
Software Engineering and Project
Management

Introduction to Software Engineering and Process Models
Course Code: BTCS402N

Presented by: Juhi Shrivastava
Institution: Shri Vaishnav Vidyapeeth Vishwavidyalaya,

Indore

The Evolving Role of Software

- Software is essential in all domains: healthcare, defense,
business, education, entertainment.
- Drives innovation in AI, IoT, robotics, mobile computing,
and cloud platforms.
- Used in mission-critical systems: avionics, banking,
nuclear control, etc.
- Software is no longer just a support system; it's a
strategic asset.
- Increases automation, improves efficiency, enhances
decision-making.
- Enables digital transformation and competitive
advantage.

Changing Nature of Software

- Highly distributed and networked (Cloud,
Microservices).
- Adaptive to change (Agile-friendly).
- Secure, scalable, performance-intensive systems.
- Integration with physical devices (Cyber-physical
systems).
- Evolving from monolithic to service-oriented
architectures.
- Focus on real-time processing, personalization,
and data analytics.

Software Myths** Management
Myths:

• Adding more people speeds up development.
• Once code is written, the project is finished.
• Customer Myths:
• A general statement is enough to start development.
• Software can be easily modified later.
• Developer Myths:
• We only need to write code that works.
• Requirements don’t change much.
• Reality:
• Late changes are expensive.
• Poor planning leads to project failure.
• Quality assurance must be continuous.
• Speaker Notes: Clarify the impact of myths on project failure. Explain how

each myth can lead to scope creep, delays, or increased costs.

What is Software Engineering?

• SE is the application of engineering to software development.
• Focuses on structured processes, standards, and best practices.
• Ensures delivery of high-quality software that meets requirements.
• Emphasizes maintainability, scalability, and performance.
• Involves all stages: requirement gathering, design, development,

testing, maintenance.
• Incorporates team collaboration, documentation, and lifecycle

management.
• Speaker Notes: Differentiate SE from ad-hoc coding. Show how it

aligns with principles of traditional engineering disciplines.

Layered Technology in SE

• Quality Focus: Central objective across all phases.
Influences every decision.

• Process Layer: Defines framework activities like planning,
coding, testing.

• Methods Layer: Provides step-by-step technical techniques
(e.g., object-oriented design, testing strategies).

• Tools Layer: CASE tools, IDEs, automated testing tools that
support methods and improve productivity.

• Speaker Notes: Show how these layers build upon one
another. Give examples such as JIRA (tool), Scrum (process),
TDD (method), continuous delivery (quality focus).

Software Process Framework & Umbrella
Activities** Framework Activities:

• Communication: Gathering and understanding
requirements.

• Planning: Estimating resources, time, cost.
• Modeling: Creating design representations.
• Construction: Actual coding and testing.
• Deployment: Releasing and maintaining the software.
• Umbrella Activities:
• Software Configuration Management (version control).
• Software Quality Assurance (standards, audits).
• Risk Management (identifying and mitigating risks).
• Technical Reviews (peer reviews, walkthroughs).
• Documentation (user manuals, SRS, design docs).

Capability Maturity Model Integration
(CMMI)

• Framework to assess and improve software processes.
• Developed by SEI to help organizations improve

performance.
• Maturity Levels:

– Level 1: Initial – Ad hoc, chaotic processes.
– Level 2: Managed – Basic project management.
– Level 3: Defined – Standardized across organization.
– Level 4: Quantitatively Managed – Metrics-based

management.
– Level 5: Optimizing – Continuous process improvement.

• Promotes predictability, risk control, and customer
satisfaction.

Overview of Software Process Models

• Each model offers a unique approach to managing and
executing projects.

• Waterfall Model: Sequential, phase-based
development.

• Incremental Model: Delivers small parts (increments)
over time.

• Spiral Model: Focuses on risk-driven iteration.
• Unified Process: Combines iterative approach with

UML modeling.
• Agile Models: Focused on collaboration, rapid delivery,

and customer feedback.

What is the Waterfall Model?

What is the Waterfall Model?

• A linear and sequential software development
model

• Each phase must be completed before the
next begins

• Best suited for projects with clearly defined
requirements

• Emphasizes documentation and planning

Phases of the Waterfall Model

1. Requirements Analysis

2. System Design

3. Implementation (Coding)

4. Testing

5. Deployment

6. Maintenance

Advantages of the Waterfall Model

• Simple to understand and use

• Easy to manage due to its rigidity

• Phases are processed and completed one at a
time

• Works well for smaller projects with well-
defined requirements

Disadvantages of the Waterfall Model

• Inflexible to changing requirements

• Difficult to go back to any phase once
completed

• Late discovery of bugs or requirement issues

• Not suitable for complex or long-term projects

When to Use the Waterfall Model

• Projects with fixed and clear requirements

• Projects that require rigorous documentation

• Systems that are not expected to change

• Short-duration and low-complexity projects

• The V-Model, which includes the Verification and
Validation it is a structural approach to the software
development.

Introduction to V-Model

• The V-Model is an extension of the Waterfall Model.

• Also known as the Verification and Validation model.

• Development and testing activities are planned in
parallel.

• Emphasizes testing in each development phase.

Verification (Left Side of V)
• Requirements Analysis – Understand user needs
• System Design – Define system architecture
• High-Level Design – Outline module interactions
• Low-Level Design – Detail module functionalities
Validation (Right Side of V)
• Unit Testing – Test individual modules
• Integration Testing – Test combined modules
• System Testing – Test complete system functionality
• Acceptance Testing – Test with user requirements

Advantages of V-Model

• Simple and easy to use
• Clear milestones and deliverables
• Testing activities occur early
• Better quality due to early defect detection
Disadvantages of V-Model
• Rigid and inflexible
• Not suitable for iterative development
• High risk if requirements are unclear
• Limited customer involvement once development

starts

When to Use V-Model

• Requirements are well-defined and fixed

• Projects with no expected changes

• Projects with high reliability needs (e.g.,
medical, defense)

Evolutionary Process Model

• The evolutionary model is based on the concept
of making an initial product and then evolving the
software product over time with iterative and
incremental approaches with proper feedback.

