
Software Engineering and Project 
Management – Unit 1

Introduction to Software Engineering and Process Models
Course Code: BTCS402N

Presented by: Juhi Shrivastava
Institution: Shri Vaishnav Vidyapeeth Vishwavidyalaya, 

Indore



The Evolving Role of Software

- Software is essential in all domains: healthcare, defense, 
business, education, entertainment.
- Drives innovation in AI, IoT, robotics, mobile computing, 
and cloud platforms.
- Used in mission-critical systems: avionics, banking, 
nuclear control, etc.
- Software is no longer just a support system; it's a 
strategic asset.
- Increases automation, improves efficiency, enhances 
decision-making.
- Enables digital transformation and competitive 
advantage.



Changing Nature of Software

- Highly distributed and networked (Cloud, 
Microservices).
- Adaptive to change (Agile-friendly).
- Secure, scalable, performance-intensive systems.
- Integration with physical devices (Cyber-physical 
systems).
- Evolving from monolithic to service-oriented 
architectures.
- Focus on real-time processing, personalization, 
and data analytics.



Software Myths** Management 
Myths:

• Adding more people speeds up development.
• Once code is written, the project is finished.
• Customer Myths:
• A general statement is enough to start development.
• Software can be easily modified later.
• Developer Myths:
• We only need to write code that works.
• Requirements don’t change much.
• Reality:
• Late changes are expensive.
• Poor planning leads to project failure.
• Quality assurance must be continuous.
• Speaker Notes: Clarify the impact of myths on project failure. Explain how 

each myth can lead to scope creep, delays, or increased costs.



What is Software Engineering?

• SE is the application of engineering to software development.
• Focuses on structured processes, standards, and best practices.
• Ensures delivery of high-quality software that meets requirements.
• Emphasizes maintainability, scalability, and performance.
• Involves all stages: requirement gathering, design, development, 

testing, maintenance.
• Incorporates team collaboration, documentation, and lifecycle 

management.
• Speaker Notes: Differentiate SE from ad-hoc coding. Show how it 

aligns with principles of traditional engineering disciplines.



Layered Technology in SE

• Quality Focus: Central objective across all phases. 
Influences every decision.

• Process Layer: Defines framework activities like planning, 
coding, testing.

• Methods Layer: Provides step-by-step technical techniques 
(e.g., object-oriented design, testing strategies).

• Tools Layer: CASE tools, IDEs, automated testing tools that 
support methods and improve productivity.

• Speaker Notes: Show how these layers build upon one 
another. Give examples such as JIRA (tool), Scrum (process), 
TDD (method), continuous delivery (quality focus).





Software Process Framework & Umbrella 
Activities** Framework Activities:

• Communication: Gathering and understanding 
requirements.

• Planning: Estimating resources, time, cost.
• Modeling: Creating design representations.
• Construction: Actual coding and testing.
• Deployment: Releasing and maintaining the software.
• Umbrella Activities:
• Software Configuration Management (version control).
• Software Quality Assurance (standards, audits).
• Risk Management (identifying and mitigating risks).
• Technical Reviews (peer reviews, walkthroughs).
• Documentation (user manuals, SRS, design docs).



Capability Maturity Model Integration 
(CMMI)

• Framework to assess and improve software processes.
• Developed by SEI to help organizations improve 

performance.
• Maturity Levels:

– Level 1: Initial – Ad hoc, chaotic processes.
– Level 2: Managed – Basic project management.
– Level 3: Defined – Standardized across organization.
– Level 4: Quantitatively Managed – Metrics-based 

management.
– Level 5: Optimizing – Continuous process improvement.

• Promotes predictability, risk control, and customer 
satisfaction.



Overview of Software Process Models

• Each model offers a unique approach to managing and 
executing projects.

• Waterfall Model: Sequential, phase-based 
development.

• Incremental Model: Delivers small parts (increments) 
over time.

• Spiral Model: Focuses on risk-driven iteration.
• Unified Process: Combines iterative approach with 

UML modeling.
• Agile Models: Focused on collaboration, rapid delivery, 

and customer feedback.



What is the Waterfall Model?



What is the Waterfall Model?

