I INFORMATION THEORY - Unit-1 NOTES

@ 1. Introduction to Information Theory

Information theory, developed by Claude Shannon in 1948, is the mathematical study of
data communication, compression, storage, and transmission. It quantifies
information, entropy, redundancy, and channel capacity, forming the basis of digital
communication systems and coding theory.

Overview: What is Information Theory?

Key idea: The movements and transformations of information, just like those of a fluid, are
constrained by mathematical and physical laws. These laws have deep connections with:

¢ probability theory, statistics, and combinatorics

¢ thermodynamics (statistical physics)

e spectral analysis, Fourier (and other) transforms

e sampling theory, prediction, estimation theory

¢ electrical engineering (bandwidth; signal-to-noise ratio)
e complexity theory (minimal description length)

® signal processing, representation, compressibility

As such, information theory addresses and answers the two fundamental questions of
communication theory:

1. What is the ultimate data compression? (Answer: the entropy of the data, H, is its
compression limit.)

2. Whatis the ultimate transmission rate of communication? (Answer: the channel capacity,
C, is its rate limit.

All communication schemes lie in between these two limits on the compressibility of data
and the capacity of a channel. Information theory can suggest means to achieve these
theoretical limits. But the subject also extends far beyond communication theory.



Important questions... to which Information Theory offers answers:

¢ How should information be measured?
¢ How much additional information is gained by some reduction in uncertainty?

* How do the priori probabilities of possible messages determine the informativeness of
receiving them?

* What is the information content of a random variable?

e How does the noise level in a communication channel limit its capacity to transmit
information?

* How does the bandwidth (in cycles/second) of a communication channel limitits capacity
to transmit information?

¢ By what formalism should prior knowledge be combined with incoming data to draw
formally justifiable inferences from both?

* How much information is contained in a strand of DNA?

* How much information is there in the firing pattern of a neurone.

Historical origins and important contributions:

¢ Ludwig BOLTZMANN (1844-1906), physicist, showed in 1877 that thermodynamic entropy
(defined as the energy of a statistical ensemble [such as a gas] divided by its temperature:
ergs/degree) is related to the statistical distribution of molecular configurations, with
increasing entropy corresponding to increasing randomness. He made this relationship
precise with his famous formula S = k logW where S defines entropy, W is the total number

of possible molecular configurations, and k is the constant which bears Boltzmann’s name:
k =1.38 x 107" ergs per degree centigrade. (The above formula appears as an epitaph on
Boltzmann’s tombstone.) This is equivalent to the definition of the information
(“negentropy”) in an ensemble, all of whose possible states are equiprobable, but with a
minus sign in front (and when the logarithm is base 2, k=1.) The deep connections between
Information Theory and that branch of physics concerned with thermodynamics and
statistical mechanics, hinge upon Boltzmann’s work.



e Leo SZILARD (1898-1964) in 1929 identified entropy with informa-
tion. He formulated key information-theoretic concepts to solve the
thermodyvnamic paradox known as “Maxwell's demon”™ {a thought-
experiment about gas molecules in a partitioned box) by showing
that the amount of information required by the demon about the
positions and velocities of the molecules was equal (negatively) to
the demon’s entropy increment.

e James Clerk MAXWELL (1831-1879) originated the paradox called
“Maxowell's Demon”™ which greatly influenced Boltzmann and which
led to the watershed insight for information theorv contributed by
Szilard. At Cambridge, Maxwell founded the Cavendish Laboratory
which became the original Department of Physics.

e BV HARTLEY in 1928 founded communication theorv with his
paper Transmission of Information. He proposed that a signal

(or a communication channel) having bandwidth €1 over a duration
T has a limited number of degrees-of-freedom, namely 2077, and
therefore it can communicate at most this quantity of information.
He also defined the information content of an equiprobable ensemble
of N possible states as equal to log, N.

