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Unit-1

Differential Calculus: Rolle’s theorem, mean value theorem, expansion of functions of one
variable, Taylors series Maclaurin series.

The history of the mean value theorem and its variants are studied by several
mathematicians. Vatasseri Parameshvara Nambudiri (1380-1460) was a Hindu from
the Bhrgugotra, adhering to the Ashvalayanasutra of the Rigveda. His family,
known by the surname Vatasseri, lived in the village of Alathiyur (referred to as
Asvatthagrama in Sanskrit) in Tirur, Kerala. Alathiyur is located on the northern
bank of the river Nila (Bharathappuzha) at its mouth in Kerala. He was the
grandson of a disciple of Govinda Bhattathiri (1237-1295 CE), a renowned figure
in Kerala’s astrological traditions.

Parameshvara wrote commentaries on many mathematical and astronomical works,
including those by Bhaskara I and Aryabhata. Over 55 years, he made a series of
eclipse observations, constantly comparing these with the theoretically computed
positions of the planets. He revised planetary parameters based on his observations.
One of Parameshvara’s most significant contributions was his mean value type
formula for the inverse interpolation of the sine (see, [1], [2]). In 1691, Michel Rolle
proved a particular case of the generalized mean value theorem. In the modern
form, the mean value theorem was proved by Augustin-Louis Cauchy in 1823.
A more formal statement of this theorem was known as Lagrange’s mean value
theorem, named after Joseph-Louis Lagrange.

1.1 Rolle’s theorem

Theorem 1. Let f be a function which is continuous everywhere on the interval
[a, b] and has a derivative at each point of the open interval (a,b). Also, assume
that f(a) = f(b). Then there is at least one point ¢ in the interval (a,b) such
that f'(c) =0

Proof. We prove the Rolle’s theorem geometrically.
Since f(a) = f(b) and function f is continuous in [a, b] we have the following
three cases:



Geometric Interpretation of Roll's Theorem

Case (a): Suppose that the function increases after point x = a. Since
f(a) = f(b) and function f is continuous, there must exist a point ¢ such
that @ < ¢ < b and f has its maximum value at c. Therefore, we have

f'(e) = 0.

Case (b): Suppose that the function decreases after point x = a. Since
f(a) = f(b) and function f is continuous, there must exist a point ¢ such
that a < ¢ < b and f has its minimum value at c. Therefore, we have

() =0,

Case (c): Suppose that the function increases after point = a and then
attains its maximum values and then decreases and attains its minimum
value, i.e., function oscillates. Since f(a) = f(b) and function f is continu-
ous, it finally returns to its initial value. Thus, we have more than one point
C1,Co, ... such that a < ¢; < ¢9 < --- < b and f has its maximum and



minimum values at ¢q, ¢o, . . .. Therefore, we have f'(c1) = f'(c2) =--- = 0.

Thus, in each case, we obtain the desired point c. [

Example 1.1. Verify the Rolle’s theorem for f(x) = |z| in [-1, 1].

Solution. Here @ = —1,b = 1. Given function f(z) is continuous in [—1, 1]
and f(a) = f(1) = |1| =1, f(b) = f(—=1) = | — 1| = 1, but we know that
the function f(x) = |z| is not differentiable at point z = 0, and 0 € [—1,1],
therefore the Rolle’s theorem cannot be verified. O

Example 1.2. Verify the Rolle’s theorem for f(z) = e*sinz in [0, 7).

Solution. Here a = 0,b = m. Given function f(z) is continuous in [0, 7] and
fla) = f(0) = €%sin0 = 0, f(b) = f(r) = e"sinm = 0, so f(a) = f(b).
Also, the function f(x) = e”sinz is differentiable at every point of the interval
(0,7). Therefore, all the conditions of Rolle’s theorem are satisfied and by

Rolle’s theorem, there exists 0 < ¢ < m such that f’(¢) = 0. Then

d

f/(l’):%(

e’sinz) = e"sinz + €” cos .
Therefore,

fllc)=0 = e“sinc+e‘cosc=0 = ¢e°[sinc+ cosc| =0
— sinc+cosc=0 = (sinc+cosc)® =0

— sin2c=-1 — 2c:3§
— =T
4
Since ¢ = %Tﬂ € (0, m) the Rolle’s theorem is verified. O
Example 1.3. Verify the Rolle’s theorem for f(x) = sin 3z in [O, g} :

Solution. Here a = 0,b = . Given function f(z) is continuous in [O, z} and

3T

fla) = f(0) = sin0 = 0, f(b) = f (g) — sin (?) — 0, so f(a) = f(b).



Also, the function f(x) = sin3x is differentiable at every point of the interval
(O, g) Therefore, all the conditions of Rolle’s theorem are satisfied and by

Rolle’s theorem, there exists ¢ € (O, g) such that f’(c) = 0. Then

d
fl(z) = e (sin3x) = 3 cos 3.
Therefore,
f,(c) =0 =— 3cos3c=0 — cos3c=0
T
— 3c=—
T3
— ="
=
Since ¢ = 5 € (O, §> the Rolle’s theorem is verified. (]

Y

Example 1.4. Verify the Rolle’s theorem for f(x) = cos2z in {—g %} :

. m T . . . . . ™ T
Solution. Here a = ——,b = —. Given function f(x) is continuous in [_Z’ Z}

™ 2T ™ 2T
and f(a) = f (_Z) = cos (—Z) =0, f(b)=f <Z> = COS (Z) =0, so
f(a) = f(b). Also, the function f(z) = cos2zx is differentiable at every point

of the interval —%, 1) Therefore, all the conditions of Rolle’s theorem are

W

satisfied and by Rolle’s theorem, there exists ¢ € (—%, %) such that f'(c) = 0.
Then .
f'(z) = — (cos 3x) = —25sin 2z.

dx
Therefore,
fle)=0 = —2sin2c=0 = sin2c=0
— 2c=10
— c¢=0.
Since c =0 € (—%, %) the Rolle’s theorem is verified. ]

Example 1.5. Verify the Rolle’s theorem for f(z) =2+ (z — 1)%3 in [0,2].



Solution. Here @ = 0,b = 2. Given function f(x) is continuous in [0, 2] and
fla)=f(0) =2+ (0-1)* =3, f(b) = f(2) =2+ (2—-1)* =3, 50
f(a) = f(b). Note that f is not differentiable in the interval (0,2). Indeed:

d 2
/ —— (9 -1 2/3) —— -1 —1/3.
fla)=— (24 @@= 1)%) = S —1)
Therefore, f'(1) does not exist and since 1 € (0, 2), therefore all the conditions
of Rolle’s theorem are not satisfied, and so, it cannot be verified. ]

Example 1.6. Verify the Rolle’s theorem for f(z) = z3 — 4x.

Solution. Here the interval where the theorem is to be verified is not given. To
find the interval put f(x) =0, i.e.,

° —dr = 2(2*—4) =0 = x=0,%2.
So we obtain the intervals [—2,0],[0,2] and [-2,2]. Given function f(z) is
a polynomial in z, so, continuous and differentiable everywhere and f(—2) =
f(0) = f(2) = 0. Therefore, all the conditions of Rolle’s theorem are satisfied
and by Rolle’s theorem, there exists ¢ € (0,2) such that f’(¢) = 0. Then

d
f(z) = . (2% — 4z) = 32% — 4.
Therefore,
2
"€)=0 = 3 —4=0 = c=+—.
e =
, 2 2 : .
Since ¢ = ———= € (—2,0) and ¢ = — € (0,2) the Rolle’s theorem is verified.

V3 V3

[]

1.2 Mean value theorem or Lagrange’s mean value theorem

Theorem 2. Let f be a function which is continuous everywhere on the interval
[a, b] and has a derivative at each point of the open interval (a,b). Then there
f(b) — f(a)

b—a

is at least one point ¢ in the interval (a,b) such that f'(c) =

Proof. We prove this theorem with the help of Rolle’s theorem.
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Geometric Interpretation of Mean Value Theorem

Define a function F(x) by
F(z) = f(x) + ax (1.1)

where « is an arbitrary constant. Then, we shall show that F' satisfies all the
conditions of Rolle’s theorem. Then:

(I) Since f is continuous in [a,b] and ax is a polynomial, it is continuous
everywhere, and so, their sum F(z) = f(x) + az is also continuous in

[, b].

(IT) Since f is differentiable in (a, b) and az is a polynomial, it is differentiable
everywhere, and so, their sum F(z) = f(z) + ax is also differentiable in

(a,b).
(IIT) Finally, since o was an arbitrary constant, choose « such that:

F(a)=F(@() = f(a)+aa= f(b)+ab
_Fb) -~ fla)

- b—a)

Thus, F satisfies all the conditions of Rolle’s theorem. Therefore, by Rolle’s
theorem there exists ¢ € (a,b) such that

F'llc)=0 = f(e)+a=0

— f'(¢) = -«
f(b) — f(a)
b—a)

= f(e)=

Hence the proof is complete. ]
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Example 1.7. Find the ¢ of mean value theorem for the function f(z) = (x —
1)(xz — 2)(z — 3) in the interval [0, 4].

Solution. Here a = 0,b = 4 and the function f is a polynomial, so, it is
continuous and differentiable everywhere. Therefore, all the conditions of the
mean value theorem are satisfied. By mean value theorem there exists a point

c € (0,4) such that f'(c) = f(b[)) : i(a)‘ Now

flx)=(x—-2)(z=3)+ (- 1)(x—3)+ (z — 1)(z — 2) = 32> — 12z + 11.

Therefore,
/ fb) = f(a) 2 f(4) = f(0)
= —12c+11 =
f'(c) — — Jc c+ 10
— 3@ 12e 411 =070
— 3" —12c+11=3
— 3¢ —12c+8=0
2
— c=2=x £
3
2
Since ¢ = g € (0,4), hence the mean value theorem is verified. O

Example 1.8. Verify the mean value theorem for the function f(x) = Inz in the

1
interval — < z <e.
e

Solution. Here a = —,b = e and the function f is logarithmic, and so, it is

continuous in the interval [%, e} and differentiable in the interval (%, e). There-
fore, all the conditions of the mean value theorem are satisfied. By mean value
b) — f(a
Fb) = fla)
a

theorem there exists a point ¢ € (2, e) such that f'(c) = ;

f(z) =~

v .
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Therefore,
b) — 1 — (2
A0 -f@ 1 f@-F(Q)
—a c e—1/e
1
. 1 In(e) —In <E>
c e—1/e
I e(l—(-1))
— c -1
N _ e? —1
= 2e
) ez —1 1 ) .
Since ¢ = S (;, e), hence the mean value theorem is verified. ]

e

Example 1.9. Verify the mean value theorem for the function f(x) = Inx in the
interval [1, e].

Solution. Here @ = 1,b = e and the function f is logarithmic, and so, it is
continuous in the interval [1,e] and differentiable in the interval (1,e). There-
fore, all the conditions of the mean value theorem are satisfied. By mean value

)~ fla)

theorem there exists a point ¢ € (1, e) such that f'(c) =

h—
fay=—
Therefore,
, f(b) — f(a) 1 fle)=f(1)
fe) b—a — c e—1
. lzln(e)—ln(l)
c e—1
1
— c e—1
— c=e—1

Since ¢ = e — 1 € (1, e), hence the mean value theorem is verified. O
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Example 1.10. Show that on the graph of any quadratic polynomial the chord

joining the points for which x = a,x = b is parallel to the tangent line at the
a+b

midpoint z =

OR

If f(x) = ax?® + Bx + v, where «, 3,7 are constants and a # 0, then find the
value of ¢ in Lagrange’s mean value theorem in the interval [a, b].

Solution. The function f is polynomial, and so, it is continuous in the interval
[a, b] and differentiable in the interval (a,b). Therefore, all the conditions of the
mean value theorem are satisfied. By mean value theorem there exists a point

¢ € (a,b) such that f'(c) = f(bl)) : i(a)

f(z) = 2azx + B.

. Now

Therefore,
b) — b) —
PN UL (O RN U B 1)
b—a b—a
b2 b . 2
s Sact = ab® + +Wb (aa +6a+7)
—a
2 _ 9 _
— 2ac+5:&(b ab)+ﬁ(b a)
—a
— 2ac+pf=ab+a)+p
b
— c= ra midpoint of a, b.
b) — b
Since f'(c) = f [)) f(a)’ hence the slope of the tangent at midpoint ¢ = _|2_ ¢
—a
(i.e., f'(c)) is equal to the slope of a chord at the endpoints a, b. Therefore, the
tangent and cord are parallel. ]

1.3 Exercise

(Q.1) Discuss the conditions of Rolle’s theorem for the function f(z) = tanz in
the interval 0 < x < 7.

Ans. Since tanz is not continuous at x = 7, the Rolle’s theorem is not
applicable.

(Q.2) Verify the Rolle’s theorem for the function f(z) = 22 in the interval [—1,1].
Ans. ¢ = 0.
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(Q.3) Can Rolle’s theorem be applied for the function f(z) = 1 — (z — 3)%/3.

Hint. For the interval, put f(z) = 0, it gives the interval [2,4]. Then, since f
is not differentiable at x = 3 € (2,4), so, Rolle’s theorem cannot be verified.

(Q.4) Explain Rolle’s theorem for the function f(x) = (z — a)™(z — b)" in the
interval [a, b].

Ans. ¢ = "4 ¢ (g, b)),

(Q.5) Find the c of mean value theorem for the function f(z) = 23 in the interval

[—2,2].
_ 42
Ans. ¢ = :I:%.
(Q.6) Verifiy mean value theorem for the function f(z) = 3 —3z—1 in the interval
[0, 1].
_ 1
Ans. ¢ = 75

1.4 Taylor’s theorem

Theorem 3. Suppose that the (n — 1)th derivative f™=1 of f is continuous on
the interval [a,b] and the nth derivative f (") of f exists in the open interval
(a,b). Then for each x # a in I there is a value ¢ such that a < ¢ < z and

(z—a)’ (z —a)"

f@) = f@)+ ——f@) + 5= f"(@) + -+ ——f"a)
(CL’ _ a)n—i—l (nt1)
i (n+1)! fre),
_ n+1
The last term R, = % f0*D(c) is called the remainder therm (La-
n !

grange’s form) after n terms.

1.4.1 Taylor’s series

Theorem 4. Suppose R, — 0 as n — oo, then the expression for f(z) in
the Taylor’s theorem reduces into an infinite series and this series is called the
Taylor’s series or Taylor’s series expansion of f(x) about the point x = a; and
it is given by:

T —a (x — a)?

—f(a) +

f(z) = fla) +
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1.4.2 Various forms of Taylor’s series

Maclaurin’s series Put a = 0 in Taylor’s series obtain:
L 5U2 " (n)
F() = FO) + 2 F1(0) + T F(0) 4 -+ T (0) 4+

Expansion of f(x + h) in powers of x Replace x by = + h and a by h in Taylor’s
series obtain:

2
Jla 4 h) = F() 4 < f () ST () 4o e f O () -

Expansion of f(x + h) in powers of i Replace x, h by h, x respectively, in the pre-
vious series:

2
fle+h) = f(z)+ %f’(as) - ;—!f”(x) ot n—f(”>(a:) TR

1
Example 1.11. Expand In (1 s

) using Maclaurin’s theorem.
—x

1+zx
1l—=x

Solution. Here f(x) = In ( ) . By Maclaurin’s theorem we know that

x,n

L L, n
@)= F0) + 71 0) + 51 f (O)+---+n—!f()(0)+...

Putting y = f(x), (¥)o = f(0), (y1)o = f'(0), (y2)o = f"(0) etc., in the above
we obtain:

2 "

%(yﬂo-l-;—!(?h)o*'“'"‘H(yn)o_i_"' ‘ (1.2)

Now differentiating successively and putting £ = 0 we obtain:

y=(y)o+

y=f(x)=In(l+z)—In(l—2) = (y)o=0

S + N (y1)0 =2

y1_1+as 11—z J1j0 =

= ! + ! = (y2)0=0

N SR E N F A P Y2)0 =
2 2

= (y3)o =4

By (G—ap
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6 6

Y4 (1 n .73)4 + (1 _ l’)4 (y4)0
24 24
y5 (1 _|_ ZU)E) + (1 . x)5 (y5)0 and so on

Putting these values in (1.2) we obtain:

1+ T z? 3 z z°
1n(1_x) = 0+F(2)+ﬁ(0)+3—!(4)+ﬂ(0)+5—!(48)+---
3 5
It is the required series. ]

1
Example 1.12. If Insecx = 5:1:2 + Az* 4+ Ba% + - .- then find the values of A
and B.

Solution. Since the given value of Insecx is a series in powers of z, we will ex-
pand Insec z by Maclaurin’s series. Then, here f(z) = Insecx and by Maclau-
rin’s theorem we know that

22 "

v =W+ 1ot S+ (ot (13)

Now differentiating successively and putting £ = 0 we obtain:

y=f(zr) =Ilnsect = (y)o=0

secxrtanx
Yy = — =tanxr —
secx

(
yp =sec’z =1+ tan*z =14y = (o
ys = 2y1y2. = (
(

Y = 20193 + 20000 = 2u1y3 + 2u5 =

Ys = 201ya + 2y2y3 + 4Y2y3 = 2y1ys + 6y2ys3
= (Y5)o = 2(1)o(ya)o + 6(y2)o(y3)o = 0
Yo = 2195 + 2294 + 624 + 6ysys = 2u1y5 + Sy2y4 + 643
— (y6)o = 2(y1)0(ys)o + 8(y2)o(y4)o + 6y3(0) = 16 and so on.
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Putting these values in (1.3) we obtain:

2 353 564 5 6

x x x
Insecx = 0+ 1—'(0) + 2—‘(1) + 3—‘(0) + 4—'(2) + —(0) + —(16) + - - -
L SR SO S S
—2x+12x+45x+ .
On comparing the coefficients of various powers of x in the above and given

series we obtain
A=—, B=—. ]

Example 1.13. Find the first five terms in the expansion of e*™* by Maclaurin’s
series.

