
Outline

• Algorithm
• Complexity Notations
• Representation of Arrays & storage structure
• Sparse matrix and its representation
• Application of Arrays
• String
• Pointer
• Structure



Algorithm & 
Asymptotic Notations



Algorithm

The word Algorithm means "A set of finite rules or instructions to be followed in calculations or other 

problem-solving operations" Or "A procedure for solving a mathematical problem in a finite number of steps 

that frequently involves recursive operations".

Therefore Algorithm refers to a sequence of finite steps to solve a particular problem.



Use of Algorithm

Algorithms play a crucial role in various fields and have many applications. Some of the key areas where 

algorithms are used include:

Computer Science: Algorithms form the basis of computer programming and are used to solve problems 

ranging from simple sorting and searching to complex tasks such as artificial intelligence and machine 

learning.

Mathematics: Algorithms are used to solve mathematical problems, such as finding the optimal solution to a 

system of linear equations or finding the shortest path in a graph.

Operations Research: Algorithms are used to optimize and make decisions in fields such as transportation, 

logistics, and resource allocation.

Artificial Intelligence: Algorithms are the foundation of artificial intelligence and machine learning, and are 

used to develop intelligent systems that can perform tasks such as image recognition, natural language 

processing, and decision-making.

Data Science: Algorithms are used to analyze, process, and extract insights from large amounts of data in 

fields such as marketing, finance, and healthcare.



Characteristics of Algorithms

1. Clear and Unambiguous: Every step must be precisely defined.

2. Input: It should have clearly defined input(s).

3. Output: It should produce at least one expected output.

4. Finiteness: The algorithm must end after a finite number of steps.

5. Effectiveness: Each step must be simple enough to be performed exactly and in a finite amount of time.

6. Feasibility: Performing the steps using available resources should be possible.

7. Language Independent: An algorithm is a logical process and should not depend on a specific 

programming language.



Complexity Notations

Asymptotic notation is a set of mathematical tools used in computer science to describe the efficiency and 

scalability of algorithms. It focuses on how an algorithm's running time or space requirements change as the 

input size grows, particularly for large inputs. This allows for a high-level understanding of an algorithm's 

behavior without being dependent on specific hardware or implementation details.

The three primary types of asymptotic notations are:

Big O Notation (O):

This describes the upper bound or worst-case time complexity of an algorithm. It provides a guarantee that the 

algorithm's performance will not exceed a certain growth rate as the input size increases. For example, if an 

algorithm has a time complexity of O(n^2), it means its running time grows no faster than a quadratic function 

of the input size 'n'.

Big Omega Notation (Ω):

This describes the lower bound or best-case time complexity of an algorithm. It indicates that the algorithm's 

performance will be at least as efficient as a certain growth rate. For example, Ω(n) means the algorithm will 

take at least linear time.

Big Theta Notation (Θ):

This describes the tight bound or average-case time complexity of an algorithm. It signifies that the algorithm's 

performance is bounded both from above and below by the same growth rate. If an algorithm is Θ(n log n), its 

running time grows proportionally to n log n for sufficiently large inputs.



Representation of 
Arrays & storage 
structure



Representation of Arrays

 What is Array?

 An array is a collection of elements of the same data types.

 Number of memory locations is sequentially allocated to the array.

 A array size is fixed and therefore requires a fixed number of memory locations.

 Two types of Array

 1-Dimension Array

 Multi Dimension Array



1-Dimensional Arrays

 1-D Array

 Single dimensional array or 1-D array is the simplest form of array.

 This type of array consists of elements of similar types and these elements can be
accessed through their indices.



1-Dimensional Arrays

 Declaration and Storing Array Elements



1-Dimensional Arrays

 Store array elements
for (i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}

 Display
for (i = 0; i < n; i++)
{

printf("%d ", a[i]);
}



1-Dimensional Arrays

 Insert elements at any position

n=n+1; //n=size of array
for(i = n; i > pos; i--)
{

a[i]=a[i-1];
}
a[pos-1]=x; //x=element



1-Dimensional Arrays

 Delete an element

for (i = pos - 1; i < num -1; i++)

{
arr[i] = arr[i+1]; // assign arr[i+1] to arr[i]

}

POS = 

2



2-Dimensional Arrays

 2-D Array

 Two dimensional arrays are also called table ormatrix

 Two dimensional arrays have two subscripts.