• In this type of model, the product will go through
several iterations and come up when the final
product is built through multiple iterations.

• The development is carried out simultaneously
with the feedback during the development.

• This model has a number of advantages such
as

– customer involvement,

– taking feedback from the customer during
development,

– building the exact product that the user wants.

– Because of the multiple iterations, the chances of
errors get reduced and the reliability and
efficiency will increase.

Types of Evolutionary Process Models

• Iterative Model

• Incremental Model

• Spiral Model

Iterative Model

• Iterative process starts with a simple
implementation of a subset of the software
requirements and iteratively enhances the
evolving versions until the full system is
implemented.

• At each iteration, design modifications are made
and new functional capabilities are added.

• The basic idea behind this method is to develop a
system through repeated cycles (iterative) and in
smaller portions at a time (incremental).

• Requirements of the complete system are clearly defined
and understood.

• Major requirements must be defined; however, some
functionalities or requested enhancements may evolve
with time.

• There is a time to the market constraint.
• A new technology is being used and is being learnt by the

development team while working on the project.
• Resources with needed skill sets are not available and are

planned to be used on contract basis for specific iterations.
• There are some high-risk features and goals which may

change in the future.

Pros and Cons

• Some working functionality can be developed quickly and early in the life cycle.
• Results are obtained early and periodically.
• Parallel development can be planned.
• Progress can be measured.
• Less costly to change the scope/requirements.
• Testing and debugging during smaller iteration is easy.
• Risks are identified and resolved during iteration; and each iteration is an easily managed

milestone.
• Easier to manage risk - High risk part is done first.
• With every increment, operational product is delivered.
• Issues, challenges and risks identified from each increment can be utilized/applied to the next

increment.
• Risk analysis is better.
• It supports changing requirements.
• Initial Operating time is less.
• Better suited for large and mission-critical projects.
• During the life cycle, software is produced early which facilitates customer evaluation and

feedback.

Cons

• More resources may be required.
• Although cost of change is lesser, but it is not very suitable for

changing requirements.
• More management attention is required.
• System architecture or design issues may arise because not all

requirements are gathered in the beginning of the entire life cycle.
• Defining increments may require definition of the complete system.
• Not suitable for smaller projects.
• Management complexity is more.
• End of project may not be known which is a risk.
• Highly skilled resources are required for risk analysis.
• Projects progress is highly dependent upon the risk analysis phase.

Incremental Model

• Incremental Model Overview

• Product is developed in small parts
(increments)

• Each increment adds functionality

• User feedback after each delivery

• Advantages:

• Early partial product delivery

• Flexible to changes

• Easier testing and debugging

• Disadvantages:

• Needs good planning and architecture

• Integration can be complex

• Final cost may be higher

Spiral model

• The Spiral Model is an SDLC tool that mitigates
risk and keeps your team focused on achieving
key objectives.

• First Spiral – Planning and Requirements:
The team gathers basic requirements (product listings, shopping cart,
payment options) and identifies risks (security, scalability). They create a
simple prototype to test user interaction and spot design issues.

• Second Spiral – Risk Analysis and Design Refinement:
Based on feedback, they add features like secure payment processing,
shopping cart, and user registration. They test security with dummy
transactions and assess site performance under more users.

• Third Spiral – Detailed Implementation:
Advanced features such as order tracking, reviews, and search are added.
The team addresses scalability risks and tests site performance during high
traffic periods.

• Final Spiral – Full Deployment:
The website is fully developed, thoroughly tested, and launched.
Remaining risks are monitored and addressed to ensure reliability.

Spiral Model Overview

• Combines iterative nature of prototyping with
Waterfall

• Focus on risk analysis at every cycle

• Four phases per spiral: Planning → Risk
Analysis → Development → Evaluation

When to use the spiral model

• The spiral model is often best suited for:

• Large, complex, and high-risk projects.

• Projects with undefined or evolving
requirements.

• Projects where frequent releases or
prototyping are helpful

Advantages of the Spiral Model

Below are some advantages of the Spiral Model.
• Risk Handling: The projects with many unknown risks that occur as the

development proceeds, in that case, Spiral Model is the best development
model to follow due to the risk analysis and risk handling at every phase.

• Good for large projects: It is recommended to use the Spiral Model in
large and complex projects.

• Flexibility in Requirements: Change requests in the Requirements at a
later phase can be incorporated accurately by using this model.

• Customer Satisfaction: Customers can see the development of the
product at the early phase of the software development and thus, they
habituated with the system by using it before completion of the total
product.

• Iterative and Incremental Approach: The Spiral Model provides an
iterative and incremental approach to software development, allowing for
flexibility and adaptability in response to changing requirements or
unexpected events.

• Emphasis on Risk Management: The Spiral Model
places a strong emphasis on risk management, which
helps to minimize the impact of uncertainty and risk on
the software development process.

• Improved Communication: The Spiral Model provides
for regular evaluations and reviews, which can improve
communication between the customer and the
development team.

• Improved Quality: The Spiral Model allows for multiple
iterations of the software development process, which
can result in improved software quality and reliability.

Disadvantages of the Spiral Model

Below are some main disadvantages of the spiral model.
• Complex: The Spiral Model is much more complex than other SDLC models.
• Expensive: Spiral Model is not suitable for small projects as it is expensive.
• Too much dependability on Risk Analysis: The successful completion of the

project is very much dependent on Risk Analysis. Without very highly experienced
experts, it is going to be a failure to develop a project using this model.

• Difficulty in time management: As the number of phases is unknown at the start
of the project, time estimation is very difficult.

• Complexity: The Spiral Model can be complex, as it involves multiple iterations of
the software development process.

• Time-Consuming: The Spiral Model can be time-consuming, as it requires multiple
evaluations and reviews.

• Resource Intensive: The Spiral Model can be resource-intensive, as it requires a
significant investment in planning, risk analysis, and evaluations.