Solution. Here f(x) = e¥". By Maclaurin’s theorem we know that

22 "

v =W+ Wo+ S(o+ -+ ot (14)

Now differentiating successively and putting £ = 0 we obtain:

y1 = cosxe™¥ =ycosr = (y1)o=1

Yo =yrcosx —ysinr = (y2)g =1

Yz = Y2 €oST — 2y1Sinx — ycosx = Yo cosT — 2y18inx —y; = (y3)o =10
Yys = yzcosx — yasine — 2y;cosx — Yo =  (ys4)o = —3
Ys = yscosx — dyzsinx — byscosx + 2y sinx —y3 = (y5)o = —8

and so on. Putting these values in (1.4) we obtain:
2 3 4 5
M = L (1) 4 () 4 5 (0) 4 (3) 4 o (8)
B,
= 1+$+5—§—B+

It is the required series. H

Example 1.14. Expand e® cos(bx) by Maclaurin’s theorem.
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Solution. Here f(x) = €™ cos(bx). By Maclaurin’s theorem we know that

22 "

y= o+ W+ S+ + ot (1)

Now differentiating successively and putting x = 0 we obtain:

y= f(x) =ecos(br) = (y)o=1
y1 = ae’ cos(bxr) — be sin(bxr) = ay — be® sin(br) = (y1)o = a
Yo = ay; — b?e™ cos(bx) — abe™ sin(bx) = ayy — by + a(y; — ay) = 2ay; — (a® + by
— (p)o=a"— b’
ys = 2ayy — (&® + 0% )y = (y3)o = a(a® — 3

and so on. Putting these values in (1.5) we obtain:

2 3

sin x L L X
e = 1+F(a)+i(a2—62)+3—!a(a2—362)+---
2 3
= 1+ax+(a2—b2)2—'+a(a2—3b2)3—'+---.
It is the required series. ]

Example 1.15. Expand easin” @ by Maclaurin’s theorem. Hence show that

1 2
69:1+sin9+2—'sin20+3—'sjn39+...

where = sin ! z.

Solution. Here f(z) = e®" ' 7. By Maclaurin’s theorem we know that

22 "

Y= ()o+—1)o+ —(y2)o + - +

T 5] (Yn)o + -+ . (1.6)

n!

asin~!

Since y = f(x) =e ¥ we have |(y)o = 1|.

Differentiating we get

e asinx a
y = e X —,—1 —
_ ay
= Yy = T

— (1 -2y} = ™~ (1.7)
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Therefore, | (y1)o = a|. Again differentiating (1.7) we get:

(1 —2%)yo — 2z = 2d%yy
— (1 — a2y, —ayy —a’y = 0. (1.8)

Therefore, (ya2)o — a*(y)o = 0, ic., |(y2)0 = a*|. Again differentiating (1.8) we
get:

(1 —2%)ys — 3zys — (1 + a)y; = 0.

Therefore, (y3)o— (14a?)(y1)o = 0, i.e., | (y3)0 = a(1 4+ a®)| and so on. Putting
these values in (1.6) we obtain:

2 3
. X X x
et = 14 (@) + 57 (a2)+3—!(1+a2)+---

o T 3

1

= 14ax+

1

Putting ¢ = 1 and sin”™" = = 6 we get

sin?f 2sin® 6
STEEE]

It is the required series. ]

e/ =1 +sinf +

Example 1.16. Find the first five terms in the expansion of In(1 4 sinz) by
Maclaurin’s series.

Solution. Here f(x) = In(1 + sinz). By Maclaurin’s series we know that

x 2 "
y= (y)0+1—,(yl)0+2—'(y2)0+---—l-—,(yn)o—i---- : (1.9)
Since y = f(z) = In(1 + sinx) we have | (y)o = 0|,
Differentiating we get
_ cosx
= 1+sinz
— (1+sinz)y; = cosz. (1.10)

Therefore, | (y1)o = 1| Again differentiating (1.10) we get:

(1+sinz)ys + y1cosx = —sinz. (1.11)
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Therefore, (1 + 0)(y2)o + (v1)0 = 0, i.e.,
(1.11) we get:

(y2)o = —1|.

(1 +sinz)ys + 2yscosz — yy sinx

(y3)o = 1

Therefore, (140)(y3)o+2(y2)0—0 = —1, i.e.,
(1.12) we get:

(1 +sinz)ys + 3yz cosx — 3yasinx — yy cos x

— COST.

sin x.

Again differentiating

(1.12)

. Again differentiating

(1.13)

Therefore, (1 + 0)(y4)o + 3(y3)o — 0 — (y1)o = 0, lLe.,

(Ya)o = —2|.

Again

differentiating (1.13) we get:

(1 +sinx)ys + 4ys cosx — 6y sinx — 4ys cos x + y; sinx

Therefore, (1 +0)(ys5)o + 4(ya)o — 0 — 4(y2)0 + 0 =1, i.e.,
these values in (1.9) we obtain:

2 4

3
T T
T (1) + E(—l) + 3—‘
x? x3 2t

5a°
r——F+t o7+

21 " 31 4! ' 51

In(1 + sinz) 0+ —

It is the required series.

Example 1.17. Expand tan™! z in the ascending powers of

Solution. By Taylor’s series, we know that

r—a (x

1!

fla) +—;

Here f(z) =tan"!z and a = 1, therefore:

r—1
1!

(z—1)°

F)+—;

fQ1) +

Since f(x) = tan~!z we have

(1) + (-2)

(ys)o =5

x — 1.

L L (O

P+

. Differentiating we get:

cosx.(1.14)

. Putting

(1.15)
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Rearranging the terms in the above we get:
(1+2°)f(z) = 1.

Again differentiating we get:

(1+2°)f"(2) +22f'(x) =0 = | f"(1) = —1|

On putting these values in (1.15) we get

tan—lg— T r—1 (z—1)?
S R DS TR TR O

T
Example 1.18. Expand sinz in powers of x — B and hence evaluate sin91°

correct to four places of decimals.

Solution. By Taylor’s series, we know that

T —a (x — a)?

F@) = f@ + S ) + ) +
Here f(x) =sinz and a = g, therefore:
n T—5 (T (x_ﬁ) n(™
f@=1(5)+ Q) g G e )
Since f(x) = sinx we have | f (g) = 1| Differentiating we get:

f(z) =cosz = |f (g) =0

Again differentiating we get:

() =—sine = | f" (E) m——

Again differentiating we get:

f///(fﬁ) = —COoST — f”’ <E) — 0l
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Again differentiating we get:

f(2) =sing = |f) <E) =1

On putting these values in (1.16) we get

(2-2)7 (z-13)
TR

sinx =1—
Let x = 91°, so that,

z— g —01°—90° = 1° = % radians = 0.0174 radians.

™
Putting the value of x — 5 in the above series we obtain:

(0.0174)% N (0.0174)*

sin91°” = 1 — 5] 1

= 0.9999

correct up to four places of decimals. ]

Example 1.19. Expand In z in powers of x — 1 and hence evaluate In(1.1) correct
to four decimal places.

Solution. By Taylor’s series, we know that

_ )2 A Ve
@) = 1@+ ) O gy O e
Here f(x) =Inz and a = 1, therefore:

_ _1)2 _1)3 1)
o) = F @+ gy B iy A ey

(1.17)

Since f(z) =Inx we have | f (1) = 0|. Differentiating we get:

1

fllz) == = |f'(1) =1]
x
Again differentiating we get:
1
f(z) = 3 — | (1) =—1|
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Again differentiating we get:

@) =% = ") =2]

Again differentiating we get:

F09) () = _% | ) (E) _ ¢l

On putting these values in (1.17) we get

1 1 1
lna;:q;—1—5(:15—1)24—5(:16—1)3—1(:16—1)44—-“

Putting x = 1.1 in the above we get:

1 1 1

In(1.1) = 1.1—-1— §(1.1 —1)*+ g(“ —1)3 — 1(1’1 — A
= 0.1 —0.005 + 0.0003 — 0.00002
= 0.0953

correct up to four places of decimals. ]

Example 1.20. Expand 223 + 722 + z — 1 in powers of z — 2.

Solution. By Taylor’s series, we know that

_ Y- A AV
@) = f(@)+ = O ) O gy 0 g
Here f(z) = 22° + 72? + x — 1 and a = 2, therefore:

_ _ 9)2 _9)3 14
fo) = F @+ 2 @ 2 ) B gy D g

(1.18)
Since f(x) = 223 + 72® + x — 1 we have | f (2) = 45| Differentiating we get:

flz) =62>+ Mo +1 = |f'(2) =53]

Again differentiating we get:

() =122+ 14 = | f"(2) = 38,
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Again differentiating we get:

@) =12 = | f"(2) = 12|

All other higher-order derivatives are zero. On putting these values in (1.18) we
get
203 + T2 + 1 — 1 =45+ 53(x — 2) + 19(x — 2)* + 2(z — 2)°.

It is the required expansion. ]

Example 1.21. Use Taylor’s theorem to prove that

in ¢ in 26 in 36
tan *(z +h) = tan 'z + hsinf - % — (hsinf)* - Y (hsin @) - 311'13
in nd
— o+ (=) Y(hsin)" - M
n
where 0 = cot™! x.
Solution. By Taylor’s series, we know that
h / h2 1/ h'3 n
fla+ ) = F@) + o0 f@) + 50 @) + 5 @)+ (19)

Here f(z + h) = tan"!(z + h), and so, f(x) = tan~! z therefore differentiating
we get:

1 1
/ i 2
S @) = T = Treore ~ 0
Again differentiating (w.r.t. x) we get:
df d
" — 2sinfcosf - — = sin20 - — (cot ™
f(z) sin @ cos — = sin - (cot™ " x)
_ 1
= —sin20- 22
— —sin20sin®4 (since x = cot ).

Again differentiating we get:

do
f"(x) = (—2cos20sin*6 — 2sin 6 sin 20 cos o) - -
T
1
= 2sin 6 (cos 260 sin 6 + sin 26 cos ) -
14 a2

— 2sin® @ sin 30 (since z = cot 6).
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On putting these values in (1.19) we get

h h? h?
tan_l(:zc +h) = tan ' + —(Sin2 ) + —(—sin 260 sin? ) + 3—'(2 sin® # sin 30) + -

1! 2!
in 26 in 360
= tan” ¢+ hsing - —— — (hsing)- — +(h$n®3'$g

sin nf

- -

sin 0

— o (=) Y(hsinh)" -

Example 1.22. Expand tan (x + g) as far as the term z* and evaluate tan 46.5°

to four places of decimals.

OR
Approximate the value of tan (46°30") using Taylor’s theorem.(1° = 60)

Solution. By Taylor’s series we know that the expansion of f(x + h) in powers
of x is:

2 3
fle+h) = f(0) + /() + Srf" () 4 5 f () 4o (1:20)

Here f(x + h) = tan (93—1—%), f(z) = tanzx, h = %, and so, f (Z) = 1.
Differentiating f(z) we get:

fl(x) =sec?z =1+ tan’z = 1+ [f(2)]? = f’ (%) —9

Again differentiating we get:

(@) = 2f@)f(@) = f'(7) =4

Again differentiating we get:
(@) = 2f()f"(2) + 2f (@) f'(x) = 2f (@) f" () + 2[f'(2)]?
— " (5) =16

4
Again differentiating we get:
FO) = 2 ()" )+ 2L ) ) + AL ) S ) = 2 () ) + 67 )

— (%) = 0.
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On putting these values in (1.20) we get

2 3 4

s €T T T T
8z  10z*
= 1+2x+2x2+%+ 3:6

On putting x = 1.5° = 1.5 x %radians = 0.0262 (approximately) in the above

equation we get:

8(0.0262)%  10(0.0262)*
3 i 3

tan (46.5°) = 1+ 2(0.0262) + 2(0.0262)% +
— 1.0538.

Thus, tan (46°30") = tan (46.5°) = 1.0538 (correct to four places of decimals).
[]

Example 1.23. Find the value of 1/10.

Solution. Let f(x+h) = vx + h. By Taylor’s series we know that the expansion
of f(z + h) in powers of h is:

2 3
flo+h) = f(@) + 1 f@) + o @)+ o @) 4 (121)

Here f(z + h) = vx + h, and so, f (x) = \/z. Differentiating f(x) we get:

1
/ —_
Again differentiating we get:
1
" _
f (1’) - 4&73/2.
Again differentiating we get:
3
" .
f (Q?) - 83}5/2‘
On putting these values in (1.21) we get
h h? h?

Voth = Vot s e gt e T
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On putting x = 9, A = 1 in the above equation we get:

1 1 1
VIO = V9 -
O+ G st et

= 34 0.16667 — 0.00463 4 0.00025
= 3.16229.

Thus, v/10 = 3.1623 (correct to four places of decimals). O

1.5 Exercise

T

1+ e”

e _ 1, x_ 83 .
Aps. Tz =5+7 -5+ :

3

(Q.1) Expand in Maclaurin’s series as far as the terms z°.

(Q.2) Expand e*“** in Maclaurin’s series.

3

2
Ans. emcosx:1+x+%_%_....

2 2. 22
(Q.3) Prove that: (sin™' x)z = ExQ + T$4 +---

. : : L1 \2
Hint. Use Maclaurin’s series for y = (sm 1 x) :

1 1 1
4) P that: In (1 +¢e%) = In(2) + —o + =2 — —a* + - -
(Q.4) Prove that: In (1 + ") = In( )+2x+8x T95° +
Hint. Use Maclaurin’s series for y = In (1 +€”).
- 0, 2 5 2 5
(Q.5) Prove that: e*sinz =z +x +3—'x — 7 + -

Hint. Use Maclaurin’s series for y = e sin .

(Q.6) Find the Maclaurin’s series for y = sin (msin™' z).

2
—1
Ans. y:mx—l—%xs’—i—---.
(Q.7) Expand tanz in powers of x — %
m 7\ 2
Ans. tanx:1+2(x—z)+2(x_z) 4.

(Q.8) Expand 72° — 32° + 2% + 2 in powers of z — 1.
Ans. 725 —32° 4+ 2242 =7+29(z — 1)+ 76(xz — 1)+ 110(x — 1)3 +90(x —
DA+ 39(x — 1)° + 7(x — 1)5.

(Q.9) Find the Taylor’s series expansion of In(cos ) about the point g

Ans. ln(cosx):ln%—\/g(x—g) —%(m—%)Q—---
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(Q.10) Prove that In(x + ) = Ina + = 1= 17
. rove at In(x = Inx - — - ...
Y x 2?2 33

Hint. Use Taylor’s series and expand f(z + h) in powers of h.

(Q.11) Calculate the value of /5 correct to four places of decimals by taking the
first four terms in Taylor’s series.

Hint. Use Taylor’s series and expand f(x + h) = /& + h in powers of h,
and put x =4,h = 1.

(Q.12) Approximate the value of sin (61°30’) using Taylor’s theorem.
Ans. sin (61°30") = 0.87881711(approximate).
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Partial differentiation: Euler’s theorem, total differential, maxima and minima of functions of
two variables only.

2.1 Functions of several variables

Suppose, a particle is moving parallel to the earth’s surface, then at any instant
its energy depends only upon its velocity (surely, we neglect the effect of other
celestial and terrestrial bodies on the energy of the particle). Precisely, the energy

of particle

1
E(v) = §mv2 + K

where v is the velocity of particle and K is its potential energy (which is constant).
Thus, the E(v) depends only on the velocity v. We say that the energy F of the
particle is an output, while its velocity is the input for this output function, and
for various values of input, we obtain the different outputs.

Now consider the same particle but with a different situation. Suppose, the particle
is moving in such a way that its height from the earth’s surface changes continu-
ously. Then, at any instant, its energy depends upon its velocity v, as well as, its
height h from the earth’s surface. Precisely, the energy of particle

1
E(v,h) = §m02 + mgh.

What do we see? We now see that the output function £ depends on the two
inputs, namely, the velocity v and the height h of the particle.

We say that the energy function E is a function of a single variable v, while the
energy function &£ is a function of two variables v, h.

In general, we say that a quantity y is a function f of n variables if its value depends
on n variables x1, xs, ..., x,. Mathematically, we represent this fact by:

y:f(xlax%"'?xn)-

2.2 Partial derivatives

Suppose, y = f(x) is a function of a single variable. If we draw a graph of this
function by taking the values of z on the X-axis and of y on the Y-axis, then we
get a two-dimensional curve. The input x can change only along the X-axis (either
towards left or towards right), and so, we can find the rate of change of y only along

29
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the X-axis. This rate is called the derivative (total derivative) of y with respect to

dy

x and is denoted by —=.
dx

\/

X

Graph of a function of single variable Graph of a function of two variables

We call the inputs as independent variable and the output as dependent variable.
Now consider a different case, when the dependent variable z is a function of two
independent variables (z,y). We write z = f(z,y). Now if we draw the graph of
this function by taking the values of x, y and z on three mutually perpendicular
axes, we obtain a three-dimensional surface. Then, apart from the previous case the
independent variables (x,y) (the inputs) now can change in the XY-plane in any
direction (right or left, up or down; or in any direction different from these two),
and so, we can find the rate of change of z along any such direction. Such a rate of
change is called the directional derivative of f. In particular, we are interested in
finding the rate of change (directional derivative) of f in two directions (i) along
the X-axis; and (ii) along the Y-axis, and so, we get two directional derivatives
along these two axes. The rate of change of f (or z) along the X-axis is called the

0
partial derivative of f (or z) with respect to x and it is denoted by 8_f Similarly,
x

the rate of change of f (or z) along the Y-axis is called the partial derivative of f

0
(or z) with respect to y and it is denoted by 8_f
Y

0
Because, in moving along the X-axis, y remains constant, and 8_f is the rate of
x

change of f along the X axis, we have:

of .. fla+hy)— f(z,y)
or ~ pm I

0
Similarly, in moving along the Y-axis x remains constant, and 8_f is the rate of
Yy
change of f along the Y axis, we have:
8y k—0 k
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Similarly, we can define the partial derivatives of higher orders.