• A linear and sequential software development 
model

• Each phase must be completed before the 
next begins

• Best suited for projects with clearly defined 
requirements

• Emphasizes documentation and planning



Phases of the Waterfall Model

1. Requirements Analysis

2. System Design

3. Implementation (Coding)

4. Testing

5. Deployment

6. Maintenance



Advantages of the Waterfall Model

• Simple to understand and use

• Easy to manage due to its rigidity

• Phases are processed and completed one at a 
time

• Works well for smaller projects with well-
defined requirements



Disadvantages of the Waterfall Model

• Inflexible to changing requirements

• Difficult to go back to any phase once 
completed

• Late discovery of bugs or requirement issues

• Not suitable for complex or long-term projects



When to Use the Waterfall Model

• Projects with fixed and clear requirements

• Projects that require rigorous documentation

• Systems that are not expected to change

• Short-duration and low-complexity projects





• The V-Model, which includes the Verification and 
Validation it is a structural approach to the software 
development. 

Introduction to V-Model

• The V-Model is an extension of the Waterfall Model.

• Also known as the Verification and Validation model.

• Development and testing activities are planned in 
parallel.

• Emphasizes testing in each development phase.



Verification (Left Side of V)
• Requirements Analysis – Understand user needs
• System Design – Define system architecture
• High-Level Design – Outline module interactions
• Low-Level Design – Detail module functionalities
Validation (Right Side of V)
• Unit Testing – Test individual modules
• Integration Testing – Test combined modules
• System Testing – Test complete system functionality
• Acceptance Testing – Test with user requirements



Advantages of V-Model

• Simple and easy to use
• Clear milestones and deliverables
• Testing activities occur early
• Better quality due to early defect detection
Disadvantages of V-Model
• Rigid and inflexible
• Not suitable for iterative development
• High risk if requirements are unclear
• Limited customer involvement once development 

starts



When to Use V-Model

• Requirements are well-defined and fixed

• Projects with no expected changes

• Projects with high reliability needs (e.g., 
medical, defense)



Evolutionary Process Model



• The evolutionary model is based on the concept 
of making an initial product and then evolving the 
software product over time with iterative and 
incremental approaches with proper feedback. 

• In this type of model, the product will go through 
several iterations and come up when the final 
product is built through multiple iterations. 

• The development is carried out simultaneously 
with the feedback during the development. 



• This model has a number of advantages such 
as 

– customer involvement, 

– taking feedback from the customer during 
development, 

– building the exact product that the user wants.

– Because of the multiple iterations, the chances of 
errors get reduced and the reliability and 
efficiency will increase.



Types of Evolutionary Process Models

• Iterative Model

• Incremental Model

• Spiral Model



Iterative Model



• Iterative process starts with a simple 
implementation of a subset of the software 
requirements and iteratively enhances the 
evolving versions until the full system is 
implemented. 

• At each iteration, design modifications are made 
and new functional capabilities are added. 

• The basic idea behind this method is to develop a 
system through repeated cycles (iterative) and in 
smaller portions at a time (incremental).



• Requirements of the complete system are clearly defined 
and understood.

• Major requirements must be defined; however, some 
functionalities or requested enhancements may evolve 
with time.

• There is a time to the market constraint.
• A new technology is being used and is being learnt by the 

development team while working on the project.
• Resources with needed skill sets are not available and are 

planned to be used on contract basis for specific iterations.
• There are some high-risk features and goals which may 

change in the future.



Pros and Cons

• Some working functionality can be developed quickly and early in the life cycle.
• Results are obtained early and periodically.
• Parallel development can be planned.
• Progress can be measured.
• Less costly to change the scope/requirements.
• Testing and debugging during smaller iteration is easy.
• Risks are identified and resolved during iteration; and each iteration is an easily managed 

milestone.
• Easier to manage risk - High risk part is done first.
• With every increment, operational product is delivered.
• Issues, challenges and risks identified from each increment can be utilized/applied to the next 

increment.
• Risk analysis is better.
• It supports changing requirements.
• Initial Operating time is less.
• Better suited for large and mission-critical projects.
• During the life cycle, software is produced early which facilitates customer evaluation and 

feedback.



Cons

• More resources may be required.
• Although cost of change is lesser, but it is not very suitable for 

changing requirements.
• More management attention is required.
• System architecture or design issues may arise because not all 

requirements are gathered in the beginning of the entire life cycle.
• Defining increments may require definition of the complete system.
• Not suitable for smaller projects.
• Management complexity is more.
• End of project may not be known which is a risk.
• Highly skilled resources are required for risk analysis.
• Projects progress is highly dependent upon the risk analysis phase.



Incremental Model

• Incremental Model Overview

• Product is developed in small parts 
(increments)

• Each increment adds functionality

• User feedback after each delivery





• Advantages:

• Early partial product delivery

• Flexible to changes

• Easier testing and debugging

• Disadvantages:

• Needs good planning and architecture

• Integration can be complex

• Final cost may be higher



Spiral model

• The Spiral Model is an SDLC tool that mitigates 
risk and keeps your team focused on achieving 
key objectives.





