
F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

231

6.1 BASICS OF FILE
y The le system provides an abstract data structure o the le present

in the hard disk (secondary storage).
y File system provides the online storage and access mechanism or both

data and programs o the operating system.
y File system is a combination or collection o two main objects like

directories and les.
y For stored inormation, the uniorm logical view is provided by OS to

dene the le, i.e., logical storage unit, it (OS) abstracts the physical
properties o its storage devices.

y File is a collection o related inormation, and it is last stage/smallest
allotment which could be stored on the secondary storage. Any data
could be stored only in the orm o les onto secondary storage.

y Files have a dened structure, like or instance, a text le .txt which
has a sequence o characters organized into lines, and likewise an (.exe)
executable le which has code/programs.

File attributes:
A le is named to get it identied uniquely by its end users. A le has
various attributes attached to it, which vary rom one operating system to
another. It typically consists o:

1) Name: The symbolic name o the le is the only inormation
kept in readable orm.

2) Identifer: A le is allocated in the system with a distinctive tag.

3) Type: It represents what type o le it is.

4) Location: The location o a le is the actual position on the disk
where the le is stored.

5) Size: This gives ino about the present le size, possibly
maximum le size extension.

6) Protection: Access–control inormation determines who can read,
write and execute.

7) Time and date: This attribute says about creation, last modied, last
used times o a le.

File System and Disk Storage6

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

232

Fig.6.1 File Attributes

Note:

In a system with many les, the size o the directory itsel may be in
megabytes because les are non_volatile.

File operations:
A le is an abstract data type. Various types o operations can be perormed
on the le by the resident operating system using system calls like create,
read, write, delete and truncate.

y Creating a fle: For ale creation, the rst thing to have is storage space
and secondly need to enter the unmatched or unique
le name in the directory, these are prerequisites or
le creation.

y Writing a fle: Writing on to the le is done using a system call
with speciying both names o the le and the data
to be written to the le. A writer pointer is kept to
the location o the le rom where or the position

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

233

which needs to be start writing and pointer need to be
updated accordingly as per writes in the le.

y Reading a fle: To read a le, a read pointer is provided by the OS.
y Repositioning

within a fle: For an appropriate entry, the directory is searched. The
pointer is repositioned in the le to the given entry
rom the current position o the le. There is no I/O
involvement or the repositioning o the pointer within
a le. This operation is called le seek.

y Deleting a fle: A le (content o le) is deleted along with its
attributes, and space is released. The space is again
reusable.

y Truncating a fle: A le truncation includes the content removal
rom the le but not the complete deletion o the
le. In le truncation, attributes o the le remains
but only data/content rom the le is removed.

Note:

Other common operations include appending new inormation to the end
o an existing le and renaming an existing le.

Grey Matter Alert!

Open() system call is used by most o the OS in order to avoid constant
searching. Inormation associated with an open() le system call.
1) Access rights
2) File’s location on the disk
There are also operating systems which provide the le lockers. So, a
le could be sae when it is a sharable resource. I a le is locked by a
process, then it would not allow other processes to gain access.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

234

SOLVED EXAMPLES

Q1 Which of the following statements is/are TRUE?
a) The fle systems manage only secondary storage data
b) Native and mounted fle systems must be similar in type
c) A fle system creates a hard link to a fle in a mounted fle system
d) Tape storage is most appropriately managed by a sequential fle

organization

Sol: Option: d)
a) (FALSE) The le system manages les on secondary as well as main storage
b) (FALSE) One o the primary advantages o mounting a le system is to enable

multiple heterogeneous le systems
c) (FALSE) Sot links are path name, and hard links are directory entries
d) Tape storage is accessed sequentially

File types:
A le is recognized by the operating system on its type and operates
accordingly. The types could be like .doc, .txt, etc.
The extension type o a le indicates the type o operation we can perorm
on les.

