Unit 2
Random Search

The random search in machine learning involves generating and evaluating random
inputs to the objective function. It is effective because it does not assume anything
about the structure of the objective function. This can benefit problems with a lot of
domain expertise that may influence or bias the optimization strategy, allowing non-
intuitive solutions to be discovered. The drawback of random search is that it yields high
variance during computing

The random search strategy consists of sampling solutions over the entire search space
using a uniform probability distribution. Each future sample is independent of the
samples that precede it.

The strategy has a complexity time and minimal memory, as it requires only a candidate
solution construction routine and a candidate solution evaluation routine, both of which
can be calibrated using the approach.

The worst performance for locating optima is worse than a search domain enumeration,
since the random search has no memory and can perform blind resampling.

The Algorithm

So, how does random search work? The search begins by initializing random hyper
parameter values from the search space. Let's call this point x. Next, it calculates the
value of the cost function at x. Then it takes another set of random hyper parameter
values, let's call it y, and calculates the value of the cost function at y. If the value of the
cost function at y is lower than that at x, then it repeats these steps by assigning x =

y as the new start. Else it continues from x. This process is repeated until a requirement
set by the user still needs to be fulfilled.

The following steps describe the algorithm of random search in machine learning.

1. Set x to a random place in the search space.
2. Repeat until a termination requirement, such as multiple iterations completed or
appropriate fithess achieved, is met:
o Take a new position y from the hyper sphere with a given radius around
the current position x.
o Iff(y) <f(x), then assign x =y as the new position.

Advantages of Random Search

These are the few advantages of random search in machine learning over grid search.

https://complex-systems-ai.com/en/algorithmic/complexity-in-time/

« Random search gives better results than grid search when the dimensionality
and the number of hyper parameters are high.

o Random search in machine learning allows us to limit the number of hyper
parameter combinations. Whereas in grid search, all the varieties of hyper
parameters are checked.

e The random search usually gives better results than the grid search in less
iteration.

Closed and open list

Closed list describes the variant of party-list systems where voters can effectively vote
for only political parties as a whole; thus they have no influence on the party-supplied
order in which party candidates are elected. If voters had some influence, that would be
called an open list.

Uninformed Search Techniques

Depth First Search

It is a recursive algorithm to search all the vertices of a tree data structure or a graph.
The depth-first search (DFS) algorithm starts with the initial node of graph G and goes
deeper until we find the goal node or the node with no children.

Because of the recursive nature, stack data structure can be used to implement the
DFS algorithm. The process of implementing the DFS is similar to the BFS algorithm.

The step by step process to implement the DFS traversal is given as follows

1. First, create a stack with the total number of vertices in the graph.

2. Now, choose any vertex as the starting point of traversal, and push that vertex
into the stack.

3. After that, push a non-visited vertex (adjacent to the vertex on the top of the
stack) to the top of the stack.

4. Now, repeat steps 3 and 4 until no vertices are left to visit from the vertex on the
stack's top.

5. If no vertex is left, go back and pop a vertex from the stack.
6. Repeat steps 2, 3, and 4 until the stack is empty.

Applications of DFS algorithm
The applications of using the DFS algorithm are given as follows -

o DFS algorithm can be used to implement the topological sorting.
o It can be used to find the paths between two vertices.
o It can also be used to detect cycles in the graph.

o DFS algorithm is also used for one solution puzzles.
o DFS is used to determine if a graph is bipartite or not.

Algorithm

Step 1. SET STATUS =1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)
Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbors of N that are in the ready state (whose
STATUS = 1) and set their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Example of DFS algorithm

Now, let's understand the working of the DFS algorithm by using an example. In the

example given below, there is a directed graph having 7 vertices.

Adjacency Lists

:B. D

IoTmON®mY
pmBEmMMO
nTOm
I

Now, start examining the graph starting from Node H.
Step 1 - First, push H onto the stack.
1. STACK: H

Step 2 - POP the top element from the stack, i.e., H, and print it. Now, PUSH all the
neighbors of H onto the stack that are in ready state.

1. Print: HJISTACK: A

=

=

=

=

=

=

=

Step 3 - POP the top element from the stack, i.e., A, and print it.

neighbors of A onto the stack that are in ready state.

Print: A
STACK: B, D

Step 4 - POP the top element from the stack, i.e., D, and print it.

neighbors of D onto the stack that are in ready state.

Print: D
STACK: B, F

Step 5- POP the top element from the stack, i.e., F, and print it.

neighbors of F onto the stack that are in ready state.

Print: F
STACK: B

Step 6 - POP the top element from the stack, i.e., B, and print it.

neighbors of B onto the stack that are in ready state.

Print: B
STACK: C

Step 7 - POP the top element from the stack, i.e., C, and print it.

neighbors of C onto the stack that are in ready state.

Print: C
STACK: E, G

Now,

Now,

Now,

Now,

Now,

PUSH all the

PUSH all the

PUSH all the

PUSH all the

PUSH all the

Step 8 - POP the top element from the stack, i.e., G and PUSH all the neighbors of G

onto the stack that are in ready state.

Print: G
STACK: E

Step 9 - POP the top element from the stack, i.e., E and PUSH all the neighbors of E

onto the stack that are in ready state.