e Norbert WIENER (1894-1964) unified information theory and Fourier
analysis by deriving a series of relationships between the two. He

invented “white noise analvsis” of non-linear systems, and made the
definitive contribution to modeling and describing the information
content of stochastic processes known as Time Series.



e Dennis GABOR (1900-1979) crystallized Hartley’s insight by formu-
lating a general Uncertainty Principle for information, expressing
the trade-off for resolution between bandwidth and time. (Signals
that are well specified in frequency content must be poorly localized
in time, and those that are well localized in time must be poorly
specified in frequency content.) He formalized the “Information Di-
agram’ to describe this fundamental trade-off, and derived the con-
tinnous family of functions which optimize (minimize) the conjoint
uncertainty relation. In 1974 Gabor won the Nobel Prize in Physics
for his work in Fourier optics, including the invention of holography.

e Claude SHANNON (together with Warren WEAVER) in 1949 wrote

the definitive, classic, work in information theorv: Mathematical

Theory of Communication. Divided into separate treatments for
continuous-time and discrete-time signals, systems, and channels,
this book laid out all of the keyv concepts and relationships that de-
fine the field today. In particular, he proved the famous Source Cod-
ing Theorem and the Noisy Channel Coding Theorem, plus many
other related results about channel capacity.

e 5 KULLBACK and R A LEIBLER (1951) defined relative entropy

(also called information for discrimination, or K-L Distance.)

o E T JAYNES (since 1957) developed marimum entropy methods
for inference, hypothesis-testing, and decision-making, based on the
phvsics of statistical mechanics. Others have inquired whether these
principles impose fundamental physical limits to computation itself.

e AN KOLMOGOROV in 1965 proposed that the complexity of a
string of data can be defined by the length of the shortest binary
program for computing the string. Thus the complexity of data

15 its minimal description length, and this specifies the ultimate
compressibility of data. The “Kolmogorov complexity” K of a string
is approximately equal to its Shannon entropy H, thereby unifyving
the theory of descriptive complexity and information theory.



1.1 Introduction:

o (Communication

Communication involves explicitly the transmission of information from one point to another,
through a succession of processes.

s Basic elements to every communication system
o Transmitter
o Channel and

o Receiver

Communication System
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¢  Source definition

Analog : Emit a continuous — amplitude, continuous — time electrical wave

from. Discrete : Emit a sequence of letters of symbols.

The output of a discrete information source 1s a string or sequence of symbols.

1.2 Measure the information:

To measure the information content of a message quantitatively, we are required to arrive at

an intuitive concept of the amount of information.

Consider the following examples:

A trip to Mercara (Coorg) in the winter time during evening hours,

b

It 1s a cold day
It 1s a cloudy day

Possible snow flurries



2. Mathematical Foundations; Probability Rules;
Bayes’ Theorem

What are random variables? What is probability?

Random variables are variables that take on values determined by prob-
abilitv distributions. They may be discrete or continuous, in either their
domain or their range. For example, a stream of ASCII encoded text
characters in a transmitted message i1s a discrete random variable, with
a known probability distribution for any given natural language. An
analog speech signal represented by a voltage or sound pressure wave-
form as a function of time (perhaps with added noise), is a continuous
random variable having a continuous probability density function.

Most of Information Theory involves probability distributions of ran-
dom wvariables, and conjoint or conditional probabilities defined over
ensembles of random variables. Indeed, the information content of a
symbol or event is defined by its (im)probability. Classically, there are
two different points of view about what probability actually means:

e relative frequency: sample the random variable a great many times
and tally up the fraction of times that each of its different possible
alues occurs, to arrive at the probability of each.

e degree-of-belief: probability is the plausibility of a proposition or
the likelihood that a particular state (or value of a random variable)
might oceur, even if its outcome can only be decided once (e.g. the
outcome of a particular horse-race).