 Column major order matrix: Two dimensional array in which elements are stored

column by column is called as column major matrix

 Two dimensional array consisting of two rows and four columns is stored

sequentially by columns : A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3], A[1,4], A[2,4]



2-Dimensional Arrays

 2-D Array

 Row major order matrix: Two dimensional array in which elements are stored row

by row is called as row major matrix.



Memory Address Calculation in an Array

Address Calculation in single (one) Dimension Array:

https://i1.wp.com/www.guideforschool.com/wp-content/uploads/2013/11/1d-one-dimensional-array-memory-address-calculation.jpg
https://i1.wp.com/www.guideforschool.com/wp-content/uploads/2013/11/1d-one-dimensional-array-memory-address-calculation.jpg


Memory Address Calculation in an Array

Array of an element of an array say “A[ I ]” is calculated using the following formula:

Address of A [ I ] = B + W * ( I – LB )

Where,

B = Base address

W = Storage Size of one element stored in the array (in byte)

I = Subscript of element whose address is to be found

LB = Lower limit / Lower Bound of subscript, if not specified assume 0 (zero)

Example:

Given the base address of an array B[1300…..1900] as 1020 and size of each element is 2 bytes in the 

memory. Find the address of B[1700].

Solution:

The given values are: B = 1020, LB = 1300, W = 2, I = 1700

Address of A [ I ] = B + W * ( I – LB )

= 1020 + 2 * (1700 – 1300)

= 1020 + 2 * 400

= 1020 + 800

= 1820 [Ans]



Address Calculation in Double (Two) Dimensional Array:

While storing the elements of a 2-D array in memory, these are allocated contiguous memory locations. 

Therefore, a 2-D array must be linearized so as to enable their storage. There are two alternatives to achieve 

linearization: Row-Major and Column-Major.

https://i2.wp.com/www.guideforschool.com/wp-content/uploads/2013/11/two-dimensional-array-memory-address-calculation.jpg
https://i2.wp.com/www.guideforschool.com/wp-content/uploads/2013/11/two-dimensional-array-memory-address-calculation.jpg


Address Calculation in Double (Two) Dimensional Array:

Address of an element of any array say “A[ I ][ J ]” is calculated in two forms as given:

(1) Row Major System (2) Column Major System

Row Major System:

The address of a location in Row Major System is calculated using the following formula:

Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc ) ]

Column Major System:

The address of a location in Column Major System is calculated using the following formula:

Address of A [ I ][ J ] Column Major Wise = B + W * [( I – Lr ) + M * ( J – Lc )]

Where,

B = Base address

I = Row subscript of element whose address is to be found

J = Column subscript of element whose address is to be found

W = Storage Size of one element stored in the array (in byte)

Lr = Lower limit of row/start row index of matrix, if not given assume 0 (zero)

Lc = Lower limit of column/start column index of matrix, if not given assume 0 (zero)

M = Number of row of the given matrix

N = Number of column of the given matrix



Address Calculation in Double (Two) Dimensional Array:

Important: 

Usually number of rows and columns of a matrix are given ( like A[20][30] or A[40][60] ) but if it is given as 

A[Lr- – – – – Ur, Lc- – – – – Uc]. In this case number of rows and columns are calculated using the following 

methods:

Number of rows (M) will be calculated as = (Ur – Lr) + 1

Number of columns (N) will be calculated as = (Uc – Lc) + 1

And rest of the process will remain same as per requirement (Row Major Wise or Column Major Wise).

Examples:

Q 1. An array X [-15……….10, 15… 40] requires one byte of storage. If beginning location is

1500 determine the location of X [15][20].

Solution:

As you see here the number of rows and columns are not given in the question. So they are calculated as:



Address Calculation –Column Major System

Q 1. An array X [-15……….10, 15… 40] requires one byte of storage. If beginning location is

1500 determine the location of X [15][20].