Print: E
STACK:

Now, all the graph nodes have been traversed, and the stack is empty.

Complexity of Depth-first search algorithm

The time complexity of the DFS algorithm is O(V+E), where V is the number of vertices

and E is the number of edges in the graph.

The space complexity of the DFS algorithm is O(V).

Depth-Limited Search Algorithm:

A depth-limited search algorithm is similar to depth-first search with a predetermined
limit. Depth-limited search can solve the drawback of the infinite path in the Depth-first
search. In this algorithm, the node at the depth limit will treat as it has no successor
nodes further.

Example:

Depth Limited Search

= > _ B > Level 1
¥ B / ¥ \
VA YRV
L~ d =
I \'!/‘ —> Level 2

/NN N

—> Levelo

—| Level 8

Completeness: DLS search algorithm is complete if the solution is above the depth-
limit.
Time Complexity: Time complexity of DLS algorithm is O(b®) where b is the branching

factor of the search tree, and | is the depth limit.

Space Complexity: Space complexity of DLS algorithm is O(bx€) where b is the
branching factor of the search tree, and | is the depth limit.

Optimal: Depth-limited search can be viewed as a special case of DFS, and it is also
not optimal even if {>d.

Breadth First Search algorithm

Breadth-first search is a graph traversal algorithm that starts traversing the graph from
the root node and explores all the neighboring nodes. Then, it selects the nearest node
and explores all the unexplored nodes. While using BFS for traversal, any node in the
graph can be considered as the root node.

There are many ways to traverse the graph, but among them, BFS is the most
commonly used approach. It is a recursive algorithm to search all the vertices of a tree
or graph data structure. BFS puts every vertex of the graph into two categories - visited
and non-visited. It selects a single node in a graph and, after that, visits all the nodes
adjacent to the selected node.

Applications of BFS algorithm

The applications of breadth-first-algorithm are given as follows -

o

o

BFS can be used to find the neighboring locations from a given source location.
In a peer-to-peer network, BFS algorithm can be used as a traversal method to
find all the neighboring nodes.

BFS can be used in web crawlers to create web page indexes. It is one of the
main algorithms that can be used to index web pages. It starts traversing from
the source page and follows the links associated with the page. Here, every web
page is considered as a node in the graph.

BFS is used to determine the shortest path and minimum spanning tree.

BFS is also used in Cheney's technique to duplicate the garbage collection.

It can be used in ford-Fulkerson method to compute the maximum flow in a flow
network.

Algorithm

The steps involved in the BFS algorithm to explore a graph are given as follows -

Step 1: SET STATUS =1 (ready state) for each node in G

Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

Step 5: Enqueue all the neighbors of N that are in the ready state (whose STATUS = 1)
and set

their STATUS = 2

(walting state)

[END OF LOOP]

Step 6: EXIT

=

N =

N =

N =

Example of BFS algorithm

Now, let's understand the working of BFS algorithm by using an example. In the
example given below, there is a directed graph having 7 vertices.

Adjacency Lists
:B,D
:CF
:E, G
© 3

In the above graph, minimum path 'P' can be found by using the BFS that will start from
Node A and end at Node E. The algorithm uses two queues, namely QUEUE1 and
QUEUE2. QUEUE1 holds all the nodes that are to be processed, while QUEUE2 holds
all the nodes that are processed and deleted from QUEUEL.

oTMmMONAD>
MmPOmMmMA

Now, start examining the graph starting from Node A.
Step 1 - First, add A to queuel and NULL to queue?2.

QUEUEL = {A}
QUEUE2 = {NULL}

Step 2 - Now, delete node A from queuel and add it into queue?2. Insert all neighbors of
node A to queuel.

QUEUEL1 = {B, D}

QUEUE?2 = {A}

Step 3 - Now, delete node B from queuel and add it into queue?2. Insert all neighbors of
node B to queuel.

QUEUE1 ={D, C, F}

QUEUE2 = {A, B}

Step 4 - Now, delete node D from queuel and add it into queueZ2. Insert all neighbors of
node D to queuel. The only neighbor of Node D is F since it is already inserted, so it
will not be inserted again.

QUEUEL = {C, F}
QUEUE2 = {A, B, D}

Step 5 - Delete node C from queuel and add it into queue2. Insert all neighbors of node
C to queuel.

=

=

=

QUEUEL = {F, E, G}
QUEUE2 = {A, B, D, C}

Step 5 - Delete node F from queuel and add it into queue2. Insert all neighbors of node
F to queuel. Since all the neighbors of node F are already present, we will not insert
them again.

QUEUEL = {E, G}
QUEUE2 ={A, B, D, C, F}

Step 6 - Delete node E from queuel. Since all of its neighbors have already been
added, so we will not insert them again. Now, all the nodes are visited, and the target
node E is encountered into queue2.

QUEUEL = {G}
QUEUE2 ={A, B, D, C, F, E}

Complexity of BFS algorithm

Time complexity of BFS depends upon the data structure used to represent the graph.
The time complexity of BFS algorithm is O(V+E), since in the worst case, BFS algorithm
explores every node and edge. In a graph, the number of vertices is O(V), whereas the
number of edges is O(E).

