What are Functional Requirements?

These are the requirements that the end user specifically demands as basic
facilities that the system should offer. All these functionalities need to be

necessarily incorporated into the system as a part of the contract.
e These are represented or stated in the form of input to be given to
the system, the operation performed and the output expected.
e They are the requirements stated by the user which one can see

directly in the final product, unlike the non-functional requirements.

Examples:
e What are the features that we need to design for this system?

e What are the edge cases we need to consider, if any, in our design?

W hat are Non-Functional Requirements?

These are the quality constraints that the system must satisfy according to
the project contract. The priority or extent to which these factors are
implemented varies from one project to another. They are also called

non-behavioral requirements. They deal with issues like:
e Portability
e Security
e Maintainability
e Reliability
e Scalability

e Performance

https://www.geeksforgeeks.org/system-design/reliability-in-system-design/

e Reusability

e Flexibility

Examples:
e FEach request should be processed with the minimum latency?

e System should be highly available.

What are Extended Requirements?

These are basically "nice to have" requirements that might be out of the
scope of the System.

Example:
e Our system should record metrices and analytics.

e Service heath and performance monitoring.

Examples of Functional and Non-functional

Requirements

Let's consider a couple of examples to illustrate both types of requirements:

1. Online Banking System

1. Functional Requirements:

e Users should be able to log in with their username and password.
e Users should be able to check their account balance.

e Users should receive notifications after making a transaction.

2. Non-functional Requirements:

e The system should respond to user actions in less than 2 seconds.

e All transactions must be encrypted and comply with industry
security standards.

e The system should be able to handle 100 million users with minimal

downtime.

2. Food Delivery App

1. Functional Requirements

e Users can browse the menu and place an order.

e Users can make payments and track their orders in real time.

2. Non-functional Requirements:

e The app should load the restaurant menu in under 1 second.

e The system should support up to 50,000 concurrent orders during
peak hours.

e The app should be easy to use for first-time users, with an intuitive

interface.

Differences between Functional Requirements and

Non-Functional Requirements:

Below are the differences between Functional Requirements and

Non-Functional Requirements:

Functional
Aspect .
Requirements

Describes what the
. system should do, i.e.,
Definition B]
specific functionality or

tasks.

Focuses on the behavior
Purpose and features of the

system.

Defines the actions and
Scope operations of the

system.

Non-Functional

Requirements

Describes how the
system should perform,
i.e., system attributes or

quality.

Focuses on the
performance, usability,
and other quality
attributes.

Defines constraints or
conditions under which

the system must operate.

Examples

Measurement

Impact on
Development

Focus on User
Needs

User authentication,
data input/output,
transaction processing.

Easy to measure in
terms of outputs or

results.

Drives the core design
and functionality of the
system.

Directly related to user
and business

requirements.

Scalability, security,
response time, reliability,

maintainability.

More difficult to
measure, often assessed

using benchmarks or
SLAs.

Affects the architecture
and overall performance

of the system.

Focuses on user
experience and system

performance.

Typically documented in
Documentation use cases, functional

specifications, etc.

Can be tested through

Evaluation functional testing (e.g.,
unit or integration tests).

Determines what the
Dependency system must do to meet

user needs.

Documented through
performance criteria,
technical specifications,
etc.

Evaluated through
performance testing,
security testing, and

usability testing.

Depends on how well
the system performs the

required tasks.

How to Gather Functional and Non-functional

Requirements

Gathering requirements involves multiple approaches and collaboration

between the development team, stakeholders, and end-users:

1. Functional Requirements:

e Interviews: Talk to stakeholders or users to understand their needs.

e Surveys: Distribute questionnaires to gather input from a larger
audience.

e Workshops: Host sessions to brainstorm features and gather

feedback.

2. Non-functional Requirements:

e Performance Benchmarks: Consult with IT teams to set
expectations for performance and load.

e Security Standards: Consult with security experts to define the best
practices for data protection.

e Usability Testing: Test the system to find areas where users might

struggle and refine the interface.