The first view, the “frequentist” or operationalist view, is the one that
predominates in statistics and in information theory. However, by no
means does it capture the full meaning of probability. For example,
the proposition that "The moon is made of green cheese" is one
which surely has a probability that we should be able to attach to it.
We could assess its probability by degree-of-belief calculations which



combine our prior knowledge about physics, geology, and dairy prod-
ucts. Yet the “frequentist” definition of probability could only assign
a probability to this proposition by performing (say) a large number
of repeated trips to the moon, and tallying up the fraction of trips on
which the moon turned out to be a dairy product....

In either case, 1t seems sensible that the less probable an event is, the

more information is gained by noting its occurrence. (Surely discovering

that the moon IS made of green cheese would be more “informative”
than merely learning that it is made only of earth-like rocks.)

Probability Rules

Most of probability theory was laid down by theologians: Blaise PAS-
CAL (1623-1662) who gave it the axiomatization that we accept today;
and Thomas BAYES (1702-1761) who expressed one of its most impor-
tant and widely-applied propositions relating conditional probabilities.

Probability Theory rests upon two rules:

'Product Rule:

p(A, B) = “joint probability of both A and B”
— p(A|B)p(B)

or equivalently,
= p(B|A)p(A)
Clearly, in case A and B are independent events, they are not condi-
tionalized on each other and so
p(A|B) = p(A)
and p(B|A) = p(B).

in which case their joint probability is simply p(A, B) = p(A)p(B).



Sum Rule:
If event A 18 conditionalized on a number of other events B, then the
total probability of A is the sum of its joint probabilities with all B:

plA) = %p(;ﬁL B) = %p{fl B)p(B)

From the Product Rule and the symmetry that p(A, B) = p(B, A), it
is clear that p(A|B)p(B) = p(B|A)p(A). Bayes’ Theorem then follows:

Bayes' Theorem:

_ plA|B)p(B)

p(A)
The importance of Bayves’™ Rule 1s that it allows us to reverse the condi-
tionalizing of events, and to compute p( B|A) from knowledge of p( A| B),
plA), and p(B). Often these are expressed as prior and posterior prob-

plB|A)

abilities, or as the conditionalizing of hypotheses upon data.

Basic Terminologies

Term Description

Information Reduction in uncertainty due to reception of a message.

Source The system which generates the data (e.g., English text, binary stream).
Entropy (H) Average amount of information per symbol.

Redundancy Excess bits used for error detection/correction.

Channel Medium through which information is transmitted.

Noise Any unwanted disturbance on the channel.



Marginal probability: From the Sum Rule, we can see that the proba-

bility of X taking on a particular value x = a; is the sum of the joint
probabilities of this outcome for X and all possible outcomes for Y

p&=ad=§ﬂI=Mﬂ)

We can simplify this notation to: p(z) =Y plz,y)
y
and similarly: p(y) = > p(z,y)

Conditional probability: From the Product Rule, we can easily see that

the conditional probability that = = a;, given that y = by, 1s:
plr = a;,y = b))
ply = by)

pla =aly=b,) =

rly) =
Y)
)

We can simplify this notation to:

i.i

pl
plx

and similarly: p(y|lz) =
P

r

—

[t is now possible to define various entropy measures for joint ensembles:



3. Entropies Defined, and Why They are
Measures of Information

The information content I of a single event or message is defined as the
base-2 logarithm of its probability p:

I =logy,p (1)
and its entropy H is considered the negative of this. Entropv can be
regarded intuitively as “uncertainty.” or “disorder.” To gain information
is to lose uncertainty by the same amount, so I and H differ only in
sign (if at all): H = —I. Entropy and information have units of bits.

Note that [ as defined in Eqt (1) is never positive: it ranges between
() and —oc as p varies from 1 to 0. However, sometimes the sign is
dropped, and [ is considered the same thing as H (as we'll do later too).

No information is gained (no uncertainty is lost) by the appearance
of an event or the receipt of a message that was completely certain any-
way (p = 1, so I = (). Intuitively, the more improbable an event is,
the more informative it is; and so the monotonic behaviour of Eqt (1)
seems appropriate. But why the logarithm?