• First Spiral – Planning and Requirements:
The team gathers basic requirements (product listings, shopping cart, 
payment options) and identifies risks (security, scalability). They create a 
simple prototype to test user interaction and spot design issues.

• Second Spiral – Risk Analysis and Design Refinement:
Based on feedback, they add features like secure payment processing, 
shopping cart, and user registration. They test security with dummy 
transactions and assess site performance under more users.

• Third Spiral – Detailed Implementation:
Advanced features such as order tracking, reviews, and search are added. 
The team addresses scalability risks and tests site performance during high 
traffic periods.

• Final Spiral – Full Deployment:
The website is fully developed, thoroughly tested, and launched. 
Remaining risks are monitored and addressed to ensure reliability.



Spiral Model Overview

• Combines iterative nature of prototyping with 
Waterfall

• Focus on risk analysis at every cycle

• Four phases per spiral: Planning → Risk 
Analysis → Development → Evaluation



When to use the spiral model

• The spiral model is often best suited for:

• Large, complex, and high-risk projects.

• Projects with undefined or evolving 
requirements.

• Projects where frequent releases or 
prototyping are helpful



Advantages of the Spiral Model

Below are some advantages of the Spiral Model.
• Risk Handling: The projects with many unknown risks that occur as the 

development proceeds, in that case, Spiral Model is the best development 
model to follow due to the risk analysis and risk handling at every phase.

• Good for large projects: It is recommended to use the Spiral Model in 
large and complex projects.

• Flexibility in Requirements: Change requests in the Requirements at a 
later phase can be incorporated accurately by using this model.

• Customer Satisfaction: Customers can see the development of the 
product at the early phase of the software development and thus, they 
habituated with the system by using it before completion of the total 
product.

• Iterative and Incremental Approach: The Spiral Model provides an 
iterative and incremental approach to software development, allowing for 
flexibility and adaptability in response to changing requirements or 
unexpected events.



• Emphasis on Risk Management: The Spiral Model 
places a strong emphasis on risk management, which 
helps to minimize the impact of uncertainty and risk on 
the software development process.

• Improved Communication: The Spiral Model provides 
for regular evaluations and reviews, which can improve 
communication between the customer and the 
development team.

• Improved Quality: The Spiral Model allows for multiple 
iterations of the software development process, which 
can result in improved software quality and reliability.



Disadvantages of the Spiral Model

Below are some main disadvantages of the spiral model.
• Complex: The Spiral Model is much more complex than other SDLC models.
• Expensive: Spiral Model is not suitable for small projects as it is expensive.
• Too much dependability on Risk Analysis: The successful completion of the 

project is very much dependent on Risk Analysis. Without very highly experienced 
experts, it is going to be a failure to develop a project using this model.

• Difficulty in time management: As the number of phases is unknown at the start 
of the project, time estimation is very difficult.

• Complexity: The Spiral Model can be complex, as it involves multiple iterations of 
the software development process.

• Time-Consuming: The Spiral Model can be time-consuming, as it requires multiple 
evaluations and reviews.

• Resource Intensive: The Spiral Model can be resource-intensive, as it requires a 
significant investment in planning, risk analysis, and evaluations.



Rational Unified Process



• RUP is an Iterative and incremental approach 
to improving problem knowledge through 
consecutive revisions. 

• It is an architecture-centric and use-case-
driven approach that manages risk and is 
flexible to change. 

• RUP incrementally improves an effective 
solution through repeated iterations.



• Rational Unified Process (RUP) is a software 
development process for object-oriented 
models.

• It is also known as the Unified Process Model.

• It is created by Rational Corporation and is 
designed and documented using UML (Unified 
Modeling Language).



• Some characteristics of RUP include being 

– use-case driven, 

– Iterative (repetition of the process), 

– incremental (increase in value) by nature,

– delivered online using web technology, 

– can be customized or tailored in modular and 
electronic form, etc.

– RUP reduces unexpected development costs and 
prevents the wastage of resources.







RAD Model

• RAD Model stands for rapid application 
development model.

• The methodology of RAD model is similar to 
that of incremental or waterfall model. 

• It is used for small projects.

