Wave function:
Wave function is the quantity whose variation makes up the matter waves. Amplitude of matter wave is
describes by wave function. It is denoted by y which consists of real and imaginary part.

Y= A+1iB
Conjugate of y is y* = A-iB
P2= A2+R2
Probability density :
2] =y . y*

|1?| at a particular place at a particular time is proportional to the probability of finding the particle
there at that time.

Properties of Wave Function

W must be continuous and single-valued everywhere.

oY / ox, oW / dy, 0¥ / 0z must be continuous and single-valued everywhere. (There may be
exception in some special situations, we will discuss this later.)

3. | ¥| 2 must go to zero asx,y, or z —+ so that [ |¥|2 dV remains finite
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4. W must be normalized. i.e. [ [?| dV =1

5. [JI~_[? dV = 0 i.. the particle does not exist but but |W|2 overall space must be finite i.e. the
body is somewhere.
Therefore [[[*_[?| dV = 0,negative or complex is not possible

Energy and Momentum Operator

In quantum Physics , the state of System is described by its wave function and the observables are
represented by the operators .

Let us assume that ¥ for a particle moving freely in the +ve x direction is-
. X
‘L/) = Ae_lw(t_;)

where v = velocity, w = 2nv(nu), v(velocity) = vA,A = % = mh
2w

w — Ae(—i2nvt+ A )
P = Ae 2™ (vt - %)

W =AenEEPD (2) This is the wave equation for a free particle.

On differentiating partially with respect to ‘t’ we get
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Hence energy operator E = ih % .............. 3)
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W is said to be eigen function of the operator i — and E is called corresponding eigen value.
Now on differentiating partially with respect to ‘x’ we get
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Hence momentum operator P = % mreeees )]

iSCHRODINGER’S WAVE EQUATION

In 1926, Schrodinger gave a fundamental equation of wave mechanics in the same sense as the
Newton’s Second Law of Classical Mechanics. It is the differential equation of the de — Broglie wave
associated with the particle and describes the motion of the particle.

Let us assume that ¥ for a particle moving freely in the +ve x direction is-

where v = velocity, w = 2nv(nu), v(velocity) =vA,A = % = —

w — Ae(—ihwt#?f%)
— i X
Y = Ae 2™ (vt — I)

= Ae REECPD (2) This is the wave equation for a free particle.

As energy operator E = ih % and momentum operator P = % é'ix
Total energy E=K.E. + P.E. ......... A3)
p2
() W+ VY e @)

This is the Schrodinger’s time dependent wave equation in one dimension
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In three dimension form ih = " (6x2 + 377 + 622) +VyY . (6)

Schrodinger’s Time independent wave equation :

Let us assume that ¥ for a particle moving freely in the +ve x direction is-

Y = Ae_iw(t_g)

.......... 1)
where v = velocity, w = 2nv(nu), v(velocity) = vA,A = % = z%h
)= Ae(—ivaHizf;x)
_ —2mi _x
Y = Ae (vt /1)
Y =Ae nECPO (2) This is the wave equation for a free particleyy = e 794 en®®
= ee 7D 3)
Where ), = Aei?® ... @)

Partially Differentiating equation (3) with respect to ‘t’

oy —iE L&
= e Y (5)

Double differentiate partially with respect to ‘x’
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5z T gz € 1 e (6)
Now we put the values of equation 4,5,and 6 in Schrodinger’s time dependent equation . i.e.
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% + Zh_zl (E=V)py =0 In One dimension

2 2 2
V2o + ZFL—?(E — V)P =0 Where V2= ;?+6— i

— In three dimension
8y2 = 622



Application of Schrodinger Wave equation

1. Particle in a box (Innfinite square well )

A particle in a 1dimensional box is a fundamental quantum mechanical approximation
describing the translational motion of a single particle confined inside an infinitely deep well f
rom which it cannot escape.

Let us consider a particle moving inside a box along the X- Direction. The particle is bouncing back
and forth between the walls of the box. ‘L’ is the width of the box

The potential energy is 0 inside the box (V=0 for o<x<L) and goes to infinity at the walls of th
e box (V= for x<0 or x>L). We assume the walls have infinite potential energy to ensure that
the particle has zero probability of being at the walls or outside the box.
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Particle cannot exist outside the box so its wave function =0 for x <0 and x > L

Within the box , the Schrodinger equation becomes

8%y | 2m . ..

=t (E)Y =0 (V=0 for free particle inside the box) - (1)
. 2mE

Consider K = [—

Equation —(1) becomes

L e

The general solution of this equation is

Y =AsinKx+CosKx ................. 3)
Using Boundary condition

Yp=0at x=0

0=Asin0+ B



Applying II Boundary condition

P =0

at x =L

0 =AsinKL

A#+0

1.€. sin

1.€. sin

KL=20

KL = sinnm
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Yp(x)=A sinnL—n X i (4) wheren=1,2,3,...........

Energy Level E),

A=

21

2 2
Eigen Value E, = (nL—") (%) i
lehz B
n - 8mL2 Tttt (5) n= 0,1,2,3,4 .............

Equation —(5) reveals that

1.

The energy of a particle is quantized .i.e. the particle cannot have an arbitrary energy but can
have only certain discrete energy corresponding ton = 1,2,3,.....

The lowest possible energy of a particle is NOT zero. This is called the zero-point energy and
means the particle can never be at rest because it always has some kinetic energy.

Each permitted energy is called eigen value of the particle and constitutes the energy level of
the system.

Each permitted energy is called eigen value of the particle and constitutes the energy level of
the system. The wave function Y corresponding to each eigen value are called eigen functions.

The wavefunction for a particle in a box at the n=1 and n=2 energy levels look like this:



To find the Eigen functions of the particle using eq.(4) and applying normalization condition
+oo 2 Jy —
S W ()12 dx = 1
L
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