Rational Unified Process

• RUP is an Iterative and incremental approach
to improving problem knowledge through
consecutive revisions.

• It is an architecture-centric and use-case-
driven approach that manages risk and is
flexible to change.

• RUP incrementally improves an effective
solution through repeated iterations.

• Rational Unified Process (RUP) is a software
development process for object-oriented
models.

• It is also known as the Unified Process Model.

• It is created by Rational Corporation and is
designed and documented using UML (Unified
Modeling Language).

• Some characteristics of RUP include being

– use-case driven,

– Iterative (repetition of the process),

– incremental (increase in value) by nature,

– delivered online using web technology,

– can be customized or tailored in modular and
electronic form, etc.

– RUP reduces unexpected development costs and
prevents the wastage of resources.

RAD Model

• RAD Model stands for rapid application
development model.

• The methodology of RAD model is similar to
that of incremental or waterfall model.

• It is used for small projects.

• The main objective of RAD model is to reuse
code, components, tools, processes in project
development.

https://www.geeksforgeeks.org/software-engineering/software-engineering-rapid-application-development-model-rad/

• If the project is large then it is divided into
many small projects and these small projects
are planned one by one and completed. In this
way, by completing small projects, the large
project gets ready quickly.

• In RAD model, the project is completed within
the given time and all the requirements are
collected before starting the project. It is very
fast and there are very less errors in it.

Agile Software Development

• Agile Software Development is a Software Development
Methodology that values flexibility, collaboration, and
customer satisfaction.

• It is based on the Agile Manifesto, a set of principles for
software development that prioritize individuals and
interactions, working software, customer collaboration, and
responding to change.

• Agile Software Development is an iterative and incremental
approach that emphasizes the importance of delivering a
working product quickly and frequently.

• It involves close collaboration between the development
team and the customer to ensure that the product meets
their needs and expectations.

https://www.geeksforgeeks.org/software-engineering/5-most-commonly-used-software-development-methodologies/

Principles of Agile Software
Development

Advantages Agile Software
Development

• Increased collaboration and communication: Agile Software
Development Methodology emphasize collaboration and
communication among team members, stakeholders, and
customers. This leads to improved understanding, better alignment,
and increased buy-in from everyone involved.

• Flexibility and adaptability: Agile methodologies are designed to be
flexible and adaptable, making it easier to respond to changes in
requirements, priorities, or market conditions. This allows teams to
quickly adjust their approach and stay focused on delivering value.

• Improved quality and reliability: Agile methodologies place a
strong emphasis on testing, quality assurance, and continuous
improvement. This helps to ensure that software is delivered with
high quality and reliability, reducing the risk of defects or issues that
can impact the user experience.

https://www.geeksforgeeks.org/software-engineering/agile-software-development-methodology-framework/

• Enhanced customer satisfaction: Agile methodologies prioritize customer
satisfaction and focus on delivering value to the customer. By involving
customers throughout the development process, teams can ensure that
the software meets their needs and expectations.

• Increased team morale and motivation: Agile methodologies promote a
collaborative, supportive, and positive work environment. This can lead to
increased team morale, motivation, and engagement, which can in turn
lead to better productivity, higher quality work, and improved outcomes.

• Deployment of software is quicker and thus helps in increasing the trust of
the customer.

• Can better adapt to rapidly changing requirements and respond faster.
• Helps in getting immediate feedback which can be used to improve the

software in the next increment.
• People - Not Process. People and interactions are given a higher priority

than processes and tools.
• Continuous attention to technical excellence and good design.

Disadvantages Agile Software
Development

• Lack of predictability: Agile Development relies heavily on customer
feedback and continuous iteration, which can make it difficult to predict
project outcomes, timelines, and budgets.

• Limited scope control: Agile Development is designed to be flexible and
adaptable, which means that scope changes can be easily accommodated.
However, this can also lead to scope creep and a lack of control over the
project scope.

• Lack of emphasis on testing: Agile Development places a greater
emphasis on delivering working code quickly, which can lead to a lack of
focus on testing and quality assurance. This can result in bugs and other
issues that may go undetected until later stages of the project.

• Risk of team burnout: Agile Development can be intense and fast-paced,
with frequent sprints and deadlines. This can put a lot of pressure on team
members and lead to burnout, especially if the team is not given adequate
time for rest and recovery.

• Lack of structure and governance: Agile Development is often less formal
and structured than other development methodologies, which can lead to
a lack of governance and oversight. This can result in inconsistent
processes and practices, which can impact project quality and outcomes.

• In the case of large software projects, it is difficult to assess the effort
required at the initial stages of the software development life cycle.

• Agile Development is more code-focused and produces less
documentation.

• Agile development is heavily dependent on the inputs of the customer. If
the customer has ambiguity in his vision of the outcome, it is highly likely
that the project to get off track.

• Face-to-face communication is harder in large-scale organizations.
• Only senior programmers are capable of making the kind of decisions

required during the development process. Hence, it's a difficult situation
for new programmers to adapt to the environment.

Practices of Agile Software
Development

• Scrum: Scrum is a framework for agile software development that involves
iterative cycles called sprints, daily stand-up meetings, and a product
backlog that is prioritized by the customer.

• Kanban: Kanban is a visual system that helps teams manage their work
and improve their processes. It involves using a board with columns to
represent different stages of the development process, and cards or sticky
notes to represent work items.

• Continuous Integration: Continuous Integration is the practice of
frequently merging code changes into a shared repository, which helps to
identify and resolve conflicts early in the development process.

• Test-Driven Development: Test-Driven Development (TDD) is a
development practice that involves writing automated tests before writing
the code. This helps to ensure that the code meets the requirements and
reduces the likelihood of defects.

• Pair Programming: Pair programming involves two developers working
together on the same code. This helps to improve code quality, share
knowledge, and reduce the likelihood of defects.

Extreme Programming (XP)

• Extreme Programming (XP) is an Agile software
development methodology

• It focuses on delivering high-quality software
• Use of frequent and continuous feedback,

collaboration, and adaptation.
• XP emphasizes a close working relationship

between the development team, the customer,
and stakeholders

• It emphasize on rapid, iterative development and
deployment.

https://www.geeksforgeeks.org/software-engineering/software-engineering-agile-software-development/

Good Practices in Extreme
Programming

• Code Review: Code review detects and corrects errors efficiently. It suggests pair
programming as coding and reviewing of written code carried out by a pair of
programmers who switch their work between them every hour.

• Testing: Testing code helps to remove errors and improves its reliability. XP
suggests test-driven development (TDD) to continually write and execute test
cases. In the TDD approach, test cases are written even before any code is written.

• Incremental development: Incremental development is very good because
customer feedback is gained and based on this development team comes up with
new increments every few days after each iteration.

• Simplicity: Simplicity makes it easier to develop good-quality code as well as to
test and debug it.

• Design: Good quality design is important to develop good quality software. So,
everybody should design daily.

• Integration testing: Integration Testing helps to identify bugs at the interfaces of
different functionalities. Extreme programming suggests that the developers
should achieve continuous integration by building and performing integration
testing several times a day.

https://www.geeksforgeeks.org/software-testing/software-testing-basics/
https://www.geeksforgeeks.org/software-testing/software-engineering-integration-testing/

Basic Principles of Extreme
programming

• XP is based on the frequent iteration through which the developers
implement User Stories.

• User stories are simple and informal statements of the customer
about the functionalities needed.

• A User Story is a conventional description by the user of a feature
of the required system.

• It does not mention finer details such as the different scenarios that
can occur.

• Based on User stories, the project team proposes Metaphors.
• Metaphors are a common vision of how the system would work.
• The development team may decide to build a Spike for some

features.
• A Spike is a very simple program that is constructed to explore the

suitability of a solution being proposed. It can be considered similar
to a prototype.

Capability Maturity Model (CMM)

• The Capability Maturity Model (CMM) is a tool used to
improve and refine software development processes.

• It provides a structured way for organizations to assess
their current practices and identify areas for
improvement.

• CMM consists of five maturity levels: initial,
repeatable, defined, managed, and optimizing.

• Organizations can systematically improve their
software development processes, leading to higher-
quality products and more efficient project
management.

Unit II

Software Requirements:

• The process to gather the software
requirements from client, analyze and
document them is known as requirement
engineering.

• The goal of requirement engineering is to
develop and maintain sophisticated and
descriptive ‘System Requirements
Specification’ document.

Types of Requirements:

• User Requirements: It is a collection of
statement in natural language and description
of the services the system provides and its
operational limitation. It is written for
customer.

• System Requirement: It is a structured
document that gives the detailed description
of the system services. It is written as a
contract between client and contractor.

User Requirements

• Describe what the user needs from the system.
• Written in natural language, accessible to non-

technical stakeholders.
• Should cover:
• Functional needs
• Non-functional expectations (performance,

usability)
• Example:
• “The user shall be able to search for products by

name, category, or price.”

System Requirements

• Detailed description of system functionalities
and constraints.

• Types:

– Functional Requirements: Describe what the system
should do.

– Non-functional Requirements: Define how the system
performs tasks.

• Example:

– The system shall handle 1000 transactions per second.

Software Requirement Specification: -

• SRS is a document created by system analyst after the
requirements are collected from various stakeholders.

• SRS defines how the intended software will interact with
– hardware,
– external interfaces,
– speed of operation,
– response time of system,
– portability of software across various platforms,
– maintainability,
– speed of recovery after crashing,
– Security,
– Quality,
– Limitations etc.

SRS:

• The requirements received from client are written in
natural language.

• It is the responsibility of system analyst to document the
requirements in technical language so that they can be
comprehended and useful by the software development
team.

• SRS should come up with following features:
– User Requirements are expressed in natural language.
– Technical requirements are expressed in structured language,

which is used inside the organization.
– Design description should be written in Pseudo code.
– Format of Forms and GUI screen prints.
– Conditional and mathematical notations for DFDs etc.

Functional vs. Non Functional
Requirements

• functional requirements define the specific
behavior or functions of a system

• non-functional requirements specify how the
system performs its tasks, focusing on
attributes like performance, security,
scalability, and usability.

Functional Requirements?

• These are the requirements that the end user
specifically demands as basic facilities that the system
should offer.

• All these functionalities need to be necessarily
incorporated into the system as a part of the contract.

• These are represented or stated in the form of input to
be given to the system, the operation performed and
the output expected.

• They are the requirements stated by the user which
one can see directly in the final product, unlike the
non-functional requirements.

What are Non-Functional
Requirements?

• These are the quality constraints that the system must satisfy
according to the project contract.

• The priority or extent to which these factors are implemented
varies from one project to another.

• They are also called non-behavioral requirements.
• They deal with issues like:

– Portability
– Security
– Maintainability
– Reliability
– Scalability
– Performance
– Reusability
– Flexibility

Interface Specification

• Interface Specification defines how different
components of the system interact with each
other.

• It provides a formal description of the inputs,
outputs, and communication rules between:

• Software ↔ Users

• Software ↔ Hardware

• Software ↔ Software

Requirement Engineering

• A systematic and strict approach to the
definition, creation, and verification of
requirements for a software system is known
as requirements engineering.

• To guarantee the effective creation of a
software product, the requirements
engineering process entails several tasks that
help in understanding, recording, and
managing the demands of stakeholders.

1. Feasibility Study

• Feasibility Study in Software Engineering is a study to
evaluate feasibility of proposed project or system.

• Feasibility study is one of stage among important four
stages of Software Project Management Process.

• it is a measure of the software product in terms of how
much beneficial product development will be for the
organization in a practical point of view.

• Feasibility study is carried out based on many purposes
to analyze whether software product will be right in
terms of development, implementation, contribution
of project to the organization etc.

Types of Feasibility Study

• Technical Feasibility: current resources both hardware software along
with required technology are analyzed/assessed to develop project.

• Operational Feasibility: degree of providing service to requirements is
analyzed along with how much easy product will be to operate and
maintenance after deployment, determining usability of product,
Determining suggested solution by software development team is
acceptable or not etc.

• Economic Feasibility: cost and benefit of the project is analyzed. After that
it is analyzed whether project will be beneficial in terms of finance for
organization or not.

• Legal Feasibility: project is analyzed in legality point of view, analyzing
barriers of legal implementation of project, data protection acts or social
media laws

• Schedule Feasibility: timelines/deadlines is analyzed for proposed
project which includes how much time teams will take to complete
final project

• Cultural and Political Feasibility: assesses how the software project
will affect the political environment and organizational culture. It is
essential that cultural and political factors be taken into account in
order to execute projects successfully.

• Market Feasibility: evaluating the market's willingness and ability
to accept the suggested software system. Analyzing the target
market, understanding consumer wants and assessing possible
rivals are all part of this study.

• Resource Feasibility: if the resources needed to complete the
software project successfully are adequate and readily available.
Financial, technological and human resources are all taken into
account in this study.

2. Requirements Elicitation

• It is related to the various ways used to gain knowledge
about the project domain and requirements.

• The various sources of domain knowledge include
customers, business manuals, the existing software of the
same type, standards, and other stakeholders of the
project.

• The techniques used for requirements elicitation include
interviews, brainstorming, task analysis, Delphi technique,
prototyping, etc.

• Elicitation does not produce formal models of the
requirements understood. Instead, it widens the domain
knowledge of the analyst and thus helps in providing input
to the next stage.

Requirements elicitation

• Requirements elicitation is the process of
gathering information about the needs and
expectations of stakeholders for a software
system.

• This is the first step in the requirements
engineering process and it is critical to the
success of the software development project.

• The goal of this step is to understand the problem
that the software system is intended to solve and
the needs and expectations of the stakeholders
who will use the system.

Several techniques can be used to
elicit requirements, including:

• Interviews: These are one-on-one conversations with stakeholders
to gather information about their needs and expectations.

• Surveys: These are questionnaires that are distributed to
stakeholders to gather information about their needs and
expectations.

• Focus Groups: These are small groups of stakeholders who are
brought together to discuss their needs and expectations for the
software system.

• Observation: This technique involves observing the stakeholders in
their work environment to gather information about their needs
and expectations.

• Prototyping: This technique involves creating a working model of
the software system, which can be used to gather feedback from
stakeholders and to validate requirements.

3. Requirements Specification

• This activity is used to produce formal software
requirement models.

• All the requirements including the functional as well as
the non-functional requirements and the constraints
are specified by these models in totality.

• During specification, more knowledge about the
problem may be required which can again trigger the
elicitation process.

• The models used at this stage include ER diagrams,
data flow diagrams(DFDs), function decomposition
diagrams(FDDs), data dictionaries, etc.

Requirements specification:

• Requirements specification is the process of
documenting the requirements identified in the
analysis step in a clear, consistent, and
unambiguous manner.

• This step also involves prioritizing and grouping
the requirements into manageable chunks.

• The goal of this step is to create a clear and
comprehensive document that describes the
requirements for the software system. This
document should be understandable by both the
development team and the stakeholders.

types of requirements are commonly
specified

• Functional Requirements: These describe what the software
system should do. They specify the functionality that the system
must provide, such as input validation, data storage, and user
interface.

• Non-Functional Requirements: These describe how well the
software system should do it. They specify the quality attributes of
the system, such as performance, reliability, usability, and security.

• Constraints: These describe any limitations or restrictions that must
be considered when developing the software system.

• Acceptance Criteria: These describe the conditions that must be
met for the software system to be considered complete and ready
for release.

4. Requirements Verification and
Validation

• Verification: It refers to the set of tasks that
ensures that the software correctly implements a
specific function.

• Validation: It refers to a different set of tasks that
ensures that the software that has been built is
traceable to customer requirements. If
requirements are not validated, errors in the
requirement definitions would propagate to the
successive stages resulting in a lot of modification
and rework.

The main steps for this process
include:

• The requirements should be consistent with all the
other requirements i.e. no two requirements should
conflict with each other.

• The requirements should be complete in every sense.
• The requirements should be practically achievable.
• Reviews, buddy checks, making test cases, etc. are

some of the methods used for this.
• Requirements verification and validation (V&V) is the

process of checking that the requirements for a
software system are complete, consistent, and accurate
and that they meet the needs and expectations of the
stakeholders.

• Verification is checking that the requirements are complete,
consistent, and accurate.

• It involves reviewing the requirements to ensure that they are clear,
testable, and free of errors and inconsistencies.

• This can include reviewing the requirements document, models,
and diagrams, and holding meetings and walkthroughs with
stakeholders.

• Validation is the process of checking that the requirements meet
the needs and expectations of the stakeholders.

• It involves testing the requirements to ensure that they are valid
and that the software system being developed will meet the needs
of the stakeholders.

• This can include testing the software system through simulation,
testing with prototypes, and testing with the final version of the
software.

Verification and Validation is an iterative process
that occurs throughout the software
development life cycle.

It is important to involve stakeholders and the
development team in the V&V process to ensure
that the requirements are thoroughly reviewed
and tested.

• It's important to note that V&V is not a one-
time process, but it should be integrated and
continue throughout the software
development process and even in the
maintenance stage.

5. Requirements Management

• Requirement management is the process of analyzing,
documenting, tracking, prioritizing, and agreeing on
the requirement and controlling the communication
with relevant stakeholders.

• This stage takes care of the changing nature of
requirements.

• It should be ensured that the SRS is as modifiable as
possible to incorporate changes in requirements
specified by the end users at later stages too.

• Modifying the software as per requirements in a
systematic and controlled manner is an extremely
important part of the requirements engineering

• Requirement management is the process of analyzing,
documenting, tracking, prioritizing, and agreeing on
the requirement and controlling the communication
with relevant stakeholders.

• This stage takes care of the changing nature of
requirements.

• It should be ensured that the SRS is as modifiable as
possible to incorporate changes in requirements
specified by the end users at later stages too.

• Modifying the software as per requirements in a
systematic and controlled manner is an extremely
important part of the requirements engineering

Several key activities are involved in
requirements management

• Tracking and controlling changes: This involves monitoring and
controlling changes to the requirements throughout the
development process, including identifying the source of the
change, assessing the impact of the change, and approving or
rejecting the change.

• Version control: This involves keeping track of different versions of
the requirements document and other related artifacts.

• Traceability: This involves linking the requirements to other
elements of the development process, such as design, testing, and
validation.

• Communication: This involves ensuring that the requirements are
communicated effectively to all stakeholders and that any changes
or issues are addressed promptly.

• Monitoring and reporting: This involves monitoring the progress of
the development process and reporting on the status of the
requirements.

Requirements management is a critical step in the
software development life cycle as :

• it helps to ensure that the software system being
developed meets the needs and expectations of
stakeholders

• Ensures that it is developed on time, within
budget, and to the required quality.

• It also helps to prevent scope creep and to ensure
that the requirements are aligned with the
project goals.

Context Diagrams

• Context diagrams serve as a foundational tool,
helping designers and stakeholders grasp the
scope and boundaries of a system under
consideration.

• These diagrams provide a high-level view,
illustrating how the system interacts with
external entities and the environment.

Importance of Context Diagrams in
Systems Analysis

• Scope Definition: Context diagrams define the system's boundaries by
highlighting its interactions with external entities, ensuring that the
analysis focuses on pertinent components and processes.

• Requirement Gathering: These diagrams visualize how the system
interacts with its environment, aiding in identifying both functional and
non-functional requirements. They offer clarity on the system's objectives
and its external interactions.

• Communication: Acting as a bridge between stakeholders, such as
business users, developers, and project managers, context diagrams foster
shared understanding of the system's scope and context. They streamline
discussions and decision-making throughout the development process.

• Risk Identification: Context diagrams assist in spotting potential risks
stemming from the system's interactions with external entities. They help
stakeholders assess the implications of external factors on the system's
performance, security, and reliability.

Components of Context Diagrams

• 1. System/Product: This is the primary focus
of the diagram, representing the system being
analyzed or designed.

2. External Entities

• These are entities outside the system
boundary that interact with the system. They
could be users, other systems, or processes
that provide input to or receive output from
the system.

Behavioral Diagrams in Software
Engineering

• Behavioral diagrams are a category of
diagrams in software engineering, particularly
within Unified Modeling Language (UML),
used to capture the dynamic aspects of a
system. These diagrams model the
interactions, activities, and changes that occur
within the software over time.

Purpose of Behavioral Diagrams

• Represent how system components interact
and behave.

• Show the flow of control and data in various
scenarios.

• Help in understanding system functionality,
requirements, and possible use cases.

• Useful for both analysis and design phases of
software development.

Types of Behavioral Diagrams

Use Case Diagram

• Describes the functional requirements of a
system.

• Shows actors (users/external systems) and
their interactions with use cases (system
functions).

• Usage: Early stages of development to capture
user requirements.

Sequence Diagram

• Visualizes object interactions in a specific
scenario of a use case.

• Shows how messages are exchanged in a
chronological sequence.

• Usage: Detailing system logic, identifying
responsibilities of objects.

Activity Diagram

• Represents workflows of stepwise activities
and actions.

• Illustrates flow of control from one activity to
another.

• Usage: Modeling business processes,
describing algorithm logic.

State Machine Diagram (Statechart)

• Depicts the states of an object and transitions
triggered by events.

• Shows lifecycle of an object, from creation to
destruction.

• Usage: Modeling complex object behavior and
event-driven systems.

• State Machine diagrams are also known
as State Diagrams and State-Chart Diagrams.

Basic Components and Notations of a
State Machine Diagram

1. Initial state

2. Transition

3. State

4. Fork

5. Join

6. Final State

Communication Diagram

• Describes interactions between objects focusing
on message flow and links between participants.

• Alternative to sequence diagrams for showing
relationships.

• visually represents the interactions between
objects or components in a system. It focuses on
how messages are exchanged between these
elements, highlighting the flow of information in
a sequence.

Key Elements in Behavioral Diagrams

• Actors: Entities interacting with the system.
• Objects: Components participating in interactions.
• States: Conditions or situations during the life of an object.
• Events: Triggers that cause transitions or actions.
• Transitions: Movement from one state to another.
• Messages: Information or invocation sent between objects.

Applications of Behavioral Diagrams
• Clarifying complex system behavior.
• Validating system requirements and expected responses.
• Facilitating communication among stakeholders.
• Assisting in system design and documentation.
•

Unit 3:
Software Design, UML, Architecture,

UI Design, Metrics

SOFTWARE DESIGN PROCESS:

• Software design is a process to transform user
requirements into some suitable form, which
helps the programmer in software coding and
implementation.

• For assessing user requirements, an SRS
document is created

• for coding and implementation, there is a need of
more specific and detailed requirements in
software terms.

• The output of this process can directly be used
into implementation in programming languages

The Design Process:

• Software design is an iterative process
through which requirements are translated
into blue print for constructing the software.

• Initially, the blueprint depicts a holistic view of
software.

• The design is represented at a high level of
abstraction at level that can be directly traced
to the specific system objective and more
detailed data, functional, and behavioral
requirements.

• As design iterations occur, subsequent
refinement leads to design representations at
much lower level of abstraction.

DESIGN CONCEPTS AND PRINCIPLES:

• Software design is both a process and a
model.

• The design process is a sequence of steps that
enable the designer to describe all aspects of
the software to be built.

• The design process is combination of Creative
skill, past experience, and a sense of what
makes “good” software

• The design model is equivalent of an
architect’s plan for a house.

• It begines by representing the totality of the
thing to be built (e.g., a three-dimensional
rendering of the house)

• And slowly refines the thing to provide
guidance for constructing each detail (e.g., the
plumbing layout).

• Similarly, the design model that is created for
software provides a variety of different views
of the computer software. Basic design
principles enable the software engineer to
navigate the design process.

Principles for software design:

• The design process should avoid tunnel vision.
• The design must be traceable to the analysis model.
• Do not reinvent the wheel – use existing solutions where possible.
• Minimize the intellectual gap between software and the real-world

problem.
• Software design structure should, whenever possible, mimic the

problem domain structure.
• The design should have uniformity and integration.
• It should be structured to handle changes easily.
• The design should degrade gracefully (fail without catastrophic

breakdown).
• Assess design quality while creating it, not afterward.
• Review the design to minimize conceptual or semantic errors.

Design concepts

Abstraction:
Abstraction allows a person to focus on a problem at a
certain level without worrying about lower-level details.
At the highest level of abstraction, the solution is
described in broad terms using the language of the
problem environment. At a lower level, the solution takes
a more procedural form. Finally, at the lowest level of
abstraction, the solution is described in a way that can be
directly implemented.
Types of Abstraction:
Procedural Abstraction
Data Abstraction

• Refinement:
Refinement is the process of elaboration. A function
defined at the abstract level is gradually decomposed
into more detailed steps until it can be expressed as
programming language statements.

• Modularity:
Modularity means dividing software into separately
named and addressable components called modules. It
follows the "divide and conquer" concept, where a
complex problem is broken down into several
manageable parts.

SOFTWARE MODELING AND UML:

• Software modeling: Software models are ways
of expressing a software design. Usually some
sort of abstract language or pictures are used
to express the software design. For object-
oriented software, an object modeling
language such as UML is used to develop and
express the software design.

Unified Modeling Language (UML):

• UML allows a software engineer to express an
analysis model using a modeling notation that
is governed by a set of syntactic, semantic,
and pƌagŵatiĐ ƌules. IŶ UML, a sǇsteŵ is
ƌepƌeseŶted usiŶg fiǀe diffeƌeŶt ͞ǀieǁs͟ that
describe the system from distinctly different
perspectives. Each view is defined by a set of
diagrams

The following views are present in
UML:

• User Model View:
This view represents the system (or product) from the
user’s perspective, where users are called actors in
UML. The use-case diagram is the preferred modeling
technique for this view. It describes how the system
will be used, focusing on the end-user’s interaction and
experience.

• Structural Model View:
This view focuses on the internal structure of the
system — including data, classes, objects, and their
relationships. It represents the static aspects of the
system.

• Behavioral Model View:
This view represents the dynamic behavior of the system. It
shows how different structural elements interact or
collaborate, as described in the user and structural model
views.

• Implementation Model View:
This view shows how the structural and behavioral aspects
of the system are actually implemented or built in practice.

• Environment Model View:
This view represents the structural and behavioral aspects
of the environment in which the system operates or is
implemented.

Refactoring or Code Refactoring

• It is systematic process of improving existing
computer code, without adding new functionality
or changing external behaviour of the code.

• It is intended to change the implementation,
definition, structure of code without changing
functionality of software.

• It improves extensibility, maintainability, and
readability of software without changing what it
actually does.

UML Diagram Types:

• There are several types of UML diagrams:

• User Model View is represented through:
Use-Case Diagram: It shows the actors, use-
cases, and the relationships between them.

• Structural Model View is represented through:
Class Diagram: It shows the relationships
between classes and important details about
each class.
Object Diagram: It shows a specific configuration
of objects at a particular moment in time.

Behavioral model view represents
through Interaction Diagrams:

• Show an interaction between groups of collaborating
objects.

• Two types:
– Collaboration diagram and sequence diagram

• Package Diagrams: Shows system structure at the
library/package level.

• State Diagram: Describes behavior of instances of a
class in terms of states, stimuli, and transitions.

• Activity Diagram: Very similar to a flowchart— shows
actions and decision points, but with the ability to
accommodate concurrency.

Environment model view represent
through Deployment Diagram

• Shows configuration of hardware and
software in a distributed system.

• Implementation model view represent
through Component Diagram: It shows code
modules of a system. This code module
includes application program, ActiveX control,
Java beans and back end databases.

• It representing interfaces and dependencies
among software architect.

Design Classes

• Types:
• There are 5 different types of design classes that represent

a different layer of design architecture that can be
developed:

• User interface classes define abstraction that mandatory
for human-computer interaction [HCI]. In cases, HCI occurs
within the context of metaphor, and design classes for the
interface may be visible representations of elements of
metaphor.

• Business domain classes are often refinements of analysis
classes defined earlier. The class identifies the attributes
that are required to implement some elements of the
business domain.

• Process classes implement lower-level business
Preoccupation need to manage business domain
classes.

• Persistent classes represent the data stores that
will persist beyond the execution of software.

• System classes implement software
management and control function that permits
the system to operate and convey within its
computing environment and with the outside
world

Characteristics:

• Complete and sufficient: A design class should be complete
encapsulation of all attributes and method that can be reasonably
be expected to exist for class. For example, the class scene defined
for video editing software is complete only if it contains all
attributes and methods that can agreeably be associated with the
creation of a video scene. Sufficiently ensure that design class
contains only those methods that are sufficient to achieve the
intent of class, no more and no less.

• Primitiveness: Method associate with design class should be
focused on accomplishing one service for class. Once service
implemented with the method, the class should not provide
another way to accomplish the same thing. For example, the
class Video Clip for video editing software might have
attributes start point and end point to specify start and endpoint of
clip.

• High Cohesion:/strong> A cohesion design class has a small,
concentrated set of authority and single-mindedly applies attributes
and methods to implement those responsibilities. For example, the
class video clip might contain set of method for editing the video
clip. As long as each method focus solely on attributes associated
with video clip, cohesion is maintained.

• Low Coupling: Within the design model, it is necessary for design
classes to get together with one another. However, get together
should be kept to an acceptable minimum. If the design model is
highly coupled, the system is difficult to implement to test and to
maintain over time, In general, design classes within subsystem
should have only limited knowledge of other classes. This
restriction called the Law of Demeter, suggest that method should
only send message to methods in neighboring classes.