• The main objective of RAD model is to reuse 
code, components, tools, processes in project 
development.

https://www.geeksforgeeks.org/software-engineering/software-engineering-rapid-application-development-model-rad/




• If the project is large then it is divided into 
many small projects and these small projects 
are planned one by one and completed. In this 
way, by completing small projects, the large 
project gets ready quickly.

• In RAD model, the project is completed within 
the given time and all the requirements are 
collected before starting the project. It is very 
fast and there are very less errors in it.



Agile Software Development

• Agile Software Development is a Software Development 
Methodology that values flexibility, collaboration, and 
customer satisfaction. 

• It is based on the Agile Manifesto, a set of principles for 
software development that prioritize individuals and 
interactions, working software, customer collaboration, and 
responding to change.

• Agile Software Development is an iterative and incremental 
approach that emphasizes the importance of delivering a 
working product quickly and frequently. 

• It involves close collaboration between the development 
team and the customer to ensure that the product meets 
their needs and expectations.

https://www.geeksforgeeks.org/software-engineering/5-most-commonly-used-software-development-methodologies/






Principles of Agile Software 
Development



Advantages Agile Software 
Development

• Increased collaboration and communication: Agile Software 
Development Methodology emphasize collaboration and 
communication among team members, stakeholders, and 
customers. This leads to improved understanding, better alignment, 
and increased buy-in from everyone involved.

• Flexibility and adaptability: Agile methodologies are designed to be 
flexible and adaptable, making it easier to respond to changes in 
requirements, priorities, or market conditions. This allows teams to 
quickly adjust their approach and stay focused on delivering value.

• Improved quality and reliability: Agile methodologies place a 
strong emphasis on testing, quality assurance, and continuous 
improvement. This helps to ensure that software is delivered with 
high quality and reliability, reducing the risk of defects or issues that 
can impact the user experience.

https://www.geeksforgeeks.org/software-engineering/agile-software-development-methodology-framework/


• Enhanced customer satisfaction: Agile methodologies prioritize customer 
satisfaction and focus on delivering value to the customer. By involving 
customers throughout the development process, teams can ensure that 
the software meets their needs and expectations.

• Increased team morale and motivation: Agile methodologies promote a 
collaborative, supportive, and positive work environment. This can lead to 
increased team morale, motivation, and engagement, which can in turn 
lead to better productivity, higher quality work, and improved outcomes.

• Deployment of software is quicker and thus helps in increasing the trust of 
the customer.

• Can better adapt to rapidly changing requirements and respond faster.
• Helps in getting immediate feedback which can be used to improve the 

software in the next increment.
• People - Not Process. People and interactions are given a higher priority 

than processes and tools.
• Continuous attention to technical excellence and good design.



Disadvantages Agile Software 
Development

• Lack of predictability: Agile Development relies heavily on customer 
feedback and continuous iteration, which can make it difficult to predict 
project outcomes, timelines, and budgets.

• Limited scope control: Agile Development is designed to be flexible and 
adaptable, which means that scope changes can be easily accommodated. 
However, this can also lead to scope creep and a lack of control over the 
project scope.

• Lack of emphasis on testing: Agile Development places a greater 
emphasis on delivering working code quickly, which can lead to a lack of 
focus on testing and quality assurance. This can result in bugs and other 
issues that may go undetected until later stages of the project.

• Risk of team burnout: Agile Development can be intense and fast-paced, 
with frequent sprints and deadlines. This can put a lot of pressure on team 
members and lead to burnout, especially if the team is not given adequate 
time for rest and recovery.



• Lack of structure and governance: Agile Development is often less formal 
and structured than other development methodologies, which can lead to 
a lack of governance and oversight. This can result in inconsistent 
processes and practices, which can impact project quality and outcomes.

• In the case of large software projects, it is difficult to assess the effort 
required at the initial stages of the software development life cycle.

• Agile Development is more code-focused and produces less 
documentation.

• Agile development is heavily dependent on the inputs of the customer. If 
the customer has ambiguity in his vision of the outcome, it is highly likely 
that the project to get off track.

• Face-to-face communication is harder in large-scale organizations.
• Only senior programmers are capable of making the kind of decisions 

required during the development process. Hence, it's a difficult situation 
for new programmers to adapt to the environment.



Practices of Agile Software 
Development

• Scrum: Scrum is a framework for agile software development that involves 
iterative cycles called sprints, daily stand-up meetings, and a product 
backlog that is prioritized by the customer.

• Kanban: Kanban is a visual system that helps teams manage their work 
and improve their processes. It involves using a board with columns to 
represent different stages of the development process, and cards or sticky 
notes to represent work items.

