File System and Disk Storage

6.1 BASICS OF FILE

°* The file system provides an abstract data structure of the file present
in the hard disk (secondary storage).

® File system provides the online storage and access mechanism for both
data and programs of the operating system.

e File system is a combination or collection of two main objects like
directories and files.

e For stored information, the uniform logical view is provided by OS to
define the file, i.e., logical storage unit, it (OS) abstracts the physical
properties of its storage devices.

e File is a collection of related information, and it is last stage/smallest
allotment which could be stored on the secondary storage. Any data
could be stored only in the form of files onto secondary storage.

e Files have a defined structure, like for instance, a text file .txt which
has a sequence of characters organized into lines, and likewise an (.exe)
executable file which has code/programs.

File attributes:

A file is named to get it identified uniquely by its end users. A file has
various attributes attached to it, which vary from one operating system to
another. It typically consists of:

1) Name: The symbolic name of the file is the only information
kept in readable form.

2) Identifier: A file is allocated in the system with a distinctive tag.

3) Type: It represents what type of file it is.

4) Location: The location of a file is the actual position on the disk

where the file is stored.

5) Size: This gives info about the present file size, possibly
maximum file size extension.

6) Protection: Access—control information determines who can read,
write and execute.

7) Time and date: This attribute says about creation, last modified, last
used times of a file.

Chapter 6

File System and Disk Storage

chrome.jpg Properties
General [Summary

E |chrome.jpg |

Type of file: JPEG Image
Opens with: Windows Picture and

Location: C:\odesk\computer_hope
Size: 18.5 KB (19,032 bytes)
Size on disk: 20.0 KB (20,480 bytes)

Created: Tuesday, September 06, 2011, 9:23:54 PM
Modified: Tuesday, September 06, 2011, 9:30:54 PM
Accessed: Today, September 19, 2011, 8:15:07 PM

Attributes: | |Read-only [|Hidden [Advanced..

Prepladder.com

[ok | [cancel | [Apply

Fig.6.1 File Attributes

In a system with many files, the size of the directory itself may be in
megabytes because files are non_volatile.

File operations:

Afile is an abstract data type. Various types of operations can be performed
on the file by the resident operating system using system calls like create,
read, write, delete and truncate.

e Creating a file: For afile creation, the first thing to have is storage space
and secondly need to enter the unmatched or unique
file name in the directory, these are prerequisites for
file creation.

° Writing a file: Writing on to the file is done using a system call
with specifying both names of the file and the data
to be written to the file. A writer pointer is kept to
the location of the file from where or the position

@32

which needs to be start writing and pointer need to be
updated accordingly as per writes in the file.

Reading a file: To read a file, a read pointer is provided by the OS.

Repositioning

within a file: For an appropriate entry, the directory is searched. The
pointer is repositioned in the file to the given entry
from the current position of the file. There is no 1/0
involvement for the repositioning of the pointer within
a file. This operation is called file seek.

Deleting a file: A file (content of file) is deleted along with its
attributes, and space is released. The space is again
reusable.

Truncating a file: A file truncation includes the content removal
from the file but not the complete deletion of the
file. In file truncation, attributes of the file remains
but only data/content from the file is removed.

Other common operations include appending new information to the end
of an existing file and renaming an existing file.

Open() system call is used by most of the OS in order to avoid constant
searching. Information associated with an open() file system call.

1) Access rights

2) File’s location on the disk

There are also operating systems which provide the file lockers. So, a
file could be safe when it is a sharable resource. If a file is locked by a
process, then it would not allow other processes to gain access.

Chapter 6

File System and Disk Storage

SOLVED EXAMPLES

Which of the following statements is/are TRUE?

a) The file systems manage only secondary storage data

b) Native and mounted file systems must be similar in type

c) A file system creates a hard link to a file in a mounted file system

d) Tape storage is most appropriately managed by a sequential file
organization

Option: d)

a) (FALSE) The file system manages files on secondary as well as main storage

b) (FALSE) One of the primary advantages of mounting a file system is to enable
multiple heterogeneous file systems

c) (FALSE) Soft links are path name, and hard links are directory entries

d) Tape storage is accessed sequentially

File types:

A file is recognized by the operating system on its type and operates
accordingly. The types could be like .doc, .txt, etc.