Importance of Balancing Both Functional and

Non-Functional Requirements

As functional and non-functional requirements address distinct but equally
significant components of the system, it is essential that they be balanced in

system design. Here's why balancing them is essential:

e Improves User Experience: A system that functions but is slow,
unresponsive, or challenging to operate could be the consequence

of concentrating only on the functional requirements. Usability,

performance, and availability are examples of non-functional criteria
that have a big influence on how users interact with the system and
how satisfied they are.

Enhances System Performance: Scalability, dependability, and
security are examples of non-functional features that guarantee the
system operates effectively in real-world situations. Failure may
ensue from a system that satisfies functional requirements but is
unable to scale or manage a high user volume. By keeping these in
balance, the system is guaranteed to function properly.

Prevents Bottlenecks and Failures: Systems that function well but
lack security or dependability are more likely to experience
malfunctions, breaches, or outages. The system is made more robust
and less vulnerable to bottlenecks by taking non-functional criteria
into account.

Reduces Long-Term Costs: Systems designed with only functional
requirements in mind often encounter scalability and maintainability
issues as they grow. Addressing non-functional requirements early
on prevents costly changes, re-architecting, or performance
enhancements later.

Supports System Evolution: Non-functional requirements such as
maintainability and extensibility make future updates, feature

additions, and system scaling easier and less disruptive. This

balance ensures that the system can evolve and adapt over time

without significant hurdles.

Common Challenges in Defining these Requirements

Defining both functional and non-functional requirements in system design
can be challenging due to several factors. Here are some common

challenges:

e Ambiguity in Requirements: Requirements are often unclear,
making it difficult to interpret what the system should do
(functional) and how it should perform (non-functional).

e Changing Requirements: As projects evolve, functional and
non-functional requirements often change due to shifting business
goals, market trends, or user needs.

e Difficulty in Prioritization: Deciding which functional and
non-functional requirements are most important is often difficult.
Functional needs can overshadow non-functional ones, such as
security or scalability.

e Measuring Non-Functional Requirements: Functional requirements
are often straightforward to test, but non-functional requirements
like usability, scalability, and reliability are harder to measure and

validate.

e Overlapping or Conflicting Requirements: Sometimes, functional
and non-functional requirements can overlap or conflict. For
example, adding complex security features (non-functional) might

slow down the performance (another non-functional requirement).

User Requirements

User requirements define what users need from an application or software to
solve a problem or achieve an objective. These requirements are typically
expressed in natural language and focus on the user's perspective, outlining

the desired functionality and features of the software.
Key Characteristics of User Requirements:
User-centric:

User requirements focus on the needs and expectations of the people who

will be using the software.
High-level:
They are generally described at a high level, avoiding technical details.

Clear and Unambiguous:

Requirements should be easy to understand and interpret, avoiding

confusion.

Specific, Measurable, Achievable, Relevant, and Time-bound (SMART):

Good user requirements are specific, measurable, achievable, relevant, and
time-bound, meaning they are clear, can be tested, realistic, aligned with

business goals, and have deadlines.

Examples:

Functionality: A user might need to be able to search for items by name,

filter results by category, and sort them by price.

Data: The software should store user profiles, product information, and

transaction details.

Security: Users should be able to log in securely and have their data

protected.

Performance: Search results should be returned within a reasonable time.

Distinction between User Requirements and System Requirements:

User Requirements: Focus on what the user needs from the system.

System Requirements: Focus on the technical specifications of the system
itself, such as hardware, software, and infrastructure needed to run the

application.

User Requirements Specification (URS):

A URS document outlines the business needs and what users require from

the system.

It is typically written early in the validation process, before the system is

created.

The URS is not intended to be a technical document; it should be

understandable by those with a general knowledge of the system.

System Requirements

System requirements refer to the specifications needed for a software
application,game, or any digital tool to operate efficiently on a computer system. These
requirements can encompass a broad range of components, including hardware,
software, and connectivity aspects. Meeting these requirements ensures that the

software runs smoothly without performance issues or compatibility problems.