• Continuous Integration: Continuous Integration is the practice of 
frequently merging code changes into a shared repository, which helps to 
identify and resolve conflicts early in the development process.

• Test-Driven Development: Test-Driven Development (TDD) is a 
development practice that involves writing automated tests before writing 
the code. This helps to ensure that the code meets the requirements and 
reduces the likelihood of defects.

• Pair Programming: Pair programming involves two developers working 
together on the same code. This helps to improve code quality, share 
knowledge, and reduce the likelihood of defects.



Extreme Programming (XP)

• Extreme Programming (XP) is an Agile software 
development methodology 

• It focuses on delivering high-quality software
• Use of frequent and continuous feedback, 

collaboration, and adaptation. 
• XP emphasizes a close working relationship 

between the development team, the customer, 
and stakeholders

• It emphasize on rapid, iterative development and 
deployment.

https://www.geeksforgeeks.org/software-engineering/software-engineering-agile-software-development/






Good Practices in Extreme 
Programming

• Code Review: Code review detects and corrects errors efficiently. It suggests pair 
programming as coding and reviewing of written code carried out by a pair of 
programmers who switch their work between them every hour.

• Testing: Testing code helps to remove errors and improves its reliability. XP 
suggests test-driven development (TDD) to continually write and execute test 
cases. In the TDD approach, test cases are written even before any code is written.

• Incremental development: Incremental development is very good because 
customer feedback is gained and based on this development team comes up with 
new increments every few days after each iteration.

• Simplicity: Simplicity makes it easier to develop good-quality code as well as to 
test and debug it.

• Design: Good quality design is important to develop good quality software. So, 
everybody should design daily.

• Integration testing: Integration Testing helps to identify bugs at the interfaces of 
different functionalities. Extreme programming suggests that the developers 
should achieve continuous integration by building and performing integration 
testing several times a day.

https://www.geeksforgeeks.org/software-testing/software-testing-basics/
https://www.geeksforgeeks.org/software-testing/software-engineering-integration-testing/


Basic Principles of Extreme 
programming

• XP is based on the frequent iteration through which the developers 
implement User Stories. 

• User stories are simple and informal statements of the customer 
about the functionalities needed. 

• A User Story is a conventional description by the user of a feature 
of the required system. 

• It does not mention finer details such as the different scenarios that 
can occur. 

• Based on User stories, the project team proposes Metaphors. 
• Metaphors are a common vision of how the system would work. 
• The development team may decide to build a Spike for some 

features. 
• A Spike is a very simple program that is constructed to explore the 

suitability of a solution being proposed. It can be considered similar 
to a prototype.







Capability Maturity Model (CMM) 

• The Capability Maturity Model (CMM) is a tool used to
improve and refine software development processes.

• It provides a structured way for organizations to assess
their current practices and identify areas for
improvement.

• CMM consists of five maturity levels: initial,
repeatable, defined, managed, and optimizing.

• Organizations can systematically improve their
software development processes, leading to higher-
quality products and more efficient project
management.





Unit II

Software Requirements:

• The process to gather the software 
requirements from client, analyze and 
document them is known as requirement 
engineering.

• The goal of requirement engineering is to 
develop and maintain sophisticated and 
descriptive ‘System Requirements 
Specification’ document.



Types of Requirements: 

• User Requirements: It is a collection of 
statement in natural language and description 
of the services the system provides and its 
operational limitation. It is written for 
customer.

• System Requirement: It is a structured 
document that gives the detailed description 
of the system services. It is written as a 
contract between client and contractor.



User Requirements

• Describe what the user needs from the system.
• Written in natural language, accessible to non-

technical stakeholders.
• Should cover:
• Functional needs
• Non-functional expectations (performance, 

usability)
• Example:
• “The user shall be able to search for products by 

name, category, or price.”



System Requirements

• Detailed description of system functionalities
and constraints.

• Types:

– Functional Requirements: Describe what the system 
should do.

– Non-functional Requirements: Define how the system 
performs tasks.

• Example:

– The system shall handle 1000 transactions per second.



Software Requirement Specification: -

• SRS is a document created by system analyst after the 
requirements are collected from various stakeholders. 

• SRS defines how the intended software will interact with 
– hardware, 
– external interfaces, 
– speed of operation, 
– response time of system, 
– portability of software across various platforms, 
– maintainability, 
– speed of recovery after crashing, 
– Security, 
– Quality, 
– Limitations etc.



SRS:

• The requirements received from client are written in 
natural language. 