The space complexity of BFS can be expressed as O(V), where V is the number of
vertices.

Uniform Cost Search (UCS)

Uniform-cost search is a searching algorithm used for traversing a weighted tree or
graph. This algorithm comes into play when a different cost is available for each edge.
The primary goal of the uniform-cost search is to find a path to the goal node which has
the lowest cumulative cost. Uniform-cost search expands nodes according to their path
costs form the root node. It can be used to solve any graph/tree where the optimal cost
is in demand. A uniform-cost search algorithm is implemented by the priority queue. It
gives maximum priority to the lowest cumulative cost. Uniform cost search is equivalent
to BFS algorithm if the path cost of all edges is the same.

Key Concepts of Uniform Cost Search

1. Priority Queue: UCS uses a priority queue to store nodes. The node with the
lowest cumulative cost is expanded first. This ensures that the search explores
the most promising paths first.

2. Path Cost: The cost associated with reaching a particular node from the start
node. UCS calculates the cumulative cost from the start node to the current node
and prioritizes nodes with lower costs.

3.

4.

Exploration: UCS explores nodes by expanding the least costly node first,
continuing this process until the goal node is reached. The path to the goal node
Is guaranteed to be the least costly one.

Termination: The algorithm terminates when the goal node is expanded,
ensuring that the first time the goal node is reached, the path is the optimal one.

Working of Uniform Cost Search

UCS operates under a simple principle: among all possible expansions, pick the path
that has the smallest total cost from the start node. This is implemented using a priority
gueue to keep the partial paths in order, based on the total cost from the root node.

Following steps are performed to execute UCS:

1.

Initialization: UCS starts with the root node. It is added to the priority queue with
a cumulative cost of zero since no steps have been taken yet.

Node Expansion: The node with the lowest path cost is removed from the
priority queue. This node is then expanded, and its neighbors are explored.

Exploring Neighbors: For each neighbor of the expanded node, the algorithm
calculates the total cost from the start node to the neighbor through the current
node. If a neighbor node is not in the priority queue, it is added to the queue with
the calculated cost. If the neighbor is already in the queue but a lower cost path
to this neighbor is found, the cost is updated in the queue.

Goal Check: After expanding a node, the algorithm checks if it has reached the
goal node. If the goal is reached, the algorithm returns the total cost to reach this
node and the path taken.

Repetition: This process repeats until the priority queue is empty or the goal is
reached.

Example:

O O O O

Uniform Cost Search

/\
*/z\\"
s! /\

> Level 0

> Level 1

> Level 2

E _/ — Level 8
51
G —| Level 4

Iterative deepeningdepth-first Search:

The iterative deepening algorithm is a combination of DFS and BFS algorithms.
This search algorithm finds out the best depth limit and does it by gradually
increasing the limit until a goal is found.

This algorithm performs depth-first search up to a certain "depth limit", and it
keeps increasing the depth limit after each iteration until the goal node is found.

This Search algorithm combines the benefits of Breadth-first search's fast search
and depth-first search's memory efficiency.

The iterative search algorithm is useful uninformed search when search space is
large, and depth of goal node is unknown.

Here are the steps for Iterative deepening depth first search algorithm:

Set the depth limit to O.

Perform DFS to the depth limit.

If the goal state is found, return it.

If the goal state is not found and the maximum depth has not been reached,
increment the depth limit and repeat steps 2-4.

If the goal state is not found and the maximum depth has been reached,
terminate the search and return failure.

Advantages:

It combines the benefits of BFS and DFS search algorithm in terms of fast search
and memory efficiency.

It is a type of straightforward which is used to put into practice since it builds
upon the conventional depth-first search algorithm.

It is a type ofsearch algorithm which provides guarantees to find the optimal
solution, as long as the cost of each edge in the search space is the same.

It is a type ofcomplete algorithm, and the meaning of this is it will always find a
solution if one exists.

The Iterative Deepening Depth-First Search (IDDFS) algorithm uses less
memory compared to Breadth-First Search (BFS) because it only stores the
current path in memory, rather than the entire search tree.

Disadvantages:

The main drawback of IDDFS is that it repeats all the work of the previous phase.
Example:

Following tree structure is showing the iterative deepening depth-first search.
IDDFS algorithm performs various iterations until it does not find the goal node.

The iteration performed by the algorithm is given as:

Example:

Iterative deepening depth first search

A — Level 0
/7 \

/N /N
/ \ - Level 2

o
H ! K —> Level 3

— Level 1

1'st Iteration-----> A

2'nd lteration----> A, B, C

3'rd Iteration------ >A,B,D,E,C, F,G

4'th Iteration------ >A,B,D,H,ILE,C, F, K, G

In the fourth iteration, the algorithm will find the goal node.

Completeness:
This algorithm is complete is ifthe branching factor is finite.
Time Complexity:

Let's suppose b is the branching factor and depth is d then the worst-case time
complexity is O(b9).

Space Complexity:
The space complexity of IDDFS will be O(bd).
Optimal:

IDDFS algorithm is optimal if path cost is a non- decreasing function of the depth
of the node.