The extension type of a file indicates the type of operation we can perform
on files.

File Type Usual Extension Function

exe, com, bin or ready—to-run machine—
executable

none language program

Sl ol compiled, machine language,

not linked
c, CC, java, pas, source code in various
source code
asm, a languages

commands to the command

batch bat, sh .
interpreter

text doc, txt textual data, documents

various word-processor

word processor tex, rtf, doc
formats

libraries of routines for

library lib, a, so, dll

programmers
. . . . ASCII or binary file in a

print or view gif, pdf, jpg format for printing or viewing

related files grouped
. . into one file, sometimes

archive arc, zip, tar .
compressed, for archiving or
storage

multimedia mpeg, mov, mp3, binary flle contglnlng audio

mp4, avi or A/V information

Fig. 6.2 Common File Types

Directory:

e In a computer system, millions of files are stored on random-access
storage devices, including the hard disks, optical disks, and memory-
based disks.

e To organize these files properly, a directory structure is used by the file
system.

e Directory is a collection of correlated files which keeps entries of all files.

Directory
D,
A 4
Bk, Dy Dl
/ \ 4 / v \
F, F, F F, F, Fs

Fig. 6.3 Directory Structure

@39

Types of directory structure:

! ! ! |

Single-level Two-level Tree Structural Acyclic Graph
Directory Directory Directory Directory

Single-level directory:
e The simplest directory structure is the single level directory. Which
consists of one directory with all the files in the same directory.

Advantages:

1) Since we have only one level structure, implementation becomes easy.
2) It’s faster to search a file in this structure if the number of files is low.
3) File operations are easy.

Disadvantages:
1) It consumes more time if files are high in number.
2) Users cannot be separated.

directory test | data | mail | cont records

5666666064

Fig. 6.4 Single-Level Directory

Two-level directory:

e Among multiple users, this (single level directory) structure gives
confusion in file names.

e So, to overcome ambiguity, creating a separate directory for an individual
user is good.

e Every user has UFD (user file directory) of their own.

e The structure of UFDs is similar, but each directory lists files of single user.

e For unique file naming purpose, user needs to know the path name of
file desired.

master file
. user1 | user 2 | user 3 | user 4

directory

user file
. cat bo a test a data a test X data

directory

Fig. 6.5 Two-Level Directory
Advantages:

1) Isolation of users from one to another is effectively done in this structure.
So, the same directory or same file name could exist for multiple users,
because paths are different.

2) Searching of files become easier due to path name and user grouping.

Disadvantages:

1) The implementation of a directory structure is difficult.

2) Files are not permitted to share with users. Thus, if the same file
exists in two different directories, then updates made in any one of
the files are not reflected in the other file. This leads to the problem of
inconsistency.

Tree-structured directory:

e Tree-structured directory is the extension of a two-level directory tree
structure to a tree of arbitrary height.

e In this, users can create their own subdirectories and can keep their
files in a more organized manner.

® Tree structure is the most frequently used directory structure.

e Unique file route/path for each file and root directory could be found in
the tree structure.

Advantages:

1) The probability of name collision is very less as each file has different
paths.

2) Full path name of the file is given, which makes searching very easy.

3) By using a relative search or absolute path search, we could find the file.

Chapter 6

File System and Disk Storage

Disadvantages:

1) Implementation of this directory structure is more complicated.

2) Itis not efficient since accessing a file may lead to accessing of multiple
directories.

3) Sharing of directories and files is prohibited in this structure.

root | spell bin programs
stat mail dist find | count reorder e mail
prog | copy | prt exp reorder list find count
list obj | spell all last | first

00

Fig. 6.6 Tree Level Directory

Acyclic-graph directory:

e An acyclic graph directory allows different users to share subdirectories
and files.

e In two different directories, there may exist the same files or
subdirectories. So, among various users or directories, common
subdirectories could be shared.

