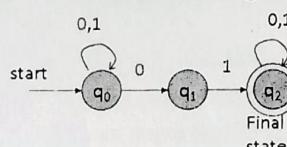


SHRI VAISHNAV VIDYAPEETH VISHWAVIDYALAYA, INDORE
Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

MST I


Subject Code: BTCS501 Subject Name: Theory of Computation

Semester: VI

Time: 1 Hour

Total Marks: 20

Note: All questions are compulsory. Assume suitable missing data

Question No.	Question	Marks	Related CO
1.	a) Define DFA with suitable example. b) Describe Language of finite automata with example.	3 3	CO1 CO1
	c) Construct a finite automaton which accepts all combination of 0 & 1 such that each string should have '01' as substring.	4	CO2
	OR		
	d) What is regular expression, explain with example.		CO2
2.	a) Convert following NFA into its equivalent DFA. 	3	CO1
	b) Differentiate between NFA & NFA with ϵ -move.	3	CO1
	c) Construct finite automata for following language $L = \{x \in \{0,1\}^* \mid x \text{ has an even no. of 1's}\}$	4	CO2
	OR		
	d) Explain Arden's Theorem with suitable example.		CO2

CO1	Ability to relate practical problems to languages, automata, and computability.
CO2	Ability to demonstrate an increased level of mathematical sophistication.
CO3	Ability to apply mathematical and formal techniques for solving problems

SHRI VAISHNAV VIDYAPEETH VISHWAVIDYALAYA, INDORE
 Shri Vaishnav Institute of Information Technology
 Department of Computer Science and Engineering

MST II

Subject Code: BTCS501

Subject Name: Theory of Computation

Semester: IV

Time: 1 Hour

Total Marks: 20

Note: All questions are compulsory. Assume suitable missing data.

Question No.	Question	Marks	Related CO
Q.1	<p>(a) Design Moore Machine that takes Binary Number as an input and produces Residue Modulo 4 as an Output.</p> <p>(b) Explain the Closure properties of CFLs.</p> <p>(c) Prove that following language is not CFL: $\{a^n b^m c^n d^m \mid m, n \geq 0\}$</p> <p style="text-align: center;">or</p> <p>(c) Construct CFG for $L = \{a^{n+2}b^{m+1} \mid n=m \geq 0\}$ and check whether $w = aaaaabbbbb$ is generated by the grammar or not?</p>	3 3 4	CO2 CO1 CO2
Q.2	<p>(a) Convert CFG into GNF</p> $S \rightarrow AA \mid q$ $A \rightarrow SS \mid b$ <p>(b) Illustrate the Ambiguity in Grammar with suitable example, also explain Inherent ambiguity.</p> <p>(c) Give a Deterministic PDA for $\{a^m b^n c^n \mid m, n \geq 0\}$ over the alphabet $\Sigma = \{a, b, c\}$</p> <p style="text-align: center;">or</p> <p>(c) Construct PDA for $L = \{WW^R \mid w \in (0+1)^*\text{ & } W^R \text{ is reverse of } W\}$</p>	3 3 4	CO2 CO2 CO2
CO1		Ability to relate practical problems to languages, automata, and computability	
CO2		Ability to demonstrate an increased level of mathematical sophistication.	
CO3		Ability to apply mathematical and formal techniques for solving problems.	

BTCS501**VI Semester Examination, June - 2023**

B.Tech./B.Tech. + M.B.A. / B.Tech. + M.Tech. (CSE, CSE-CC, CSE-CF, CSE-BDA, CSE-MA, BDCE- IMPETUS, CSE-CMCI, CSE-BDAI, CSE-ICS, CSE-AII, CSE-ES, CSE-FSDI, CSE-DSI,IT)

Theory of Computation

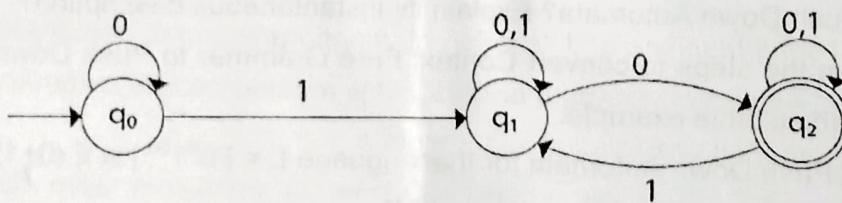
Choice Based Credit System (CBCS)

Time: 3 Hrs.