Bidirectional Search Algorithm:

Bidirectional search algorithm runs two simultaneous searches, one form initial
state called as forward-search and other from goal node called as backward-
search, to find the goal node. Bidirectional search replaces one single search
graph with two small subgraphs in which one starts the search from an initial
vertex and other starts from goal vertex. The search stops when these two
graphs intersect each other.

Bidirectional search can use search techniques such as BFS, DFS, DLS, etc.
Advantages:

Bidirectional search is fast.

Bidirectional search requires less memory

The graph can be extremely helpful when it is very large in size and there is no
way to make it smaller. In such cases, using this tool becomes particularly useful.
The cost of expanding nodes can be high in certain cases. In such scenarios,
using this approach can help reduce the number of nodes that need to be
expanded.

Disadvantages:

Implementation of the bidirectional search tree is difficult.

o In bidirectional search, one should know the goal state in advance.

o Finding an efficient way to check if a match exists between search trees can be
tricky, which can increase the time it takes to complete the task.
Example:
In the below search tree, bidirectional search algorithm is applied. This algorithm
divides one graphl/tree into two sub-graphs. It starts traversing from node 1 in the
forward direction and starts from goal node 16 in the backward direction.

The algorithm terminates at node 9 where two searches meet.

Bidirectional Search

Root node
B . 13
4 ‘\\ 11
5 e \4, | / 14
O
A
3 P 15
5 6 intersection ™ 12 é
ntersection ‘\
Nod . 3
5 / o s \ 16
Goal node

Completeness: Bidirectional Search is complete if we use BFS in both searches.
Time Complexity: Time complexity of bidirectional search using BFS is O(bY).
Space Complexity: Space complexity of bidirectional search is O(b9).

Optimal: Bidirectional search is Optimal.

Heuristic Search

Heuristics operates on the search space of a problem to find the best or closest-to-optimal
solution via the use of systematic algorithms. A heuristic search method uses heuristic
information to define a route that seems more plausible than the rest. Heuristics, in this case,
refer to a set of criteria or rules of thumb that offer an estimate of a firm’s profitability. Utilizing
heuristic guiding, the algorithms determine the balance between exploration and exploitation,
and thus they can successfully tackle demanding issues. Therefore, they enable an efficient
solution finding process.

A heuristic is a technique that is used to solve a problem faster than the classic methods. These
techniques are used to find the approximate solution of a problem when classical methods do
not. Heuristics are said to be the problem-solving techniques that result in practical and quick
solutions.

Components of Heuristic Search
Heuristic search algorithms typically comprise several essential components:

1. State Space: This implies that the totality of all possible states or settings, which is
considered to be the solution for the given problem.

2. Initial State: The instance in the search tree of the highest level with no null
values, serving as the initial state of the problem at hand.

3. Goal Test: The exploration phase ensures whether the present state is a terminal
or consenting state in which the problem is solved.

4. Successor Function: This create a situation where individual states supplant the
current state which represent the possible moves or solutions in the problem
space.

5. Heuristic Function: The function of a heuristic is to estimate the value or distance
from a given state to the target state. It helps to focus the process on regions or
states that has prospect of achieving the goal.

Applications of Heuristic Search

Heuristic search techniques find application in a wide range of problem-solving
scenarios, including:

1. Pathfinding: Discovery, of the shortest distance that can be found from the start
point to the destination at the point of coordinates or graph.

2. Optimization: Solving the problem of the optimal distribution of resources,
planning or posting to achieve maximum results.

3. Game Playing: The agency of Al with some board games, e.g., chess or Go, is
on giving guidance and making strategy-based decisions to the agents.

4. Robotics: Scheduling robots™ location and movement to guide carefully
expeditions and perform given tasks with high efficiency.

5. Natural Language Processing: Language processing tasks involving search
algorithms, such as parsing or semantic analysis, should be outlined. That
means.

Advantages of Heuristic Search Techniques
Heuristic search techniques offer several advantages:

1. Efficiency: As they are capable of aggressively digesting large areas for the
more promising lines, they can allot more time and resources to investigate the
area.

2. Optimality: If the methods that an algorithm uses are admissible, A* guarantees
of an optimal result.

3. Versatility: Heuristic search methods encompass a spectrum of problems that
are applied to various domains of problems.

Limitations of Heuristic Search Techniques

1. Heuristic Quality: The power of heuristic search strongly depends on the quality
of function the heuristic horizon. If the heuristics are constructed thoughtlessly,
then their level of performance may be low or inefficient.

2. Space Complexity: The main requirement for some heuristic search algorithms
could be a huge memory size in comparison with the others, especially in cases
where the search space considerably increases.

3. Domain-Specificity: It is often the case that devising efficient heuristics depends
on the specifics of the domain, a challenging obstruction to development of
generic approaches.

Informed Search Algorithms
Greedy-Best-first search algorithm

Greedy Best-First Search is an Al search algorithm that attempts to find the most
promising path from a given starting point to a goal. It prioritizes paths that appear to be
the most promising, regardless of whether or not they are actually the shortest path.
The algorithm works by evaluating the cost of each possible path and then expanding
the path with the lowest cost. This process is repeated until the goal is reached.

The algorithm works by using a heuristic function to determine which path is the most
promising. The heuristic function takes into account the cost of the current path and the
estimated cost of the remaining paths. If the cost of the current path is lower than the
estimated cost of the remaining paths, then the current path is chosen. This process is
repeated until the goal is reached.