To find the partial derivative of z = f(z,y) with respect to z we differentiate
z by usual rules of differentiation with respect to x but treat the variable y
as constant. Similarly, when we find the partial derivative of z = f(z,y) with
respect to y we differentiate z by usual rules of differentiation with respect to
y but treat the variable x as constant. If u = f(z,y, ) is a function of three
variables, then find the partial derivative of u = f(z,y, z) with respect to z
we differentiate u by usual rules of differentiation with respect to x, but treat
all other variables y and 2 as constant, and so on.

Example 2.1. Find the first and second partial derivatives of the function z =
23+ y° — 3axy.

Solution. Given function is
2=+ — 3axy. (2.1)

Differentiating (2.1) partially with respect to x we get:

0
a—; = 322 — 3ay. (2.2)
Differentiating (2.1) partially with respect to y we get:
0z
— = 3y* — 3ax. 2.3
-t 23)
Differentiating (2.2) partially with respect to  and y we get:
02z 0?2 02z
— = 6ux; = = —3a.
Ox? Oydx  Oxdy
Differentiating (2.3) partially with respect to y we get:
0%z
o~ -

Example 2.2. If 2(z + y) = 2% + 3, then show that

0: 0:\'_ () 0= 0z
or Oy) ox Oy)
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Solution. Given function is

2, 2
p=2 j:y . (2.4)
rTy
Differentiating (2.4) partially with respect to = we get:
9z _(z+y)2e—(2®+y?) 2+ 2y —y 25)
Ox (z +y) (z+y)? |
Differentiating (2.4) partially with respect to y we get:
0z (x+y)2y— (" +y°) ¢y +2ry—2° (2.6)
Ox (z +y)? o (z+y)? |
From (2.5) and (2.6) we obtain:
(82 82)2 (a4 20y — YR+ 2z — 1:2]2
or dy) | (v+4+y)? (z +y)?
227 - 2y2] ?
L@ty
- 2
_ [2@—y)=+ y)]
L (z+y)?
_ Az —y)?
 (z+y)?
and
Jz 0z [ 22+ 22y —y® P+ 20y — 2P
s (1-EZ_Z) — 41— _
or Oy I (x + y)? (x +y)?
_ [ty = @+ 22y —y?) — (" + 20y — 932)]
I (z +y)
_ 4 [E 4 20y) — (@ 2wy — ) — (47 o+ 20y — @)
! (z +y)?
(22 4+ 9% — Qxy]
=4
| (@+y)
_ Az —y)?
 (+y)?

Therefore: %_% 2_4 1_%_%
or 0Oy) ' -

|
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82
Example 2.3. If v = z?tan~! (y) — y?tan~! <§>, then show that g
T Y 0x 0y
z? — > 0u 0u
———— and = .
x? 4 92 Oxdy  Oyox

Solution. Differentiating the given function partially with respect to y we get:

@—J?x;xl—k tan_1(£)+2x;x(—£)]
oy I+ 2 = |7 y) Y T T @)y 2
3

2

x 4 (T xy

= 5 —2ytan (=) +
2y (y) 2?4y

= z—2ytan! (f) :
Y

Differentiating the above equation partially with respect to x we get:

Ou = 2 —oytan~! 2
oxdy Oz re J

1 1 22— 2
TIPS S St
1+ (z/y)? vy 2*+y

0
Similarly, % _ o tan! (Q) — y. Differentiating with respect to y we get:

ox x
2 1 1 2 2
auzQ:l:x—x——l:x y.
Jyox 1+ (y/z)? =« z? + y?
Therefore:
0%u B 0u B x? — g2
0xdy  Oydr a2+ y?’ =
v v 0%

= 0.

E le 2.4. If v = (22 24 22 —1/2 then prove that + +
xample v (:c +y ) ; prov 022 o2 T 022

Solution. Differentiating the given function partially with respect to x we get:

0 1 _
8_Z _ —§(m2—|—y2+z2) 2 on
3/2

= —z(2®+y°+2°)
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Again differentiating with respect to x we obtain:

0? - 3 _

G = ) e () e )
= (2 +12+2) P 32— (P + 2+ )]

= (:U2 + 7+ 22)_5/2 (2302 —y? - z2) .

Using symmetry of v in z,y and z we obtain:

0? _
a_yz _ (x2 4o +22) 5/2 (2y2 2 22)
0? _
and 8_;2) — (.TQ +y2 +Z2) 5/2 (2Z2 —IQ _22) )
Adding the above three we get:
v 0*v 0%

o2 "oy T2 T (2 4y +2) " (207 -y = )

+ (@22 +20) P (2 = = )
4 (x2+y2+22)_5/2 (222 2 22)
_ (x2+y2+22)_5/2 (2x2—y2—z2+2y2—az2
—22+2Z2—ZE2—22)
= (@2+2+25) 70
= 0.

Example 2.5. If u = In (2® + y® + 2® — 3zyz), then show that

9 0 o\ o
oxr Oy 0z (2 y+2)?

Solution. Differentiating the given function partially with respect to x we get:

ou 32? — 3yz

or 23+ 3+ 23— 3ayz’

Using symmetry of v in x,y and z we obtain:

ou 3y? — 3z
Oy 3+ 13+ 23— 3ayz




35

du 322 — 3zy
0z a3 +13+ 23— 3wyz’
Adding the above three we get:

and

ou N ou N ou 322 — 3yz N 3y% — 3zz
or Oy 0z  xB3+1yP3+23—-3zyz 23+ y3+ 23— 3zyz
322 — 3xy

+m3—|—y3—|—z3—333yz
322 — 3yz + 3y? — 3vz + 322 — 3xy
3 43 + 23 — 3xyz
322+ + 22 —yz — 22 — 1Y)
3 4+ 3 + 23 — 3ayz
322+ + 22 —yz — 1z — 1Y)
(x+y+2)(2?+y?2+ 22 —yz — vz — ay)

B 3
4 y+z
Thus:
ou Ou 8u 3
%+ Oy 8z x—l—y—l—z'
Therefore:

(2022 0) o (La 2 0y (o, n, o)
or Oy 0z oxr Oy or Oy 0z
0 0 3
(55 5___)(x+y+z)
0 0 3
__5_( +y+z) ay(x+y+z)

A
+_ - @
oz \r+y+=z2

3 3 3
o (wry+e? (wty+2)? (wty+2)
9
CEEEE n

3

Example 2.6. If u = ™7, then show that 0xdy0z

= (1 + 3zyz + 2%y?2?)e™>.
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Solution. Differentiating the given function partially with respect to x we get:

ou ez
— = " ay.
0z
Again differentiating with respect to y we get:
0u
= () ey

= ' (x +x yz)
Again differentiating with respect to x we get:

83
Wy%z = " yz- (4 nyz) + ™% (1 4+ 2xy2) .

= (1 + 3zyz + 2%y*2?)e™”.

2

0xdy B

—(zlnex)™t at point

Example 2.7. If x*yY2* = ¢, then show that
r=1y=z.

Solution. Given that: x*yYz* = ¢. Taking logarithm we obtain:
rlnz+ylmy+z2Inz=1Inc.

Differentiating the given function partially with respect to x (note that, z is a
function of x and y both, so, it will not be treated as constant) we get:

1—|—lnx—|— L 0z + In 0z 0
— z - z— =
zax ox
0z
— l4+hne+(1+Inz)— = 0
ox
% B _1—|—1nx
or  1+1Inz

By symmetry of the function z in the variables  and y we obtain:

%__l—l—lny
oy  1+Inz
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Differentiating the above equation partially with respect to  we obtain:

9z 0 | 1+hy
0xdy  Or | 1+Inz
1 1 0z
— 1+hy) —— . 2.2
(1+Iny) (1+1Inz)?2 2z Ox
1 1 l+Inx
— (1+ny) —— .. |—
(1+1ny) (14+1nz)? =2 [ 1+lnz]
~ (+hz)(l+hhy)
B 2(1+4Inz)3
Putting x = y = 2z in the above equation we get:
0%z (I+Inz)(I1+nz)
oxdy 2(1+4Inz)3
_ ot
 z(1+In2)
L 1
~ z(ne+Inz)
= —(rlnex) .

Example 2.8. If v = r", where r? = 22 + y? + 22, then show that

Ugg + Vyy + Vs, = n(n + 1)r" =2,

Solution. Given that: 72 = 2% + y? + 22. Differentiating partially with respect
to x we get:

By symmetry of the function r in the variables z and y we obtain:

or _y or_:

oy r 8z r

Now, given that v = ™. Differentiating partially with respect to x we obtain:

Ov L Or 4
— =t =yt D
Ox Ox T

— nr" 2
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Again differentiating with respect to x we get:

2
0% = 3(nwr”2) = nr" 2 4+ n(n — 2)xr"”

0z ox

= "2 +n(n — 2)ar" 3.

= " [r* 4+ (n — 2)2?]

REES

Again by symmetry, we obtain:

82
8—;; = prd [r2 + (n — 2)y2}
d 0?
o a—;; N [7“2 + (n— 2),22] .
Adding the above three equalities we obtain:
Pv v %

Vpg + Vyy + 0V, = 972 + 1 + 5.2

= " [P+ (n—2)2%] + " [P+ (n = 2)y7]
+nr" [r? + (n — 2)27]

= " [3r' + (n—2) (¥ + y* + 27) ]

= nr" 7 [3r® + (n — 2)r?]

= "t (n+1)r?

= n(n+1)r" 2

Example 2.9. If w = f(r) and x = rcos 6, y = rsin 6, then prove that

Pu  Pu 1,
@Jra—yz_f (7“)+;f(7°)'

Solution. Given that x = rcosf and y = rsin . By squaring and adding these

two we obtain
r2 = :U2 + yz.

, or
Differentiating the above equation with respect to x partially we obtain: 2r P
x

2x, 1.e.

ol

or «x
-



39

Similarly, we obtain:

or _y
oy r
Given that u = f(r). Differentiating u with respect to x partially we get:
ou ., or
or f(r) oz
ou x
= — = — .
ox rf (r)

Again differentiating the above equation with respect to x partially and using

the formula (£ fofs) = fifafs + Filbfs + fifaf wo get

0*u Jd rx,,
5~ a0 )]
0%u x ., . or 1, x or ,
— 92 ;f (T)é?_x—i_;f(r)_ﬁ@_x (r)
0%u z? 1, x?
= 2 2 (r) + ;f (r) — ﬁf (r). (2.7)
Since the given functions are symmetric in x and y we obtain:
d*u y2 " L, y2 /
o 2 (r) + ;f (r) = gf (r). (2.8)

Adding equations (2.7) and (2.8) we obtain

2 2
Ou  Ou %f”(fr) (2% + o) + %f/(r) _ %f’(T) (z* +y*)

92 " oy
= T2 )
= )+ 2 F) — )
= F0)+210) .

dr  Ox 1 0z

Example 2.10. If x = r cos @, y = rsin @, then prove that — = — and - — =
50 Or  Or r 00

T%.
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Solution. Given that r — rcosf (2.9)

y = rsinf. (2.10)
Squaring and adding these two we obtain 72 = 22 + y2. So, as we found in the

0
previous example: 8—T _— Again dividing (2.10) by (2.9) we get
x T
Yy _ sin 6 — tanf
x cos ¢
— 6 = tan* <y> :
x

Differentiating the above equation partially with respect to 6 we obtain:

% B 1_|_1(%)2 8 (_%>

B y  rsind
- _x2+y2__ r2
B sin 0

Ty

On differentiating equation (2.9) partially with respect to r we get:

Ox x

= COSH—;
_ Oz _ or

or  Ox’

Again differentiating equation (2.9) partially with respect to 6 we get:

0r g = (-2
89—7”8111—7“ T’ax

_tor
r 00 r@x' [

2.3 Chain Rule for Partial Differentiation

Suppose z = f(x,y) be a function of two variables, where x = x(t),y = y(t) are
functions of another variable t. Suppose there is a small change 0t in the variable t,
due to which there are small changes dx and dy in the variables x and y respectively.

Because of these changes in x and y, suppose there is a small change 6z in the
0z

function z = f(x,y). Then, the rate of change of z in X direction will be 7 and
x

so the change in z along the X direction will be 8—25:13. Similarly, the change in z in
x
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z

Y direction will be a—(Sy. Since the changes are very small the total approximate
Yy

change in z will be:

0z 0z
0z ~ 8—:1:633 + 3_y5y'

Therefore, the rate of change of z with respect to ¢:
52 | 0zda | 020y
ot Ox ot Oy ot

For instantaneous rate of change, letting 6 — 0, and so, dx,dy — 0 in the above
inequality we obtain:

&0 0:dy
dt  Oxdt Oydt
In a general case, if z = f(x,y), © = z(r,s) and y = y(r, s), then we have:

0z 82’@ 62@

ar ~ O or oy or
0: _ 0:00 920y
ds  Ox O0s Oy Os

The above results can be generalized for a function of n variables.

Example 2.11. If w = f(x,y) and x = rcos 8,y = rsin 6, then prove that

o', (uNP_ (), L (0u?
ox oy)  \or r2\o0 )

Solution. Since x = rcos#,y = rsinf we have:

ox ox ,

a—COSQ, %——T’Slne
and oy ) oy

e sin 6, 0= rcosf.

Now by chain rule, we have:

0u _ oudr 0udy
or Oxr Or Oy Or
ou

= 0089—u+sin9—
x oy
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and
ou _ dudw  duoy
00  Ox 00 Oy 06
= —rsin98—2+rcos€g—;b.
Therefore:

Ou 2—|—i Ou 2 = cosﬁ%—l—sinﬁa—u 2—1—i — sin@a—u—l—
or r2 \ 06 B ox dy 2\ ox

2
= (0082 0 + sin? 9) (%) + (Sin2 6 + cos® 9) (

_ (ou 2 N du 2
- \oz oy )
du

Example 2.12. If u = x log(zy) where z3 + 3 + 3zy = 1, find o
7

Solution. Since

u = xlog(zy)
we have: 5 1
and ou { 1 } L
— =27 —. — .
Jy Ty Y
also,

Differentiating (2.12), w.r.t. z, we get

d d
3x2+3y2£—|—3($£+y) =0

d_y o 22 +y
dr T + y?

TCOSQ@

dy
% 2
dy

[]

(2.11)

(2.12)

(2.13)

:
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we know that

t 0w, Oudy
dx Or Oydx

x x2+y
= 1+1 + -9 -
e - (50))

z(x? +y)
= 1+log(zry) — ——==.
8(zy) y(z +y?) B
ou Ou O
Example 2.13. If u = f(x —y,y — 2, 2 — ), then prove that ou + ot + EL 0.
or Oy 0z
Solution. Let
X =z—y (2.14)
Y = y—=z (2.15)
Z = z—ux. (2.16)

Then we have v = f(X,Y,Z), i.e., u is a function of X, Y, Z. Differentiating
(2.14), (2.15) and (2.16) with respect to x,y, z we get:

0X 0X 0X
e e, H
Ox T Oy T 0z 0
oY oY oY

Ox 0, Oy T 0z

07 oz 07

92 _ 4, %% 0, 21
Ox T Oy 0 0z

Now by the chain rule of partial differentiation, we get:

ou Oou 0X Ou 0dY Ou 0/

9r — 0X 0r oy or 97 ox

ou ou ou

OQu _ Ou
0X 07’
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% 8u8X+8u8Y+8uaZ
oy 0X Oy 0Y Oy 0Z Oy

ou ou ou
= axH ey ttaz !
_ _Ou _ Ou
09X oY

and

ou ou 0X Ou 0dY Ou 0/

9: _ 09X 0z 9y 9z 97 02
ou ou ou
= ox Oty az !
_Ou  Ou
oy 07
Adding the above three equalities we get

ou Ou JOu ou Ou  Ou ou Ou Ou

oz "oy te: T ax oz ox oy oy oz
= 0. 0
. 0*u 0%u ,
Example 2.14. Transform the Laplace equation — + — = 0 into the polar
ox? 0y
coordinates.

Solution. We know that the relation between cartesian coordinates (z,y) and
the polar coordinates (r, §) are given by x = r cosf,y = rsin, i.e., r 2 q?

and # = tan~! (E) Therefore:

x
or «x or ,
9 1 cos@,ﬁ—y—;—smﬁ
and %__Sine @_COSQ
oxr  r 0y r
Now by chain rule, we have:
Ou _ oudr 0udy_ ou_ singou
ox  Orox  000x or 1 00

B eg_sinﬁg
-\ T T e
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The above relation is true for all functions u, and so:

2 _ 9 2 _ sind 2
ox ~ Vor T Ty 00
Similarly, we have
du_ udr o0 on cosd on
oy  Ordy 000y or r 00
B o g n cos 6 g
-\ T e )
The above relation is true for all functions u, and so:
ﬁ = Siﬂ&ﬁ + cos 0 g
oy or r 00

Therefore:
Pu _ 0 (on
or2  Ox \ Oz

0 sinf 0 Oou sinf Ou
= | cosf — — cos — —

or r 00 or r 00
B 92 9@_sin8@ _sineg 9%_sin9@
- or €0 or r 00 r 00 co8 or r
0% 1 ou 1 0%u
_ 207 " & -~ _
= oS 087'2 81110(3089( 2 99 +7°87“89)

2

r or oroo r 00

Similarly,
Pu_ o (o
dy> Oy \ Oy

_ 0 cosf O . Ou cosf Ou
= |sinf — + sinf — +

or r 00 or r 00
2 2
= Sin29%—|—sin9COS@ (_i%+ L 0u )

72 200 ' rorod

or Oroo r2 00

r

) 2 i
sin 6 (—sm@@ +C089ﬂ) + y (COSQ@ + sin ——

2
—I-COSH (Cosea—u-i—sin@ Ou ) + cos 0 (—sinﬁ%-f—cos@—
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Therefore the Laplace equation will be:

o P,
ox? Oy

O%u  sin?0 + cos? 6 Ou  sin?60 + cos? 0 O*u B

2 .2
— (cos 0 + sin 9) 8r2+ . o 3 892_0
or2  ror 12002 []

2.4 Exercise
Q1) If z= f(x,y), xr =€e" 4+ e ",y = e *+ e, then prove that:
0z 0z 0z 0z

—_— - = — — -

ou  Ov Ox dy’

Hint: Use the chain rule of partial differentiation.
2.5 Homogeneous function

A function f in two variables  and y is called homogeneous of degree n in x and
y if for any variable ¢t we have

f(tx7ty) - tnf($7y)'

Example 2.15. The function f(z,y) = ax?+bxy+cz? is a homogeneous function
of degree 2 in x and y as

ftz,ty) = a(tx)® + b(tr)(ty) + c(tz)?
= ¢ [am2 + bxy + czﬂ
= 2°f(z,y).
In general, an expression of the form:

aoxn 4+ Gliﬁn_ly 4+ a2$n—2y2 S anyn

is a homogeneous function of degree n in = and y.