Solution:

As you see here the number of rows and columns are not given in the question. So they are calculated as:

Number or rows say 

M = (Ur – Lr) + 1 = [10 – (- 15)] +1 = 26

Number or columns say 

N = (Uc – Lc) + 1 = [40 – 15)] +1 = 26

Column Major Wise Calculation of above equation

The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, M = 26 

Address of A [ I ][ J ] = B + W * [ ( I – Lr ) + M * ( J – Lc ) ]

= 1500 + 1 * [(15 – (-15)) + 26 * (20 – 15)] 

= 1500 + 1 * [30 + 26 * 5]

= 1500 + 1 * [160] 

= 1660 [Ans]



Address Calculation –Row Major System

Q 1. An array X [-15……….10, 15… 40] requires one byte of storage. If beginning location is

1500 determine the location of X [15][20].

Solution:

Row Major Wise Calculation of above equation

The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, N = 26 

Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc ) ]

= 1500 + 1* [26 * (15 – (-15))) + (20 – 15)] 

= 1500 + 1 * [26 * 30 + 5] = 1500 + 1 * [780 + 5] 

= 1500 +785

= 2285 [Ans]



Operations of Arrays

 Operation on Arrays

 Insertion of elements

 Deletion of elements

 Traversal

 Searching

 Merging



Sparse matrix and its 
representation



Spars Matrix and its representation

 An m x n matrix is said to be sparse if “many” of its elements are zero.

 A matrix that is not sparse is called a dense matrix.

 Example:



Polynomial matrix and its representation

 Matrix representation of polynomial equation

 We can use array for different kind of operations in polynomial equation such as

addition, subtraction, division, differentiation etc…

 Array can be used to represent Polynomial equation.



Polynomial matrix and its representation

 Example: Y Y2 Y3 Y4

X XY XY2 XY3 XY4

X2 X2Y X2Y2 X2Y3 X2Y4

X3 X3Y X3Y2 X3Y3 X3Y4

X4 X4Y X4Y2 X4Y3 X4Y4



Application of Arrays



Application of Arrays

 To perform arithmetic operation on polynomial equation.

 Widely used to implement mathematical vectors, matrices and other kinds
of rectangular tables.

 Used to implement stack, queue, heap, hash table, string, etc..

 Can be used for dynamic memory allocation.



Drawbacks of Linear Arrays

Fixed Size:

A primary limitation is their fixed size. Once an array is declared with a specific size, it 

cannot be dynamically increased or decreased during runtime. If more elements are 

needed, a new, larger array must be created and all existing elements copied over, 

which can be inefficient.

Inefficient Insertions and Deletions:

Because elements are stored in contiguous memory locations, inserting or deleting 

an element in the middle of an array requires shifting all subsequent elements. This 

can be a time-consuming operation, especially for large arrays.

Memory Wastage:

If an array is declared with a size larger than the actual number of elements stored, 

the unused allocated memory space is wasted. Conversely, if the declared size is too 

small, it can lead to "array index out of bounds" errors or require costly resizing 

operations.



String

Strings are used for storing text/characters.

For example, "Hello World" is a string of characters.

Unlike many other programming languages, C does not have a String type to easily 

create string variables. Instead, you must use the char type and create an array of 

characters to make a string in C

char greetings[] = "Hello World!";

To output the string, you can use the printf() function together with the format 

specifier %s to tell C that we are now working with strings:

Example

char greetings[] = "Hello World!";

printf("%s", greetings);



Memory Address

When a variable is created in C, a memory address is assigned to the variable.

The memory address is the location of where the variable is stored on the computer.

When we assign a value to the variable, it is stored in this memory address.

To access it, use the reference operator (&), and the result represents where the variable is 

stored:

Example

int myAge = 43;

printf("%p", &myAge); // Outputs 0x7ffe5367e044

Note: The memory address is in hexadecimal form (0x..). You will probably not get the same 

result in your program, as this depends on where the variable is stored on your computer.

You should also note that &myAge is often called a "pointer". A pointer basically stores the 

memory address of a variable as its value. To print pointer values, we use the %p format 

specifier



Pointer

Creating Pointers

Example

int myAge = 43; // an int variable

printf("%d", myAge);  // Outputs the value of myAge (43)

printf("%p", &myAge); // Outputs the memory address of myAge (0x7ffe5367e044)

A pointer is a variable that stores the memory address of another variable as its value.