Sharing subdirectories (files) is different from copying subdirectories
(files) to another place; if a user alters shared subdirectories (files), the
changes will get reflected everywhere.

Advantages:

1) There is no problem of inconsistency because files can be shared, and
any changes made to one copy of the file are automatically reflected
everywhere.

2) Searching a file is easy because it has a unique or individual path.

3) Since there is no cycle, simple graph algorithms can be used to traverse
the graph.

Disadvantages:

1) Acyclic-graph directory structure is more complex than a simple tree
structure.

2) Deleting files may create a problem because files are shared via links,
and it may lead to a dangling pointer.

root dict spell

list all w count count | words | list

A 4

4

list |rade | w7

000

Fig. 6.7 Acyclic-Graph Directory Structure

General graph directory structure:

e Generally, in a graph directory structure, cycles can be present within a
directory structure.

e If there is a cycle in the structure, then there are more than one path
possible to reach to the file.

Advantages:

1) It allows cycle.

2) It is a flexible structure, since a file can be searched through many
paths.

Disadvantages:
It is costly because we might need to design complex algorithms in order
to avoid infinite loops while searching through the cycle.

o

text mail | count | book book | mail |unhex| hyp

root avi ji

avi |count unhex | hex

I

Fig. 6.8 General Graph Directory

SOLVED EXAMPLES

Which of the following is/are FALSE?

a) A hierarchical file system, must have a root directory irrespective of the
operating system.

b) In a hierarchical file system a soft link is also known as a relative path.

c) In a hierarchical file system, for a file, multiple soft links but only one
hard link can exist.

d) In a hierarchical file system, for a file, only one soft link but multiple hard
links can exist.

Options: b), d)

a) (TRUE) A hierarchical file system must have a root directory irrespective of the
operating system.

b) (FALSE) In a hierarchical file system, a soft link is a directory entry containing
the pathname for another file. The relative path of afile is just a short path of the
file in the current working directory.

c) (TRUE)Inahierarchicalfile system, forafile, multiple soft links but only one hard
link can exist.

d) (FALSE) A hard link is a directory entry that specifies the location of the file on
the storage device.

Access methods:
There are different methods that can be used to access the information
within the file.

a) Sequential access:
Information in the file is accessed and processed orderly (sequentially), i.e.,
one record after other in this method.
Example: Compiler and editor access a file using sequential access.
Key points are:
1) Orderly, data is accessed one record after another record.
2) A read operation “read next”, reads next portion of the file and
advances the file pointer.
3) Most of the OS provide this method to access a file.

Chapter 6

File System and Disk Storage

Chapter 6

File System and Disk Storage

b) Direct Access:

It is also known as the relative access method.

In this method, a file can be accessed randomly without any proper
sequence(order).

Random read/write is possible like read on block 10, then 56 and
write on block 45 can be performed.

c) Index sequential method:

Accessing of the file is done by using another file called index file,
which is built on sequential method in this method.

It generally involves index construction for the file, whereas the file
contains a pointer to the various blocks of the file.

For finding a record in the file, first search the index and later with
the help of a pointer, directly access the file to find desired the
record.

File allocation methods:
There are multiple ways to store a file in the disk blocks; three of them are

discussed here:

File Allocation

|
! ! !

Contiguous Linked Indexed
Allocation Allocation Allocation

Motive of file allocation:
Utilization of disk space in an effective way and accessing file blocks in fast
manner.

a) Contiguous allocation:

In this, whenever a file is created, it occupies a contiguous set of
blocks on the disk. Let us consider a file that requires ‘x’ blocks, if
a file is assigned to block ‘p’ then the file will occupy blocks p, p +
Lp+2,p+3,....p+x-1

If starting disk block address and file Length (in terms of blocks) are
given, then we can easily find the number of occupied blocks by the
file .,

The directory entry for a file with contiguous allocation contains the
first block address and file size.

file start length
count 0 2
tr 14

of) 1() 2(]) () mail 19

list 28

«0J «J =0 (0 —

v direCtory
count

N A O W

3

Fig. 6.9 Contiguous Allocation

Advantages:
1) Both sequential and random accesses can be done. For random
access, the address of the Xt block of the file, which starts at block
‘p’ can easily be obtained as (p + X).
2) Due to sequential allocation, the number of seeks is minimal, which
makes it extremely fast.