System requirements are typically divided into two categories: minimum and
recommended. The minimum requirements indicate the least capable hardware and
software setup on which the software can run. This setup might allow the software to
function but not necessarily at optimal performance levels. The recommended
requirements provide a specification that ensures a smooth and optimal user

experience, offering better performance, stability, and overall functionality.

Importance of System Requirements

Properly defined system requirements are crucial for several reasons:

e Optimal Performance - Ensuring that the system meets the necessary
requirements helps in achieving the best possible performance for the
software. For example, a graphics-intensive game like "PhotoMaster Pro"
requires a powerful GPU and sufficient RAM to render high-quality images and
effects smoothly.

e User Experience - Adequate system requirements contribute to a seamless
and enjoyable user experience, reducing frustration due to lagging or crashing
applications. If users encounter frequent performance issues, they are likely to
become frustrated and dissatisfied with the software.

e Compatibility - System requirements ensure that the software is compatible
with the user's hardware and operating system, preventing installation and
execution issues. Compatibility checks help in avoiding scenarios where the
software might not launch or function incorrectly due to incompatible
environments.

e Resource Planning - For businesses and IT departments, understanding
system requirements aids in planning and allocating resources effectively,
avoiding unnecessary expenses on incompatible or inadequate hardware. This
is particularly important for large-scale deployments where the cost of

hardware upgrades can be substantial.

Types of System Requirements

System requirements can be broadly categorized into three main types: hardware
requirements, software requirements, and connectivity requirements. Each of these
categories addresses different aspects of the system's configuration necessary to

support the software.

Hardware Requirements

Hardware requirements define the physical components needed to run the software.

These typically include:

e Architecture - The type of processor architecture (e.g., x86, x64) that the
software supports. Different software might require specific architectures to
leverage certain features or optimizations.

e Processing Power - The minimum and recommended CPU specifications, such
as the number of cores and clock speed. High-performance applications, such
as video editing tools, require powerful processors to handle complex
computations efficiently.

e Memory - The amount of RAM required for the software to run efficiently, with
specifications for both minimum and recommended memory. More RAM allows
the software to handle larger datasets and multitask more effectively.

e Storage - The amount of disk space needed for installation and operation,
often including both minimum and recommended storage capacities. Storage
requirements also consider the type of storage, such as SSDs for faster
read/write speeds compared to traditional HDDs.

e Display Adapter - Specifications for the graphics card, including GPU model,
VRAM, and supported features like DirectX or OpenGL versions. For gaming
and graphic design software, a robust GPU is essential to render graphics

smoothly.

e Peripherals - Additional hardware components required, such as keyboards,
mice, or VR headsets. Specialized peripherals might be necessary for certain
types of software, like gaming controllers or drawing tablets for digital art

applications.

Software Requirements

Software requirements define the necessary software environment for the application to

function properly. These include:

e Operating System - The compatible operating systems (e.g., Windows,
macOS, Linux) and specific versions required. Different operating systems
have different capabilities and limitations, affecting software performance and
compatibility.

e APIs - Required application programming interfaces (APIs) such as DirectX,
Vulkan, or OpenGL. APIs enable software to interface with hardware and other
software components effectively.

e Drivers - Necessary drivers for hardware components, particularly for graphics
cards and other peripherals. Updated drivers ensure that hardware
components function correctly and efficiently with the software.

e Web Browser - Specific web browser versions needed if the application relies
on web-based technologies or components. Web-based applications might
require modern browsers that support the latest web standards.

e Runtime Environments - Any additional runtime environments or frameworks
required, such as Java, .NET, or Python. These environments provide the

necessary runtime support for executing software applications.