File Type Usual Extension Function

executable
exe, com, bin or
none

ready–to–run machine–
language program

object obj, o
compiled, machine language,
not linked

source code
c, cc, java, pas,
asm , a

source code in various
languages

batch bat, sh
commands to the command
interpreter

text doc, txt textual data, documents

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

235

word processor tex, rt, doc
various word–processor
ormats

library lib, a, so, dll
libraries o routines or
programmers

print or view gi, pd, jpg
ASCII or binary le in a
ormat or printing or viewing

archive arc, zip, tar

related les grouped
into one le, sometimes
compressed, or archiving or
storage

multimedia
mpeg, mov, mp3,
mp4, avi

binary le containing audio
or A/V inormation

Fig. 6.2 Common File Types

Directory:
y In a computer system, millions o les are stored on random-access

storage devices, including the hard disks, optical disks, and memory-
based disks.

y To organize these les properly, a directory structure is used by the le
system.

y Directory is a collection o correlated les which keeps entries o all les.

Fig. 6.3 Directory Structure

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

236

Types of directory structure:

Single–level directory:
y The simplest directory structure is the single level directory. Which

consists o one directory with all the les in the same directory.

Advantages:
1) Since we have only one level structure, implementation becomes easy.
2) It’s aster to search a le in this structure i the number o les is low.
3) File operations are easy.

Disadvantages:
1) It consumes more time i les are high in number.
2) Users cannot be separated.

Fig. 6.4 Single-Level Directory

Two–level directory:
y Among multiple users, this (single level directory) structure gives

conusion in le names.
y So, to overcome ambiguity, creating a separate directory or an individual

user is good.
y Every user has UFD (user le directory) o their own.
y The structure o UFDs is similar, but each directory lists les o single user.
y For unique le naming purpose, user needs to know the path name o

le desired.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

237

Fig. 6.5 Two-Level Directory

Advantages:
1) Isolation ousers rom one to another is eectively done in this structure.

So, the same directory or same le name could exist or multiple users,
because paths are dierent.

2) Searching o les become easier due to path name and user grouping.

Disadvantages:
1) The implementation o a directory structure is dicult.
2) Files are not permitted to share with users. Thus, i the same le

exists in two dierent directories, then updates made in any one o
the les are not refected in the other le. This leads to the problem o
inconsistency.

Tree-structured directory:
y Tree-structured directory is the extension o a two-level directory tree

structure to a tree o arbitrary height.
y In this, users can create their own subdirectories and can keep their

les in a more organized manner.
y Tree structure is the most requently used directory structure.
y Unique le route/path or each le and root directory could be ound in

the tree structure.

Advantages:
1) The probability o name collision is very less as each le has dierent

paths.
2) Full path name o the le is given, which makes searching very easy.
3) By using a relative search or absolute path search, we could nd the le.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

238

Disadvantages:
1) Implementation o this directory structure is more complicated.
2) It is not ecient since accessing a le may lead to accessing omultiple

directories.
3) Sharing o directories and les is prohibited in this structure.

Fig. 6.6 Tree Level Directory

Acyclic-graph directory:
y An acyclic graph directory allows dierent users to share subdirectories

and les.
y In two dierent directories, there may exist the same les or

subdirectories. So, among various users or directories, common
subdirectories could be shared.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

239

Note:

Sharing subdirectories (les) is dierent rom copying subdirectories
(les) to another place; i a user alters shared subdirectories (les), the
changes will get refected everywhere.

Advantages:
1) There is no problem o inconsistency because les can be shared, and

any changes made to one copy o the le are automatically refected
everywhere.

2) Searching a le is easy because it has a unique or individual path.
3) Since there is no cycle, simple graph algorithms can be used to traverse

the graph.

Disadvantages:
1) Acyclic-graph directory structure is more complex than a simple tree

structure.
2) Deleting les may create a problem because les are shared via links,

and it may lead to a dangling pointer.

Fig. 6.7 Acyclic–Graph Directory Structure

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

240

General graph directory structure:
y Generally, in a graph directory structure, cycles can be present within a

directory structure.
y I there is a cycle in the structure, then there are more than one path

possible to reach to the le.

Advantages:
1) It allows cycle.
2) It is a fexible structure, since a le can be searched through many

paths.

Disadvantages:
It is costly because we might need to design complex algorithms in order
to avoid innite loops while searching through the cycle.

Fig. 6.8 General Graph Directory

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

241

SOLVED EXAMPLES

Q2 Which of the following is/are FALSE?
a) A hierarchical fle system, must have a root directory irrespective o the

operating system.
b) In a hierarchical fle system a sot link is also known as a relative path.
c) In a hierarchical fle system, or a fle, multiple sot links but only one

hard link can exist.
d) In a hierarchical fle system, or a fle, only one sot link but multiple hard

links can exist.