The logarithmic measure is justified by the desire for information to
be additive. We want the algebra of our measures to reflect the Rules
of Probability. When independent packets of information arrive, we
would like to say that the total information received 1s the sum of
the individual pieces. But the probabilities of independent events
multiply to quve their combined probabilities, and so we must take
logarithms in order for the joint probability of independent events
or messages to contribute additively to the information gained.

This principle can also be understood in terms of the combinatorics
of state spaces. Suppose we have two independent problems, one with n



possible solutions (or states) each having probability p,,, and the other
with m possible solutions (or states) each having probability p,,. Then
the number of combined states is mn. and each of these has probability
PonPn. We would like to say that the information gained by specifying
the solution to both problems is the sum of that gained from ecach one.
This desired property is achieved:

Im.n = 1{}gj{pm.pu.} = lﬂgg pm + IUE—’,'Q pu — Irrt -+ In {2]

A Note on Logarithms:

In information theory we often wish to compute the base-2 logarithms
of quantities, but most calculators (and tools like xcalc) only ofter
Napierian (base 2.718...) and decimal (base 10) logarithms. So the
following conversions are useful:

loge X = 1.443log, X = 3.322log;, X

Henceforward we will omit the subscript; base-2 is always presumed.

¥ Measure of Information

If an event E has a probability P(E) , the amount of information I(E) associated with it is:
I(E) = —log, P(E)

Where b is the base of the logarithm (usually base 2 for binary systems, giving result in bits).

¢ Entropy (Average Information Content)



If a source emits n symbols 51, sa, ..., 8, with respective probabilities py, pa, ..., Py, the entropy is defined

d5.
T
H(X)=—) pilogap; (in bits)
=1

*  Maximum Entropy: When all symbols are equally probable.

*  Minimum Entropy: When one symbol is certain (probability = 1).

¢ 5. Joint Entropy

For two random variables X and Y, the joint entropy is:

H(X,Y)=—) plz,y)log,p(z,y)

¢ 6. Conditional Entropy

The uncertainty remaining in X given that Y is known:

H(X|Y) == p(z,y)log, p(z|y)

# 7. Mutual Information
Measures the amount of information that X and Y share:
I(X;Y) = H(X) — H(X|Y]

It quantifies the reduction in uncertainty of one variable due to knowledge of another.



Mutual Information between X and Y|

The mutual information between two random variables measures the
amount of information that one conveys about the other. Equivalently.
1t measures the average reduction in uncertainty about X that results
from learning about Y. It is defined:

plz,y) (1)

“

[(X;Y) = Zp(wy)logon s

Clearly X savs as much about Y as Y says about X. Note that in case
X and Y are independent random variables, then the numerator inside
the logarithm equals the denominator. Then the log term vanishes. and
the mutual information equals zero, as one should expect.

Non-negativity: mutual information is always > (. In the event that
the two random variables are perfectly correlated, then their mutual
information is the entropy of either one alone. (Another way to say
this is: I(X:;X) = H(X): the mutual information of a random vari-
able with itself is just its entropy. For this reason, the entropy H({X)
of a random variable X is sometimes referred to as its self-information. )

¢ 8. Channel Capacity

The maximum rate at which information can be transmitted over a noisy channel:

C—=maxI(X;Y)
plz)

e For a Binary Symmetric Channel (BSC) with crossover probability p:

C=1-—H(p)

¢ 9. Source Coding Theorem



According to this theorem, “A message from a source with entropy H can be compressed
to H bits/symbol without loss, on average.”

¥ 10. Noisy Channel Coding Theorem

Itis possible to transmit data with arbitrarily low error probability over a noisy channel if
the transmission rate R = channel capacity C.

< 11. Redundancy

Redundancy R is defined as:

| HX)

R —
log, m

Where m is the number of symbols in the alphabet.

Symbol:- In information theory and coding, a symbol is a discrete element or unit that
represents information. It can be a letter, number, or any other predefined character within
a specific alphabet or set. These symbols are used to construct messages or data
sequences, which are then processed and transmitted.

@ 12. Applications of Information Theory
o Data Compression (e.g., Huffman, Shannon-Fano, Arithmetic coding)
e Error Detection and Correction (e.g., Hamming codes, CRC)
o Cryptography
¢ Machine Learning (e.g., Information Gain)
« Image and Signal Processing

e Natural Language Processing

¥ 13. Common Coding Techniques



Technique Purpose
Huffman Coding Optimal prefix code for lossless compression.
Shannon-Fano Coding Early method of entropy encoding.

. . . Achieves higher compression rates than Huffman in some
Arithmetic Coding
cases.

Run Length Encoding

Compresses sequences of repeated values.
(RLE)

Lempel-Ziv-Welch (LZW) Dictionary-based compression used in GIFs and TIFFs.
¢ 14. Information vs. Data

Aspect Information Data

Meaning Processed and meaningful Raw and unprocessed

Value High (usedin decision-making) Low (needs interpretation)

€ 15. Summary- Information theory provides the foundation for all digital
communications, guiding how data is encoded, compressed, transmitted, and
decoded. Its core principles like entropy, mutual information, and channel capacity are
central to designing efficient and reliable communication systems.

Joint Entropy-

# Definition:

Joint Entropy is the measure of the total uncertainty associated with a pair of random variables X and ¥

taken together.

il Mathematical Expression:

H(X,Y)=->_) plz y)log,p(z,y)

reX 4=t

* Where p(z,y) is the joint probability of the events X = zandY = y.

* The base of the logarithm determines the unit (base 2 for bits).



. Interpretation:

s Represents the total information required to describe the outcome of both X and Y together.

¢ If X and Y are independent:
H(X,Y)=H(X)+ H(Y)

Conditional Entropy (H(X|Y)) :-

Conditional Entropy is the amount of uncertainty remaining in a random variable X when the value of

another variable Y is known.

[L] Mathematical Expression:

H(X|Y)= =) p(y) ) pla|y)log, p(z|y)

yel weX

@ Intuition:

* Measures average uncertainty in X given knowledge of Y.

o If X andY are independent:
H(X|Y) = H(X)
o If X is completely determined by Y":
HXY)=0

Mutual Information (I1(X; Y)) :-

# Definition:
Mutual Information measures the amount of information one random variable contains about another. It

quantifies the reduction in uncertainty of one variable due to the knowledge of another.

[l Mathematical Expression:

I(X;Y)=H(X)- H(X[Y)

Alternate equivalent forms:

I(X;Y)=H(Y) - H(Y|X)

I(X;Y)=H(X)+H(Y) - H(X,Y)




L.l Properties:

. I(X:Y)>0

» I(X:;Y)—=0ifand onlyif X and Y are independent
o Symmetry: I(X;Y) = I(Y; X)

Applications in Information Theory

e Channel Capacity Analysis

o Feature Selection in Machine Learning

¢ Dependency Measurement in Data Mining
e Cryptography and Security

e« Natural Language Processing

Information rate-

If the source is emitting symbols at a fixed rate of “’rs * symbols / sec, the average source

information rate ‘R’ is defined as-R =rg . H bits / sec

Topic: Markoff Statistical Model for Information Source, Entropy, and Information Rate
1. Introduction

The Markoff statistical model (also known as the Markov model) is widely used in
information theory to model a source that emits symbols probabilistically, where the
probability of each symbol depends on one or more previous symbols. Unlike a memoryless
source, which emits each symbol independently, a Markoff source has memory and
dependencies among symbols.



2. Markoff Statistical Model for Information Source
A Markoff source is characterized by the following:
Definition:

A source is said to be a Markoff source of order k if the probability of occurrence of a
symbol depends only on the preceding k symbols.

For first-order Markoff sources, this simplifies to:

P[-Xrt Xn-1, Xn_2, .y Xl} = P(X11|Xn—l}

Key Elements:
o Alphabet: Set of possible symbols emitted (e.g., {A, B, C, ...}).
o States: Each state represents a symbol or group of symbols.

o Transition Probabilities:
Pij=P(next symbol s j | current symbolis i)P_{ij} = P(\text{next symbolis }j \mid
\text{current symbolis } i)Pij=P(next symbolis jlcurrent symbolis i)

Transition Matrix:

A square matrix representing probabilities of transitioning from one symbol (state) to
another.Example:

A B C
A 0.2 0.5 0.3
B 0.1 0.6 0.3
C 0.3 0.3 0.4

3. Entropy of a Markoff Source

Definition: The entropy of a Markoff source measures the average uncertainty per
symbol, taking into account dependencies between symbols. For a first-order Markoff
source, the entropy HHH is defined as:

H=-) m) Pjlog,P;
P



Where:
Ti. Stationary probability of state i
'J'; Transition probability from state j to statej
Stationary Distribution:
The set of probabilities { ?Ti} satisfying:

T = Z i Fij, Z T = 1
1 i

N2

This represents the long-term average proportion of time the source spends in each state.

4. Information Rate of a Markoff Source

The information rate (also called entropy rate) represents the average number of bits per
symbol produced by the source.

1
R—=H(X)= lim —H(X1,Xs,..., Xy)

n—0C T

For a first-order Markoff source, this simplifies to:
R=H=-) m Y Pyjlog,P;
i J

Thus, the information rate is equal to the entropy of the Markoff source when in
stationary state.



5. Comparison: Memoryless vs. Markoff Source

Feature Memoryless Source Markoff Source

Dependency No memory (independent symbols) Depends on previous symbols
Entropy Formula H = -3 pilog, p: Requires stationary distribution
Information Rate Constant per symbol Depends on transition structure
Modeling Capability Limited Realistic for natural languages

6. Applications
e Text prediction and speech recognition
¢ Natural language processing
e Data compression algorithms (e.g., PPM, LZ78 variants)

e Hidden Markov Models (HMM) for pattern recognition

7. Conclusion

The Markoff statistical model allows for more accurate modeling of real-world sources by
considering dependencies between symbols. Its entropy and information rate are essential
measures in understanding the efficiency and capacity of communication systems.

8. References
1. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory. Wiley.

2. Viterbi, A. J., & Omura, J. K. (1979). Principles of Digital Communication and Coding.
McGraw-Hill.

3. Sayood, K. (2017). Introduction to Data Compression. Morgan Kaufmann.




UNIT-2

Chapter: Source Coding and Communication Channels

1. Source Coding: Encoding of the Source Output

Source Coding refers to the process of representing the output of a source in binary form
efficiently, i.e., reducing the redundancy while maintaining lossless information.

Symbol sequermge [ g o
emitted by the 0Put f  source | OUPULL - 4 binary sequence
information source Encoder

« If the encoder operates on blocks of *N” symbols, t he bit rate of the
encoder is given as

Produces an average bit rate of Gy bits / symbol

Where, Gy =—

|
ZMm. ) log p(m; )
N

p(m; ) = Probability of sequence *mj’ of *N* symbols from the source,
Sum is over all sequences ‘m ;’ containing *N* symbols.

(s in a monotonic decreasing function of N and

Lim

N —o0 Gu = H bits / symbol
Performance measuring factor for the encoder
Coding efficiency: n,

I Source inf ormation rate
Definition of n¢ =

Average output bit rate of the encoder

H(S)
Hy

Ne =




Key Points:

o The goal is to represent data with as few bits as possible.

e Achieved using variable-length codes depending on symbol probabilities.

o High-probability symbols — shorter codes; Low-probability symbols — longer codes.
o Examples: Shannon coding, Huffman coding, Arithmetic coding.

2. Shannon’s Encoding Algorithm

* Formulation of the design of the source encoder
Can be formulated as follows:
Oneof*q" s

possible
messages

1 A unique binary
SourceO)TPUT code word ‘¢ §° of

> < (. hiee £
encoder length *n §° bits for
the message ‘m i’

INPUT

’

A message

N-symbols Replaces the input message
symbols by a sequence of
binary digits

‘q’ messages T, my, L, m g
Probs. of messages © PLPL P G P g

ni : an integer

Shannon’s method encodes symbols based on their probabilities. The algorithm uses cumulative
probabilities and binary fractions to generate prefix-free codes.

Steps:

Sort symbols in decreasing order of probability.

2. Calculate cumulative probability F(z;) for each symbol.

3. Code length:

; =[- lﬂgi(Piﬂ

v

]

F(x;) +

4. Code: Use binary expansion of , up to lj bits.



e Properties:

e Simple and fast.

e Not always optimal, but close to entropy.
e Produces prefix codes.

© 3. Communication Channels

A communication channel is a medium through which information is transmitted from a sender
(source) to a receiver (destination).

Components:
e Input (source symbols)

e Output (received symbols)
o Transition probabilities (channel behavior)

* The schematic of a practical communication system is shown.

|r1 Data Communication Channel {Discrete) ,'r.]l

Coding Channel (Discrete)

F 3

Modulation Channel ( Analr.-%]
"l

Iﬁ
Electrical Noise
. Commun-
b Channel C Channel d ication £ Channel h
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Fig.: BINARY COMMN. CHANNEL CHARACTERISATION
4. Discrete Communication Channels
These channels deal with discrete inputs and outputs (finite alphabets).
Example:

e Binary Symmetric Channel (BSC)



e Binary Erasure Channel (BEC)
Properties:

o Described using a transition probability matrix.
o Useful in digital communication systems.

5. Continuous Channels

These channels deal with continuous-valued signals (e.g., voltages, frequencies). a continuous
channel as one whose input is a sample point from a continuous sample space and the output is a
sample point belonging to either the same sample space or to a different sample space. Further we
shall define a’ zero memory continuous channel’ as the one in which the channel output
statistically depends on the corresponding channels without memory.

Example:
e Additive White Gaussian Noise (AWGN) channel.
Characterized by:

o Input/output signals being real-valued.
o Probabilistic models using probability density functions.

Entropy of continuous Signals: (Differential entropy): For the case of discrete
messages, we have defined the entropy as,

1
H(S)= Spisioe

k=1 p(sk)

Chapter: Fundamental Limits on Performance

1. Source Coding Theorem (Shannon’s First Theorem)

Statement:
For a discrete memoryless source with entropy H(X) , no lossless code can encode the source
with average length less than H(X) bits/symbol.



H(X)<L< H(X)+1

Implications:

o Entropy is the lower bound on average codeword length.
o It is possible to compress data close to its entropy using efficient coding schemes.

@ 2. Huffman Coding

An optimal prefix coding algorithm that minimizes average codeword length.

Steps:

Create a priority queue of symbols by probability.
Combine two least-probable symbols into a node.
Repeat until a binary tree is formed.

Assign ‘0’ and ‘1’ to left/right edges.

b=

Properties:

e Always produces optimal prefix codes.
e Greedy algorithm.
e Practical and widely used.



3. Discrete Memoryless Channels (DMC)

We have considered the discrete source, now we consider a channel through
which we wish to pass symbols generated by such a source by some appropriate
encoding mechanism; we also introduce the idea of noise into the system — that
is we consider the channel to modify the input coding and possibly generate
some modified version.

We should distinguish between systematic modification of the encoded symbols,
i.e. distortion, and noise. Distortion is when an input code always results in the
the same output code; this process can clearly be reversed. Noise on the other
hand introduces the element of randomness into the resulting output code.
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Figure- Coding and decoding of symbols for transfer over the channel

We consider an input alphabet X" = {z;,...,2s} and output alphabet } =
{y1, .. ..y} and random variables X and Y which range over these alphabets.
Note that J and K need not be the same — for example we may have the binary
input alphabet {0,1} and the output alphabet {0,1, L}, where L represents
the decoder identifying some error. The discrete memoryless channel can then
be represented as a set of transition probabilities:

pl ]':"Frl-r,;f} = PY =y | X = I‘I;,'}

A Discrete Memoryless Channel (DMC) has:

e Discrete input/output alphabets.
e Memoryless: Output depends only on current input, not previous ones.