Working of Greedy Best-First Search

o Greedy Best-First Search works by evaluating the cost of each possible path and
then expanding the path with the lowest cost. This process is repeated until the
goal is reached.

o The algorithm uses a heuristic function to determine which path is the most
promising.

e The heuristic function takes into account the cost of the current path and the
estimated cost of the remaining paths.

o If the cost of the current path is lower than the estimated cost of the remaining
paths, then the current path is chosen. This process is repeated until the goal is
reached.

Example :

An example of the best-first search algorithm is below graph, suppose we
have to find the path from A to G

Start

Best-First Search algorithm 5

1) We are starting from A , so from A there are direct path to node B(with heuristics
value of 32), from A to C (with heuristics value of 25) and from A to D(with heuristics
value of 35) .

2) So as per best first search algorithm choose the path with lowest heuristics value ,
currently C has lowest value among above node . So we will go from A to C.

Best-First Search algorithm o5

3) Now from C we have direct paths as C to F(with heuristics value of 17) and C to E(
with heuristics value of 19) , so we will go from C to F.

Best-First Search algorithm o6

4) Now from F we have direct path to go to the goal node G (with heuristics value of 0)
, S0 we will go from F to G.

Best-First Search algorithm =2

5) So now the goal node G has been reached and the path we will follow is A->C->F-

>G.

Advantages of Greedy Best-First Search:

Simple and Easy to Implement: Greedy Best-First Search is a relatively
straightforward algorithm, making it easy to implement.

Fast and Efficient: Greedy Best-First Search is a very fast algorithm, making it
ideal for applications where speed is essential.

Low Memory Requirements: Greedy Best-First Search requires only a small
amount of memory, making it suitable for applications with limited memory.

Flexible: Greedy Best-First Search can be adapted to different types of problems
and can be easily extended to more complex problems.

Efficiency: If the heuristic function used in Greedy Best-First Search is good to
estimate, how close a node is to the solution, this algorithm can be a very
efficient and find a solution quickly, even in large search spaces.

Disadvantages of Greedy Best-First Search:

Inaccurate Results: Greedy Best-First Search is not always guaranteed to find
the optimal solution, as it is only concerned with finding the most promising path.

Local Optima: Greedy Best-First Search can get stuck in local optima, meaning
that the path chosen may not be the best possible path.

Heuristic Function: Greedy Best-First Search requires a heuristic function in
order to work, which adds complexity to the algorithm.

Lack of Completeness: Greedy Best-First Search is not a complete algorithm,
meaning it may not always find a solution if one is exists. This can happen if the
algorithm gets stuck in a cycle or if the search space is a too much complex.

Applications of Greedy Best-First Search:

Pathfinding: Greedy Best-First Search is used to find the shortest path between
two points in a graph. It is used in many applications such as video games,
robotics, and navigation systems.

Machine Learning: Greedy Best-First Search can be used in machine learning
algorithms to find the most promising path through a search space.

Optimization: Greedy Best-First Search can be used to optimize the parameters
of a system in order to achieve the desired result.

o« Game Al: Greedy Best-First Search can be used in game Al to evaluate potential
moves and chose the best one.

o Navigation: Greedy Best-First Search can be use to navigate to find the shortest
path between two locations.

e Natural Language Processing: Greedy Best-First Search can be use in natural
language processing tasks such as language translation or speech recognisation
to generate the most likely sequence of words.

e Image Processing: Greedy Best-First Search can be use in image processing to
segment image into regions of interest.

A* Search Algorithm

A* (pronounced "A-star") is a powerful graph traversal and pathfinding algorithm widely
used in artificial intelligence and computer science. It is mainly used to find the shortest
path between two nodes in a graph, given the estimated cost of getting from the current
node to the destination node. The main advantage of the algorithm is its ability to
provide an optimal path by exploring the graph in a more informed way compared to
traditional search algorithms such as Dijkstra's algorithm.

Algorithm A* combines the advantages of two other search algorithms: Dijkstra's
algorithm and Greedy Best-First Search. Like Dijkstra's algorithm, A* ensures that the
path found is as short as possible but does so more efficiently by directing its search
through a heuristic similar to Greedy Best-First Search. A heuristic function, denoted
h(n), estimates the cost of getting from any given node n to the destination node

The main idea of A* is to evaluate each node based on two parameters:

1. g(n): the actual cost to get from the initial node to node n. It represents the sum
of the costs of node n outgoing edges.

2. h(n): Heuristic cost (also known as "estimation cost") from node n to destination
node n. This problem-specific heuristic function must be acceptable, meaning it
never overestimates the actual cost of achieving the goal. The evaluation
function of node n is defined as f(n) = g(n) h(n).

Working of AO* algorithm:

The evaluation function in AO* looks like this:
f(n) = g(n) + h(n)

f(n) = Actual cost + Estimated cost

here,

f(n) = The actual cost of traversal.

g(n) = the cost from the initial node to the current node.
h(n) = estimated cost from the current node to the goal state.