Sol: Options: b), d)
a) (TRUE) A hierarchical le system must have a root directory irrespective o the

operating system.
b) (FALSE) In a hierarchical le system, a sot link is a directory entry containing

the pathname or anotherle. The relative path oale is just a short path o the
le in the current working directory.

c) (TRUE) In ahierarchicalle system, orale,multiple sot links but onlyone hard
link can exist.

d) (FALSE) A hard link is a directory entry that species the location o the le on
the storage device.

Access methods:
There are dierent methods that can be used to access the inormation
within the le.

a) Sequential access:
Inormation in the le is accessed and processed orderly (sequentially), i.e.,
one record ater other in this method.
Example: Compiler and editor access a le using sequential access.
Key points are:
1) Orderly, data is accessed one record ater another record.
2) A read operation “read next”, reads next portion o the le and

advances the le pointer.
3) Most o the OS provide this method to access a le.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

242

b) Direct Access:
y It is also known as the relative access method.
y In this method, a le can be accessed randomly without any proper

sequence(order).
y Random read/write is possible like read on block 10, then 56 and

write on block 45 can be perormed.

c) Index sequential method:
y Accessing o the le is done by using another le called index le,

which is built on sequential method in this method.
y It generally involves index construction or the le, whereas the le

contains a pointer to the various blocks o the le.
y For nding a record in the le, rst search the index and later with

the help o a pointer, directly access the le to nd desired the
record.

File allocation methods:
There are multiple ways to store a le in the disk blocks; three o them are
discussed here:

Motive o fle allocation:
Utilization o disk space in an eective way and accessing le blocks in ast
manner.

a) Contiguous allocation:
y In this, whenever a le is created, it occupies a contiguous set o

blocks on the disk. Let us consider a le that requires ‘x’ blocks, i
a le is assigned to block ‘p’ then the le will occupy blocks p, p +
1, p + 2, p + 3, p + x - 1.

y I starting disk block address and le Length (in terms o blocks) are
given, then we can easily nd the number o occupied blocks by the
le .,

y The directory entry or a le with contiguous allocation contains the
rst block address and le size.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

243

Fig. 6.9 Contiguous Allocation

Advantages:
1) Both sequential and random accesses can be done. For random

access, the address o the Xth block o the le, which starts at block
‘p’ can easily be obtained as (p + X).

2) Due to sequential allocation, the number o seeks is minimal, which
makes it extremely ast.

Disadvantages:
1) It suers rom external ragmentation because even i the disk block

is ree, it cannot be allocated, as it may not be a contiguous block.
2) Increasing the le size is dicult because the next contiguous block

may or may not be empty.
3) Internal ragmentation may exist in the last disk block allocated to the

le.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

244

b) Linked list allocation:
y It is a non-contiguous allocation. In this type o allocation, each le

acts as a linked list o disk blocks. Where blocks need not be in a
contiguous manner.

y Here, a le could be allocated in disk blocks that are located
anywhere on disk. In this allocation, directory contains starting and
ending blocks pointers o the le.

Fig. 6.10 Linked-List Allocation

Advantages:
1) This is fexible allocation because whenever a ree disk block is

present, a le block can be allocated in that block.
2) External ragmentation is not present. So, no space is lost due to

disk ragmentation.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

245

SOLVED EXAMPLES

Q3 Consider a fle which is stored in a disk and occupying disk blocks rom 1 to
50. If currently R/W head is on 15th disk block, and a particular record is to be
accessed, which is stored on disk block number 42. It takes 2ns to access a
disk block.
Let the time required to access the disk block containing the desired record
using the contiguous fle allocation method and using the linked fle allocation
method are x ns and y ns, then fnd the absolute dierence between x and y.

Sol: Range: 52 – 52
a) Contiguous fle allocation:

In this method, random access is possible.
So, rom 15th disk block, we can directly access 42nd disk block.
Hence, only single disk block access is required.
Access time = 2ns

b) Linked fle allocation:
In this method, random access is not possible.
So, rom 15th block user needs to access all the blocks to reach 42nd block.
Total block access = 27
Access time = 27 * 2 = 54 ns
The absolute dierence between x and y is 54 - 2 = 52 ns.

