
 

     INFORMATION THEORY – Unit-1 NOTES 

 

     1. Introduction to Information Theory 

Information theory, developed by Claude Shannon in 1948, is the mathematical study of 
data communication, compression, storage, and transmission. It quantifies 
information, entropy, redundancy, and channel capacity, forming the basis of digital 
communication systems and coding theory. 

Overview: What is Information Theory? 

Key idea: The movements and transformations of information, just like those of a fluid, are 
constrained by mathematical and physical laws. These laws have deep connections with: 

• probability theory, statistics, and combinatorics 

 • thermodynamics (statistical physics) 

 • spectral analysis, Fourier (and other) transforms 

 • sampling theory, prediction, estimation theory 

 • electrical engineering (bandwidth; signal-to-noise ratio) 

 • complexity theory (minimal description length) 

 • signal processing, representation, compressibility 

As such, information theory addresses and answers the two fundamental questions of 
communication theory: 

1. What is the ultimate data compression? (Answer: the entropy of the data, H, is its 
compression limit.)  

2. What is the ultimate transmission rate of communication? (Answer: the channel capacity, 
C, is its rate limit. 

All communication schemes lie in between these two limits on the compressibility of data 
and the capacity of a channel. Information theory can suggest means to achieve these 
theoretical limits. But the subject also extends far beyond communication theory. 

 

 



Important questions... to which Information Theory offers answers:  

• How should information be measured? 

 • How much additional information is gained by some reduction in uncertainty?  

• How do the priori probabilities of possible messages determine the informativeness of 
receiving them?  

• What is the information content of a random variable? 

 • How does the noise level in a communication channel limit its capacity to transmit 
information? 

 • How does the bandwidth (in cycles/second) of a communication channel limit its capacity 
to transmit information?  

• By what formalism should prior knowledge be combined with incoming data to draw 
formally justifiable inferences from both? 

 • How much information is contained in a strand of DNA?  

• How much information is there in the firing pattern of a neurone. 

 

Historical origins and important contributions:  

• Ludwig BOLTZMANN (1844-1906), physicist, showed in 1877 that thermodynamic entropy 
(defined as the energy of a statistical ensemble [such as a gas] divided by its temperature: 
ergs/degree) is related to the statistical distribution of molecular configurations, with 
increasing entropy corresponding to increasing randomness. He made this relationship 
precise with his famous formula S = k logW where S defines entropy, W is the total number 
of possible molecular configurations, and k is the constant which bears Boltzmann’s name: 
k =1.38 x 10−16 ergs per degree centigrade. (The above formula appears as an epitaph on 
Boltzmann’s tombstone.) This is equivalent to the definition of the information 
(“negentropy”) in an ensemble, all of whose possible states are equiprobable, but with a 
minus sign in front (and when the logarithm is base 2, k=1.) The deep connections between 
Information Theory and that branch of physics concerned with thermodynamics and 
statistical mechanics, hinge upon Boltzmann’s work. 





 



 



 

 



 

 



 

 



 

 

Basic Terminologies 

Term Description 

Information Reduction in uncertainty due to reception of a message. 

Source The system which generates the data (e.g., English text, binary stream). 

Entropy (H) Average amount of information per symbol. 

Redundancy Excess bits used for error detection/correction. 

Channel Medium through which information is transmitted. 

Noise Any unwanted disturbance on the channel. 



 



 

 



 

 

 

     Measure of Information 

 

 

     Entropy (Average Information Content) 



 

 

     5. Joint Entropy 

 

 

     6. Conditional Entropy 

 

 

 

     7. Mutual Information 

 



 

     8. Channel Capacity 

 

     9. Source Coding Theorem 



According to this theorem,  “A message from a source with entropy H can be compressed 
to H bits/symbol without loss, on average.” 

 

     10. Noisy Channel Coding Theorem 

It is possible to transmit data with arbitrarily low error probability over a noisy channel if 
the transmission rate R ≤ channel capacity C. 

 

     11. Redundancy 

 

Symbol:- In information theory and coding, a symbol is a discrete element or unit that 
represents information. It can be a letter, number, or any other predefined character within 
a specific alphabet or set. These symbols are used to construct messages or data 
sequences, which are then processed and transmitted. 

 

     12. Applications of Information Theory 

• Data Compression (e.g., Huffman, Shannon-Fano, Arithmetic coding) 

• Error Detection and Correction (e.g., Hamming codes, CRC) 

• Cryptography 

• Machine Learning (e.g., Information Gain) 

• Image and Signal Processing 

• Natural Language Processing 

 

 

     13. Common Coding Techniques 



Technique Purpose 

Huffman Coding Optimal prefix code for lossless compression. 