Algorithm A* selects the nodes to be explored based on the lowest value of f(n),
preferring the nodes with the lowest estimated total cost to reach the goal. The A*
algorithm works:

1. Create an open list of foundbut not explored nodes.
2. Create a closed list to hold already explored nodes.
3. Add a startingnode to the open list with an initial value of g

4. Repeat the following steps until the open list is empty or you reachthe target

node:
a. Find the node with the smallest f-value (i.e., the node with the minor g(n) h(n)) in
the open list.
b. Move the selected node from the open list to the closed list.
C. Createall valid descendantsof the selected node.
d. For each successor, calculateits g-value as the sum of the current node's g value

and the cost of movingfrom the current node to the successor node. Update the g-value
of the tracker when a better path is found.

e. If the followeris not in the open list, add it with the calculated g-value and
calculate its h-value. If it is already in the open list, update its g value if the new path is
better.

f. Repeat the cycle. Algorithm A* terminates when the target node is reached or
when the open list empties, indicating no paths from the start node to the target node.
The A* search algorithm is widely used in various fields such as robotics, video games,
network routing, and design problems because it is efficient and can find optimal paths
in graphs or networks.

Advantages of A* Search Algorithm

1. Optimal solution: A* ensures finding the optimal (shortest) path from the start
node to the destination node in the weighted graph given an acceptable heuristic
function. This optimality is a decisive advantage in many applications where
finding the shortest path is essential.

2. Completeness: If a solution exists, A* will find it, provided the graph does not
have an infinite cost This completeness property ensures that A* can take
advantage of a solution if it exists.

3. Efficiency: A*is efficient ifan efficient and acceptable heuristic function is used.
Heuristics guide the search to a goal by focusing on promising paths and
avoiding unnecessary exploration, making A* more efficient than non-aware
search algorithms such as breadth-first search or depth-first search.

4. Versatility: A* is widely applicable to variousproblem areas, including
wayfinding, route planning, robotics, game development, and more. A* can be
used to find optimal solutions efficiently as long as a meaningful heuristic can be
defined.

5. Optimized search: A* maintains a priority order to select the nodes with the
minor f(n) value (g(n) and h(n)) for expansion. This allows it to explore promising
paths first, which reduces the search space and leads to faster convergence.

6. Memory efficiency: Unlike some other search algorithms, such as breadth-first
search, A* stores only a limited number of nodes in the priority queue, which
makes it memory efficient, especially for large graphs.

7. Tunable Heuristics: A*'s performancecan be fine-tuned by selecting different
heuristic functions. More educated heuristics can lead to faster convergence and
less expanded nodes.

8. Extensively researched: A* is a well-established algorithm with decades of
research and practical applications. Many optimizations and variations have been
developed, making it a reliable and well-understood troubleshooting tool.

9. Web search: A* can be used for web-based path search, where the algorithm
constantly updates the path according to changes in the environment or the
appearance of new It enables real-time decision-making in dynamic scenarios.

Disadvantages of A* Search Algorithm

1. Heuristic accuracy: The performance of the A* algorithm depends heavily on
the accuracy of the heuristic function used to estimate the cost from the current
node to the If the heuristic is unacceptable (never overestimates the actual cost)
or inconsistent (satisfies the triangle inequality), A* may not find an optimal path
or may explore more nodes than necessary, affecting its efficiency and accuracy.

2. Memory usage: A* requires that all visited nodes be kept in memory to keep
track of explored paths. Memory usage can sometimes become a significant

Issue, especially when dealing with an ample search space or limited memory
resources.

. Time complexity: AlthoughA* is generally efficient, its time complexity can be a
concern for vast search spaces or graphs. In the worst case, A* can take
exponentially longer to find the optimal path if the heuristic is inappropriate for the
problem.

Bottleneck at the destination: In specific scenarios, the A* algorithm needs to
explore nodes far from the destination before finally reaching the destination
region. This the problem occurs when the heuristic needs to direct the search to
the goal early effectively.

. Cost Binding: A* faces difficulties when multiple nodes have the same f-value
(the sum of the actual cost and the heuristic cost). The strategy used can affect
the optimality and efficiency of the discovered path. If not handled correctly, it
can lead to unnecessary nodes being explored and slow down the algorithm.

. Complexity in dynamic environments: In dynamic environments where the
cost of edges or nodes may change during the search, A* may not be suitable
because it does not adapt well to such changes. Reformulation from scratch can
be computationally expensive, and D* (Dynamic A*) algorithms were designed to
solve this

Perfection in infinite space : A* may not find a solution in infinite state space. In
such cases, it can run indefinitely, exploring an ever-increasing number of nodes
without finding a solution. Despite these shortcomings, A* is still a robust and
widely used algorithm because it can effectively find optimal paths in many
practical situations if the heuristic function is well-designed and the search space
is manageable. Various variations and variants of A* have been proposed to
alleviate some of its limitations.

Pathfinding in Games: A* is oftenused in video games for character movement,
enemy Al navigation, and finding the shortest path from one location to another
on the game map. Its ability to find the optimal path based on cost and heuristics
makes it ideal for real-time applications such as games.

Robotics and Autonomous Vehicles: A* is used in robotics and autonomous
vehicle navigation to plan anoptimal route for robots to reach a destination,
avoiding obstacles and considering terrain costs. This is crucial for efficient and
safe movement in natural environments.