Maximum Marks: 60
Minimum Pass Marks: 24

Note: All questions carry equal marks, out of which part 'A' and 'B' carry 3 marks and part 'C' carries 6 marks.

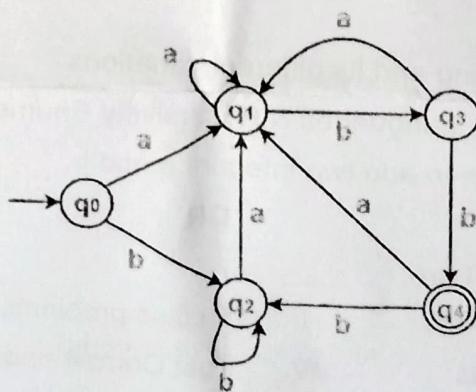
From each question, part 'A' and 'B' are compulsory and part 'C' has internal choice.

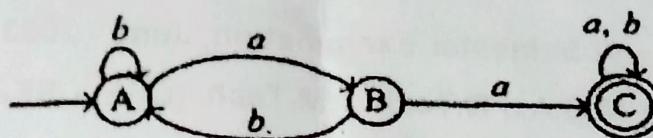

Draw neat diagram, wherever necessary.

Assume suitable data wherever necessary.

Q.1(A) Explain the following terms: Finite Automata, Language & Grammars with the help of suitable examples? **03**

(B) Design Finite Automata with $\Sigma = \{0, 1\}$ that accepts even no. of 0's and even no. of 1's. **03**


(C) Convert the given Nondeterministic Finite Automata to Deterministic Finite Automata:


06

OR

Minimize the given Deterministic Finite Automata using Myhill - Nerode Theorem:

Contd...

Q.2(A) Compute the Regular Expression for the given Deterministic Finite Automata:

03

(B) Explain the Closure Properties of regular sets?

03

(C) Prove that following language is not regular: $\{a^n b^{2n} \mid n \geq 0\}$.

06

OR

Design Moore Machine that takes any binary number as an input and produces residue modulo 5 as an output.

Q.3(A) Write Context Free Grammar for $1^* 0^*$ and create derivation tree for $w = "1110000"$.

03

(B) Explain Inherently Ambiguous Grammar with suitable example?

03

(C) Construct Context Free Grammar for $L = \{a^n b^m c^m d^n \mid n, m \geq 0\}$ and also check whether $w = "aabbbcccccdd"$ is generated by the grammar or not?

06

OR

Convert Context Free Grammar into Greibach Normal Form:

$$S \rightarrow AA \mid q$$

$$A \rightarrow SS \mid b$$

Q.4(A) What is Push Down Automata? Explain its instantaneous description?

03

(B) Write down the steps to convert Context Free Grammar to Push Down Automata, explain with suitable example.

03

(C) Construct Push Down Automata for the language $L = \{0^n 1^{3n} \mid w \in (0+1)^*\}$.

06

OR

Construct Push Down Automata for the language $L = \{WCW^R \mid w \in (0+1)^*, C \text{ is constant} \& W^R \text{ is reverse of } W\}$.

Q.5(A) Describe Turing Machine and its different variations?

03

(B) Differentiate Recursive Languages & Recursively Enumerable Languages?

03

(C) Design Turing Machine to add two integers a and b.

06

OR

Write short note (Any Two):

Q.4(A) I. Undecidability II. P class problems & NP class problems

03

(B) III. Church's Thesis IV. Post Correspondence Problem (PCP)

03

explain with suitable example. *****

(C) Construct Push Down Automata for the language $L = \{0^n 1^{3n} \mid w \in (0+1)^*\}$

06