Disadvantages:
1) It suffers from external fragmentation because even if the disk block
is free, it cannot be allocated, as it may not be a contiguous block.
2) Increasing the file size is difficult because the next contiguous block
may or may not be empty.
3) Internal fragmentation may exist in the last disk block allocated to the
file.

b) Linked list allocation:

e |t is a non-contiguous allocation. In this type of allocation, each file
acts as a linked list of disk blocks. Where blocks need not be in a
contiguous manner.

e Here, a file could be allocated in disk blocks that are located
anywhere on disk. In this allocation, directory contains starting and
ending blocks pointers of the file.

directory

file start end
jeep 9 25

Fig. 6.10 Linked-List Allocation

Advantages:
1) This is flexible allocation because whenever a free disk block is
present, a file block can be allocated in that block.
2) External fragmentation is not present. So, no space is lost due to
disk fragmentation.

Disadvantages:
1) Need a large number of seeks to access the required disk block, since a file is
scattered randomly on the disk.
2) Afile can be accessed only in a sequential manner, as random access is not possible.
3) Maintaining the pointer for each disk block is considered as an overhead.

SOLVED EXAMPLES

Consider a file which is stored in a disk and occupying disk blocks from 1 to
50. If currently R/W head is on 15" disk block, and a particular record is to be
accessed, which is stored on disk block number 42. It takes 2ns to access a
disk block.

Let the time required to access the disk block containing the desired record
using the contiguous file allocation method and using the linked file allocation
method are x ns and y ns, then find the absolute difference between x and y.

Range: 52 - 52
a) Contiguous file allocation:
In this method, random access is possible.
So, from 15 disk block, we can directly access 42" disk block.
Hence, only single disk block access is required.
Access time = 2ns
b) Linked file allocation:
In this method, random access is not possible.
So, from 15" block user needs to access all the blocks to reach 42 block.
Total block access = 27
Access time = 27 * 2 = 54 ns
The absolute difference between x and y is 54 - 2 = 52 ns.

c) Indexed allocation
e In this, every file will have a special block which consists of the
pointers to all blocks of that file. This special block is an index block.
e The i* entry of the index block of a file have the adisk address of the
i*" block of that file. Here each file will have index block.

Chapter 6

File System and Disk Storage

directory

file index block
jeep 19

Fig. 6.11 Indexed Allocation of Disk Space

Advantages:
1) It provides random access to the blocks of files, which makes
retrieval faster.
2) External Fragmentation is not present.

Disadvantages:
1) Pointer overhead in index allocation is more as compared to linked
allocation.
2) A complete block holds the pointers only, which leads to inefficient
utilization of space.
Sometimes, a single index block is not sufficient to hold all the pointers for
files that are very large.
Thus, there are few mechanisms that is used for this.

Linked scheme:

As the name specifies, in this scheme,atleast two index blocks are grouped together to
hold the pointers. Every index block will have a pointer or address to other index blocks.
Multilevel index:

There are multiple levels of an index. In case of two levels of an index, the first level
index block has pointers to the second level index blocks and the second level block has
pointers to the disk blocks of the files stored on the disk.

I-node:

1
2)
3)

4)

5)

A file attributes like a name, size, permissions, etc are stored in a special block called
as I-node (information node).

In an I-node, space which remains empty after storing the meta data of a file is used
for storing DBA (disk block address) which has the actual content of a file.

The first few of these pointers in I-node point to the direct blocks. Direct block is the
block which has actual data.

A single indirect block exists, whose pointers are pointing to the actual data blocks where
the data of a file is stored. This indirect block is never holding the data. But it holds the
addresses of the blocks (which holds the actual data).