10. Maze solving: A* can efficiently find the shortest path through a maze, making it
valuable in many maze-solving applications, such as solving puzzles or navigating
complex structures.

11. Route planningand navigation: In GPS systems and mapping applications, A*
can be used to find the optimal route between two points on a map, considering
factors such as distance, traffic conditions, and road network topology.

12. Puzzle-solving: A* can solve various diagram puzzles, such as sliding puzzles,
Sudoku, and the 8-puzzle problem. Resource Allocation: In scenarios where
resources must be optimally allocated, A* can help find the most efficient

allocation path, minimizing cost and maximizing efficiency.

13. Network Routing: A* can be usedin computer networks to find the most
efficient route for data packets from a source to a destination node.

14. Natural Language Processing (NLP): In some NLP tasks, A* can generate
coherent and contextualresponses by searching for possible word sequences
based on their likelihood and relevance.

15. Path planningin robotics: A* can be used to plan the path of a robot from one
point to another, considering various constraints, such as avoiding obstacles or
minimizing energy consumption.

16. Game Al: A* is also used to makeintelligent decisions for non-player characters
(NPCs), such as determining the best way to reach an objective or coordinate
movements in a team-based game.

AO* Algorithm

The AO* method divides any given difficult problem into a smaller group of problems
that are then resolved using the AND-OR graph concept. AND OR graphs are
specialized graphs that are used in problems that can be divided into smaller problems.
The AND side of the graph represents a set of tasks that must be completed to achieve
the main goal, while the OR side of the graph represents different methods for
accomplishing the same main goal.

The start state and the target state are already known in the knowledge-based search
strategy known as the AO* algorithm, and the best path is identified by heuristics. The
informed search technique considerably reduces the algorithm’s time complexity. The
AO* algorithm is far more effective in searching AND-OR trees than the A* algorithm.

Working of AO* algorithm:

The evaluation function in AO* looks like this:
f(n) =g(n) + h(n)
f(n) = Actual cost + Estimated cost
here,
f(n) = The actual cost of traversal.
g(n) = the cost from the initial node to the current node.
h(n) = estimated cost from the current node to the goal state.

Example

Start

Here in the above example below the Node which is given is the heuristic value
i.e h(n). Edge length is considered as 1.

Step 1

Start

With help of f(n) = g(n) + h(n) evaluation function,

Start from node A,
f(A-»B) = g(B) + h(B)
=1 +5 .. here g(n)=1 is taken by default for path cost

=6

f(A->C+D) = g(c) + h(c) + g(d) + h(d)

=1+2+1+4 ... here we have added C & D because they are in
AND

=8
So, by calculation A-»B path is chosen which is the minimum path, i.e f(A-»B)

Step 2

Start

According to the answer of step 1, explore node B

Here the value of E & F are calculated as follows,

f(B-»E) = g(e) + h(e)
fB-»E)=1+7

=8

f(B--f) = g(f) + h(f)
f(B-»f)=1+9
=10
So, by above calculation B-»E path is chosen which is minimum path, i.e f(B-»>E)
because B's heuristic value is different from its actual value The heuristic is

updated and the minimum cost path is selected. The minimum value in our situation is
8.

Therefore, the heuristic for A must be updated due to the change in B's heuristic.

So we need to calculate it again.

f(A-»B) = g(B) + updated h(B)
=1+8
=9
We have Updated all values in the above tree.

Step 3

Start

9 O 0 0
¢ 3 . Solved

By comparing f(A-»B) & f(A->C+D)

f(A-—>C+D) is shown to be smaller.i.e 8 <9

Now explore f(A->C+D)

So, the current node is C

f(C-»G) = g(9) + h(9)
f(C-G)=1+3

=4

f(C-»>H+I1) = g(h) + h(h) + g(i) + h(i)

f(C»H+)=1+0+1+0 ... here we have added H & | because they are in
AND

=2

f(C--»H+I) is selected as the path with the lowest cost and the heuristic is also left
unchanged

because it matches the actual cost. Paths H & | are solved because the heuristic for
those pathsis 0,

but Path A-»D needs to be calculated because it has an AND.

f(D->J) = g(j) + h(j)
f(D-»>J)=1+0
=1

the heuristic of node D needs to be updated to 1.

f(A->C+D) = g(c) + h(c) + g(d) + h(d)
=1+2+1+1

=5

as we can see that path f(A->C+D) is get solved and this tree has become a solved tree
now.

In simple words, the main flow of this algorithm is that we have to find firstly level 1st
heuristic

value and then level 2nd and after that update the values with going upward means
towards the root node.

In the above tree diagram, we have updated all the values.

Best First Search

In BFS and DFS, when we are at a node, we can consider any of
the adjacent as the next node. So both BFS and DFS blindly
explore paths without considering any cost function.

The idea of Best First Search is to use an evaluation function to
decide which adjacent is most promising and then explore.

Best First Search falls under the category of Heuristic Search or
Informed Search.