Disadvantages:
1) Need a large number o seeks to access the required disk block, since a le is

scattered randomly on the disk.
2) A le can be accessed only in a sequential manner, as random access is not possible.
3) Maintaining the pointer or each disk block is considered as an overhead.

c) Indexed allocation
y In this, every le will have a special block which consists o the

pointers to all blocks o that le. This special block is an index block.
y The ith entry o the index block o a le have the adisk address o the

ith block o that le. Here each le will have index block.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

246

Fig. 6.11 Indexed Allocation o Disk Space

Advantages:
1) It provides random access to the blocks o les, which makes

retrieval aster.
2) External Fragmentation is not present.

Disadvantages:
1) Pointer overhead in index allocation is more as compared to linked

allocation.
2) A complete block holds the pointers only, which leads to inecient

utilization o space.
Sometimes, a single index block is not sucient to hold all the pointers or
les that are very large.
Thus, there are ew mechanisms that is used or this.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

247

y Linked scheme:
As the name species, in this scheme,atleast two index blocks are grouped together to
hold the pointers. Every index block will have a pointer or address to other index blocks.

y Multilevel index:
There are multiple levels o an index. In case o two levels o an index, the rst level
index block has pointers to the second level index blocks and the second level block has
pointers to the disk blocks o the les stored on the disk.

y I-node:
1) A le attributes like a name, size, permissions, etc are stored in a special block called

as I-node (inormation node).
2) In an I-node, space which remains empty ater storing the meta data o a le is used

or storing DBA (disk block address) which has the actual content o a le.
3) The rst ew o these pointers in I-node point to the direct blocks. Direct block is the

block which has actual data.
4) A single indirect block exists, whose pointers are pointing to the actual data blocks where

the data o a le is stored. This indirect block is never holding the data. But it holds the
addresses o the blocks (which holds the actual data).

5) Similarly, the next ew pointers are pointing to double indirect blocks which do not
contain the le data but the address o the blocks that contain the address o the
blocks containing the le data.

Fig. 6.12 UNIX I-Node

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

248

SOLVED EXAMPLES

Q4 Consider a UNIX-I-NODE structure, which maintains eight direct disk block
addresses, two single indirect, one double indirect, one triple indirect disk
block addresses. The size o the disk block is 256 bytes, and disk block address
requires 32 bit.
The maximum possible fle size and total size o the fle system are:
a) 64 MB and 66,594 KB
b) 64 MB and 66,494 KB
c) 32 MB and 66,594 KB
d) 32 MB and 66,494 KB

Sol: Option: a)
Disk block size (DB size) = 256 bytes.

Disk block address size (DBA) = 32 bit =
32
8

= 4 bytes.

a) Maximum le size will be or triple indirect disk block addresses:

3
DBsize

1 * *DB size
DBA

 
 
 

38
82

* 2
4

 
=  
 

18 8 262 * 2 2 B= =

64MB=

b) Total size o the le system

2 3
DB size DB size DB size

8 2 * 1 * 1 * *DB size
DBA DBA DBA

      = + + +      
       

2 38 8 8
8

2 2 2

2 2 2
8 2 * * 2 B

2 2 2

    
= + + +    
     

7 12 18 88 2 2 2 * 2 B = + + + 

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

249

5 10 16 102 2 2 2 2 B = + + + 

[]2 32 1024 65536 KB= + + + 66594 KB=

Q5 Consider a Unix I–node, which maintains 32 direct disk block addresses, one
single indirect, one double indirect and one triple indirect disk block address.
The size o a disk block and disk block address is 2 KB and 32 bits. What is the
maximum fle size possible in the system? ________ (in GB) (rounded o up to
two decimal places)

Sol: Range: 256.50 – 256.50
Maximum le size possible –

2 3
DBSize DBSize DBSize32

*DiskBlock Size
DBA DBA DBA

Direct

DBAS'

       + + +           ↑       

Where DB : Disk Block Address = 32 bits = 4B.

2 3
2KB 2KB 2KB

32 *2KB
4B 4B 4B

     = + + +           

= [25 + 29 + (29)2 + (29)3] * 2 KB
= 25 (1 + 24 + 213 + 222) * 2 KB
= 268,960,832 KB
= 256.50 GB (divided by 220)

Q6 Consider a disk with FAT system which has FAT entry size o 32 bits. Alice is
using a system with 64 GB hard disk. Block size is known to be 32 KB. What is
the minimum size (in MB) o fle that Alice can store in the hard disk?