Similarly, the next few pointers are pointing to double indirect blocks which do not
contain the file data but the address of the blocks that contain the address of the
blocks containing the file data.

mode
owners(2)
timestamps(3)

size block count

direct blocks

single indirect

[oeel

E@ ollo olla o
25 e S5 |2
o W 0

data

double indirect

data

ax

triple indirect data

data

data

Fig. 6.12 UNIX I-Node

Chapter 6

File System and Disk Storage

Chapter 6

File System and Disk Storage

SOLVED EXAMPLES

Consider a UNIX-1-NODE structure, which maintains eight direct disk block
addresses, two single indirect, one double indirect, one triple indirect disk
block addresses. The size of the disk block is 256 bytes, and disk block address

requires 32 bit.
The maximum possible file size and total size of the file system are:
a) 64 MB and 66,594 KB
b) 64 MB and 66,494 KB
c) 32 MB and 66,594 KB
d) 32 MB and 66,494 KB

Option: a)
Disk block size (DB size) = 256 bytes.

Disk block address size (DBA) = 32 bit = %: 4 bytes.

a) Maximum file size will be for triple indirect disk block addresses:

1% DBsize
DBA

3
:2 * 98
4

:218*28:2268

3
j *DB size

=64MB

b) Total size of the file system

M . . 2 . 3
_lgiox DB size L1 DB size L% DB size *DB size
DBA DBA DBA

| 22 (22 (28)
8+2*22+(22j +(22] *2°B

:[8+27+2“+218]*2BB

= [2+25 +21° +2“6]21° B

=[2+32+1024 +65536] KB = 66594 KB

Consider a Unix I-node, which maintains 32 direct disk block addresses, one
single indirect, one double indirect and one triple indirect disk block address.
The size of a disk block and disk block address is 2 KB and 32 bits. What is the
maximum file size possible in the system? (in GB) (rounded off up to
two decimal places)

Range: 256.50 — 256.50
Maximum file size possible -

32 (DBSize) (DBSize) (DBSize) | _. ,
+ + + * Disk Block Size

T DBA DBA DBA

Direct
DBAS'
Where DB : Disk Block Address = 32 bits = 4B.

2kB (2kBY (2KBY
=|32+ + + *2KB

4B 4B 4B

=[25+ 2° + (292 + (2°)°] * 2 KB
=25 (1+ 2% + 21 + 222) * 2 KB
= 268,960,832 KB

= 256.50 GB (divided by 2%°)

Consider a disk with FAT system which has FAT entry size of 32 bits. Alice is
using a system with 64 GB hard disk. Block size is known to be 32 KB. What is
the minimum size (in MB) of file that Alice can store in the hard disk?

Range: 65,528 - 65,528

Hard disk size = 64 GB = 23° * 26 = 2% Bytes

Number of blocks in disk = 236 / 2'® = 22 blocks

For each block, there will be a FAT entry - (We want to maximize FAT table size)
FAT size = 2% * (32/8) = 2% x 22 = 22 Bytes = 8MB

Minimum size of file = (2%¢ / 22°) - 8 = 2" — 8 = 65,528 MB

Chapter 6

File System and Disk Storage

Chapter 6

File System and Disk Storage

@

Consider the Unix I-node, which maintains 14 direct pointers, one
single indirect pointer and one double indirect pointer. The disk block
offset is 12,768 bits, and the disk block address is 64 bits long. The
maximum file size possible with double indirectis __ GB.

Rack Your Brain

Free space management:

1)

2)

3)

As there is limited disk space, we need to reuse the deleted space for
the new files.

There is a free-space list that is managed by the system to keep the
track of all the disk space that is free.

To keep track of all the disk space that is free, a free-space list is
managed by the system.

Bit vector:

The empty space listis implemented as a bit map. A block is represented
using a bit

If bit=1, block is free

If bit=0, block is allocated

Suppose 1,2,4,6,7...blocks are free. So, the free space bit map would be
look Llike.

01101011

Advantages:
i) Itis simple to understand.
ii) It’s very efficient in finding the first free block.