Example

Best First Search (Informed Search) o5

https://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

o We start from source “S” and search for goal “I” using given costs and Best First
search.

o Priority Queue(pq) initially contains S
o Weremove S from pqg and process unvisited neighbors of S to pg.

o pq now contains {A, C, B} (C is put before B because C has lesser cost)

« We remove A from pg and process unvisited neighbors of A to pg.

o pqg now contains {C, B, E, D}

« We remove C from pq and process unvisited neighbors of C to pq.

o Ppg now contains {B, H, E, D}

« We remove B from pg and process unvisited neighbors of B to pq.
o pq now contains {H, E, D, F, G}

e« We remove H from pq.

“l”

e Since our goal “I” is a neighbor of H, we return.

Game Search

Game Playing is an important domain of artificial intelligence. Games don’t require
much knowledge; the only knowledge we need to provide is the rules, legal moves and
the conditions of winning or losing the game. Both players try to win the game. So, both
of them try to make the best move possible at each turn. Searching techniques like
BFS(Breadth First Search) are not accurate for this as the branching factor is very high,
so searching will take a lot of time. So, we need another search procedures that
improve —

e Generate procedure so that only good moves are generated.
e Test procedure so that the best move can be explored first.

Game playing is a popular application of artificial intelligence that involves the
development of computer programs to play games, such as chess, checkers, or Go.
The goal of game playing in artificial intelligence is to develop algorithms that can learn
how to play games and make decisions that will lead to winning outcomes.

1. One of the earliest examples of successful game playing Al is the chess program
Deep Blue, developed by IBM, which defeated the world champion Garry
Kasparov in 1997. Since then, Al has been applied to a wide range of games,
including two-player games, multiplayer games, and video games.

There are two main approaches to game playing in Al, rule-based systems and machine
learning-based systems.

1. Rule-based systems use a set of fixed rules to play the game.

2. Machine learning-based systems use algorithms to learn from experience and
make decisions based on that experience.

Types of Games in Al:

Deterministic Chance Moves
Perfect information Chess, Checkers, go, Othello Backgammon, monopoly
Imperfect information Battleships, blind, tic-tac-toe Bridge, poker, scrabble, nuclear war

Formalization of the problem:

A game can be defined as a type of search in Al which can be formalized of the
following elements:

o Initial state: It specifies how the game is set up at the start.
o Player(s): It specifies which player has moved in the state space.
o Action(s): It returns the set of legal moves in state space.

o Result(s, a): It is the transition model, which specifies the result of moves in the
state space.

o Terminal-Test(s): Terminal test is true if the game is over, else it is false at any
case. The state where the game ends is called terminal states.

o Utility(s, p): A utility function gives the final numeric value for a game that ends in
terminal states s for player p. It is also called payoff function. For Chess, the
outcomes are a win, loss, or draw and its payoff values are +1, 0, %. And for tic-
tac-toe, utility values are +1, -1, and 0.

Game tree:

A game tree is a tree where nodes of the tree are the game states and Edges of the
tree are the moves by players. Game tree involves initial state, actions function, and
result Function.

Example: Tic-Tac-Toe game tree:

The following figure is showing part of the game-tree for tic-tac-toe game. Following are
some key points of the game:

o There are two players MAX and MIN.
o Players have an alternate turn and start with MAX.
o MAX maximizes the result of the game tree

o MIN minimizes the result.

MAX (x)
3 X X =
3 X X
MIN (0) - - -
x|0 x| 0] X
MAX (X) ese
B4 [ES i [1]
MIN (0) 11 & e
YY) 'Y T e
Ol x X.{I'X EDK 'R]
TERMINAL X olo]x X
1ol | xXlol EIOIo
Utility -1 0 +1

Example Explanation:

o From the initial state, MAX has 9 possible moves as he starts first. MAX place x
and MIN place o, and both player plays alternatively until we reach a leaf node
where one player has three in a row or all squares are filled.

Both players will compute each node, minimax, the minimax value which is the
best achievable utility against an optimal adversary.

Suppose both the players are well aware of the tic-tac-toe and playing the best
play. Each player is doing his best to prevent another one from winning. MIN is
acting against Max in the game.

So in the game tree, we have a layer of Max, a layer of MIN, and each layer is
called as Ply. Max place x, then MIN puts o to prevent Max from winning, and
this game continues until the terminal node.

In this either MIN wins, MAX wins, or it's a draw. This game-tree is the whole
search space of possibilities that MIN and MAX are playing tic-tac-toe and taking
turns alternately.

For a state 5 MINIMAX(s) =

UTILITY(s) If TERMINAL-TEST(s)
MaXaeactions(s) MINIMAX(RESULT(s, a)) If PLAYER(s) = MAX

Minaeactions(s) MINIMAX(RESULT(s, a)) If PLAYER(s) = MIN.

	The Algorithm
	Advantages of Random Search
	Applications of DFS algorithm
	Algorithm
	Complexity of Depth-first search algorithm

	Breadth First Search algorithm
	Applications of BFS algorithm
	Algorithm
	Example of BFS algorithm
	Complexity of BFS algorithm
	Heuristic Search
	Components of Heuristic Search

	Informed Search Algorithms
	An example of the best-first search algorithm is below graph, suppose we have to find the path from A to G

	A* Search Algorithm
	Working of AO* algorithm:
	Advantages of A* Search Algorithm
	Disadvantages of A* Search Algorithm
	Types of Games in AI:

