Unit4
Markov Decision Process

Reinforcement Learning is a type of Machine Learning. It allows machines and software
agents to automatically determine the ideal behavior within a specific context, in order to
maximize its performance. Simple reward feedback is required for the agent to learn its
behavior; this is known as the reinforcement signal.

There are many different algorithms that tackle this issue. As a matter of fact,
Reinforcement Learning is defined by a specific type of problem and allits solutions are
classed as Reinforcement Learning algorithms. In the problem, an agent is supposed to
decide the best action to select based on his current state. When this step is repeated, the
problem is known as a Markov Decision Process.

A Markov Decision Process (MDP) model contains:

e Asetof possible world states S.

e AsetofModels.

e Asetofpossible actions A.

e Areal-valued reward function R(s,a).

e Apolicyis asolution to Markov Decision Process.

Siates: s
Model:
Actions:

Reward:

Policy:

Markow Pecision Process

State

State is a set of tokens that represent every state that the agent can be in.

A
Model

A Model (sometimes called Transition Model) gives an action’s effect in a state. In
particular, T(S, a, S’) defines a transition T where being in state S and taking an action ‘a’

takes us to state S’ (S and S’ may be the same). For stochastic actions (noisy, non-
deterministic) we also define a probability P(S’|S,a) which represents the probability of
reaching a state S’ if action ‘a’ is taken in state S. Note Markov property states that the
effects of an action taken in a state depend only on that state and not on the prior history.

Actions

Action A is a set of all possible actions. A(s) defines the set of actions that can be taken
being in state S.

Reward

A Reward is a real-valued reward function. R(s) indicates the reward for simply being in the
state S. R(S,a) indicates the reward for being in a state S and taking an action ‘a’. R(S,a,S’)
indicates the reward for being in a state S, taking an action ‘a’and ending up in a state S’.

Policy

A Policy is a solution to the Markov Decision Process. A policy is a mapping from Sto a. It
indicates the action ‘a’ to be taken while in state S.
Let us take the example of a grid world:

4

An agent lives in the grid. The above example is a 3*4 grid. The grid has a START state(grid
no 1,1). The purpose of the agent is to wander around the grid to finally reach the Blue
Diamond (grid no 4,3). Under all circumstances, the agent should avoid the Fire grid
(orange color, grid no 4,2). Also, the grid no 2,2 is a blocked grid, it acts as a wall hence the
agent cannot enter it.

The agent can take any one of these actions: UP, DOWN, LEFT, RIGHT

Walls block the agent’s path, i.e., if there is a wall in the direction the agent would have
taken, the agent stays in the same place. So for example, if the agent says LEFT in the
START grid he would stay put in the START grid.

First Aim: To find the shortest sequence getting from START to the Diamond. Two such
sequences can be found:

e RIGHTRIGHT UP UPRIGHT

e UP UP RIGHT RIGHT RIGHT
Let us take the second one (UP UP RIGHT RIGHT RIGHT) for the subsequent
discussion.
The move is now noisy. 80% of the time the intended action works correctly. 20% of
the time the action agent takes causes it to move at right angles. For example, if the
agent says UP the probability of going UP is 0.8 whereas the probability of going
LEFT is 0.1, and the probability of going RIGHT is 0.1 (since LEFT and RIGHT are
right angles to UP).

Utility theory

Utility theory is a fundamental conceptin economics and decision theory. This theory
provides a framework for understanding how individuals make choices under uncertainty.
The aim of this agent is not only to achieve the goal but the best possible way to reach the
goal. This idea suggests that people give a value to each possible result of a choice
showing how much they like or are happy with that result. The aim is to get the highest
expected value, which is the average of the values of all possible results taking into
account how likely each one is to happen.

1. Utility Function: Definition and Purpose

The utility function is a core element of utility-based agents, serving as a mathematical
representation of the agent’s preferences. It assigns a numerical value (utility) to each
possible outcome, reflecting the desirability or satisfaction associated with that outcome.

o Definition: A utility function U(s) is a mapping from states sss to real numbers,
indicating the utility or value of each state.

e Purpose: The primary purpose of the utility function is to quantify the agent’s
preferences, allowing it to compare and evaluate different states. By maximizing
utility, the agent can choose actions that lead to the most desirable outcomes
according to its objectives.