Connectivity Requirements

Connectivity requirements specify the network-related conditions necessary for the

software to operate, particularly for online applications or games. These include:

e Connection Type - The type of network connection needed, such as Wi-Fi,
wired Ethernet, or wireless. The connection type can affect the stability and
speed of data transmission.

e Speed - Minimum and recommended internet connection speeds for optimal
performance, particularly for online multiplayer games or cloud-based
applications. Higher speeds ensure low latency and faster data transfers.

e Protocols Supported - Network protocols that the software must support, such
as TCP/IP, HTTP/HTTPS, or FTP. These protocols facilitate communication

and data exchange over the network.
Interface Requirements

Interface specification, in the context of software development and computer systems,
refers to a detailed description or set of rules that define how different software

components or modules should interact with each other.

It acts as a contract or agreement that ensures seamless communication and

integration between various parts of a software system.

In simpler terms, an interface specification outlines the rules and guidelines for how
different parts of a software application should “talk” to each other, exchange data, and
cooperate to perform specific tasks. These interfaces can be between software
modules, software and hardware components, or even between different software

systems.

Types of interface specification-

There are three types of Interface specification:

1) Procedural interfaces.
2) Data structures.

3) Representations of data

Procedural interface-

Procedural interfaces where existing programs or sub-systems offer a range
of services that are accessed by calling interface procedures. In simple words
it is used for calling the existing programs by the new programs These

interfaces are sometimes called Application Programming Interfaces (APLs).

Data Structure-

Data structures have been passed from one sub-system to another. Graphical

data models are the best notations for this type of description.

Representation of data-

Representations of data (such as the ordering of bits) have been established
for an existing sub-system. These interfaces are most common in embedded,
real-time systems. Some programming languages such as Ada (although not

Java) support this level of Specifications

Key Points about Interface Specification

Standardization : Interface specifications standardize the communication
between components, making it easier for developers to understand how to

interact with other parts of the system.

Abstraction : Interfaces hide the implementer on details of a component,
allowing other parts of the system to interact with it without needing to

know the internal complexities.

Flexibility : By defining clear interfaces, components can be easily replaced
or upgraded without affecting other parts of the system, as long as they

adhere to the same interface specification.

Requirement Engineering Process

Requirement Engineering is a fundamental process in software development
that focuses on understanding, documenting, validating, and managing the
needs and constraints of stakeholders to ensure the successful development
of a software system. The process typically consists of several steps to
ensure that the final software product meets the needs and expectations of

the users and stakeholders.

Requirement Engineering Process

Requirements Elicition |
and Analysis

Feasability Study —»

Feasability - Requirements
Report Specification
System Models :
Requ'lren?ents
Validation
User and System
Requirements
» (Requirements
> Document

1.Feasibility Study: This is the initial phase of the requirement engineering

A

process. It involves evaluating the feasibility of the proposed software

project. The main objective is to determine whether the project is technically,
economically, and operationally viable. During this phase, the following

aspects are considered:

o Technical Feasibility: Can the proposed system be developed
with the available technology and resources?

o Economic Feasibility: |Is the project economically viable in terms
of cost and benefits?

o Operational Feasibility: Will the system work effectively within

the existing organizational structure and processes?

2. Requirement Elicitation and Analysis: This phase involves gathering and
analyzing requirements from stakeholders, including users, customers, and
domain experts. The goal is to understand the needs of the system and
translate them into specific software requirements. This process involves

several techniques, such as:

o Interviews: Direct communication with stakeholders to gather
information.

o Surveys: Distributing questionnaires to collect opinions and
preferences.

o Workshops: Group sessions to brainstorm and gather

requirements collaboratively.

o Observation: Actively observing users to understand their
workflow and needs.
o Prototyping: Building a preliminary version of the software to

elicit feedback.

Once requirements are gathered, they are analyzed for
consistency, completeness, and feasibility. Conflicts and
ambiguities are resolved, and the requirements are organized into
different categories based on their characteristics (e.g., functional,

non-functional).