•

Package Diagram

• A package diagram is a type of structural
diagram in UML (Unified Modeling
Language) that organizes and groups related
classes and components into packages. It
visually represents the dependencies and
relationships between these packages, helping
to illustrate how different parts of a system
interact with each other.

Basic Elements of Package Diagrams

• Package: This is the fundamental unit of a package diagram, serving as a container for various
elements like classes and interfaces. It’s depicted as a folder-like icon with a name label,
making it easy to identify.

• NameSpace: This denotes the name of the package and usually appears at the top of the
package symbol. It helps uniquely identify the package within the diagram.

• Package Merge: This relationship illustrates how one package can be merged with another.
It’s represented by a direct arrow between the two packages, indicating that their contents
can combine.

• Package Import: This relationship shows that one package can access the contents of another
package, depicted with a dashed arrow.

• Dependency: Dependencies indicate that changes in one package may affect another. This
relationship signifies that one element or package relies on another, highlighting how
interconnected they are.

• Element: An element is a single unit within a package, which can be a class, interface, or
subsystem. Elements reside inside packages and are connected to the main package. For
instance, a class may contain various functions and variables, all of which are considered
elements tied to that class.

• Constraint: This represents a condition or requirement associated with a package, typically
shown in curly braces. Constraints help define the rules or limitations for how the package
operates.

Package Relationships

• Package Merge Relationship
• This relationship is used to represent that the contents of a package can

be merged with the contents of another package. This implies that the
source and the target package has some elements common in them, so
that they can be merged together.

• Package Dependency Relationship
• A package can be dependant on other different packages, signifying that

the source package is somehow dependent on the target package.
• Package Import Relationship
• This relationship is used to represent that a package is importing another

package to use. It signifies that the importing package can access the
public contents of the imported package.

• Package Access Relationship
• This type of relationship signifies that there is a access relationship

between two or more packages, meaning that one package can access the
contents of another package without importing it.

Deployment Diagram

• A Deployment Diagram shows how the
software design turns into the actual physical
system where the software will run. They
show where software components are placed
on hardware devices and shows how they
connect with each other. This diagram helps
visualize how the software will operate across
different devices

Key elements of a Deployment
Diagram

• Nodes: These represent the physical hardware entities where software
components are deployed, such as servers, workstations, routers, etc.

• Components: Represent software modules or artifacts that are deployed onto
nodes, including executable files, libraries, databases, and configuration files.

• Artifacts: Physical files that are placed on nodes represent the actual
implementation of software components. These can include executable files,
scripts, databases, and more.

• Dependencies: These show the relationships or connections between nodes and
components, highlighting communication paths, deployment constraints, and
other dependencies.

• Associations: Show relationships between nodes and components, signifying that
a component is deployed on a particular node, thus mapping software
components to physical nodes.

• Deployment Specification: This outlines the setup and characteristics of nodes and
components, including hardware specifications, software settings, and
communication protocols.

• Communication Paths: Represent channels or connections facilitating
communication between nodes and components and includes network
connections, communication protocols, etc.

Use Cases of Deployment Diagrams

• Deployment diagrams help plan how software systems will
be set up on different devices.

• They help design the hardware needed to support the
software. By showing which software parts go where, they
help decide what devices and networks are needed.

• Deployment diagrams make sure each part of the software
has enough resources, like memory or processing power, to
run well.

• They show how different parts of the software depend on
each other and on the hardware.

• By seeing how everything is set up, teams can find ways to
make the software run faster and smoother.

Steps for creating a Deployment
Diagram

• Step1: Identify Components: List all software parts and hardware
devices that will be in the deployment diagram.

• Step 2: Understand Relationships: Figure out how these parts
connect and work together.

• Step 3: Gather Requirements: Collect details about hardware,
network setups, and any special rules for deployment.

• Step 4: Draw Nodes and Components: Start by drawing the
hardware devices (nodes) and software parts (components) using
standard symbols roughly at first improvise it and draw the final
one.

• Step 5: Connect Nodes and Components: Use lines or arrows to
show how nodes and components are linked.

• Step 6: Add Details: Label everything clearly and include any extra
info, like hardware specs or communication protocols.

College management

Component Based Diagram

• Component-based diagrams are essential
tools in software engineering, providing a
visual representation of a system's structure
by showcasing its various components and
their interactions. These diagrams simplify
complex systems, making it easier for
developers to design, understand, and
communicate the architecture.

• One kind of structural diagram

Collaboration Diagrams

• In UML (Unified Modeling Language), a Collaboration
Diagram is a type of Interaction Diagram that visualizes
the interactions and relationships between objects in a
system. It shows how objects collaborate to achieve a
specific task or behavior. Collaboration diagrams are
used to model the dynamic behavior of a system and
illustrate the flow of messages between objects during
a particular scenario or use case.

• A collaboration diagram is a behavioral UML
diagram which is also referred to as a communication
diagram. It illustrates how objects or components
interact with each other to achieve specific tasks or
scenarios within a system.

https://www.geeksforgeeks.org/system-design/unified-modeling-language-uml-introduction/
https://www.geeksforgeeks.org/system-design/behavior-diagrams-unified-modeling-languageuml/

Components and their Notations in
Collaboration Diagrams

• Objects/Participants

How to draw Collaboration Diagrams?

• Step 1: Identify Objects/Participants: Start by figuring out the objects or
participants in the system. These can be classes, modules, actors, or any
other important entities.

• Step 2: Define Interactions: Determine how these objects work together
to complete tasks or scenarios in the system. Identify the messages they
exchange during these interactions.

• Step 3: Add Messages: Draw arrows between lifelines to show the
messages exchanged between objects. Label each arrow with the message
name and any relevant parameters or data being sent.

• Step 4: Consider Relationships: If there are connections or dependencies
between objects, show these using the right notations, like dashed lines or
arrows.

• Step 5: Documentation: Once you’re done, document the collaboration
diagram with any necessary explanations or notes. Make sure the diagram
clearly communicates the system's interactions to stakeholders