Forexample, in an autonomous vehicle, the utility function might consider factors such as
safety, speed, fuel efficiency, and passenger comfort. Each possible driving state would be

assigned a utility value based on these criteria.

Difference between Value Iteration and Policy Iteration

Aspect

Methodology

Goal

Execution

Complexity

Convergence

Value Iteration

Iteratively updates value
functions until convergence

Converges to optimal value
function

Directly computes value
functions

Typically simpler to implement
and understand

May converge fasterin some
scenarios

Policy Iteration

Alternates between policy
evaluation and improvement

Converges to the optimal policy

Evaluate and improve policies
sequentially

Involves more steps and
computations

Generally converges slower but
yields better policies

Partially Observable Markov Decision Process (POMDP)

A POMDP models decision-making tasks where an agent must make decisions based on
incomplete or uncertain state information. It is particularly useful in scenarios where the

agent cannot directly observe the underlying state of the system but rather receives

observations that provide partial information about the state.

Components of a POMDP

A POMDP is formally defined by the following elements:

o States (S): Afinite set of states representing all possible conditions the system can

bein.

e Actions (A): Afinite set of actions available to the agent.

o Transition Model (T): Afunction T(s,a,s')=P(s'ls,a) that defines the probability of
transitioning from state s to state s' under action ?a.

e Observations (0): Afinite set of observations that the agent can perceive.

¢ Observation Model (Z): A function Z(s',a,0)=P(o|s',a) that defines the probability of
observing ? after taking action a and ending up in state s'.

e Rewards (R): A function R(s,a) that assigns a numerical reward to taking action a in
state s.

+ Discount Factor (y): A factor between 0 and 1 that discounts future rewards,
reflecting the preference forimmediate rewards over future gains.

Mathematical Framework of Partially Observable Markov Decision Process

The decision process in a POMDP is a cycle of states, actions, and observations. At each
time step, the agent:

1. Observes a signal that partially reveals the state of the environment.
2. Chooses an action based on the accumulated observations.

3. Receives areward dependent on the action and the underlying state.
4. Moves to a new state based on the transition model.

The key challenge in a POMDP is that the agent does not know its exact state but has a
belief or probability distribution over the possible states. This belief is updated using
the Bayes’ rule as new observations are made, forming a belief update rule:

Bel(s’) =\frac{ P(o|s’,a) \sum_s P(s’|s,a) Bel(s)KP(o|a, Bel)}
Where:

e Bel(s) is the prior belief of being in state s.

o Bel(s') is the updated belief after observing o and taking action a.
Strategies for Solving Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) pose significant challenges in
environments where agents have incomplete information. Solving POMDPs involves
optimizing decision-making strategies under uncertainty, crucial in many real-world

applications. This overview highlights key strategies and methods for addressing these
challenges.

Belief State Representation:

In POMDPs, agents maintain a belief state—a probability distribution over all possible
states—to manage uncertainty. This belief updates dynamically with actions and
observations via Bayes’ rule.

Solving Techniques:

1. Value lteration: Extends traditional value iteration to belief states, using a
piecewise linear and convex value function to calculate the expected rewards and
update beliefs accordingly.

2. Point-Based Methods: These methods, such as Perseus and Point-Based Value
Iteration (PBVI), focus on a select set of belief points to simplify computations and
efficiently approximate the value function.

3. Policy Search Methods: Methods like QMDP and Finite-state controllers (FIB)
search for optimal policies, sometimes simplifying the problem by assuming full
observability post-action or using a finite set of controller states.

4. Monte Carlo Methods: Techniques like Partially Observable Monte Carlo Planning
(POMCP) and Despot leverage Monte Carlo simulations within a tree search
framework to estimate policy values under uncertainty, focusing on key scenarios to
reduce complexity.

These methods illustrate the ongoing advancements in computational techniques to
manage and solve the complexities of POMDPs, enhancing decision-making in uncertain
environments.