3. Software Requirement Specification: In this phase, the gathered and
analyzed requirements are documented formally. The Software Requirement
Specification (SRS) document is created, which serves as a blueprint for the

development process. The SRS includes the following components:

o Functional Requirements: Descriptions of what the system
should do in terms of specific functions and features.

o Non-functional Requirements: Constraints and qualities the
system must possess (e.g., performance, security).

o User Interfaces: Descriptions of how users will interact with the

system.

o Data Requirements: Details about the data the system will store,

process, and manage.

4. Software Requirement Validation: This step involves validating the
documented requirements to ensure they accurately represent the
stakeholders' needs and expectations. The aim is to identify and rectify any
errors or misunderstandings before development begins. Techniques used for

requirement validation include:

o Reviews: Expert reviews and walkthroughs to identify issues in
the SRS.

o Prototyping: Building a working model of the software to validate
requirements.

o Simulation: Simulating the software's behavior to test its

alignment with requirements.

5. Software Requirement Management: Requirement management is an
ongoing process that involves maintaining and tracking changes to
requirements throughout the software development lifecycle. It includes

activities such as:

o Version Control: Managing different versions of the requirements

document.

o Change Control: Managing and documenting changes to
requirements and their impact.

o Traceability: Establishing links between requirements and design,
implementation, and testing.

o Prioritization: Assigning priorities to requirements to guide
development efforts.

o Communication: Ensuring stakeholders are informed about

changes and updates to requirements.

System Modeling

System modelling is a critical process in software engineering and various
other fields that involves creating simplified, abstract representations of
complex systems. The primary purpose of system modelling is to understand,
analyze, and communicate the structure, behaviour, and interactions of a

system.

e System modelling is the process of developing abstract models of a
system, with each model presenting a different view or perspective of
that system

e System modelling may represent a system using graphical notation,

e.g. the Unified Modeling Language (UML).

Graphical Modeling

Graphical modelling is a method of representing information, systems, or
processes using visual elements such as diagrams, charts, graphs, and
symbols. It is a way to convey complex concepts, relationships, and structures

in a more intuitive and visual format.

The following graphical representations (SE Diagrams) are used for system

modelling in software engineering.

1. Activity Diagrams: These diagrams depict the activities and processes
involved in a system or data processing, showing the flow of tasks and
their relationships.

2. Use Case Diagrams: Use case diagrams illustrate the interactions and
relationships between a system and its external environment, typically
representing actors and the actions they can perform.

3. Sequence Diagrams: Sequence diagrams are used to display
interactions and sequences of messages between actors, objects, or
system components over time, illustrating how various parts of a
system work together.

4. Class Diagrams: Class diagrams provide a visual representation of
object classes within a system and the relationships (associations)
between these classes, helping to model the structure of a system.

5. State Diagrams: State diagrams depict how a system responds to
internal and external events, displaying the different states a system or

object can be in and the transitions between these states.

System Models in Software Engineering

From the system perspective, there are four types of models

e Context models

e Interaction models
e Structural models
e Behavioural models

e Model-driven engineering

Context Models

e Definition: Context models provide a high-level representation of a
system’s environment and its interactions with external entities. They
establish the system’s boundaries and illustrate the relationships with
outside entities.

e Example: Consider an automated teller machine (ATM) system. In a
context model, you would depict the ATM as the system, and external
entities could include the bank’s database, bank customers, and the
network. Arrows connecting these entities to the ATM would represent
actions such as “Withdraw Cash” and “Check Balance,” showing the

system'’s interactions with external elements.

Card Reader

Commands Customer Display
and data

Customer Keypad

Display info
Commands
and data

Printout info

. Printout Diepsner
& warnings

Commands
and data
Cash details
& warnings

ControlSystem

Account info

Cash Dispenser

Accounts Database

Context Model for ATM System

cgﬁtema
Patient Record

Systemn
asysterm:s
asystem:s
ME:;EE:;:M Admissions
System System
wsystems
MHC-PMS
wsysterm: asystems
HC Statistics ——— Presaiption
Systemn Systemn
wsystems
Appointments
System

Context Model for Hospital

Interaction Models

Definition: Interaction models focus on the dynamic aspects of a
system by illustrating how its components or entities interact and
exchange data. They often involve diagrams or sequence charts to
represent the flow of information.