Remark 2.1. If u = f(z,y) is a homogeneous function of degree n in x and v,
then for any value ¢ we have:

fltx,ty) =t"f(z,y).



47

1
Replacing ¢ by — we get:
x

F(1Y) =~ fwy) = @y =21 (1,Y).

T

Since, in f (1, E) first argument is 1 (constant) and the second is y, hence
x

f (1, Q) can be assumed as a function of 2 only, i.e.,
x x

f <1, %) =a function of %: (%) (say).

Therefore, we conclude that if u = f(z,y) is a homogeneous function of degree
n in x and y, then it can be written as:

u=flz,y) =" (2).

In general, a function f(x,y,z2,...) is said to be a homogeneous function of

degree n in x,4, 2, ..., if it can be expressed in the form z"¢ (%, = ) :

2.5.1 Euler’s theorem on homogeneous functions

Theorem 5. If u be a homogeneous function of degree n in x and y, then:

Proof. Since u is a homogeneous function of degree n in x and y, therefore we

can assume that y
u=2z"¢ (—) :

x
On differentiating with respect to x and y partially we obtain:
0 1
R ICEORTSS
ox x x x
0
_— —u — nxn_1¢ <y> — yxn_2¢/ <y) (217)
ox x x
and

Qu _ ro (Y) 2

oy x
ou _ n—1 (Y
= 5, =@ <E> (2.18)
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Multiplying (2.17) by x and (2.18) by y and adding we get:

:L'——l—y——nxngb(g) = nu.
x

Remark 2.2. In general, if u be a homogeneous function of degree n in x, y, z,
then:

ou ou ou ou
+2z2—+1—... = nu.

T+ Y-
or oy "o ot
2.5.2 Relation between second order derivatives of homogeneous functions

Theorem 6. If u is a homogeneous function of degree n, then:

. 0% 0%u ou

(i) Y or2 - y@xé’y (=17, ox’
0%y 0%u ou

.. _

(i1 x@x@y + y8y2 (=13, 83/’
0% 0%u , 0%

5 T
(iii) = 2 + xyaxﬁy + 1 o7 =n(n—1)u

Proof. Since, u is a homogeneous function of x and y of degree n, therefore by

Euler’s theorem, we have:

8u ou
: 2.19
T TV, T ™ (2.19)
Differentiating (2.19) partially with respect to x, we get:
0u  Ou N 0u N ou
T+ = n—
02 " oz Y oxoy Oz
. 0u N 0%u ( 3 ou
= (n—1)—.
Y ox? y@x@y ox
Again, differentiating (2.19) partially with respect to y, we get:
0u N ou N 0u ou
x — +Yy=—5 = n—
Oyox Oy y8y2 dy
0? 0? 0
— oyt = (n—1) (2.21)

(2.20)
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Multiplying (2.20) by = and (2.21) by y and adding, we get:

262u+2x Ou + 82u = (n—1) x%qt Ou

0xdy dx dy
0*u 0*u (92
— x2@+2xyaxa +yay = (n—1)nu
5 0%u 0*u Nia
— 2’5+ Qxyaxay ay“ = n(n—1u (2.22)

Theorem 7. If w is a function of x and y (not necessarily homogeneous in = and
y) and F'is a function such that F'(u) = f(z,y) is homogeneous of degree n in
x and y, then

Proof. Given that F(u) = f(z,y) is a homogeneous function of degree n in x
and y, therefore by Euler’s theorems, we have

, OF (u) N OF (u)

= nkF
Ox Y oy nk(u)
= xF'(u) % + yF'(u) g—Z = nF(u)
. ou N ou F(u)
xr— — =n :
ox Y oy F'(u)
This proves the result. H
o _1 X _1 y au au
Example 2.16. If © = sin — | +tan ( ) then prove that x — +y — = 0.
Yy 7 or °~ Oy

Solution. Given that

.1 (X
U = SIn —
Y

N—

+ tan ! <Q>
T
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Hence, u = %) <Q> is a homogeneous function of degree n = 0 in x and y.

X
Hence, by Euler’s theorem, we have:

8u N ou
= nu
Yor Y By dy
= 0-u
0.
This proves the result. ]

Example 2.17. If u = x¢ <y> + <g>, then prove that
x x

LOu L Pu 0

Solution. Let v = x¢ (g> and w = (y>, then u = v+ w. Now v = x¢ (Q)
x x

is a homogeneous function of = and y of degree 1, so from the relation (2.22)
we have,

2O, B 0%
Yoz T “Yoray yay

—1(1-1)v=0 (2.23)

again w = 1 <Q> is a homogeneous function of z and y of degree 0, so from
x
the relation (2.22) we have,

Y Sl 00 - Dw =0 (2.24)
y

*(v + w) O*(v + w) O*(v + w)
2 2 2 DA —
YT o2 Tory 0x0y Ty Oy? 0
82u 0%u 0%u
2 = 0.
¥ ox2 i xy(%:(?y Ty Oy? 0

This is the required result. ]
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2 2
Example 2.18. If u = sin™! (gj Y ), then show that
Tr+vy
ou N ou "
r— — = tanu.
Ox J oy
Solution. Given that:
o (x2+y2>
u = sin
r+y
2 2
. ety
—> SInu = = x, say ).
o f(z,y) (say)
Again,
)2 4 (4)2 2 2
tex +ty r+y
= t'f(z,y).

Thus, f is a homogeneous function of degree 1. Hence, by Euler’s theorem, we
have:

ZJ .
e +y Jy /
O(si J(si
., (sinw) Ly (sinu) _ 1.5ny
Ox oy
ou ou _
— T COSU—-—— tYCOSU— = SINu
Ox Jy
N ou N ou sin u
€Tr — _— =
or Y y CoS U
. ou N ou .
xr— — = tanu.
ox Y oy
This is the required result. ]
0 0 3 3
Example 2.19. Show that x a—z +y a—Z = 2u logu, where logu = ifa: j: ‘Zy.
Solution. Given that
3+ 9°
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Then:
PO o U
W= 3(tx) +4(ty) 3w+ 4y
= t*f(z,y).
Hence, f is a homogeneous function of degree 2 in x and y. By Euler’s theorem,
we get
af 3f
=2 2.25
T o TV, f (2.25)
But

Hence (2.25) becomes

— Ou + Ou 2u lo
x— — = 2ulogu.
oz 7 oy &
This gives the required result. ]
3 .3
Example 2.20. If u = tan~! (x Y ), then show that:
r+y
0 0
(A) z &Z +y 8Z = sin 2u.
282u 0u 82u

= 2 cos 3u sin u.

B 2

Solution. Given that:

3 3
= tanu = xx::—_z = f(x,y) (say)
Again,
tx)? + (ty 23+ 93
fltz, ty) = o)+ ()" _ =t f(z,y)
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Thus, f is a homogeneous function of degree 2. Hence, by Euler’s theorem, we
have:

(9f 8f
—= 2-
8w 8y /
N x@(tanu)er(?(tanu) _ 9iany
ox oy
5 Ou 5 Ou
= rsec’u— +yseccu— = 2tanu
ox Oy

ou ou 2 tan u

ox oy sec?u
8u (‘9u ,

— T — — = sin2u.
(9:1: (9y

which is the required result (A). Again, differentiating (A), i.e., the above equa-
tion partially with respect to x, we get:

0%u  Ou N 0u 5 08 ou
rT— + = 2c082u —
02 " oz ' oxoy Oz
0u 0u ou
— = (2 2u — 1) —. 2.26
Y or? * y@x@y (2cos2u—1) ox (2.26)
Again, differentiating (A) partially with respect to y, we get:
0u N ou N 0%u 5 o8 ou
x — — = 2c082u —
oyox Oy y@yQ Jy
0%u 0u ou
— = (2cos2u — 1 2.27
I8x8y+y8y2+ (2 cos2u )8y (2.27)
Multiplying (2.26) by  and (2.27) by y and adding, we get:
0u 0*u 0%u ou ou
2 2
2 — = (2cos2u—1
Y ox? i xy@x@y Ty Oy? (2cos2u—1) < Ox Ty (9y)
0? 0u Nk
— an—;; —|—2xyaxay +y 8yu = (2cos2u — 1)sin2u
,0%u 0%u Nk
— x@—FQxyamay—ky 8yu = 2cos2usin 2u — sin 2u
,0%u 0%u Nk
— 2 pe) +2xy(9x8y + vy (9yu = sin4u — sin 2u = 2 cos 3u sin u.

This proves the required result (B). O
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2.6 Exercise

2,2 0 0
(Q.1) If u = sin™! (;fy), then show that: z 8—Z +y a—Z = 3tanu.
22
Hint: f(x,y) = sinu = n is a homogeneous function of degree 3 in x
Ty
and .
0 0 1
(Q.2) If u = cos™! (%), then show that: x a—z +y a—Z =3 cot u.
Tr+y 1

Hint: f(z,y) = cosu = is a homogeneous function of degree 3 in

NEENT

x and y.
. r+y
(Q.3) If u =sin"! (7), then show that:
VT4
ou N ou 1t
°r— — = —tanu.
or Y oy 2
,0%u L9 0u N ,0%u sin u cos 2u
o I°— + 2x — =
Ox? y@xé‘y Y Oy? 4 cosdu
Hint: f(z,y) = si 'Y gan function of degree ~ i
: f(z,y) = sinu = ———— is a homogeneous function of degree = in
Y VT /Y s S

x and y.

2.7 Maxima and minima of function of two variables

2.7.1 Necessary condition for maxima or minima of a function of two variables
Suppose z = f(x,y) is a function of two variables x and y. We say that there is a
maxima of the function f at point (a,b) if f(a+h,b+k)— f(a,b) <0 for all h, k
(positive or negative). Similarly, say that there is a minima of function f at point
(a,b) if f(a+h,b+k)— f(a,b) > 0 for all h, k (positive or negative). We discuss
the necessary conditions for maxima or minima of f analytically and geometrically.
The Taylor’s series for the function f about the point (a,b) is given by:

0 0 1 ) 01°
f(a+h,b+k:):f(a,b)+[h%+k@] f(a,b)+ﬁlh%+ka—y] fla,b)+---

Neglecting the higher-order terms we get:
fla+h,b+k) = f(a,b) + hfi(a,b) + kf,(a,b)
1
+§ [h2fm(a, b) + 2hk fr,(a,b) + k*f,,(a, b)]
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or

fla+h,b+k) — f(a,b) = hfo(a,b) + kfy(a,b) + 2i' [h2fua(a,b) + 20k fuy(a,b) + K2 fy(a,b)] . (2.28)
If there is a maxima (or minima) at (a, b) the LHS of the above equation is negative
(or positive). Therefore the RHS must be negative (or positive) for all values of h
and k. Note that, the first two terms of the RHS change their sign with a change
in the signs of h and k (as h and k become positive and negative), and so, LHS
will be negative (or positive) for all h and k if the first two terms become zero, i.e.,

fx(a7 b) = fy(a,b) = 0.

Geometrically, since at maxima or
minima, the tangent plane to the
surface z = f(x,y) becomes paral-
lel to the XY-plane, its normal at
point (a,b) must be in Z-direction.
Since the direction ratios of normal
are f.(a,b), f,(a,b) and f.(a,), at

maxima or minima we must have

fz(a,b) = f,(a,b) = 0.

z Point of Maxima

2.7.2 Second derivative test

Putting f,(a,b) = fy(a,b) = 0 in equation (2.28) we obtain:
f(Cl‘Fh,b‘Fk) —f(&,b) -
Let r = fiﬂx(aﬂb)a S = fxy(a, b)
W2 fon(a,b) + 20k fry(a,0) + K2 fy (a,b) = h*r + 2hks + k%
2

= 1(hr—l—/{:s)2—|—/€2 (t—s—).
r r

ZL' I:thl‘x(a'? b) + Qhkfivy(a’? b) + szyy(a’ b)] ’ (229)
.t = fyy(a,b), then:

On putting this value in (2.29) we get:

1 [1 5 o s
f(a+h,b+k)—f(a,b):5 ;(h?“—i—]fs) +k (t—?)]

For maxima, the LHS, and so the RHS should be negative and it is possible if » < 0
2

and t — = <0, ie., rt—s>>0.
r

For minima the LHS, and so the RHS should be positive and it is possible if r > 0
2

S
and t — — >0, i.e., 71t — 5% > 0.
r
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For saddle point the LHS, and so the RHS should be positive as well as negative
(should change the sign) and it is possible in the following two ways: (i) if r > 0
2 2

S S

and t — — < 0, ie.,rt —s? < 0. (ii)ifr <Oand t — — >0, i.e., 7t — 5% < 0.
r r

Thus, for saddle point, we must have 7t — 52 < 0.

Finally, if rt — s?> = 0, then the neglected terms in the series become effective and
we need further investigation.

2.7.3 Working rules for finding the maxima and minima.

Let
2
We follow the following steps:

(1) Find the first derivatives f,(x,y) and f,(z,y) and solve the equations:

fx(xay) =0
fy(z,y) = 0.

Solution(s) of the above system is (are) the critical point(s). Suppose, a critical
point is (a, b);

(
(
(2) if D(a,b) > 0 and f,.(a,b) > 0, then f(z,y) has a local minimum at (a, b);
(3) if D(a,b) > 0 and f,.(a,b) <0, then f(z,y) has a local maximum at (a, b);
(4) if D(a,b) < 0, then f(x,y) has a saddle point at (a, b);

(5)

5) if D(a,b) = 0, then we cannot draw any conclusions and further investigations
are required.

Example 2.21. Discuss the maxima and minima of f(z,y) = 2% + ® — 3azy.

Solution. Given function is f(z,y) = 2% + y> — 3axy. Differentiating partially
with respect to x and y we get:

fe(z,y) = 32% — 3ay, fy(z,y) = 3y — 3ax.
First, we find the critical point. Then:
falz,y) =0, fy(z,y) =0 = 322 —3ay =0, 3y* —3az = 0.

Since f is symmetric in x and y, a solution of the above system is z = y.
Putting £ = y in the above equation we get:

372 —3ax =0 = 3x(z—a)=0
= x=0,a.
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Since x = y, we get two critical points (0,0) and (a,a). Now, by differentiating
fa(z,y) and f,(x,y) again with respect to x and y we get:

fxm(xay) = O, fxy(xay) = —3a, fyy(ZE?y) = Oy.

Now we find D at each critical point. Then:

(). D(0,0) = frul0.01£,(0.0) = [£,(0,0))’
=0-0-[— 3a]2
= —9a?

< 0.
Since D(0,0) < 0, the critical point (0,0) is a saddle point.

- D(a,a) = fuult @) fyylasa) — [fuyla,)]
= 6a-6a — [—3@]2
= 36a® — 9a% = 27a°
> 0.

Since D(0,0) > 0, there are maxima or minima at the critical point (a,a). We
consider two cases:

If a <0, then f,,(a,a) = 6a < 0 and so there is a maxima of function f and
its maximum value is

fmax:f(a,a):a3+a3_3a.aj,a:_a3.

If a > 0, then f,.(a,a) = 6a > 0 and so there is a minima of function f and
its minimum value is

fmin:f(a,a)=a3+a3—3a-a-a:—a3. H
a®  al
Example 2.22. Discuss the maxima and minima of u = xy + — + —.
Yy
3 43
Solution. Given function is u = xy + — + —. Differentiating partially with
x Yy
respect to x and y we get:
3 3

a a
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First, we find the critical point. Then:

a? a’

Since f is symmetric in x and y, a solution of the above system is x = y.
Putting £ = y in the above equation we get:

a’

r——=0 = 2’ —a*=0
x
- T =a.

Since x = y, we get the critical point (a,a). Now, by differentiating wu,(z,y)
and u,(x,y) again with respect to x and y we get:

2a3 2a3
uxx(x7y) = ?7 uxy(xvy) = 17 uyy(xay) - ?

Now we find D at each critical point. Then:

D(a,a) = il a)uy(a,a) = [ugy(a,0)]’
— 2.2-[1]°
= 3
> 0.

Since D(a,a) > 0, there are maxima or minima at critical point (a,a). Then
Uz (a,a) = 2 > 0, and so, there is a minima of function u and its minimum
value is

Unin = u(a,a) = a* + a* + a* = 3a*. ]

Example 2.23. Discuss the maxima and minima of f(z,y) = zy(a —z — y).

Solution. Given function is f(z,y) = zy(a — z — y) = axy — 2%y — zy?. Differ-
entiating partially with respect to x and y we get:

folz,y) = ay — 22y —y*, f,(z,y) = ax — 2% — 2zy.
First, we find the critical point. Then:
fo(z,y) =0, fylz,y) =0 = ay—2zy— > =0, ar — 2> —2zy = 0.

Since f is symmetric in x and y, a solution of the above system is z = y.
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Putting = y in the above equation we get:
ax —1* —2r-2=0 = x(a—3x)=0

a
— 2=0,-.
i ,3

a a
Since x = y, we get two critical points (5, g) and (a, a). Now, by differentiating
fa(z,y) and f,(x,y) again with respect to x and y we get:

fo(z,y) = =2y, foy(z,y) =a—2x -2y, f,(z,y)=—2x.

Now we find D at each critical point. Then:

(i). D(O, 0) = fxw(oao)fyy(ovo) o [fmy(070>}2
= 0-0-— [af

< 0.

Since D(0,0) < 0, the critical point (0

(ii). a a
D(3:3) = f= (53

,0) is a saddle point.