Sol: Range: 65,528 - 65,528
Hard disk size = 64 GB = 230 * 26 = 236 Bytes
Number o blocks in disk = 236 / 215 = 221 blocks
For each block, there will be a FAT entry → (We want to maximize FAT table size)
FAT size = 221 * (32/8) = 221 x 22 = 223 Bytes = 8MB
Minimum size o le = (236 / 220) – 8 = 216 – 8 = 65,528 MB

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

250

Rack Your Brain

Consider the Unix I–node, which maintains 14 direct pointers, one
single indirect pointer and one double indirect pointer. The disk block
oset is 12,768 bits, and the disk block address is 64 bits long. The
maximum le size possible with double indirect is _____ GB.

Free space management:
y As there is limited disk space, we need to reuse the deleted space or

the new les.
y There is a ree-space list that is managed by the system to keep the

track o all the disk space that is ree.
y To keep track o all the disk space that is ree, a ree-space list is

managed by the system.

1) Bit vector:
The empty space list is implemented as a bit map. A block is represented
using a bit
I bit=1, block is ree
I bit=0, block is allocated
Suppose 1,2,4,6,7…blocks are ree. So, the ree space bit map would be
look like.

0 1 1 0 1 0 1 1

Advantages:
i) It is simple to understand.
ii) It’s very ecient in nding the rst ree block.

2) Linked list:
Free space management on the disk can also be done using a linked
list; in this method, a ree disk block has a pointer to the next ree block
on the disk, and so on. A pointer to the rst ree block is stored at a
designated location on the disk, and it is cached in memory.

3) Grouping:
In this approach, the addresses o the rst ‘n’ ree blocks on the disk
are stored in the rst ree block. In these n blocks, except the last block
n-1 blocks are actually ree. The last block holds the address o the next
‘n’ ree blocks on the disk.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

251

Main advantage o this method ® group o ree disk blocks can be ound
easily.

Fig. 6.13 Linked Free–Space List on Disk

Disk storage structures (DSS):
Basics of DSS
Magnetic disks
Bulk secondary storage is provided bymagnetic disks or amodern computer
systems. Each disk platter has a fat circular shape like CD.
1) The two–surace o the platter is covered with magnetic material. Each

surace is divided into tracks.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

252

y Each track is urther divided into sectors. Outer tracks are bigger than
inner tracks. They have the same number o sectors and storage capacity,
so storage density is high in the inner tracks and low in the outer.

y Diskhead(R–Whead)rotatesovertherotatingharddisk.Thisheadperorms
all read–write operations on the disk. Position o the head is the major
concern as we need to put R–W head to the position where we want in
read/write.

Fig. 6.14 Moving–Head Disk Mechanism

Some terms are:
1) Seek time: Time is taken by the read-write head to reach rom one

track to another one is known as seek time.
2) Rotational latency: The amount o time taken by the sector to rotate in

such a way that it can be accessed by the read-write head.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

253

3) Data transfer time: Time taken to transer
the required amount o data.

4) Average access time: = Average rotational
Latency + Data transer + Seek time.

Average
Rotational Latency = ½ * Time taken or

one ull rotation

Disk Scheduling:

Benefts o disk scheduling:
y Even though multiple processes requests

or I/O operation, at a time, only a single
I/O request is served by the disk controller. The remaining I/O requests
need to wait until they get scheduled.

y The greater disk arm movement happens when two or more requests
are ar rom each other.

y HDD is one o the slowest (secondary devices) parts o the computer
system. It needs to be accessed in an ecient manner.

1) FCFS scheduling (frst come – frst serve):
It is considered as the easiest disk scheduling algorithm.
In this method, the disk requests are satised in the order they arrive
in the disk queue.

Example: A disk queue with requests or I/O to blocks on a cylinder.
90, 178, 42, 133, 10, 140, 76, 79 and consider head starts at 50 in a disk
system with 200 cylinders.