• It is the responsibility of system analyst to document the 
requirements in technical language so that they can be 
comprehended and useful by the software development 
team.

• SRS should come up with following features:
– User Requirements are expressed in natural language.
– Technical requirements are expressed in structured language, 

which is used inside the organization.
– Design description should be written in Pseudo code.
– Format of Forms and GUI screen prints.
– Conditional and mathematical notations for DFDs etc.



Functional vs. Non Functional 
Requirements

• functional requirements define the specific 
behavior or functions of a system

• non-functional requirements specify how the 
system performs its tasks, focusing on 
attributes like performance, security, 
scalability, and usability.





Functional Requirements?

• These are the requirements that the end user 
specifically demands as basic facilities that the system 
should offer. 

• All these functionalities need to be necessarily 
incorporated into the system as a part of the contract.

• These are represented or stated in the form of input to 
be given to the system, the operation performed and 
the output expected.

• They are the requirements stated by the user which 
one can see directly in the final product, unlike the 
non-functional requirements.



What are Non-Functional 
Requirements?

• These are the quality constraints that the system must satisfy 
according to the project contract. 

• The priority or extent to which these factors are implemented 
varies from one project to another. 

• They are also called non-behavioral requirements. 
• They deal with issues like:

– Portability
– Security
– Maintainability
– Reliability
– Scalability
– Performance
– Reusability
– Flexibility



Interface Specification

• Interface Specification defines how different 
components of the system interact with each 
other.

• It provides a formal description of the inputs, 
outputs, and communication rules between:

• Software ↔ Users

• Software ↔ Hardware

• Software ↔ Software





Requirement Engineering

• A systematic and strict approach to the
definition, creation, and verification of
requirements for a software system is known
as requirements engineering.

• To guarantee the effective creation of a
software product, the requirements
engineering process entails several tasks that
help in understanding, recording, and
managing the demands of stakeholders.



1. Feasibility Study

• Feasibility Study in Software Engineering is a study to 
evaluate feasibility of proposed project or system. 

• Feasibility study is one of stage among important four 
stages of Software Project Management Process.

• it is a measure of the software product in terms of how 
much beneficial product development will be for the 
organization in a practical point of view. 

• Feasibility study is carried out based on many purposes 
to analyze whether software product will be right in 
terms of development, implementation, contribution 
of project to the organization etc.



Types of Feasibility Study

• Technical Feasibility: current resources both hardware software along 
with required technology are analyzed/assessed to develop project. 

• Operational Feasibility: degree of providing service to requirements is 
analyzed along with how much easy product will be to operate and 
maintenance after deployment, determining usability of product, 
Determining suggested solution by software development team is 
acceptable or not etc.

• Economic Feasibility: cost and benefit of the project is analyzed. After that 
it is analyzed whether project will be beneficial in terms of finance for 
organization or not.

• Legal Feasibility: project is analyzed in legality point of view, analyzing 
barriers of legal implementation of project, data protection acts or social 
media laws



• Schedule Feasibility: timelines/deadlines is analyzed for proposed 
project which includes how much time teams will take to complete 
final project

• Cultural and Political Feasibility: assesses how the software project 
will affect the political environment and organizational culture. It is 
essential that cultural and political factors be taken into account in 
order to execute projects successfully.

• Market Feasibility: evaluating the market's willingness and ability 
to accept the suggested software system. Analyzing the target 
market, understanding consumer wants and assessing possible 
rivals are all part of this study. 

• Resource Feasibility: if the resources needed to complete the 
software project successfully are adequate and readily available. 
Financial, technological and human resources are all taken into 
account in this study. 



2. Requirements Elicitation

• It is related to the various ways used to gain knowledge
about the project domain and requirements.

• The various sources of domain knowledge include
customers, business manuals, the existing software of the
same type, standards, and other stakeholders of the
project.

• The techniques used for requirements elicitation include
interviews, brainstorming, task analysis, Delphi technique,
prototyping, etc.

• Elicitation does not produce formal models of the
requirements understood. Instead, it widens the domain
knowledge of the analyst and thus helps in providing input
to the next stage.



Requirements elicitation

• Requirements elicitation is the process of
gathering information about the needs and
expectations of stakeholders for a software
system.

• This is the first step in the requirements
engineering process and it is critical to the
success of the software development project.

• The goal of this step is to understand the problem
that the software system is intended to solve and
the needs and expectations of the stakeholders
who will use the system.



Several techniques can be used to 
elicit requirements, including:

• Interviews: These are one-on-one conversations with stakeholders 
to gather information about their needs and expectations.