X ( 3) = Un(53)7

\_//\
<
<

a a a
) > 0, there is a maxima or minima at the critical point (3 3)

Si D(
11nce 3 3

We consider two cases: 5
If a > 0, then f,, (% g) = _?a < 0 and so there is a maxima of function f

and its maximum value is
2

=133 -5 (=59 -5

2
If a <0, then f,, (%, %) = _?a > (0 and so there is a minima of function f
and its minimum value is

o G-56-5D-5
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Example 2.24. Discuss the maxima and minima of f(z,y) = 23y*(1 — z — y).

Solution. Given function is f(z,y) = 23y*(1 — v — y) = 239y* — a%y? — 235
Differentiating partially with respect to z and y we get:

fo(m,y) = 3%y — 4a°y? = 32°y°, fy(x,y) = 22°y — 22y — 327y,
First, we find the critical point. Then: f,(z,y) =0, f,(z,y) =0 implies

3x%y? — 42y? — 322y = 0;
3, o, 4 9.3 2
2y — 227y — 3xy° =0

—  2%%(3 —4x — 3y) = 0;
23y(2 — 22 — 3y) = 0

= 4o+ 3y = 3;
20 + 3y = 2.

1
On solving the above equations we get x = 7Y = Therefore, the critical

1
11 3
point is (5, g) Now, by differentiating f,(z,y) and f,(x, y) again with respect
to x and y we get:

faa(,y) = 62y” — 122" — 6xy®,  fuy(,y) = 62y — 82°y — 92%y”,
y
fou(,y) = 22° — 221 — 623y,

11
Now at critical point (5, §> we have

o3 - () ([ ()]
(D)2 2w

> 0.
: 11 : . . .. . 11
Since D 2’3 > 0, there is a maxima or minima at the critical point 23 )
, 11 1 . . : : :
Since fi. 23) =79 < 0, there is a maxima of function f and its maximum
value is

11 1\° /1)\? 1 1 1 1 1
fmaxzf<§’§):(§) (3> (1‘5‘5):7—2'624—32- s
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Example 2.25. Discuss the maxima and minima of f(z,y) = sin x sin y sin(z +
y)-

Solution. Given function is f(x,y) = sinz sinysin(xz + y). Differentiating par-
tially with respect to x and y we get:

fe(z,y) = cosxsinysin(x + y) + sin x siny cos(z + y)
= sinysin(2z + y).

By symmetry of f in x and y we have
fy(z,y) =sinzsin(x + 2y).
First, we find the critical point. Then:
fo(z,y) =0, fy(zr,y)=0 == sinysin(2z+y) =0, sinzsin(z+ 2y) =0.

Since f is symmetric in & and y, a solution of the above system is z = y.
Putting « = y in the above equation we get:

simzsindr =0 = sinz =0or sindz =0
. 0 w2
r=0,m =, —.
Y Y 37 3
: - : T 2 2w

Since x = y, we get four critical points (0,0), (mw, ), (g, §> and 33 )

Now, by differentiating f,(z,y) and f,(z,y) again with respect to x and y we

get:

Fualy) = 2siny cos(2u+y), fu(2,y) = sin(2a+2y), f,(r,y) = 2sinz cos(a-+2y

Now we find D at each critical point. Then:

(1) D(O, 0) = fmm<070)fyy(070) o [fxy(O,O)}Q
= 0-0- [0]?
= 0.

Since D(0,0) = 0, we cannot draw any conclusions and further investigations
are required.
(ii). 2
D(’/T7 7T) - fa:x(ﬂ7 ﬂ—)fyy(ﬂa 7T) - [fxy(/”7 W)]
0-0— [0

= 0.
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Since D(0,0) = 0, we cannot draw any conclusions and further investigations
are required.

(i)

T T T T T T T T\ 2
D(33) = I+ (53) 0 (53) -9 G3)]
373 Jes\5:3) w33 Jou\33
2
= 2._3(_1).2.6(_1)_ V3
2 2
_ 9
= 7
Since D (g, g) > (), there is a maxima or minima at the critical point (g, g)
3
Now foz (%,g) =2 g(—l) = —+/3 < 0, and so, there is a maxima of

function f and its maximum value is

T . . m . m \[
= (55 =0 (5) 0 (3) (5 5) =20

2 21 2 21 2m 21 o 21\ 1?

(iv).

2
PSR C PIC P R
2 2 2
9
= 7
, 21 27 . . . " .
Since D 303 > 0, there is a maxima or minima at the critical point

2m 2 2m 2 3
(?w,%) Now fis (%’?ﬂ) = 2-%-1 = /3 > 0, and so, there is a
maxima of function f and its minimum value is

f / o 2 ; o ; o ; o N o 3v/3
min — —, | =sm|{— | -S| — | -sin| — | = ——
373 3 3 3 3 8 ' [

Example 2.26. Discuss the maxima and minima of f(x,y) = sinx + siny +
sin(z + y).

Solution. Given function is f(z,y) = sinx + siny + sin(xz + y). Differentiating
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partially with respect to z and y we get:
fo(x,y) = cosx + cos(z +y).
By symmetry of f in x and y we have
fy(x,y) = cosy + cos(x + y).
First, we find the critical point. Then:
fo(z,y) =0, fy(z,y)=0 = cosx+cos(x+y)=0, cosy+ cos(z+y)=0.

Since f is symmetric in x and y, a solution of the above system is z = y.
Putting x = y in the above equation we get:

cosx 4 cos(2r) =0 == cosx +2cos’r —1=0
— 2cos’z +cosx —1=0

—1+v1+8 1
4 - 2

— COST =

— T =T,

o 3

om b
Since x = y, we two three critical points (7, 7), (g, g) and (?ﬂ, ?ﬂ) Now,
by differentiating f,(x,y) and f,(z,y) again with respect to z and y we get:
foz(z,y) = —sinx—sin(x+y), foy(x,y) = —sin(z+y), fy(z,y) = —siny—sin(z+
Now we find D at each critical point. Then:
(i). 2
D(ﬂ-: 7T) = fmx(777 ﬂ-)fyy(ﬂ-a 7T) - {fxy(ﬂ-a 77)]
= 0-0—[0]
= 0.

Since D(0,0) = 0, we cannot draw any conclusions and further investigations
are required.

(ii). T T T T - T TN 12
D(33) = f=(53) 0 (53) = L (5:3)]

= (~V3) (-VB) - [?

L |

4
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Since D (§, g) > 0, there is a maxima or minima at the critical point (§, g)
T
Now f.. (g, g) = —/3 < 0, and so, there is a maxima of function f and its

maximum value is
3V 3
fmax:f(g,g> = sin (E> -+ sin (z) + sin (E+z) — \[

3 3 3 3 2
(iid). Sr bm Sr br Sm br Sm 5 2

w| g

2
9
= —>0
4
, 5w Om . . . " .
Since D ERIEY > 0, there is a maxima or minima at the critical point
(%T, 5%) Now f.. (5%, 5%) = /3 > 0, and so, there is a minima of function

f and its minimum value is
bm 5 5 5 5 5 3v3
fmin = f (g, %) = sin (%) + sin (g) + sin (% + g) = —%_. .

Example 2.27. Discuss the maxima or minima of sin z sin y sin z, where x, y and
z are the angles of a triangle.

Solution. Since z,y and z are the angles of the triangle, we have zr +y+ 2z ==
or z =7 — (x + y). Now the given function is f(z,y) = sinzsinysinz. On
putting the value of z we have

f(z,y) =sinzsinysin [r — (z + y)| = sinzsinysin(z + y).

Now follow the process of Example 2.25. ]

Example 2.28. Find the point on the surface 2> = zy + 1 nearest to the origin.

Solution. Suppose the required point on the surface 22 = 2y + 1 is (z,y, 2).
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Then we have to find this point such that its distance from the origin, i.e.

d:\/x2+y2+22

is minimum. Since d and d? get their minimum values together, for simplicity,
we calculate the point of minima of

d2:x2—|—y2—|—z2.

Since the point (z,v, 2) is situated on the surface therefore 2> = xy + 1. On
putting this value in the above equation we get: d* = f(z,y) = 2* +y*+xy+1.
Differentiating partially with respect to x and y we get:

fo(m,y) = 20 +y.

By symmetry of f in z and y we have

fy(x,y) =2y + .

First, we find the critical point. Then:
fe(z,y) =0, fylz,y) =0 = 20+y=0, 2y+z=0

Since f is symmetric in x and y, a solution of the above system is x = y.
Putting x = y in the above equation we get:

3r=0 — x=0.

Since x = y, the critical point is (0,0). Now, by differentiating f,(x,y) and
fy(z,y) again with respect to x and y we get:

fx:ﬂ(x?y) = 2, favy(xay) =1, fyy(xay) = 2.
Now we find D at critical point (0,0). Then:

D(0,0) = fuu(0,0)£,,(0,0) — [£2,(0,0)]’
= 2.2 [1]?
= 3.

Since D(0,0) = 3 > 0, there are maxima or minima at the critical point (0, 0).
Now f,:(0,0) = 2 > 0, and so, there is a minima of function f at point
r =y = 0, and from the equation of surface 2> = zy + 1, at this point we have
r=y=0andso 2?2 =0-01, i.e., z = £1. Thus, the distance of point (0,0, &1)
of the surface will be minimum from the origin. ]



66

Example 2.29. If the perimeter of a triangle is constant, prove that the area of
this triangle is maximum when the triangle is equilateral.

Solution. We know that the area of a triangle is given by

A=+/s(s—a)(s—b)(s—c)

where a, b, ¢ are the sides of triangle and 2s = a + b 4+ ¢. We have to maximize
the area A. Since A and A? get their maximum values together, for simplicity,
we calculate the point of minima of

A? = s5(s —a)(s —b)(s — c).

Since the perimeter is constant we have ¢ = 2s — a — b. On putting this value
in the above equation we get: A% = f(a,b) = s(s —a)(s — b)(a + b — s).
Differentiating partially with respect to a and b we get:

fala,b) = s(s=b)[—(a+b—3s)+(s—a)]
= s(s—b)(2s —2a —b). (2.30)

By symmetry of f in  and y we have
fo(a,b) = s(s —a)(2s — 2b — a).
First, we find the critical point. Then, f,(a,b) =0, fy(a,b) =0 implies that
s(s —b)(2s —2a—b) =0, s(s—a)(2s—2b—a)=0.

Since f is symmetric in @ and b, a solution of the above system is a = b. Putting
a = b in the above equation we get:

2
s(s—a)(2s—2a—a)=0 = 3:0,5:a,a:§.

S
Since s = 0, s = a are not possible, we have a = b = 3 and so, the critical

25 2
point is (38’?8) Now, by differentiating f,(a,b) and fy(a,b) again with
respect to a and b we get:

faa(a,b) = —=2s(s —b), faw(a,b) = s(2a+ 2b—3s), fw(a,b) = —2s(s —a).
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Now we find D at each critical point. Then:

2s 2s 2s 2s 2s 2s 25 2s5\1°
D (?73) - faa (?7?) fbb (?a?) - [fab (57?)]

) 2s 2s st ) . . L.
Since D[ —,— | = 3 > 0, there is a maxima or minima at the critical

2s 2 2s 2 252

point <§S, ;) Now fua (38, 38) = —% < 0, and so, there is a maxima
2

of function f at point x = y = 38, i.e., the area is maximum. Also, since

2s 2 2
2s = a+ b+ c, at point (;, ?S) we have c=2s—a—b = 33 Therefore, for
C

2s
= —, l.e., the triangle is equilateral. [

3

maximum area we have ¢ = b =

2.8 Exercise

(Q.1) Discuss the maxima or minima of the function f(z,y) = 2% — 3zy* — 152% —
15y + 72x.
Ans. Critical point (6,0) (minima), with fu;,, = f(6,0) = 108, (4,0) (max-
ima), with f.x = f(4,0) = 112, (5,1) and (5, —1) are saddle points.

(Q.2) Discuss the maxima or minima of the function f(x,y) = 2% — 4zy + 2y
Ans. Critical point (0,0) (saddle point) and (4/3,4/3) (minima), with
fuin = f(4/3,4/3) = — 2.

(Q.3) Discuss the maxima or minima of the function f(z,y) = cosz cosycos z,
where x,y and z are the angles of a triangle.
Hint. Since z + y + z = 7 the given function is reduced to f(x,y) =
—cosx cosy cos(x + y).

(Q.4) Discuss the maxima or minima of the function f(x,y) = cos x4+ cosy-+cos z,
where x,y and z are the angles of a triangle.
Hint. Since z + y + z = 7 the given function is reduced to f(z,y) =
cos x + cosy — cos(x + y).

(Q.5) Discuss the maxima and minima of f(z,y) = 2° + y* — 3zy.

Ans. Critical point (0, 0) (saddle point) and (1, 1) (minima), fum = f(a,a) =
—1.
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Matrices, determinants, rank, normal form. Systems of linear equations and their solutions.

3.1 Vectors and their linear combination and generated space.

We consider the three-dimensional Euclidian space and denote it by R3. Each vec-
tor of this space can be represented by its position vector. For example, if O is

the origin and ﬁ’ is the vector with tail O and head P, where coordinates of P
are (r1,xs,x3), then O? = 111 + 297 + 23k is completely described by its coordi-
nates (z1, 2, r3), i.e., all the information about O‘}% is contained in the coordinates

(w1, 29, 3). Therefore, all the vectors of R? are represented by their coordinates
and we write R® = {(x1, 29, 23): 21,72, 23 € R}. In further discussion, we repre-

1
sent a vector by X = | xy |, since it same as (x1, x2, x3) in the sense that both
L3
L1
the notations give the same information about the vector. The vector X = | x9
T3
is also called a column vector or column matrix. Similarly, we can define a row
vector or a row matrix by X' =[xy, 9, x3 |
1 1
Suppose, X1 = | 0 | ,Xo= | 1 | are two three dimensional vectors and a1, as €
0 0
R. Then, the expression
1 1 a1 + a9
X=a1Xi+wXo=a1 |0 | +a | 1] = a9
0 0 0

is called a linear combination of the vectors Xi, X5. Obviously, by changing the
values of a; and ay we can find infinitely many linear combinations of X; and X5.
The set of all linear combinations of X; and X» is called the space generated by
the vectors X7 and Xs. These notions can be generalized for an arbitrary number
of vectors of n-dimensional vectors.

68
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3.1.1 Linear independence and dependence of vectors.

Vectors X1, Xo,..., X, are called linearly dependent if any one of them is a linear
combination of other vectors, otherwise vectors are called linearly independent.

3.1.2 Echelon form of a matrix.

We can always reduce the given matrix into a matrix which is in the following form:
(1) All nonzero rows are above any zero row;

(2) the pivot (first nonzero entry from the left) of any row is always strictly to the
right of the pivot of the row above it.

Such a form of matrix is called the echelon form.

3.1.3 Rank of a Matrix.

Suppose that

ai; a2 -+ Qip
a1 A2 -+ QA2p
A= _ _ _ =[X; X5 ... X,]
m1 Gm2 " Amp
ai az1 a1in
az1 a22 a2n
where X7 = ] , Xo = ] oo X, = ] are the colomn vectors.
am1 am?2 Amn
Then the number of linearly independent column vectors in Xi, Xo,..., X, is
called the column rank of matrix A. Similarly, the matrix A can be written
/
X
X/
2 / / /
as A = : where X| = [a11 a12- - a1,], X] = [ag1 ag---a9],..., X =
/
Xm

[@m1 Qo+ + Q). Then, the number of linearly independent row vectors in X7, X3, ...

is called the row rank of matrix A. An interesting property of matrices says that
the row and column ranks of a matrix are always equal and this common value is
called the rank of a matrix and is denoted by p(A).
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How to find the rank of a matrix. We use the following two methods of finding
the rank of matrices:

(I). Method of determinants. The rank of a matrix can also be calculated
using determinants. The rank of a matrix is the order of the largest square
submatrix of the given matrix with a nonzero determinant. To find this, we
search for a submatrix with a nonzero determinant, and we start with the
largest possible submatrix of the given matrix. If this largest submatrix has a
nonzero determinant, then the order of the submatrix is the rank of the given
matrix. If the determinant of largest is zero, then we go to the submatrix of
order less than 1 from the largest submatrix and repeat this process till we
get a submatrix with nonzero determinant.

(IT). Method of Echelon form. In this method, we first reduce the given metric
into echelon form by applying the elementary transformations, and then, the
number of nonzero rows in the reduced echelon form is the rank of the given
matrix.

Example 3.1. Find one nonzero minor of the highest order of the matrix A =

1 -2 3
—2 4 —1 |, hence find its rank.
-1 2 7

Solution. We start with the highest order minor, i.e., the minor of order 3

1 -2 3
Al = | -2 4 -1
-1 2 7
= 1(28+2)+2(—14—1)+3(—4+4)
= 30—30=0.

Therefore, the highest minor of order 3 is zero. We next consider the second
highest order minor, i.e., the minor of order 2:

‘—2 3

) _1‘:2—12:—107A0.

Thus, the highest order nonzero minor of A is of order 2, and so, p(A) = 2. [

1 1 1

Example 3.2. In each case, find the rank of the matrix A= | b+c c+a a+b

be ca ab
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Solution. Again, we start with the highest order minor of A, then:

1 1 1
Al = |b+c c+a a+b

be ca ab
1 0 0

= |b+c a—-b a-—c (applying Cy — Cy — C1,C3 — C5 — ()
bc cla—10b) bla—c)

_ a—b a—c

| cela—b) bla—rc)

= —(a—b)(b—c)(c—a).

We consider the following cases:

Case I. When a = b = c¢. In this case |A| = 0, and so, p(A) < 3. Also, for
1 1 1

a =0b=cwe have A = | 2a 2a 2a |. Clearly, all the minors of order 2 of A

a? a® a?

are zero, and so, p(A) < 2. Now, clearly the minor of order 1 of A is nonzero ,
therefore p(A) = 1.
Case II. When a = b # c. In this case |A] = 0, and so, p(A) < 3. Also,

1 1 1
fora = b # ¢ we have A = |a+c a+c¢ 2a |, and a minor of order 2
ac  ac a?
1 1 : : -
=latcoa|=0C # 0. Therefore, p(A) = 2. Since A is symmetric in

a, b, ¢, therefore, if any two of a, b, c are equal, and the remaining is not equal
to the first two, the rank of A remains 2.