A pointer variable points to a data type (like int) of the same type, and is created with the * 

operator.

The address of the variable you are working with is assigned to the pointer:



Pointer Example

Example

int myAge = 43;     // An int variable

int* ptr = &myAge;  // A pointer variable, with the name ptr, that stores the address of myAge

// Output the value of myAge (43)

printf("%d\n", myAge);

// Output the memory address of myAge (0x7ffe5367e044)

printf("%p\n", &myAge);

// Output the memory address of myAge with the pointer (0x7ffe5367e044)

printf("%p\n", ptr);

Example explained

Create a pointer variable with the name ptr, that points to an int variable (myAge). Note that the type of the 

pointer has to match the type of the variable you're working with (int in our example).

Use the & operator to store the memory address of the myAge variable, and assign it to the pointer.

Now, ptr holds the value of myAge's memory address.



Pointers and Arrays

You can also use pointers to access arrays.

Consider the following array of integers:

Example

int myNumbers[4] = {25, 50, 75, 100};

You learned from the arrays chapter that you can loop through the array elements with a for loop:

Example

int myNumbers[4] = {25, 50, 75, 100};

int i;

for (i = 0; i < 4; i++) {

printf("%d\n", myNumbers[i]);

}

Result:

25

50

75

100



Pointers and Arrays

Instead of printing the value of each array element, let's print the memory address of each array element:

Example

int myNumbers[4] = {25, 50, 75, 100};

int i;

for (i = 0; i < 4; i++) {

printf("%p\n", &myNumbers[i]);

}

Result:

0x7ffe70f9d8f0

0x7ffe70f9d8f4

0x7ffe70f9d8f8

0x7ffe70f9d8fc

Note that the last number of each of the elements' memory address is different, with an addition of 4.

It is because the size of an int type is typically 4 bytes, remember:



Pointers and Arrays

Example

// Create an int variable

int myInt;

// Get the memory size of an int

printf("%zu", sizeof(myInt));

Result:

4

So from the "memory address example" above, you can see that the compiler reserves 4 bytes of memory for each array 

element, which means that the entire array takes up 16 bytes (4 * 4) of memory storage:

Example

int myNumbers[4] = {25, 50, 75, 100};

// Get the size of the myNumbers array

printf("%zu", sizeof(myNumbers));

Result:

16



Pointers Related to Arrays

The memory address of the first element is the same as the name of the array:

Example

int myNumbers[4] = {25, 50, 75, 100};

// Get the memory address of the myNumbers array

printf("%p\n", myNumbers);

// Get the memory address of the first array element

printf("%p\n", &myNumbers[0]);

Result:

0x7ffe70f9d8f0

0x7ffe70f9d8f0

This basically means that we can work with arrays through pointers!

How? Since myNumbers is a pointer to the first element in myNumbers, you can use the * operator to access it:

Example

int myNumbers[4] = {25, 50, 75, 100};

// Get the value of the first element in myNumbers

printf("%d", *myNumbers);

Result:

25



Pointers Related to Arrays

To access the rest of the elements in myNumbers, you can increment the pointer/array (+1, +2, etc):

Example

int myNumbers[4] = {25, 50, 75, 100};

// Get the value of the second element in myNumbers

printf("%d\n", *(myNumbers + 1));

// Get the value of the third element in myNumbers

printf("%d", *(myNumbers + 2));

// and so on..

Result:

50

75



Pointers Related to Arrays: print array elements using loop:

Example

int myNumbers[4] = {25, 50, 75, 100};

int *ptr = myNumbers;

int i;

for (i = 0; i < 4; i++) {

printf("%d\n", *(ptr + i));

}

Output:

25

50

75

100





Structure

● Structures (also called structs) are a way to group several related variables into one place.

● Each variable in the structure is known as a member of the structure.

● Unlike an array, a structure can contain many different data types (int, float, char, etc.).