Linked list:

Free space management on the disk can also be done using a linked
list; in this method, a free disk block has a pointer to the next free block
on the disk, and so on. A pointer to the first free block is stored at a
designated location on the disk, and it is cached in memory.

Grouping:

In this approach, the addresses of the first ‘n’ free blocks on the disk
are stored in the first free block. In these n blocks, except the last block
n-1blocks are actually free. The last block holds the address of the next
‘n’ free blocks on the disk.

Main advantage of this method — group of free disk blocks can be found
easily.

free—space list head

Fig. 6.13 Linked Free-Space List on Disk

Disk storage structures (DSS):
Basics of DSS

Magnetic disks
Bulk secondary storage is provided by magnetic disks for amodern computer

systems. Each disk platter has a flat circular shape like CD.
1) The two-surface of the platter is covered with magnetic material. Each

surface is divided into tracks.

@51

e Each track is further divided into sectors. Outer tracks are bigger than
inner tracks. They have the same number of sectors and storage capacity,
so storage density is high in the inner tracks and low in the outer.

e Diskhead(R-Whead)rotatesovertherotatingharddisk.Thisheadperforms
all read—write operations on the disk. Position of the head is the major
concern as we need to put R-W head to the position where we want in

read/write.
track t l«— spindle
ﬂ L2
'{.._“‘V.’ <+ arm assembly
sector s E T

cylinder c —*

: read-write
! head
: o | [S7:5> AN
D " “
‘.._“"
platter
arm
rotation

Fig. 6.14 Moving—Head Disk Mechanism

Some terms are:

1) Seek time: Time is taken by the read-write head to reach from one
track to another one is known as seek time.

2) Rotational latency: The amount of time taken by the sector to rotate in
such a way that it can be accessed by the read-write head.

@52

3) Datatransfer time: Time taken to transfer ﬂ
the required amount of data.
4) Average access time: = Average rotational Rack Your Brain
Latency + Data transfer + Seek time.
Average Consider the following parameters
Rotational Latency = ¥2 * Time taken for Number of surfaces = 32
one full rotation Number of tracks/surface= 512
Number of sectors/track = 512
Disk Scheduling: Number of bytes/sector = 1 KB

The number of bits required to specify

Benefits of disk scheduling:)))
a particular sector in the disc are?

e Even though multiple processes requests
for 1/O operation, at a time, only a single
I/0 request is served by the disk controller. The remaining I/O requests
need to wait until they get scheduled.

® The greater disk arm movement happens when two or more requests
are far from each other.

e HDD is one of the slowest (secondary devices) parts of the computer
system. It needs to be accessed in an efficient manner.

1) FCFS scheduling (first come - first serve):
It is considered as the easiest disk scheduling algorithm.
In this method, the disk requests are satisfied in the order they arrive
in the disk queue.

Example: A disk queue with requests for I/O to blocks on a cylinder.
90, 178, 42, 133, 10, 140, 76, 79 and consider head starts at 50 in a disk

system with 200 cylinders.
0 10 42 50 76 79 90 133 140 178 199

1 1 i I i 1 i 1 1 1
r T T T T T T T T T 1

Fig. 6.15 FCFS Algorithm
Total seek time =
(90 - 50) + (178 - 90) + (178 - 42) + (133 - 42) + (133 — 10) + (140 — 10) +
(140 - 76) + (79 - 76) = 675

(253)

Chapter 6

File System and Disk Storage

Chapter 6

File System and Disk Storage

2) SSTF scheduling (shortest seek time first):
It is reasonable to serve the requests near to present head position
before serving far away disk requests. This scheduling selects the
request with the least time from the current head position.
With this method, average response time decreases and throughput
increases.

Example: A disk queue with requests for I/0 to blocks on the cylinder.
82,170, 43, 140, 24, 16, 190 and consider SSTF scheduling and current head
start at 50 in a disk system with 200 cylinders.

0 16 24 43 50 82 100 140 150 170 190 199

Fig. 6.16 SSTF Algorithm
Total seek time
= (50 — 43) + (43 — 24) + (24 — 16) + (82 — 16) + (140 — 82) +
(170 - 140) + (190 - 170) = 208.