Example: In an ATM example, how a user communicates (interacts) with
the ATM (system) to withdraw money. A typical ATM interaction begins
with the user inserting their card, entering their PIN, and selecting a
transaction like a cash withdrawal. The ATM verifies the PIN, checks the
account balance, dispenses cash, and offers the option to print a
receipt. Once the transaction is complete, the user retrieves their cash

and card, ending the interaction.

Unregister

Patient

Receptionist

interaction with the system (use case)

Medical Receptionist

P: Patientinfo D: MHCPMS-DBE AS: Authorization
| | |

Viewinfo (PID) _ | Report (Info, PID, | |
UID) | |

Authorize (Info, |

UID) |
Autharization U

Alt] |
[Authorization OK] Patient Info |

[A.I..I.'lhﬂf[zﬂﬁm Fa”] rror [ND A.[EES_]

I Fo e ?

-+

Sequence Diagram for Interaction

Structural Models

e Definition: Structural models focus on the static aspects of a system,
emphasizing its components, their organization, and their relationships.
They help to define the system'’s architecture.

e Example: This class diagram describes the structure of an ATM system.
Each class has characteristics and functions. The bank class manages
the ATM and can have one or many customers. Each customer can own
zero or many debit cards and one account. The ATM transactions
include both withdrawals and transfers. Each ATM transaction is

modified by the account and identified by the ATM.

Consultant
1
Referred-to
1.*
. 1.* 1.* . 1.* 1| General
Condition Diagnosed- Patient Referrad by | Practitioner
with 1.*
Attends
1.*
Consultation Presaibes Medication
1.* 1.*
1.*
Runs i
a Prescribes Treatment
— 1.*
Hospital
Doctor

Structural

model (class diagram) for patient management system

1 1| Patient

Patient Record

Class Diagram

Behavioural Models

e Definition: Behavioral models describe how a system functions over
time, emphasizing the system’s responses to various inputs or events.
They help in understanding the system’s dynamic behaviour.

e Example: Imagine an elevator system in a building. A behavioural model
would include state diagrams showing how the elevator transitions
between states (e.g., moving, stopping, opening doors, closing doors)
based on user input and sensor data. This illustrates the dynamic

behaviour of the elevator system.

Blood Sugar [Get Sensor) Sensor |/ '- Compute -' | Blood Sugar
Sensor Value Y, Data \Eugar Level LEIIEI
/" Calaulate
Insulin
_ Delivery)
o
Insulin /" Control H‘-I Pump Control | CaFium“::te Insulin
Pump) Pump Y, Commands _Commands Requirement

Activity Diagram for Behavioral Model

Model-driven engineering

Model-driven software engineering provides an approach such that one can
design complex software or system in the form of a model and use that model to
generate a code for the system automatically. As the model is a preferred output
of model-driven software engineering (MDSE) there is no need for engineers to
be concerned with the actual specifics of the execution platform or which

programming language has to be used, there is no need for programming

language details. It allows engineers to think about software at a high level of

abstraction, without being concerned about the implementation.

rrranment

Domain

Prablem Sahing

Solution

Problem

|
&)

Gomeplualmam}n Spe:ul‘-calmn Realization

ReqLIIr&FﬂEF“S Irn lementation
izatherin : |

" n:-senl:s Requuremems ﬂnah«sus Dc—mgn |I'|'|p|ernen|a|||:|r| '
g Model Model Model Model

represerﬂs

Data Model

Definition: Data modeling is the process of creating a visual representation of
either a whole information system or parts of it to communicate connections
between data points and structures.

Types of data models

Conceptual data models

They are also referred to as domain models and offer a big-picture view of what the
system will contain, how it will be organized, and which business rules are involved.
Conceptual models are usually created as part of the process of gathering initial project

requirements.

