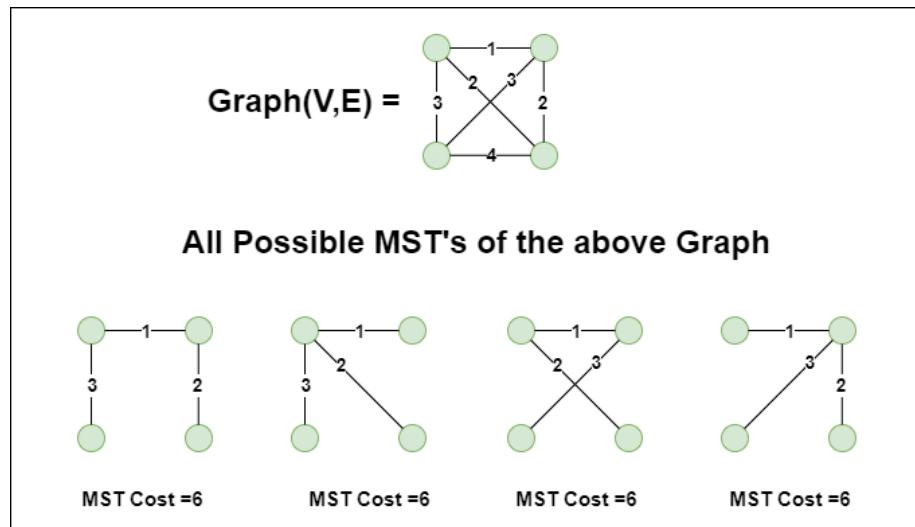
Add all unvisited neighbors of V to the queue and mark them as visited.

Spanning Tree

A **Spanning Tree** is a subgraph of a connected, undirected graph that includes all the vertices of the original graph with $V-1$ edges (where V is the number of vertices). It does not contain cycles and connects all vertices.

- **Key Features:**

- It is a tree (connected and acyclic).
- It spans all vertices of the graph.
- For a graph with V vertices, the spanning tree has $V-1$ edges.
- A graph can have multiple spanning trees.



Minimum Cost Spanning Tree (MCST)

An MCST is a spanning tree with the minimum possible total edge weight. It ensures efficient connectivity, minimizing cost.

Applications:

- Designing communication or transportation networks.
- Minimizing cost in network design (e.g., power grids, road networks).

Prim's Algorithm (MCST)

Prim's Algorithm grows the spanning tree **vertex by vertex**.

Working:

1. Select an arbitrary starting vertex.
2. Add the smallest weight edge connecting the tree to a new vertex.
3. Repeat until all vertices are included.

Advantages:

- Best for dense graphs (many edges).
- Simple to implement using priority queues.

Complexity:

- Using adjacency matrix: $O(V^2)$
- Using adjacency list and min-heap: $O(E \log V)$, where E is the number of edges.

Kruskal's Algorithm (MCST)

Kruskal's Algorithm grows the spanning tree **edge by edge**.

Working:

1. Sort all edges by weight in ascending order.
2. Add the smallest edge to the tree if it doesn't form a cycle.
3. Repeat until $V-1$ edges are included.

Advantages:

- Best for sparse graphs (few edges).
- Efficient when edges are pre-sorted or small in number.

Complexity:

- Sorting edges: $O(E \log E)$.
- Union-Find operations: $O(E \log V)$.

Differences Between Prim's and Kruskal's Algorithm

Feature	Prim's Algorithm	Kruskal's Algorithm
Approach	Greedy: Adds the smallest edge connecting a vertex	Greedy: Adds the smallest edge globally
Structure Used	Priority Queue	Disjoint Set (Union-Find)
Best for	Dense Graphs	Sparse Graphs
Cycle Detection	Implicit (through visited vertices)	Explicit (Union-Find)

In dono algorithm ke Exmpls same as in discrete Structures