Major disadvantages are:

® An overhead of prior seeks time calculation.

e Starvation is possible for a request with a higher seek time compared
to the next requests.

e The high variance of response time as SSTF favours only some requests.

3) SCAN scheduling:

The disk arm initiates at one end of the disk and moves towards, the other
end of the disk, serving all the requests falling in between. After that, the
disk arm changes its direction and serves all the requests in that direction
in order. Head scans across the disk, back and forth. This scheduling is also
called the elevator algorithm.

Example: A disk queue with requests for I/0 to blocks on the cylinder.
90, 178, 42, 133, 10, 140, 76, 79 and consider scan algorithm and head starts
at 50 in a disk system with 200 cylinders and it is scanning in left direction.

0 10 4 50 76 79 9 133 140 17 199
1 1
T

Fig. 6.17 SCAN Scheduling
Total seek time= (50 - 42) + (42 - 10) + (10 - Q) + (76 - 0) + (79 - 76) + (90 -
79) + (133 - 90) + (140 - 133) + (178 - 140) = 228

4) C-SCAN scheduling

C-SCAN is an extension of SCAN. It tries to ensure a uniform waiting time
for all requests. In this method, the disk head moves from one end of the
disk to the other like SCAN, fulfilling requests on the way. After the head
reaches the other end of the disk, it returns to the beginning of the disk, by
passing any requests on the way back.

The cylinders are treated as a circular list by the C-=SCAN scheduling, which
wraps around from the last cylinder to the first.

Example: A disk queue with request for 1/O to the cylinder are
90, 178, 42,133, 10, 140, 76, 79 .

Consider C-SCAN scheduling and head starts at 50 in a disk system with
200 cylinder, and is moving in the right direction.

Sol:
0 10 42 50 76 79 90 133 140 17 199

Fig. 618 C-SCAN Scheduling
Total seek time = (76 - 50) + (79 - 76) + (90 - 79) + (133 - 90) + (140 - 133) +

(178 - 140) + (199 - 178) + (199 - 0) + (10 - 0) + (42 - 10) = 390

(258)

Chapter 6

File System and Disk Storage

5) LOOK scheduling:

It is identical to the SCAN disk scheduling algorithm, except that instead
of going to the end of the disk, the disk arm only goes to the last request
to be handled in front of the head and then reverses its direction from
there. As a result, the extra time caused by unnecessary traversal to the
disk’s end is avoided.

Example: A disk queue with request for 1/0 to the cylinder are

90, 178, 42, 133, 10, 140, 76, 79.

Consider LOOK scheduling and head starts at 50 in a disk system with 200
cylinders and is moving in the right direction.

Sol:

0O 10 42 50 76 79 90 133 140 178 199

Fig. 6.19 LOOK Scheduling

Total time = (76 - 50) + (79 - 76) + (90 - 79) + (133 - 90) + (140 - 133) +

(178 - 140) + (178 - 42) + (42 - 10) = 296

6) C-LOOK scheduling:

Circular-LOOK (C-LOOK) is similar to C-SCAN scheduling. In this
approach, the disk arm moves in a direction serving all requests till the
last request in the same direction. After that, the disk arm changes its
direction and serves the last request nearest to other ends. Again the
disk arm changes the direction and serves the remaining requests in
the direction in order. In the given example, the disk arm goes from 178
— 10 and not to 199 and then 0 unlike the C-SCAN. Thus, it also prevents
the extra delay which occurred due to unnecessary traversal to the end
of the disk.

Example: A disk queue with request for I/0O to the cylinder are

90, 178, 42, 133, 10, 140, 76, 79.

Consider LOOK scheduling and head starts at 50 in a disk system with 200
cylinders and is moving in the right direction.