Create a Structure
● You can create a structure by using the struct keyword and declaring each of its members 

inside curly braces:

struct MyStructure {   // Structure declaration
int myNum;           // Member (int variable)
char myLetter;       // Member (char variable)

}; // End the structure with a semicolon



Structure

To access the structure, you must create a variable of it.

Use the struct keyword inside the main() method, followed by the name of the structure and then the name of the 
structure variable:

Create a struct variable with the name "s1":

struct myStructure {
int myNum;
char myLetter;

};

int main() {
struct myStructure s1;
return 0;

}



Access Structure Members

To access members of a structure, use the dot syntax (.):

Example

// Create a structure called myStructure

struct myStructure {

int myNum;

char myLetter;

};

int main() {

// Create a structure variable of myStructure called s1

struct myStructure s1;

// Assign values to members of s1

s1.myNum = 13;

s1.myLetter = 'B';

// Print values

printf("My number: %d\n", s1.myNum);

printf("My letter: %c\n", s1.myLetter);

return 0;

}



Create a Multiple Structure variable

Example

// Create different struct variables

struct myStructure s1;

struct myStructure s2;

// Assign values to different struct variables

s1.myNum = 13;

s1.myLetter = 'B';

s2.myNum = 20;

s2.myLetter = 'C';



Strings in Structures

struct myStructure {
int myNum;
char myLetter;
char myString[30]; // String

};

int main() {
struct myStructure s1;

// Trying to assign a value to the string
s1.myString = "Some text";

// Trying to print the value
printf("My string: %s", s1.myString);

return 0;
}
Output:
An error will occur:
prog.c:12:15: error: assignment to expression with array type



Solution for String in Structure

There is a solution for this! You can use the strcpy() function and assign the value to 
s1.myString, like this:
Example
struct myStructure {
int myNum;
char myLetter;
char myString[30]; // String

};
int main() {
struct myStructure s1;

// Assign a value to the string using the strcpy function
strcpy(s1.myString, "Some text");
// Print the value
printf("My string: %s", s1.myString);

return 0;
}
Result:
My string: Some text



String in Structure without strcpy function

You can also assign values to members of a structure variable at declaration time, in a single line.

Just insert the values in a comma-separated list inside curly braces {}. Note that you don't have to 

use the strcpy() function for string values with this technique:

Example

// Create a structure

struct myStructure {

int myNum;

char myLetter;

char myString[30];

};

int main() {

// Create a structure variable and assign values to it

struct myStructure s1 = {13, 'B', "Some text"};

// Print values

printf("%d %c %s", s1.myNum, s1.myLetter, s1.myString);

return 0;

}



Structure and Pointers

You can use pointers with structs to make your code more efficient, especially 

when passing structs to functions or changing their values.

To use a pointer to a struct, just add the * symbol, like you would with other data 

types.

To access its members, you must use the -> operator instead of the dot . syntax:



Structure and Pointers

Example
// Define a struct
struct Car {
char brand[50];
int year;

};
int main() {
struct Car car = {"Toyota", 2020};
// Declare a pointer to the struct
struct Car *ptr = &car;
// Access members using the -> operator
printf("Brand: %s\n", ptr->brand);
printf("Year: %d\n", ptr->year);

return 0;
}



Passing Struct Pointers to Functions

Here's how you can pass a struct pointer to a function and change its values:
struct Car {

char brand[20];
int year;

};// Function that takes a pointer to a Car struct and updates the year
void updateYear(struct Car *c) {

c->year = 2025;  // Change the year
}
int main() {

struct Car myCar = {"Toyota", 2020};
updateYear(&myCar);  // Pass a pointer so the function can change the year
printf("Brand: %s\n", myCar.brand);
printf("Year: %d\n", myCar.year);

return 0;
}



Why Use Struct Pointers?

Using pointers with structs is helpful when:

1. You want to avoid copying large amounts of data.

Instead of copying a whole struct, you can just pass a pointer. This makes 

your program faster and uses less memory.

2. You want to change values inside a function.

If you pass a pointer to a struct into a function, the function can change the 

original values.

3. You want to create structs dynamically using memory allocation.

With pointers, you can use malloc() to create structs while the program is 

running.