Case III. When a # b # c. In this case |A| # 0, and so, p(A) = 3.

Nullity of a square Matrix. The nullity of a matrix is the excess of the order of
the matrix over its rank, and it is denoted by v(A). If A is a square matrix of
order n and p(A) =r, the v(A) =n — p(A) =n —r. O

Example 3.3. Determine the rank and nullity of the following matrices:

12 22 32 42
22 32 42 52
32 42 52 62
42 52 62 72

A:
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1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

Applying Ry — Ry — Rg, R3 — R3 — RQ; Ry — Ry — Ry we obtain:

1 4 9 16
35 7 9
57 9 11
79 11 13

Solution. Given matrix is: A =

A~

Applying R4 — R4 — Rg, Rg — R3 — RQ; R2 — R2 — Rl we obtain:

14 9 16
21 —2 -7
A~y 9 9 9
292 2 2

11 1 1
21 -2 —7
A~y 9 16
292 2 2

1 1 1 1
0 -1 —4 —9
A~19 3 8 15
00 0 0
Applying R3 — R3 + 3Ry we obtain:
1 1 1 1
0 -1 -4 -9
A~ 0 24 219
00 0 0

The above matrix is in the echelon form, therefore, the rank of matrix A:

p(A) = no. of nonzero rows in the echelon form= 3 and v(A) =4 -3 = 1.
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Example 3.4. Determine the rank and nullity of the following matrices:

L 23 101 1
(1) |1 4 2 (17)
96 5 31 0 2
11 -2 0
1 2 3
Solution. (i). Let A = | 1 4 2 | . Applying the transformation Ry — R —
2 65
R1, Rg — Rg — 2R, we have:
12 3
A~ |10 2 —1
0 2 —1

Applying the transformation R3 — R3 — Ry we have:

12 3
A~ |0 2 -1
00 O

The above matrix is in the echelon form, therefore, the rank of matrix A:

p(A) = no. of nonzero rows in the echelon form= 2 and v(A) =3 -2 = 1.

01 -3 -1
(IT). Let A = é (1) é é . Applying the transformation R; <> Ry we
11 -2 0
have
1 0 1 1
01 -3 —1
A~ls 1 0 9
11 -2 0

10 1 1
01 —3 —1
A~191 23 1
01 —3 —1
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Applying Rs — R3 — Rz, Ry — R4 — Ry we have:

10 1 1
01 —3 —1
A~T90 0 0
00 0 0

The above matrix is in the echelon form, therefore, the rank of matrix A:
p(A) = no. of nonzero rows in the echelon form= 2 and v(A) =4—-2=2. [

3.2 Normal form of a Matrix

By elementary row and column transformation, every matrix can be reduced into
one of the following forms:

Go) o) el

where 7 is the rank of the matrix. The above four forms are called the normal form
of the matrix.

Example 3.5. Reduce the following matrix into the normal form and find its
rank and nullity:

2 3 -1 -1
1 -1 -2 —4
A=13 1 3 -2
6 3 0 =7
Solution. Applying R; <> Ry:
1 -1 -2 —4
2 3 -1 -1
A~1l3 1 3 -9
6 3 0 =7

Applying Ry — Ry — 2Ry, R3 — R3 — 3Ry, Ry — R4 — 6R;:

1 -1 -2 —4
0 5 3 7
A~ 4 9 10
0 9 12 17
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Applying Ry — Ry — Rj:

Applying Ry — R4 — 2Rj3:

Applying the following series of operations in order:

Cy — Co+C1, 03 = C3+2C,,Cy — Cy +4C7;

2 1
C3 = C3+6C,,Cy — Cy+3Cy; Cy— Cy— gCg; C3 — 503 :
1000
A 0100| |I30

0010| |0O0]"

0000
It is the required normal form of the matrix and the rank of matrix p(A) = 3,
and the nullity v(A4) =4 -3 = 1. O

3.3 Solution of System of Linear Equations.

Consider a system of m linear equations in n variables:

a1 —+ a12x2 + -+ A1y, = bl
a21T1 + Ag9T9 + - -+ + Aop Ty,

I
>
[\

(3.1)

Am1T1 + Q22 + -+ + Gy = bm
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aijp a2 -+ Qip
. . . Q12 Q22 -+ A2p
In matrix form, this system can be written as AX = B, where A = , _ _
Am1 AQm2 - Amn
I bl
. . . X2 . . 2 .
is the coefficient matrix, X = ) is the variable vector and b = ) is the
Tn bn

constant vector.
We denote the augmented matrix by [ A | B | and

apy @i - aip | by
a2 A -+ Qo | by
[ A ‘ B ] T : : .. : :
aml Am2 *°° Qmn bn

Then, we follow the following procedure to test the consistency and obtain the
solution of the system (3.1):

(A) If p([ A| B ]) # p(A), then system is inconsistent, and has no solution.

B) It p(| A|B]) = p(A) = n, then the system is consistent and has a unique
solution.

(C)Itp(| A| B ]) = p(A) < n, then the system is consistent and has infinitely
many solutions with n — p(A) independent variables.

Example 3.6. Show that the following system is consistent and solve it:

r+y+z =3
r+2y+3z = 4
r+4y+ 9z = 6.

111 x
Solution. Write the system as: A X =B, A= |12 3|, X= |y |,B=
149 z
3
4 | . Now, augmented matrix will be
6

(4]B] =

=
N
O W
O = W
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Applying R2 — RQ — Rl, Rg — Rg — R1

—_
—_
—_
w

—
N
—_

AB]~ 0

w
oo
w

Applying R3 — R3 — 3R»

—_

1
[A[B]~ |01
00

DO DO
S = W

It is the echelon form of the augmented matrix and it is clear that p ( [ A|B } ) =
p(A) = 3, which is equal to the number of unknown variables. Therefore, the
given system is consistent and has a unique solution. From the echelon form we
have the equations:

r+y+z = 3
y+2z =1
2z = 0.
Therefore, the solution is: x =2, y =1, z =0. ]

Example 3.7. Test for consistency and solve (if consistent):

Sx+3y+7z = 4
3r+20y+2z = 9
7r+2y+ 10z = 5.

5 3 7 x
Solution. Write the system as: A X =B, A=|3 26 2 | , X=|y|,B=
7 2 10 z
4
9 | . Now, augmented matrix will be
5
5 3 T |4
[A]B] =13 26 219
7 2 105
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Applying Ry — R; — 2Ry

-1 —49 3 |—-14
[ A ‘ B } ~ 3 26 2 9
7 2 10| 5
Applying Ry — Ry + 3R, R3 — R3+ TR,
-1 —-49 3 |-14
[A‘B} ~ 0 —121 11|-33
0 —341 31|-93
Applying R3 — Rz — ?—}Rg
-1 —-49 3 |-14
[A‘B} ~ 0 —121 11|-33
0 0 0 0

It is the echelon form of the augmented matrix and it is clear that p ([ A|B ]) =
p(A) = 2, which is less than the number of unknown variables (3). There-
fore, the given system is consistent and has infinitely many solutions. Since
n—p(A) =3—2 =1, so one variable in the given system is independent. From
the echelon form we have two equations:

—x—49y+ 32 = —14
—121y 4+ 11z = —33.
Since one variable is independent, let z = k, then from the above equations:
7 16 3+ k
r=———k, y= + , 2= k. ]
11 11 11

Example 3.8. Show that the following system is inconsistent:

=2y n = = =l
3z —2243w = —4
Sr —4dy+w = —3.

Solution. The augmented matrix of the given system is:
1 -2 1 —-1|-1

[A|B]=|3 0 -2 3 |—4
5 -4 0 1|-3
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Applying RQ — RQ — 3R1, Rg — R3 — 5R1

1 -2 1 —-1|-1
[ A|B } ~]10 6 =5 6 |—1
0 6 =5 6 | 2
Applying R3 — R3 — R»
1 -2 1 —-1|-1
[ AlB } ~]10 6 =5 6 |—1
0o 0 0 03

[t is the echelon form of the augmented matrix and it is clear that p ( [ A|B } ) =
3 # p(A) = 2. Therefore, the given system is inconsistent and has no solu-
tion. []

Example 3.9. Investigate the values of A and u so that the equations:

z+y+z = 6
r+2y+3z = 10
T+2y+ Az = pu,

have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

111 x
Solution. Write the system as AX = B, where A= |1 2 3 |, X=|y|,B=
12 A z
6
10 | . Now, augmented matrix will be
]
1 11]6
[A|B]=1[12 3|10
1 2 Al p
Applying R2—>R2—R1, R3—>R3—R1
11 1 6
[A|B]~ |01 2 1
01 A\—=1|u—©6
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Applying R3 — R3 — R»

11 1 6
[ A|B } ~101 2 4
00 A=3|pu—10
It is the echelon form of the augmented matrix. Now, we consider the following
cases:

(i) System has no solution: It is possible only when p ([ A| B |) # p(A), i.e.,
when A = 3 and p # 10.

(ii) System has a unique solution: It is possible only when p ([ A|B |) =
p(A) =3,ie, A #3and u € R.

(iii) System has infinitely many solutions: It is possible only when p ([ A| B |) =
p(A) < 3,ie, A=3and p = 10.

[
Example 3.10. For what value(s) of k the equations:
rT+y+z = 1
x+2y+4z = k
r+4y+102 = k?
have a solution and solve completely in each case.
Solution. The augmented matrix of the given system is:
11 11
[A|B]=|12 4|k
1 4 10| K2
Applying Ry —+ Ry — Ry, R3 — R3 — Ry
111 1
[A\B]N 013 k-1
039/ k-1
Applying R3 — R3 — 3R»
1 11 1
[A|B]~|013] k-1 : (3.2)
00 0|k —3k+2
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The system of equations will have a solution if it is consistent, i.e., if p ( [ A|B } ) =
p(A), and it is possible only when k* —3k+2 =0, i.e., k = 1 or k = 2. In both
cases we have p ([ A|B|) = p(A) = 2 < 3 (no. of variables). Therefore, in
both cases, we have 3—2 = 1 independent variable and infinitely many solutions
of the given system. We consider the following cases:

Case L. If k = 1, then from (3.2) we have the following equations:

r+y+z =1
y+ 3z = 0.

Since one variable is independent, choose z = a we have the following solution:
r=1+2a, y=—3a, z=a.
Case IL. If & = 2, then from (3.2) we have the following equations:

r+y+z =1
Y+ 3z = 1.

Since one variable is independent, choose z = b we have the following solution:
r=2b, y=1—-3b, z=0. ]

Example 3.11. For what value of k£ the equations:

2r — 3y + 62— 5t = 3
y—4z4+t =1
dr — by + 8z — 9t = Kk,

(i) have no solution  (ii) have infinitely many solutions.

Solution. The augmented matrix of the given system is:

2 -3 6 —5|3
[ A|B } =10 1 —4 1|1
4 -5 8 -9k
Applying R3 — R3 — 2R,
2 -3 6 —-5| 3
[ A|B } ~10 1 —4 1 1
0 1 —4 1 |k—6
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Applying R3 — R — Rs

The system of equations will have a solution if it is consistent, i.e.,if p (| A| B |) =
p(A), and it is possible only when k — 7 = 0, i.e., k = 7. In this case, we have
p([A|B]) =p(A) =2 <4 (no. of variables). Therefore, we have 4 — 2 = 1
independent variables and infinitely many solutions of the given system. Now,
for k=7, the above system reduces to:

20 =3y +62—5t = 3

y—4z+t = 1.
Since two variables are independent, choose z = a and t = b we have the
following solution:
r=3+3a+0b, y=144a—-b, z=a, t=0. ]

3.4 Homogeneous system of equations

We consider the following system of equations:

anxy + apre + - +apx, = 0
a1 + axpre + -+ agpr, = 0

2171 2219 2 (3.3)
Am1T1 + Qa2 + - + App®y, = 0.

Note that, in the above system all the constants of R.H.S. are zero and such a
system is called the homogeneous system. In matrix form, it can be written as
AX = 0, where A is the coefficient matrix and X is the variable vector. In such
systems the augmented matrix is [ A ‘ B } = [ A ] 0 ] Note that, in any case, the
rank of the coefficient matrix A and the rank of the augmented matrix [ A|B } are
equal. Therefore, homogeneous systems are always consistent and have a solution,
namely, 1 = o = --- = x,, = 0 is always a solution of system (3.3) and it is called
the zero solution or trivial solution.

Note: (A) If p(A) = n =number of variables, then system (3.3) has only the
trivial solution.

(B) If p(A) < n =number of variables, then system (3.3) has a nontrivial
solution.

(C) For a homogeneous system, we find the rank of only A, not of [ A \ B ]
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Example 3.12. Solve the equations: x +3y — 2z =0, 2r —y+ 42 =0, x —
11y 4+ 14z = 0.

Solution. The coefficient matrix of the given system is:

1 3 =2
A=12 -1 4
1 —11 14

Applying RQ — RQ — 2R1, R3 — R3 — R1

1 3 =2
A~ 10 =7 8
0 —14 16
Applying R3 — R3 — 2Ry
1 3 =2
A~ |0 =7 8
0 0 O

It is the echelon form. Clearly, p(A) = 2 < 3 =number of variables. Therefore,
the system has a nontrivial solution and the n — p(A) = 3 — 2 = 1 variable is
independent. By the echelon form, we have the following equations:

r+3y—2z = 0
—Ty+8z = 0.

Since one variable is independent, choose z = k, we obtain from the above
equations:

10k 8k

x 77y 77Z

Example 3.13. For which value of ‘0’ the following system:

2r+y+2z = 0
z+y+3z =0
dr + 3y +bz = 0

has (i) trivial solution (ii) nontrivial solution. Find the nontrivial solution.
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Solution. The coefficient matrix of the given system is:

A:

I e\
QW = =
S W DN

Applyil’lg Ry & RQ; then Ry — Ry — 2R1, Rs — R3 — 4R,

1 1 3
A~ |10 -1 -4
0 —1 b—12
Applying R3 — R3 — R»
1 1 3
A~ 10 -1 -4
0 0 b—28

It is the echelon form. We consider the following cases:
(i) If b # 8, then obviously p(A) = 3 =number of variables and so system has
a trivial solution.

(ii) If b = 8, then obviously p(A) = 2 < 3 =number of variables and so system
has nontrivial solution. In this case, n — p(A) = 3 — 2 = 1 variable will be
independent. By the echelon form, we have the following equations:

Since one variable is independent, choose z = k, we obtain from the above
equations:

rx=k, y=—4k, z = k. O

3.5 Exercise

(Q.1) Investigate the values of A and p so that the equations:

2z + 3y + 52 9
r+3y—2z = 8
20+ 3y + Az = p,

have (i) no solution and (ii) a unique solution (iii) an infinite number of

solutions. Ans. (i) A=5,u#9 (i) A#>5,pe R (iii) A=5, p=09.
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(Q.2) Test the consistency of the system:

rT+2y—z =
20 — 2y + 3z =
dr—y+2z =
rT—yY+z = —1.

N W

Ans. Consistent and has a unique solution x = —1, y =4, z = 4.
(Q.3) Show that the following system is consistent and sole it:

r+2y—>5z = —9
3r—y+2z = 5
2v+ 3y —z = 3.

Ans. Consistent and has a unique solution z = 1/2, y = 3/2, z = 5/2.
(Q.4) Examine the consistency of the following system:

br+3y+ 14z = 4

y+2z =1
r—y+2z =0
20 +y+62z = 2

Ans. Inconsistent (has no solution).

(Q.5) Show that the system of equations as given below is consistent if and only if
a + ¢ = 2b and find the solution(s) when exists:

3r+4y+952 = a
dr 4+ 5y + 62z = b
Sr+6y+7z = ¢

(Q.6) Find the values of A so that the system of equations has a non-trivial solution
and hence find the non-trivial solution:

A=D1z +BA+1y+2 2z =
A=Dzx+U@rN—2)y+ (A +3)z =
2c+ (B +1)y+3(A—-1)z = 0.

|
o o

Ans. A =0,1,3.
(Q.7) Solve the following system of equations completely:

2W+3r—y—2z = 0
dw —6x —2y+2z = 0
—6w + 122 + 3y — 4z 0.

k1

Ans.w:7,$:%,y:k71, 2z = ko.
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Numerical methods for solving nonlinear equations: method of bisection, secant method, false
position, Newton-Raphson’s method, fixed point method and its convergence.

4.1 Numerical methods for solving nonlinear equations

Algebraic function: A function f(z) is called an algebraic function if it can be
expressed using a finite number of terms, involving only the algebraic operations
addition, subtraction, multiplication, division, and raising to a fractional power of
the variable x.

Transcendental function: A function f(x) is called a Transcendental function if
it has any root which is not a root of any algebraic function. They are built on
functions like logs, exponents, trigonometric functions and inverse trigonometric
functions.

Intermediate value theorem: If f(z) is a continuous function in the interval [a, b]
and there are two numbers x,y in the interval [a, b] such that f(x) and f(y) have
opposite signs (or f(a) - f(b) < 0). Then, there is a root of function f(z) between
x and y.

Next, we discuss some methods to find the approximate roots of a given function.

4.1.1 Bisection method

This method is based on the intermediate value theorem. In this method, first, we
find an interval [a, b] such that f(a) and f(b) have opposite signs. By intermediate

value theorem, there exists a root of the function f(x), between a and b. Now,

b
we bisect this interval by taking mean of a and b and find the point z; = ot :
If f(z1) = 0, then we are done. If f(x;) # 0, then we find f(x1). If f(z1) has
an opposite sign to f(a), then the bisected interval is taken [a, x|, otherwise it is
[x1,b]. We repeat the same process with the bisected interval till we get the desired
root.

86
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Exact root * = «

Bisection Method

Example 4.1. Find a root of the equation z® — 4z = 9 by bisection method
correct up to three places of decimals.