Sol:
0 10 42 50 76 79 90 133 140 178 199

isfied
t sat\Sf\e
uest N0~
Reqm this direction

Fig. 6.20 C-LOOK Scheduling
Total seek time = (76 - 50) + (79 - 76) + (90 - 79) + (133 - 90) +
(140 - 133) + (178 - 140) + (178 - 10) + (42 - 10)
= 328

Rack Your Brain

Consider a disk system with 200 cylinders (0-199) and reading data
from track 100. Track sequence is given 45, 8, 10, 11, 110, 50, 186, 176,
192. Suppose the FCFS scheduling is used and it takes 1 ms to move
from one cylinder to adjacent one. Then total seek time is ms.

SOLVED EXAMPLES

Consider a disk drive with 3000 cylinders, numbered in the range [0, 2999].
The disk arm is serving the cylinder 125 now, and it is moving upwards. The
pending requests in order are given as: 85, 1390, 900, 1765, 729, 1512, 1025,
1699, 128.

The total distance (in cylinders) that the disk arm moves from its current
position to serve all the pending requests using C-SCAN is

Range: 5958 - 5958

2999
3 601 171 125 365 122 187 66 1234

85
0 85 125 128 729 900 1025 1390 1512 1699 1765 2999

Current
position

Fig. 6.21 C-SCAN Scheduling
Total distance = 3 + 601 + 171 + 125 + 365 + 122 + 187 + 66 + 1234 +

2999 + 85 = 5958

Chapter 6

File System and Disk Storage

Chapter 6

File System and Disk Storage

Consider the tracks request sequence of a disk with 200 tracks is 72, 160, 33,
130, 14, 6, 180. Initially, R/W head is at track 50. R/W head moves in an upward
direction. How many additional head movements will be traversed by the R/W
head when the C-SCAN method is used compared to Shortest Seek Time First
(SSTF) method?

a) 200

b) 163

c) 180

d) 120

Option: b)
SSTF

0 6 14 33 50 72 130 160 180 199
)

(2

Y

Fig. 6.22 SSTF Scheduling
No. of head movements = (50 - 6)+(180 - 6) = 44 + 174 = 218

C-SCAN
0O 6 14 33 50 72 130 160 180 199

Fig. 6.23 C-SCAN Scheduling
Number of head movements = (199 - 50) + (199 - 0) + (33 - 0) =149 + 199 + 33 = 381
Additional head movement are: = 381 — 218 = 163

IMPORTANT FORMULAE

Secondary memory:
No. of blocks in secondary memory = (size of the secondary memory / size of a block)

Contiguous allocation:
The X block of the file, which starts at block ‘p’ can be obtained at (p + X)* block.

File allocation table (FAT):

No. of entries in FAT = No. of blocks in secondary memory
Size of one entry = Bits required to identify a block

FAT Size = No. of entries in FAT * FAT Entry Size

UNIX I-node:

UNIX I-Node file system with n direct disk block addresses, n, single indirect disk block
addresses, n, doubly indirect DBAs and n, triple indirect DBAs. Then,

then maximum file size for triple indirect disk block addresses is

Disk Block Size

= — * Disk Block Size
Disk Block Address

Size of the whole file system is give as:

{ { DiskBlock Size } { DiskBlock Size }2 { Disk Block Size
n, +n, x , X n,

3
- +n - - * Disk Block Size
DiskBlock Address DiskBlock Address DiskBlock Address

® Basics of file system — The mechanism for online storage and access to
both data and programs.

® File attributes — File has various identifiers to uniquely identify it in
file system, such as name, size, type, etc.

® File operations — 1) Creating a file

2) Writing a file
3) Reading a file
4) Repositioning within a file
5) Deleting a file
6) Truncating a file
® File types — It represents the type of file and the operating
system can recognize it and take appropriate action
accordingly.
e Directory — A directory contains various files and folders.
e Types of directory — 1) Single level
2) Two level
3) Tree structured
4) Acyclic graph
® File access methods — Sequential access
Direct access
Index sequential
e File allocation methods - Contiguous allocation
Linked allocation
Indexed allocation
I-node
File allocation table
® Free space management - Bit vector
Linked list
Grouping
e Disk scheduling - FCFS
SSTF
SCAN
C-SCAN
LOOK
C-LOOK