Represented by:

P(Y|X)

A transition probability matrix



Examples:
e Binary Symmetric Channel (BSC)

e Z-Channel
e FErasure Channel

Binary Symmetric Channel:-

The binary symmetric channel has two input and output symbols (usually writ-
ten {0,1}) and a common probability, p, of “incorrect” decoding of an input
at the output; this could be a simplistic model of a communications link, fig-
ure 20a.

However, to understand the averaging property of the error rate F. described
above, consider the figure 20b, where we have 1 0% symbols, of which the first has
a probability of being received in error {of 0.1), and the remainder are always
received perfectly. Then observing that most of the terms in the sum on the
right of equation 46 are zero:

P = plyi|xa)p(ea)
— 0.1 x 10"

Figure- Binary Symmetric channel



Channel Capacity
We wish to define the capacity of a channel, using the model of a free input
alphabet and dependent output alphabet (given by the channel matrix). We
note that for a given channel, if we wish to maximize the mutual information,
we must perform a maximization over all probability distributions for the input
alphabet X. We define the channel capacity, denoted by | as:

= max I(X3)) (51)
{e(r;)}
When we achieve this rate we describe the source as being matched to the
channel.
Definition:

Maximum rate at which information can be reliably transmitted over a channel.

C = maxI(X;Y)
P(z)

Where:

e C: Channel capacity (bits per use)
o I(X;Y ):Mutual information between input and output.

Capacity for Common Channels:

= BSC (p):

C =1- H(p) = 1+ plogy(p) + (1 — p)logy(1 — p)
*  AWGN Channel:

1 P
C = 3 log, (l + E) (bits per transmission)



Channel Coding:-

To overcome the problem of noise in the system, we might consider adding
redundaney during the encoding process to overcome possible errors. The ex-
amples that are used here are restricted to sources which would naturally be
encoded in a nojseless environment as fixed size block codes — ie. a source al-
phabet A", which has 2" equiprobable symbols; however, the discussion applies
to more general sources and variable length coding schemes.

One particular aspect to be considered in real uses of channel coding is that many

sources which we are interested in encoding for transmissions have a significant
amount of redundancy already. Consider sending a piece of syntactically cor-
rect and semantically meaningful English or computer program text through a
channel which randomly corrupted on average 1 in 10 characters (such as might
be introduced by transmission across a rather sickly Telex system). e.g.:

1. Bring reinforcements, we're going to advance
2. It's easy to recognise speech

Reconstruction from the following due to corruption of 1 in 10 characters would
be comparatively straight forward:

1. Brizg reinforce ents, we're going to advance
2. It's easy mo recognise speech

However, while the redundancy of this source protects against such random
character error, consider the error due to a human mis-hearing:

1. Bring three and fourpence, we're going to a dance.
2. It's easy to wreck a nice peach.
The coding needs to consider the error characteristics of the channel and de-

coder, and try to achieve a significant “distance” between plausible encoded
messages.



Summary Table
Concept

Source Coding

Shannon Encoding

Communication Channel

Discrete Channels

Continuous Channels

Description
Compress data from source using binary codes
Uses cumulative probability to assign binary codes
Medium for sending symbols
Finite symbols, DMCs
Real-valued signals (e.g., AWGN)

Source Coding Theorem H(X) <L < H(X)+1

Huffman Coding
DMC
Channel Capacity

I References:

Optimal prefix code using greedy approach
Discrete input/output, no memory
Max reliable transmission rate over a channel

e Claude E. Shannon, “A Mathematical Theory of Communication”, 1948.
e Cover & Thomas, Elements of Information Theory.
o Simon Haykin, Communication Systems.