Shannon-Fano Coding Early method of entropy encoding. 

Arithmetic Coding 
Achieves higher compression rates than Huffman in some 
cases. 

Run Length Encoding 
(RLE) 

Compresses sequences of repeated values. 

Lempel-Ziv-Welch (LZW) Dictionary-based compression used in GIFs and TIFFs. 

     14. Information vs. Data 

Aspect Information Data 

Meaning Processed and meaningful Raw and unprocessed 

Value High (used in decision-making) Low (needs interpretation) 

     15. Summary- Information theory provides the foundation for all digital 
communications, guiding how data is encoded, compressed, transmitted, and 
decoded. Its core principles like entropy, mutual information, and channel capacity are 
central to designing efficient and reliable communication systems. 

Joint Entropy-

 



 

Conditional Entropy (H(X|Y))   :- 

 

Mutual Information (I(X; Y))  :- 

 



 

Applications in Information Theory 

• Channel Capacity Analysis 

• Feature Selection in Machine Learning 

• Dependency Measurement in Data Mining 

• Cryptography and Security 

• Natural Language Processing 

Information rate-  

If the source is emitting symbols at a fixed rate of ‘’rs ’ symbols / sec, the average source 

information rate ‘R’ is defined as – R = rs . H bits / sec 

 

Topic: Markoff Statistical Model for Information Source, Entropy, and Information Rate 

1. Introduction 

The Markoff statistical model (also known as the Markov model) is widely used in 
information theory to model a source that emits symbols probabilistically, where the 
probability of each symbol depends on one or more previous symbols. Unlike a memoryless 
source, which emits each symbol independently, a Markoff source has memory and 
dependencies among symbols. 

 

 

 

 



2. Markoff Statistical Model for Information Source 

A Markoff source is characterized by the following: 

Definition: 

A source is said to be a Markoff source of order k if the probability of occurrence of a 
symbol depends only on the preceding k symbols. 

For first-order Markoff sources, this simplifies to: 

 

Key Elements: 

• Alphabet: Set of possible symbols emitted (e.g., {A, B, C, ...}). 

• States: Each state represents a symbol or group of symbols. 

• Transition Probabilities: 
Pij=P(next symbol is j ∣ current symbol is i)P_{ij} = P(\text{next symbol is } j \mid 
\text{current symbol is } i)Pij=P(next symbol is j∣current symbol is i) 

Transition Matrix: 

A square matrix representing probabilities of transitioning from one symbol (state) to 
another.Example: 

 

   

3. Entropy of a Markoff Source 

Definition: The entropy of a Markoff source measures the average uncertainty per 
symbol, taking into account dependencies between symbols. For a first-order Markoff 
source, the entropy HHH is defined as: 

 



Where: 

: Stationary probability of state i 

: Transition probability from state i to state j 

Stationary Distribution: 

The set of probabilities { } satisfying: 

 

This represents the long-term average proportion of time the source spends in each state. 

 

4. Information Rate of a Markoff Source 

The information rate (also called entropy rate) represents the average number of bits per 
symbol produced by the source. 

 

For a first-order Markoff source, this simplifies to: 

 

Thus, the information rate is equal to the entropy of the Markoff source when in 
stationary state. 

 

 

 

 

 

 



5. Comparison: Memoryless vs. Markoff Source 

Feature Memoryless Source Markoff Source 

Dependency No memory (independent symbols) Depends on previous symbols 

Entropy Formula 
 

Requires stationary distribution 

Information Rate Constant per symbol Depends on transition structure 

Modeling Capability Limited Realistic for natural languages 

 

6. Applications 

• Text prediction and speech recognition 

• Natural language processing 

• Data compression algorithms (e.g., PPM, LZ78 variants) 

• Hidden Markov Models (HMM) for pattern recognition 

 

7. Conclusion 

The Markoff statistical model allows for more accurate modeling of real-world sources by 
considering dependencies between symbols. Its entropy and information rate are essential 
measures in understanding the efficiency and capacity of communication systems. 
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UNIT-2  

Chapter: Source Coding and Communication Channels 

 

1. Source Coding: Encoding of the Source Output 

Source Coding refers to the process of representing the output of a source in binary form 

efficiently, i.e., reducing the redundancy while maintaining lossless information. 