• Surveys: These are questionnaires that are distributed to 
stakeholders to gather information about their needs and 
expectations.

• Focus Groups: These are small groups of stakeholders who are 
brought together to discuss their needs and expectations for the 
software system.

• Observation: This technique involves observing the stakeholders in 
their work environment to gather information about their needs 
and expectations.

• Prototyping: This technique involves creating a working model of 
the software system, which can be used to gather feedback from 
stakeholders and to validate requirements.



3. Requirements Specification

• This activity is used to produce formal software 
requirement models. 

• All the requirements including the functional as well as 
the non-functional requirements and the constraints 
are specified by these models in totality. 

• During specification, more knowledge about the 
problem may be required which can again trigger the 
elicitation process. 

• The models used at this stage include ER diagrams, 
data flow diagrams(DFDs), function decomposition 
diagrams(FDDs), data dictionaries, etc.



Requirements specification:

• Requirements specification is the process of
documenting the requirements identified in the
analysis step in a clear, consistent, and
unambiguous manner.

• This step also involves prioritizing and grouping
the requirements into manageable chunks.

• The goal of this step is to create a clear and
comprehensive document that describes the
requirements for the software system. This
document should be understandable by both the
development team and the stakeholders.



types of requirements are commonly 
specified

• Functional Requirements: These describe what the software 
system should do. They specify the functionality that the system 
must provide, such as input validation, data storage, and user 
interface.

• Non-Functional Requirements: These describe how well the 
software system should do it. They specify the quality attributes of 
the system, such as performance, reliability, usability, and security.

• Constraints: These describe any limitations or restrictions that must 
be considered when developing the software system.

• Acceptance Criteria: These describe the conditions that must be 
met for the software system to be considered complete and ready 
for release.



4. Requirements Verification and 
Validation

• Verification: It refers to the set of tasks that
ensures that the software correctly implements a
specific function.

• Validation: It refers to a different set of tasks that
ensures that the software that has been built is
traceable to customer requirements. If
requirements are not validated, errors in the
requirement definitions would propagate to the
successive stages resulting in a lot of modification
and rework.



The main steps for this process 
include:

• The requirements should be consistent with all the 
other requirements i.e. no two requirements should 
conflict with each other.

• The requirements should be complete in every sense.
• The requirements should be practically achievable.
• Reviews, buddy checks, making test cases, etc. are 

some of the methods used for this.
• Requirements verification and validation (V&V) is the 

process of checking that the requirements for a 
software system are complete, consistent, and accurate 
and that they meet the needs and expectations of the 
stakeholders.



• Verification is checking that the requirements are complete,
consistent, and accurate.

• It involves reviewing the requirements to ensure that they are clear,
testable, and free of errors and inconsistencies.

• This can include reviewing the requirements document, models,
and diagrams, and holding meetings and walkthroughs with
stakeholders.

• Validation is the process of checking that the requirements meet
the needs and expectations of the stakeholders.

• It involves testing the requirements to ensure that they are valid
and that the software system being developed will meet the needs
of the stakeholders.

• This can include testing the software system through simulation,
testing with prototypes, and testing with the final version of the
software.



Verification and Validation is an iterative process 
that occurs throughout the software 
development life cycle. 

It is important to involve stakeholders and the 
development team in the V&V process to ensure 
that the requirements are thoroughly reviewed 
and tested.



• It's important to note that V&V is not a one-
time process, but it should be integrated and 
continue throughout the software 
development process and even in the 
maintenance stage.



5. Requirements Management

• Requirement management is the process of analyzing, 
documenting, tracking, prioritizing, and agreeing on 
the requirement and controlling the communication 
with relevant stakeholders. 

• This stage takes care of the changing nature of 
requirements. 

• It should be ensured that the SRS is as modifiable as 
possible to incorporate changes in requirements 
specified by the end users at later stages too. 

• Modifying the software as per requirements in a 
systematic and controlled manner is an extremely 
important part of the requirements engineering



• Requirement management is the process of analyzing,
documenting, tracking, prioritizing, and agreeing on
the requirement and controlling the communication
with relevant stakeholders.

• This stage takes care of the changing nature of
requirements.

• It should be ensured that the SRS is as modifiable as
possible to incorporate changes in requirements
specified by the end users at later stages too.

• Modifying the software as per requirements in a
systematic and controlled manner is an extremely
important part of the requirements engineering



Several key activities are involved in 
requirements management

• Tracking and controlling changes: This involves monitoring and
controlling changes to the requirements throughout the
development process, including identifying the source of the
change, assessing the impact of the change, and approving or
rejecting the change.