Fig. 6.15 FCFS Algorithm

Total seek time =
(90 - 50) + (178 - 90) + (178 - 42) + (133 - 42) + (133 – 10) + (140 – 10) +
(140 – 76) + (79 – 76) = 675

Rack Your Brain

Consider the ollowing parameters
Number o suraces = 32
Number o tracks/surace= 512
Number o sectors/track = 512
Number o bytes/sector = 1 KB
The number o bits required to speciy
a particular sector in the disc are?

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

254

2) SSTF scheduling (shortest seek time frst):
It is reasonable to serve the requests near to present head position
beore serving ar away disk requests. This scheduling selects the
request with the least time rom the current head position.
With this method, average response time decreases and throughput
increases.

Example: A disk queue with requests or I/O to blocks on the cylinder.
82, 170, 43, 140, 24, 16, 190 and consider SSTF scheduling and current head
start at 50 in a disk system with 200 cylinders.

Fig. 6.16 SSTF Algorithm

Total seek time
= (50 – 43) + (43 – 24) + (24 – 16) + (82 – 16) + (140 – 82) +
(170 – 140) + (190 – 170) = 208.

Major disadvantages are:
y An overhead o prior seeks time calculation.
y Starvation is possible or a request with a higher seek time compared

to the next requests.
y The high variance o response time as SSTF avours only some requests.

3) SCAN scheduling:
The disk arm initiates at one end o the disk and moves towards, the other
end o the disk, serving all the requests alling in between. Ater that, the
disk arm changes its direction and serves all the requests in that direction
in order. Head scans across the disk, back and orth. This scheduling is also
called the elevator algorithm.

Example: A disk queue with requests or I/O to blocks on the cylinder.
90, 178, 42, 133, 10, 140, 76, 79 and consider scan algorithm and head starts
at 50 in a disk system with 200 cylinders and it is scanning in let direction.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

255

Fig. 6.17 SCAN Scheduling

Total seek time= (50 - 42) + (42 - 10) + (10 - 0) + (76 - 0) + (79 - 76) + (90 -
79) + (133 - 90) + (140 - 133) + (178 - 140) = 228

4) C–SCAN scheduling
C-SCAN is an extension o SCAN. It tries to ensure a uniorm waiting time
or all requests. In this method, the disk head moves rom one end o the
disk to the other like SCAN, ullling requests on the way. Ater the head
reaches the other end o the disk, it returns to the beginning o the disk, by
passing any requests on the way back.
The cylinders are treated as a circular list by the C–SCAN scheduling, which
wraps around rom the last cylinder to the rst.

Example: A disk queue with request or I/O to the cylinder are

90, 178, 42, 133, 10, 140, 76, 79 .

Consider C–SCAN scheduling and head starts at 50 in a disk system with
200 cylinder, and is moving in the right direction.

Sol:

Fig. 6.18 C-SCAN Scheduling
Total seek time = (76 - 50) + (79 - 76) + (90 - 79) + (133 - 90) + (140 - 133) +

(178 - 140) + (199 - 178) + (199 - 0) + (10 - 0) + (42 - 10) = 390

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

256

5) LOOK scheduling:
It is identical to the SCAN disk scheduling algorithm, except that instead
o going to the end o the disk, the disk arm only goes to the last request
to be handled in ront o the head and then reverses its direction rom
there. As a result, the extra time caused by unnecessary traversal to the
disk’s end is avoided.

Example: A disk queue with request or I/O to the cylinder are

90, 178, 42, 133, 10, 140, 76, 79.

Consider LOOK scheduling and head starts at 50 in a disk system with 200
cylinders and is moving in the right direction.

Sol:

Fig. 6.19 LOOK Scheduling

Total time = (76 - 50) + (79 - 76) + (90 - 79) + (133 - 90) + (140 - 133) +

(178 - 140) + (178 - 42) + (42 - 10) = 296

6) C–LOOK scheduling:
Circular-LOOK (C-LOOK) is similar to C–SCAN scheduling. In this
approach, the disk arm moves in a direction serving all requests till the
last request in the same direction. Ater that, the disk arm changes its
direction and serves the last request nearest to other ends. Again the
disk arm changes the direction and serves the remaining requests in
the direction in order. In the given example, the disk arm goes rom 178
– 10 and not to 199 and then 0 unlike the C-SCAN. Thus, it also prevents
the extra delay which occurred due to unnecessary traversal to the end
o the disk.