Solution. Here f(z) = 23 — 42 — 9. We have to find a root of f(z). Then, since
f(2) = =9 < 0and f(3) =10 > 0. Therefore f(2)- f(3) < 0, and so, there is
a root of f(x) in the interval [2, 3].
Step I. Let

2+3

2.5
2

x1

and

f(z1) = f(2.5) = =3.375 < 0, and so, f(z1)- f(3) <O.

Therefore, there is a root of f(z) in the interval [2.5, 3].
Step II. Let
2543

= 2.75.
2

)

The
f(z2) = f(2.75) = 0.7969 > 0, and so, f(z1) - f(x2) <O.

Therefore, there is a root of f(z) in the interval [2.5,2.75].

Step III. Let

254275

T3 = 2.625.

Then,
f(z3) = f(2.625) = —1.4121 < 0, and so, f(zq) - f(x3) <O.
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Therefore, there is a root of f(x) in the interval [2.625,2.75].
Step IV. Let
27542625

= 2. :
5 6875

T4
Then,
f(zyg) = f(2.6875) = —0.3391 < 0, and so, f(x2) - f(z4) <O.

Therefore, there is a root of f(x) in the interval [2.6875,2.75].

Step V. Let
275+ 2.6875

2

Ts5 = 2.7188.

Then
f(zs) = f(2.7188) = 0.2218 > 0, and so, f(x5) - f(x4) <O.

Therefore, there is a root of f(x) in the interval [2.6875,2.7188].
Step VI. Let
| 2.6875 + 2.7188

= 2.7031.
5 703

Te
Then
f(xg) = f(2.7031) = —0.0615 < 0, and so, f(wg) - f(x5) < 0.

Therefore, there is a root of f(x) in the interval [2.7031,2.7188].
Step VII. Let
| 2.7031 4 2.7188

= 2.711.
2

X7

Then
f(z7) = f(2.711) = 0.0806 > 0, and so, f(z7) - f(xs) < O.

Therefore, there is a root of f(z) in the interval [2.7031,2.711].

Step VIII. Let
_ 27031 + 2.711

2

s = 2.7071.

Then
f(zg) = f(2.7071) = 0.01028 > 0, and so, f(xs) - f(zg) < 0.

Therefore, there is a root of f(x) in the interval [2.7031,2.7071].
Step IX. Let
27071 + 2.7031

= 2.7051.
5 705

X9
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Then
f(z9) = f(2.7051) = —0.0256 < 0, and so, f(xs) - f(x9) <O.

Therefore, there is a root of f(x) in the interval [2.7051,2.7071].
Step X. Let

2.7071 + 2.7051
2
Therefore, f(x19) - f(zg) < 0, and so, there is a root of f(x) in the interval

2.7061, 2.7071].
Step XI. Let zy; = 200F2T0TL — 2 7066,

Since x19 = x11 (up to the three places of the decimal), therefore x = 2.706 is
the required root of the given equation. [

= 2.7061, and so, f(x19) = f(2.7061) = —0.0077 < 0.

1o =

Example 4.2. By using the bisection method, find an approximate root of the
equation sinz = 1/, that lies between = 1 and z = 1.5 (measured in
radians). Carry out computation up to 7" stage.

Solution. Let f(x) = xsinz — 1. Then we have to find a root of f(z) lies
between 1 and 1.5, i.e., the root lies in the interval [1, 1.5]. Then, since f(1) =
—0.1585 < 0 and f(1.5) = 0.4962 > 0. Therefore f(1) - f(1.5) < 0, and so,
there is a root of f(x) in the interval [1, 1.5].

Step I. Let

14 1.
+ 15 =1.25

T —

and
f(z1) = f(1.25) = 0.1862 > 0, and so, f(x1) - f(1) < 0.

Therefore, there is a root of f(x) in the interval [1,1.25].

Step II. Let
1+1.25
Ty —
2

= 1.125.

The
f(z9) = f(1.125) = 0.0150 > 0, and so, f(z2) - f(1) <O0.

Therefore, there is a root of f(x) in the interval [1,1.125].

Step III. Let
I+ 1125

= 1.0625.
2

xr3
Then,

f(zs) = f(1.0625) = —0.0718 < 0, and so, f(x9) - f(z3) < 0.
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Therefore, there is a root of f(z) in the interval [1.0625, 1.125].
Step IV. Let
~1.0625+1.125

= 1. :
5 09375

T4
Then,
f(zy) = f(1.09375) = —0.02836 < 0, and so, f(x2) - f(x4) <O,

Therefore, there is a root of f(x) in the interval [1.09375,1.125].
Step V. Let

~1.09375 4 1.125

= 1.10937.
2

T
Then
f(zs) = f(1.10937) = —0.00664 < 0, and so, f(x2) - f(x5) <O,

Therefore, there is a root of f(x) in the interval [1.10937,1.125].
With a similar process, we obtain:xg = 1.11719 and x7; = 1.11328. Therefore,
xr = 1.11328 is the required root of the given equation. ]

4.1.2 Secant method

Suppose, we have to find a root « of equation f(x) = 0 which is between xy and
r1. Instead of taking the average (as we do in the Bisection method) we now do a
linear approximation to the root «. For this, we join the points P(x, f(x)) and
Q(x1, f(x1)) so that the chord PQ to the curve y = f(x) is constructed. Then,
the equation of this chord will be:

f(z1) — f(x0)

r1 — Ty

y— flx1) =

(x — x1).

Suppose, this cord PQ intersect the X-axis at point (x2,0). Then, from the above
equation, we have

f(x1) — f(x0)

xr1 — Xo

0— f(r1) =

(:UQ — 3’31), or:

L1 — 2o
f(x1) = f(zo)
Then, xo is the first approximation of . Now join the points P’(xs, f(x2)) and

Q(x1, f(x2)) so that the chord P'Q to the curve y = f(x) is constructed. Then,
the equation of this chord will be:

f(z1).

To9 = 1 —

f(x2) — f(x1)

Ty — I

y— f(r2) =

(x — x9).

Suppose, this cord P'Q intersect the X-axis at point (x3,0). Then, from the above
equation, we have
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f(z2) — f(21)

T2 — 1

0— f(z2) =

(x3 — x9), or:

f(x2) — f(21)

Then, x5 is the second approximation of o and obviously, the value x5 is more
close to « than the x; (first approximation). We repeat this process till we get the
desired accuracy.

f(z2).

Ir3 = T2 —

Q
v |
Exact root £ = «
X
Ty : T
O
o| T
P

Secant Method
4.1.3 General formula for secant method

First, find the values zy and x1 by the Intermediate value theorem (as we have done
in the bisection method), then use the following formula for further approximation:

Lp — Tp—1

O T ) = ()

flx,), n=1,2,....

Example 4.3. Find the root of equation xlog;y(x) = 1.2 by the Secant method
correct up to three places of decimals.

Solution. Let f(z) = zlog;y(x) — 1.2. Then, we have to find the root of f(x).
Note that, f(1) = —1.2, f(2) = —0.598 and f(3) = 0.231. Therefore, there
is a root of f(z) between 2 and 3. Let zp = 2 and x; = 3. Then the first
approximation:

1 — X 3—2 1

Tro = X1 —

Flz1) — f(zo) =3 031 = (—0.598)
= 2.721.

X (
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Then, f(z9) = f(2.721) = —0.017. Now, the second approximation:

To — 1 2.721 — 3
s = ”‘1ﬂ@>—fw?f“”"7”"ﬂznn»—ﬂaf@7”>
—0.279
= 2721 - ———— o X (=0.017)
= 2.740.

Then, f(x3) = f(2.740) = —0.0005. Now, the third approximation:

o T3 — T2 . _ 2.740 — 2.721
T gy oo LA e T O O, B X oTD A
0.019
= 2740~ 5 = (o < (~00009)
= 2.740.

Therefore, a = 2.740 is the root of the given equation (correct up to the three
decimal places). O

Example 4.4. Find the root of equation #* — 2 — 10 = 0 by Secant method
correct up to four places of decimals.

Solution. Let f(z) = 2* — 2 — 10 = 0. Then, we have to find the root of f(x).
Note that, f(1.8) = —1.3024 and f(2) = 4. Therefore, there is a root of f(x)
between 0 and 2. Let g = 1.8 and 7 = 2. Then the first approximation:

Ir1 — 2o 2—1.8 0.2

o —fao) @ =2 Ty =’ ® = 2T i =g <!
= 1.8491.

Tro = X1 —

Then, f(x9) = f(1.8491) = —0.1584. Now, the second approximation:
To — X 1.8491 — 2

xy = xg—f(xz)_f(xl)f(:cg):1.8491—f(1'8491)_f(2)f(1.8491)
—0.1509
= 18491 — — o x (~0.1584)

= 1.8548.
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Then, f(z3) = f(1.8548) = —0.0192. Now, the third approximation:
T3 — T2 1.8548 — 1.8491

Ty = T3 — () f(xQ)f(xg) = 1.8548 — F(1.8548) f(1.8491)f(1°8548)
0.0057
= L8548 — o ot < (C00192)
= 1.8555.

Then, f(x4) = f(1.8555) = —0.0021 Now, the fourth approximation:

24 — T3 1.8555 — 1.8548
— - — 1.8555 — 1.8555
BT T ) - f(xg)f (e4) f(1.8555) — f(1.8548)f ( )
0.0007
— 1.8555 — —0.0021
~0.0021 — (~0.0192) ¢ )
— 1.8555.

Therefore, a = 1.8555 is the root of the given equation (correct up to the four
decimal places). O

4.1.4 Method of false position (regula-falsi) method

It is the oldest method for finding the real roots of an equation, and this method
is a combination of Bisection and Secant methods.

Formula for Regula-falsi method. In this method, for the approximation of the
root « of the equation f(z) = 0,we use the following formula:

b—a
c=b-— f(b
OV
where a and b are such that f(a) < 0 and f(b) > 0. Note that, in this method the
values of a and b changes in each step.

Example 4.5. Find the root of the equation cosxz = ze” using the regula-falsi
method correct to four decimal places.

Solution. Let f(z) = cosx — ze®. Then we have to find the root of f(x). Now
since f(0) =1 >0, f(1) = —2.1779 < 0, therefore a = 1 and b = 0. By the
formula, the first approximation for « :
b—a 0—-1 1
c = b— f(b) =0— f(0) =
o 5@’ = e Y T T

Then, f(0.3146) = 0.5198 > 0. Therefore, the root is between 0.3146 and 1

= 0.3146.
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and, now a = 1 and b = 0.3146. Then, the second approximation for « :

b—a 0.3146 — 1
c = b— ) f(a)f(b) — (0.3146 — F10.3146) = f(l)f(0.3146)
— 0.3146 — —0.6854 % 0.5198

0.5198 — (—2.1779)
= 0.4476.

Then, f(0.4476) = 0.2012 > 0. Therefore, the root is between 0.4476 and 1
and, now a = 1 and b = 0.4476. Then, the third approximation for « :

. 0.4476 — 1
= b = O = OIS e —

0.5524

— 0.4476 — 0.2012
0.2012 — (—2.1779)

— 0.4943.

£(0.4476)

Then, £(0.4943) = 0.0699 > 0. Therefore, the root is between 0.4943 and 1
and, now a = 1 and b = 0.4943. Then, the fourth approximation for « :
b—a 0.4943 — 1
= b— b) = 0.4943 —
‘ J(0) £(0.4943) — F(1)

f(b) — f(a)

—0.5057

— 0.4943 — 0.0699
0.0699 — (—2.1779)

— 0.5100.

£(0.4943)

Then, f(0.5100) = 0.0234 > 0. Therefore, the root is between 0.5100 and 1
and, now a = 1 and b = 0.5100. Then, the fifth approximation for « :

b—a 0.5100 — 1
c = b— O f(a)f(b) —0.5100 — F{0.5100) = f(l)f(o.moo)
— 0.5100 — —0.49 % 0.0234

0.0234 — (—2.1779)
= 0.5152.

Then, f(0.5152) = 0.0077 > 0. Therefore, the root is between 0.5152 and 1
and, now ¢ = 1 and b = 0.5152. Then, the sixth approximation for « :

b—a 0.5152 — 1
c = b— f(b)_f(a)f(b) —0.5152 — f(0.5152)_f(1)f(0.5152)
— 0.5152 — —0.4848 x 0.0077

0.0077 — (—2.1779)
— 0.5169.
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Then, f(0.5169) = 0.0026 > 0. Therefore, the root is between 0.5169 and 1
and, now a = 1 and b = 0.5169. Then, the seventh approximation for « :

b—a 0.5169 — 1
c = b— f(b)_f(a)f(b) = 0.5169 — f(0'5169)_f(1)f(0.5169)
—0.4831
= 05169 — 5o pg7rg) X 00026

= 0.5174.

Then, f(0.5174) = 0.001 > 0. Therefore, the root is between 0.5174 and 1 and,
now a = 1 and b = 0.5174. Then, the eighths approximation for « :

b—a 0.5174 — 1

¢ = b—f(b)_f(a)f(z)_o.mm—f(0.5174)_f(1)f(0.5174)
—0.4826
= 05174 — o BT

= 0.5176.

Then, f(0.5176) = 0.0004 > 0. Therefore, the root is between 0.5176 and 1
and, now a = 1 and b = 0.5176. Then, the ninth approximation for « :

b—a 0.5176 — 1
c = b— f(b)_f(a)f(b) = 0.5176 — f(0'5176)_f(1)f(0.5176)
—0.4824
= 05176 — G (—a17rg) * 0004

= 0.5176.

Therefore, the required root is & = 0.5176 (correct to four decimal places). [

Example 4.6. Use the method of false position and find the fourth root of 32
correct to three decimal places.

Solution. Let x = 32V/4 ie., 2* = 32 and f(z) = 2* — 32. Then, the fourth
root of 32 is the root of f(z). Now since f(2) = —16 < 0 and f(3) = 49 > 0,
therefore root lies between 2 and 3, and so, a = 2 and b = 3. By the formula,
the first approximation for the root « :
b—a 3—2

1
¢ = b—f(b)_f(a)f(b):?)—f(g)_f@)f(?)):?)—m><49:2.2461.

Then, f(2.2461) = —6.5483 < 0. Therefore, the root is between 2.2461 and 3
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and, now a = 2.2461 and b = 3. Then, the second approximation for « :

b—a 3 —2.2461 0.7539
= b— b) =3 — 3)=3— 49
¢ 0 =’ ® 73 = f2en)’ 49 — (—6.5483)
= 2.335.
Then, f(2.335) = —2.2732 < 0. Therefore, the root is between 2.335 and 3
and, now a = 2.335 and b = 3. Then, the third approximation for « :
b—a 3—2.335 0.665
= b— b) =3 — 3)=3— 49
¢ 70 = fa)’ W 73 = f2am) @ 19— (—2.2732)
= 2.3644.
Then, f(2.3644) = —0.7475 < 0. Therefore, the root is between 2.3644 and 3
and, now a = 2.3644 and b = 3. Then, the fourth approximation for « :
b—a 3 —2.3644 0.6356
= b— b) =3 — 3)=3— 49
¢ 0 = fla) W 73— Fsein’ 49 — (—0.7475)
= 2.3739.
Then, f(2.3739) = —0.2422 < 0. Therefore, the root is between 2.3739 and 3
and, now a = 2.3739 and b = 3. Then, the fifth approximation for « :
b—a 3 —2.3739 0.6261
= b— b) =3 — 3)=3— 49
¢ 70 = fia)’ 73 = f2am) ® 49 — (—0.2422)
= 2.378.
Then, f(2.378) = —0.0222 < 0. Therefore, the root is between 2.378 and 3
and, now a = 2.378 and b = 3. Then, the sixth approximation for « :
b—a 3 —2.378 0.622
= b— b) =3 — 3)=3— 49
‘ ORI 76— fesm) ® 49— (—0.0222)

= 2.3783.

Therefore, the required root is 3214 = o = 0.378 (correct to three decimal
places). O

4.1.5 Newton-Raphson method or Newton’s method

The NewtonaASRaphson method was named after English mathematicians Isaac
Newton and Joseph Raphson. In this method, we approximate the root of an
equation f(x) = 0 with a tangential approximation. In the Secant and Regula-Falsi
methods, the approximation is done with a chord joining the two initial guesses.
Here we start with an initial guess xy which is reasonably close to the true root,
then the function is approximated by its tangent line drawn at the point (zg, f(zo)).
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Y
Exact root
r =«

Ty

Newton-Raphson Method

Suppose, g is the initial guess (initial approximation) of the root « then we draw
a tangent at point (xg, f(xg)) to the curve. Then the slope of this tangent will be
f'(xg) and its equation will be:

y — f(xo) = f'(w0)(z — x0).

Suppose, this tangent intersect the X-axis at point P(z1,0), then we obtain from
the above equation: 0 — f(zg) = f'(z0)(z1 — x0), i.c.,

(o)
f'(@o)
The quantity x; is called the first approximation of the root o and obviously, it
is more close to o than the initial approximation xy. We again draw a tangent at
the newly obtained point (x1, F'(x1)), and repeat the same process to get second
approximation:

To = T1 — —f(xl) .

f'(a1)

For further approximations, we repeat this process until we have the root (up to
the desired accuracy).
Formula for Newton-Raphson method. First find the two values a and b such

that f(a) <0, f(b) > 0 by using the Intermediate value theorem and then initial
a+b

Iy =Ty —

approximation xy = (or, you can choose from a and b which one is closer to

the root). Then use the following formula for further approximation:

f(an)

Tl = Tp — 2 =1,2,... .

f(@n)’
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Note. Although Newton’s method converges faster towards the root of f(x)
than the previous method (Secant method), it demands the differentiability
of the function y = f(z). If f(x) is not available, then one can use the secant
method.

4

Example 4.7. Find the positive root of the equation x* —x = 10 correct to three

decimal places, using the Newton-Raphson method.