• Version control: This involves keeping track of different versions of
the requirements document and other related artifacts.

• Traceability: This involves linking the requirements to other
elements of the development process, such as design, testing, and
validation.

• Communication: This involves ensuring that the requirements are
communicated effectively to all stakeholders and that any changes
or issues are addressed promptly.

• Monitoring and reporting: This involves monitoring the progress of
the development process and reporting on the status of the
requirements.



Requirements management is a critical step in the
software development life cycle as :

• it helps to ensure that the software system being
developed meets the needs and expectations of
stakeholders

• Ensures that it is developed on time, within
budget, and to the required quality.

• It also helps to prevent scope creep and to ensure
that the requirements are aligned with the
project goals.



Context Diagrams

• Context diagrams serve as a foundational tool, 
helping designers and stakeholders grasp the 
scope and boundaries of a system under 
consideration. 

• These diagrams provide a high-level view, 
illustrating how the system interacts with 
external entities and the environment.



Importance of Context Diagrams in 
Systems Analysis

• Scope Definition: Context diagrams define the system's boundaries by 
highlighting its interactions with external entities, ensuring that the 
analysis focuses on pertinent components and processes.

• Requirement Gathering: These diagrams visualize how the system 
interacts with its environment, aiding in identifying both functional and 
non-functional requirements. They offer clarity on the system's objectives 
and its external interactions.

• Communication: Acting as a bridge between stakeholders, such as 
business users, developers, and project managers, context diagrams foster 
shared understanding of the system's scope and context. They streamline 
discussions and decision-making throughout the development process.

• Risk Identification: Context diagrams assist in spotting potential risks 
stemming from the system's interactions with external entities. They help 
stakeholders assess the implications of external factors on the system's 
performance, security, and reliability.



Components of Context Diagrams

• 1. System/Product: This is the primary focus 
of the diagram, representing the system being 
analyzed or designed.



2. External Entities

• These are entities outside the system 
boundary that interact with the system. They 
could be users, other systems, or processes 
that provide input to or receive output from 
the system.









Behavioral Diagrams in Software 
Engineering

• Behavioral diagrams are a category of
diagrams in software engineering, particularly
within Unified Modeling Language (UML),
used to capture the dynamic aspects of a
system. These diagrams model the
interactions, activities, and changes that occur
within the software over time.



Purpose of Behavioral Diagrams

• Represent how system components interact 
and behave.

• Show the flow of control and data in various 
scenarios.

• Help in understanding system functionality, 
requirements, and possible use cases.

• Useful for both analysis and design phases of 
software development.



Types of Behavioral Diagrams

Use Case Diagram

• Describes the functional requirements of a 
system.

• Shows actors (users/external systems) and 
their interactions with use cases (system 
functions).

• Usage: Early stages of development to capture 
user requirements.



Sequence Diagram

• Visualizes object interactions in a specific 
scenario of a use case.

• Shows how messages are exchanged in a 
chronological sequence.

• Usage: Detailing system logic, identifying 
responsibilities of objects.



Activity Diagram

• Represents workflows of stepwise activities 
and actions.

• Illustrates flow of control from one activity to 
another.

• Usage: Modeling business processes, 
describing algorithm logic.



State Machine Diagram (Statechart)

• Depicts the states of an object and transitions
triggered by events.

• Shows lifecycle of an object, from creation to
destruction.

• Usage: Modeling complex object behavior and
event-driven systems.

• State Machine diagrams are also known
as State Diagrams and State-Chart Diagrams.



Basic Components and Notations of a 
State Machine Diagram

1. Initial state

2. Transition

3. State

4. Fork

5. Join

6. Final State





Communication Diagram

• Describes interactions between objects focusing 
on message flow and links between participants.

• Alternative to sequence diagrams for showing 
relationships.

• visually represents the interactions between 
objects or components in a system. It focuses on 
how messages are exchanged between these 
elements, highlighting the flow of information in 
a sequence.





Key Elements in Behavioral Diagrams

• Actors: Entities interacting with the system.
• Objects: Components participating in interactions.
• States: Conditions or situations during the life of an object.
• Events: Triggers that cause transitions or actions.
• Transitions: Movement from one state to another.
• Messages: Information or invocation sent between objects.

Applications of Behavioral Diagrams
• Clarifying complex system behavior.
• Validating system requirements and expected responses.
• Facilitating communication among stakeholders.
• Assisting in system design and documentation.
•