 

 

 

 



Key Points: 

• The goal is to represent data with as few bits as possible. 

• Achieved using variable-length codes depending on symbol probabilities. 

• High-probability symbols → shorter codes; Low-probability symbols → longer codes. 

• Examples: Shannon coding, Huffman coding, Arithmetic coding. 

 

 2. Shannon’s Encoding Algorithm 

 

Shannon’s method encodes symbols based on their probabilities. The algorithm uses cumulative 

probabilities and binary fractions to generate prefix-free codes. 

Steps: 

1. Sort symbols in decreasing order of probability. 

2. Calculate cumulative probability for each symbol. 

3. Code length: 

 

4. Code: Use binary expansion of  , up to li bits. 



• Properties: 

• Simple and fast. 

• Not always optimal, but close to entropy. 

• Produces prefix codes. 

 

  3. Communication Channels 

A communication channel is a medium through which information is transmitted from a sender 

(source) to a receiver (destination). 

Components: 

• Input (source symbols) 

• Output (received symbols) 

• Transition probabilities (channel behavior) 

 

 

                          Fig.: BINARY COMMN. CHANNEL CHARACTERISATION 

4. Discrete Communication Channels 

These channels deal with discrete inputs and outputs (finite alphabets). 

Example: 

• Binary Symmetric Channel (BSC) 



• Binary Erasure Channel (BEC) 

Properties: 

• Described using a transition probability matrix. 

• Useful in digital communication systems. 

 

5. Continuous Channels 

These channels deal with continuous-valued signals (e.g., voltages, frequencies). a continuous 

channel as one whose input is a sample point from a continuous sample space and the output is a 

sample point belonging to either the same sample space or to a different sample space. Further we 

shall define a’ zero memory continuous channel’ as the one in which the channel output 

statistically depends on the corresponding channels without memory. 

Example: 

• Additive White Gaussian Noise (AWGN) channel. 

Characterized by: 

• Input/output signals being real-valued. 

• Probabilistic models using probability density functions. 

Entropy of continuous Signals: (Differential entropy): For the case of discrete 

messages, we have defined the entropy as, 

 

Chapter: Fundamental Limits on Performance 

 

  1. Source Coding Theorem (Shannon’s First Theorem) 

Statement: 

For a discrete memoryless source with entropy H(X) , no lossless code can encode the source 

with average length less than H(X) bits/symbol. 



 

Implications: 

• Entropy is the lower bound on average codeword length. 

• It is possible to compress data close to its entropy using efficient coding schemes. 

 

  2. Huffman Coding 

An optimal prefix coding algorithm that minimizes average codeword length. 

Steps: 

1. Create a priority queue of symbols by probability. 

2. Combine two least-probable symbols into a node. 

3. Repeat until a binary tree is formed. 

4. Assign ‘0’ and ‘1’ to left/right edges. 

Properties: 

• Always produces optimal prefix codes. 

• Greedy algorithm. 

• Practical and widely used. 

 

  

 

 

 

 

 

 

 



 3. Discrete Memoryless Channels (DMC) 

 

                 Figure- Coding and decoding of symbols for transfer over the channel 

 

A Discrete Memoryless Channel (DMC) has: 

• Discrete input/output alphabets. 

• Memoryless: Output depends only on current input, not previous ones. 

Represented by: 

A transition probability matrix  



Examples: 

• Binary Symmetric Channel (BSC) 

• Z-Channel 

• Erasure Channel 

  

Binary Symmetric Channel:-  

 

                                            Pe     =      10-7 

 

Figure- Binary Symmetric channel 

 

 

 

 

 

 

 



Channel Capacity 

 

Definition: 

Maximum rate at which information can be reliably transmitted over a channel. 

 

Where: 

• C: Channel capacity (bits per use) 

• Mutual information between input and output. 

 

 
 

 

 

 

 

 

 

 



Channel Coding:- 

 

 
 

 

 

 



Summary Table 

Concept Description 

Source Coding               Compress data from source using binary codes 

Shannon Encoding               Uses cumulative probability to assign binary codes 

Communication Channel               Medium for sending symbols 

Discrete Channels                        Finite symbols, DMCs 

Continuous Channels                        Real-valued signals (e.g., AWGN) 

Source Coding Theorem          

Huffman Coding                                     Optimal prefix code using greedy approach 

DMC                     Discrete input/output, no memory 

Channel Capacity                     Max reliable transmission rate over a channel 
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