Time

Conceptual Data Modeling

Sales Store

Product ok

-

Logical data models

They are less abstract and provide greater detail about the concepts and relationships
in the domain under consideration. One of several formal data modeling notation
systems is followed. These indicate data attributes, such as data types and their
corresponding lengths, and show the relationships among entities. Logical data models

don’t specify any technical system requirements.

Time

Logical Data Modeling

Date

Date description

Month

Month description

Year Sales Store

Week Product ID (FK) Store ID

Week description —— o< Store ID (FK) Product description

Date (FK) >0—————————————0< Region

Product Items sold Region name

Product ID Sales amount Created

Product description

Category

Category description

Unit price

Created

Physical data models

They provide a schema for how the data will be physically stored within a database. As
such, they’re the least abstract of all. They offer a finalized design that can be
implemented as a relational database, including associative tables that illustrate the
relationships among entities as well as the primary keys and foreign keys that will be

used to maintain those relationships.

https://www.ibm.com/topics/relational-databases

Dim_Time Physical Data Modeling

Date_ID Inteder
Date_dec Varchar(30)
Month_ID Integer
Month_desc Varchar(30) >|—\
Year Integer Fact_Sales DIM_Store
Week_ID Integer Product_ID Integer Store_ID Integer
Week_desc Varchar(30) o< Store_ID Integer Store_desc Varchar(30)
Date_ID Integer S0————0< Region_ID Integer
DIM_Product Ttems_sold Integer Region_name Varchar(30)
Product_ID Integer Sales_amount Float Created Date
Prod_Dec Varchar(30)
Category ID Integer
>0
Category desc Varchar({30)
Unit_price Float
Created Date
Object Model

In software engineering, an object model represents the structure of a system using
objects, classes, and their relationships. It focuses on the static aspects of a system,
defining the objects, their attributes, operations, and how they interact. Essentially, it's a
blueprint that outlines the key components and their connections within a software

system.

Objects:
These are instances of classes, representing real-world entities or concepts within the
system. For example, in a banking system, objects could be "Account," "Customer," or

"Transaction".

Classes:
These are blueprints for creating objects. They define the attributes (data) and

operations (methods) that objects of that class will possess.

Attributes:
These are characteristics or properties of an object, like a customer's name, account

number, or transaction amount.

Operations (Methods):
These are actions that an object can perform, such as depositing money into an

account or withdrawing funds.

Relationships:
These define how objects interact with each other. Common relationships include:
Association: A general relationship between two classes, like a customer having one or

more accounts.

Aggregation:
A part-of relationship, where one class is composed of other classes, such as a car

being composed of an engine, wheels, etc.

Generalization (Inheritance):
A parent-child relationship where a subclass inherits attributes and operations from a

superclass.

Transport

getSpeed()
getFare()
! v v
Bus Ship Plane
Road transport Water transport Air transport

SCALER

Topres

	What are Functional Requirements?
	What are Non-Functional Requirements?
	What are Extended Requirements?
	Examples of Functional and Non-functional Requirements
	1. Online Banking System
	1. Functional Requirements:
	2. Non-functional Requirements:

	2. Food Delivery App
	1. Functional Requirements
	2. Non-functional Requirements:

	Differences between Functional Requirements and Non-Functional Requirements:
	How to Gather Functional and Non-functional Requirements
	1. Functional Requirements:
	2. Non-functional Requirements:

	Importance of Balancing Both Functional and Non-Functional Requirements
	Common Challenges in Defining these Requirements
	Importance of System Requirements
	Types of System Requirements
	Hardware Requirements
	Software Requirements
	Connectivity Requirements

	Requirement Engineering Process
	System Modeling
	
	Graphical Modeling
	System Models in Software Engineering
	Context Models
	Interaction Models
	
	Structural Models
	Behavioural Models
	Model-driven engineering
	Data Model
	Types of data models
	Conceptual data models
	Logical data models
	Physical data models

	Object Model