Example: A disk queue with request or I/O to the cylinder are

90, 178, 42, 133, 10, 140, 76, 79.

Consider LOOK scheduling and head starts at 50 in a disk system with 200
cylinders and is moving in the right direction.

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

257

Sol:

Fig. 6.20 C-LOOK Scheduling

Total seek time = (76 - 50) + (79 - 76) + (90 - 79) + (133 - 90) +

(140 - 133) + (178 - 140) + (178 - 10) + (42 - 10)

= 328

Rack Your Brain

Consider a disk system with 200 cylinders (0–199) and reading data
rom track 100. Track sequence is given 45, 8, 10, 11, 110, 50, 186, 176,
192. Suppose the FCFS scheduling is used and it takes 1 ms to move
rom one cylinder to adjacent one. Then total seek time is _______ ms.

SOLVED EXAMPLES

Q7 Consider a disk drive with 3000 cylinders, numbered in the range [0, 2999].
The disk arm is serving the cylinder 125 now, and it is moving upwards. The
pending requests in order are given as: 85, 1390, 900, 1765, 729, 1512, 1025,
1699, 128.
The total distance (in cylinders) that the disk arm moves rom its current
position to serve all the pending requests using C–SCAN is ______

Sol: Range: 5958 – 5958

Fig. 6.21 C-SCAN Scheduling

Total distance = 3 + 601 + 171 + 125 + 365 + 122 + 187 + 66 + 1234 +
2999 + 85 = 5958

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

258

Q8 Consider the tracks request sequence o a disk with 200 tracks is 72, 160, 33,
130, 14, 6, 180. Initially, R/W head is at track 50. R/W head moves in an upward
direction. Howmany additional head movements will be traversed by the R/W
head when the C-SCAN method is used compared to Shortest Seek Time First
(SSTF) method?
a) 200
b) 163
c) 180
d) 120

Sol: Option: b)
SSTF

Fig. 6.22 SSTF Scheduling

No. o head movements = (50 - 6)+(180 - 6) = 44 + 174 = 218

C–SCAN

Fig. 6.23 C-SCAN Scheduling

Number o head movements = (199 - 50) + (199 - 0) + (33 - 0) = 149 + 199 + 33 = 381
Additional head movement are: = 381 – 218 = 163

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

259

IMPORTANT FORMULAE
Secondary memory:
No. o blocks in secondary memory = (size o the secondary memory / size o a block)

Contiguous allocation:
The Xth block o the le, which starts at block ‘p’ can be obtained at (p + X)th block.

File allocation table (FAT):
No. o entries in FAT = No. o blocks in secondary memory
Size o one entry = Bits required to identiy a block
FAT Size = No. o entries in FAT * FAT Entry Size

UNIX I-node:
UNIX I-Node le system with n0 direct disk block addresses, n1 single indirect disk block
addresses, n2 doubly indirect DBAs and n3 triple indirect DBAs. Then,
then maximum le size or triple indirect disk block addresses is

DiskBlock Size
*DiskBlock Size

DiskBlock Address
=

Size o the whole le system is give as:

2 3

0 1 2 3

DiskBlock Size DiskBlock Size DiskBlock Size
n n n n *DiskBlock Size

DiskBlock Address DiskBlock Address DiskBlock Address

             + × + × +       
            

F
ile

S
ys

te
m

an
d
D
is
k
S
to

ra
ge

C
h
ap

te
r
6

260

Chapter Summary

y Basics o le system – The mechanism or online storage and access to
both data and programs.

y File attributes – File has various identiers to uniquely identiy it in
le system, such as name, size, type, etc.

y File operations – 1) Creating a le
2) Writing a le
3) Reading a le
4) Repositioning within a le
5) Deleting a le
6) Truncating a le

y File types – It represents the type o le and the operating
system can recognize it and take appropriate action
accordingly.

y Directory – A directory contains various les and olders.
y Types o directory – 1) Single level

2) Two level
3) Tree structured
4) Acyclic graph

y File access methods – Sequential access
Direct access
Index sequential

y File allocation methods – Contiguous allocation
Linked allocation
Indexed allocation
I-node
File allocation table

y Free space management – Bit vector
Linked list
Grouping

y Disk scheduling – FCFS
SSTF
SCAN
C–SCAN
LOOK
C–LOOK