Solution. Let
f(z) = z* — 2 — 10.
Then we have to find the positive root of f(z). Since f(1) = —10 < Oand

f(2) =4 > 0, there is a positive root of f between 1 and 2. Obviously, the root
is more closer to 2 than 1. Therefore, let the initial approximation xy = 2. Now

fl(z) = 42® — 1.
Then, the first approximation:
f(x) 24 —2—10 4
= — -2—— =2-— — = 1871
L= T ) 4x 21 31
Now, the second approximation:
f(x) (1.871)* — 1.871 — 10 0.3835
= — = 1.871 — = 1.871 — ———— = 1.856.
T T ) 4x (L8717 — 1 25.199
Now, the third approximation:
f(x2) (1.856)% — 1.856 — 10 0.010
= — = 1.856 — = 1.871 — ——— = 1.856.
TS 4% (1.856)3 — 1 24.574

Therefore, v = 1.856 is the positive root of the given equation (correct to three
places of decimals). O

Example 4.8. By Newton-Raphson method, find the real root of the equation
3r = cosx + 1.

Solution. Let
f(z) =3z —cosx — 1.

Then we have to find the real root of f(x). Since f(0) = —2 < Oand f(1) =
1.4597 > 0, there is a root of f between 0 and 1. Therefore, let the initial
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0+1
approximation xgy = % = 0.5. Now

f'(x) =3+ sinz.

Then, the first approximation:

3 x 0.0 — 0.5) =1
r1 = Ty — f(ffo) =0.5— . (,EOS( )
I (o) 3 4 sin(0.5)
= 0.6085.

Now, the second approximation:

f(x1) 3 x 0.6085 — cos(0.6085) — 1
= — = 0.6085 —
2 LT () 3 + sin(0.6085)
= 0.6071.
Now, the third approximation:
Fla) 3 x 0.6071 — cos(0.6071) — 1
= — = 0.6071 —
T T ) 3 + sin(0.6071)
= 0.6071.

Therefore, o = 0.6071 is the positive root of the given equation (correct to four
places of decimals). O

4.1.6 Fixed point method

Definition 4.1 (Fixed point). A point, say, « is called a fixed point of a function
g(x) if it satisfies the equation g(a) = a.

Fixed point Method: In this method, the equation f(x) = 0 is first converted into
the form = g(x) and then we use the following iterative scheme called the Picard
1teration:

Ty =9g(Tp-1), n=1,2,...

with some initial guess x(. It is also called the fixed point iterative scheme. Again,
we first find the values a and b such that f(a) < 0 and f(b) > 0, and then the
initial guess xy can be obtained by a similar process as we have used in Newton’s
method.
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Important Note.

e The solution of f(x) = 0 is the fixed point of the function g(z), that is
why, this method is called the fixed point method.

e In the fixed point method, the convergence of the Picard iterative scheme
is a must, and for the convergence of this scheme, we have to ensure the
condition of convergence given by

lg'(z)| <1 forall z € la,b]

e We observe that the function g(z) is not unique and can be chosen in
infinitely many ways. We should choose such a “g” for which the condition
lg'(x)] <1 forall z € [a,b]is satisfied.

Example 4.9. Obtain the root of the equation 22 — 2z + 5 = 0 and correct up
to four decimal places using the fixed point method.

Solution. The given equation is f(x) = 23 — 22 + 5 = 0. First, we find a and
b. Then since f(—3) = —16 < 0 and f(—2) = 1 > 0, therefore a = —3 and
b = —2. We write this equation in the following form
z =2z — 5% = g(x).
2

3(2z — 5)%?
in the interval [—3, —2]. Therefore, the formula for the Picard iteration will be:

Then, ¢g'(x) =

. Now, it is easy to see that ¢'(x) < 1 for all z lying

= g(1) = (2,1 — 5)"/7.

Let the initial guess be x¢g = —2, then by the above formula the first approxi-
mation:

= (220 — 5)* = (2 x (=2) — 5)/* = —2.0800.

Then, the second approx1mat10n:
= (221 — 5)% = (2 x (=2.0800) — 5)'/* = —2.0923.
Then, the third approximation:

= (225 — 5)"3 = (2 x (=2.0923) — 5)'/3 = —2.0942.
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Then, the fourth approximation:

24 = (223 — 5)'3 = (2 x (=2.0042) — 5)/* = —2.0944.
Then, the fifth approximation:

x5 = (224 — 5)3 = (2 x (=2.0044) — 5)'/* = —2.0945.
Then, the sixth approximation:

26 = (225 — 5)'/3 = (2 x (=2.0945) — 5)'/* = —2.0945.

Therefore, the root of the given equation o = —2.0945 (correct up to four
decimal places). O

4.2 Exercise

(Q.1) Find the roots of the following equations, using the Bisection method, Secant
method and False position method, correct to three decimal places:

(1) 23 — 22 —5 (2)a—2>—1=0
(3) cosx = ze” (4) xlogg(x) = 1.2
(5) 2° — 2 — 11 which lies between 2 and 3.

Ans. (1) 2.687 (2) 1.46 (3) 0.519 (4) 2.875 (5) 2.375

(Q.2) Using the Newton-Raphson method find a root of the following equations
correct to three decimal places:

() a*+x—-1=0 (2) we® =2
(3) 23 =3z +1=0 (4) zlog(x) = 1.2

Ans. (1) 0.686 (2) 0.853 (3) 1.532 (4) 2.741
(Q.3) Find the square root of 12 by Newton’s method. Ans. 3.4641

(Q.4) Obtain the root of the equation 23 — 3x — 5 = 0 correct up to four decimal
places using the fixed point method.
Hint: Here f(2) = -3 < 0 and f(3) = 13 > 0, so, a = 2,b = 3. Write the
given equation into the following form

r = (3z + 5)1/3 = g(x).

Now you can see that |g'(

T)| = ‘W < 1 for all z € [2,3]. Now apply

the Picard iteration scheme and find the solution of the given equation.
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Differential equations: formation of differential equations, solution of differential equation of

first order and first degree: separation of variable, homogeneous equations, reducible to
homogeneous equations, linear equations, reducible to linear equations.

5.1 Differential equations

An equation involving one dependent variable and its derivatives with respect to
one or more independent variables is called a differential equation. For example,
the following equations are examples of differential equations:

(a) e"dz + eVdy = 0;

0%z 0%z

(d)@‘i—a—yQ:O

5.1.1 Ordinary differential equations

A differential equation containing the differential coefficients with respect to a single
independent variable is called an ordinary differential equation. For example, (i),
(ii) and (iii) are ordinary differential equations but not (iv). In this course, we deal
with ordinary differential equations only.

5.1.2 Order and degree of differential equations

The order of the highest derivative appearing in a differential equation is called
the order of the differential equations. The order of the differential equations (i),
(ii) and (iii) are 1,1 and 2 respectively. The degree of a differential equation is
the degree of the highest derivative appearing in it after the equation has been
expressed in a form free from the radicals and fractions as far as the derivatives
dy x
— +

de  dy/dx

are concerned. For example, the degree of differential equation y = x

2 3/2
is 2, while the degree of the differential equation [d—‘z + 2] =5 d_y +y is 3.
x x

102
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5.2 Formation of differential equations

Consider a particle falling freely under gravity. Suppose it starts falling from rest
and moves towards the ground. We want to calculate the distance travelled at any
time during its fall. The laws of motion suggest that if the initial velocity of the
particle is v and the velocity after time ¢ is v, then the relation between u, v and ¢
is given by:

v=u-+gt

where g is the gravitational acceleration. In the case of free fall from the rest u = 0,

ds
hence we have v = ¢gt, and since v = o where s represents the distance traveled

by particle in time ¢, hence:
ds

= =gt
at I

The above equation is a differential equation, and its solution gives the distance
travelled by the particle at any time ¢ during the motion.

The above discussion illustrates how differential equations are formed in real-
life problems. In theoretical mathematics, a differential equation is formed when
we eliminate the parameter of a family of curves with the help of derivatives and
obtain a relation between the variables and derivatives.

Example 5.1. Form the differential equation of the family of straight lines y =
max, where m is the parameter of the family. What are the order and degree of
the differential equation?

Solution. The given equation of the family of straight lines is:

Yy = muz. (5.1)

d
Differentiating (5.1) with respect to x we get d—y = m. On putting this value
x

in (5.1) we get y = Z—::zgcx’ ie.

dy _y

de  z’
This is the required differential equation of the family of straight lines. The
order and degree of the differential equation both are 1. ]

Example 5.2. Form the differential equation of the family of cosine curves y =
Acos(x + ), where A and « denote the parameters of the family. What are
the order and degree of the differential equation?
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Solution. The given equation of the family of curves is:
y = Acos(z + a). (5.2)

Differentiating (5.2) with respect to x we get:

d

% = —Asin(z + «).
Again differentiating the above we get:

d2

d—;é = —Acos(z + a).

On putting the value of A cos(z + «) from the above equation in (5.2) we get:

d*y

— = 0.

dx? Ty
This is the required differential equation of the family of cosine curves. The
order of the differential equation is 2 and the degree is 1. ]

Example 5.3. Form the differential equation of the family of curves y = ce®,
where ¢ and a denote the parameters of the family. What are the order and
degree of the differential equation?

Solution. The given equation of the family of curves is:
y = ce. (5.3)

Differentiating (5.3) with respect to x we get:

dy ax

— = cae™.

dx
On putting the value of ce® from the above equation in (5.2) we get:

dy

— —ay = 0.

dx Y
This is the required differential equation of the family of cosine curves. The
order and degree of the differential equation both are 1. ]

5.3 Exercise

(Q.1) Form the differential equation of the simple harmonic motion for the family
of cosine waves x = acos(nt + ). What is the degree and order of this
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differential equation?

d2
Ans: d_tg; + n?z = 0. Order is 2 and degree is 1.

(Q.2) Obtain the differential equation of all circles of radius a and the centre (h, k).
What is the degree and order of this differential equation?

3/2

dx

cy

dx?
(Q.3) Obtain the differential equation of the coaxial circles of the system x4+ 2 +

2ax + ¢ = 0, where c is a constant and a is the family parameter. What is
the degree and order of this differential equation?

d
Ans: 2xy % = >

Ans: = a. Order and degree both are equal to 2.

— 22 4 ¢%. Order and degree both are equal to 1.

(Q.4) Form the differential equation of the family of curves given by: y = ¢; cos 2x+
co sin 2z. What is the degree and order of this differential equation?
d2
Ans: d_y2 + 4y = 0. Order is 2 and degree is 1.
x
(Q.5) Form the differential equation of the family of curves given by the equation:
y = e" (Acosz + Bsinz). What is the degree and order of this differential

equation?
d? d

Ans: Y 0% + 2y = 0. Order is 2 and degree is 1.
dx? dx

5.4 First order linear differential equations

A differential equation of first order and first degree is called a first-order linear
differential equation. A first-order linear differential equation is of the following

form: .
Y
4 = 0. 5.4
(4w (5.4)
If (5.4) can be written in the following form:
dy

Then, we use the following techniques to solve such equations:

(i) Variable separable form:
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(a) In this form 1 can be factorised in the form ¥ (z,y) = ¢(x)v(y). Now,
the equation can be solved by separating variables.

(b) If ¢ cannot be factorised, but is in the form ¢ (z,y) = f(ax + by + ¢),
then such equations can be solved by substituting v = ax + by + c.

(ii) Homogeneous differential equation:

f(z,y)

9(z,y)
neous functions in x and y of same degree. Such equations can be solved

by the substitution y = vzx.

(a) If 7p cannot be factorised, but ¢ (x,y) =

, where f and g homoge-

(b) Differential equation reducible into homogeneous form: It is the following

form:
@_alirblercl ﬂ bl

dr ~ asr +byy+cy as by

Such equations can be reduced into variable separable form by substituting
xr =X+ h,y =Y + k, where h, k are the constants. While, in case of
o= such equations can be solved by the substitution ax + by = v.

(iii) Leibnitz’s linear differential equations:

(a) If the differential equation is not in the previous forms, but can be ex-

d
pressed in the form # + Po(y) = Q, where P and @ are the functions
x

of x only. Then, such a form is called the linear differential equation in
é(y). Its solution is given by

dy) x .LF.=C + f (Q x I.F.)dz

where the integrating factor I.F. = el Pdr.

(b) Sometimes the equation cannot be reduced in the equation linear in ¢(y),
do(z)

dy
P¢(x) = @Q, where P and @ are the functions of y only. Then, such an
equation is solved with the same process, as used, in the previous case,
only, the roles of x and y are changed.

but linear in ¢(z), i.e., the equation is reduced in the form

(¢) Bernoulli’s differential equations. It is the equation of the following form:

dy n
o T Py="=0y
x
where P and @ are the functions of only x and n # 1 (because for n = 1
equation reduces into the variable separable form). Such equations can

be solved by dividing the equation by 3", then substituting y!™" =
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5.5 Examples on variable separable form

d
Example 5.4. Solve: (i) 3e®tany dz + (1 — e¥)sec’y dy = 0; (ii) o

dx
1+2+y+xy.
Solution. (i) The given equation can be written as:

3e? sec?y

1 —e* tany

It is a variable separable form, therefore, integrating the above equation we get:

T 2

Sfe dx:—JseCydy
1—e” tany
T 2

:3[ ‘ da?:—fsecydy
et — 1 tany

Process of integration yields:

3ln(e*—1) = In(tany) +InC
— (e" —1)* = Ctany.

(i) From the given equation we have:

d d
Y ltrtytay = L =(+a)+tyl+a)
dx dx
dy dy dx
— — = (1 1 = = :
dx (1+o)(1+y) 1+ 14y -

Example 5.5. Solve: (i) sec? z tan ydz + sec’? ytanzdy = 0; (i) (1 + y?)dz —
xydy = 0.

Solution. (i) The given differential equation can be written as:

sec? sec y

dr = —
tanx tany

dy.
It is a variable separable form, hence integrating we get

2 2
sec” x sec
f de — —f Yy
tanx tany

— In(tanz) = —In(tany)+C
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(ii) The given differential equation can be written as:

1
—dx = J
x 1+ 9?2

dy.
It is a variable separable form, hence integrating we get

1 Yy
“dx = d
fxx Jlﬂﬁy

— In(z) = %ln (1+ %) +In(C)

— = C\V1+ 42 O

d d
Example 5.6. Solve: (i) % = (4z+y+1)% (ii) ﬁ = cos(xz +y) +sin(z + y).

d
Solution. (i) The given differential equation is: d—y = (4r + y + 1), which is
T

d
of the form d—y = f(ax + by + ¢). Therefore, putting 4x + y + 1 = v we have
x
@ _dv . dy dv

44— = — ie, — = — —4. Putting these values in the given equation, we
dr  dx der dz
get
dv dv
— =440 = =d
dx v v?2+4 v
Integrating, we get
1 4 1
§tan_1 (%) —2+C — tan ' (%) =2(x + C).

d
(ii) given differential equation is: d—y = cos(x + y) + sin(z + y), which is of the
T

d d d
form d—y = f(az + by + ¢). Therefore, putting x +y = v we have d—y = d_v — 1.
x x x
Putting these values in the given equation, we get
d d
—y:1+cosv+sinv — Y - = dx.
dx 1+ cosv + sinwv
Integrating, we get [ Hmd% = [ dx + C. Since
1 — tan® (%) 2tan (§)  _1+tan(})

1+ cosv+sinv =1+

1 + tan? (%) + 1 + tan? (%) 7 sec? (%)
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we obtain

Y ECC T

1+ tan (%)
— ln[l—i—tan( )} = x+C
— ln[1+tan(3:2ﬂ)] = z+C [

5.6 Examples on Homogeneous differential equation

Example 5.7. Solve: (i) zdy — ydz = /22 + 42 dz; (i) z(z —y)dy +y?dz = 0.

Solution. (i) The given equation can be written as

@_y—kx/ﬁ—ky?
" .

dx

This is homogeneous differential equation, therefore putting y = va and &

dx

dv
v + x —, we obtain:

dx’
dv v + Va2 + v2a?
V+T— =
dx x
N dr dv
x V1+o?
This is a variable separable form, therefore integrating we get
d d
= - G
x V1+ 02
— In(z) = In (U +v1+ ’U2> + In(c)
— r = c (v +v1+ v2>

— ? = c<y+\/x2—|—y2).

(ii) The given equation can be written as

dy ___ v

dr  z(r —vy)
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It is homogeneous differential equation, therefore putting y = vz and Y

dx
dv _
v + x —, we obtain:
dx
n dv v2a?
vt+r— = ————
dx z(x — vx)
dv v? de  v—1
- r— = — —v = — = dv.
dx (1 —v) x v
It is a variable separable form, therefore integrating we get
In(z) = v—1In(v) + In(c)
— ver = ce’
— y = cev/”. [

Example 5.8. Solve: (i) y?dz + (zy + x2)dy = 0; (ii) (22 — y?)dz + 2zydy = 0.

Solution. (i) The given equation can be written as:

dy
der  zy+ 2?2
o . . . . dy
This is homogeneous differential equation, therefore putting y = vx and e
x
v btain:
v+:1:%, we obtain: . dv v2p2 02
v+ —=——75——5=—
dx va? 4 x? v+1
dv v+ 202 1+wv dx
— p— = — _ ———dv = ——.
dx 1+ v(1 + 2v) x
This is a variable separable form, therefore integrating we get
14+wv
——dv = —1 1
f o1 1 20) v n(z) + In(c)
1 1
= — — dv = —1
f [v I 1] v n(cr)
1
— In(v) — 3 In(1+2v) = —In(cz)
cta?v?
— = 1.

20+ 1
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Ayl
20+
(ii) The given equation can be written as:

Putting v = y/x we get:

dy  y*—a’

de 21y
dy

It is homogeneous differential equation, therefore putting y = vx and el
x

dv _
v + x —, we obtain:

dx

dv 1+ v?
—_— rT— = —

—

It is a variable separable form, therefore integrating we get

In(z) 4 In(c)

Cx

C£U3.

In(z) + In(c)

CT

cx’. ]

In(1 4+ v?)

1402

2 2
x4+

+U%)

1+ 2

22 +y2

A

Example 5.9. Solve: (2z +y + 3)dz = 2y + = + 1)dy.

Solution. (i) The given equation can be written as

dy 2x+y+3
dr  x+2y+1

d b 1
It is the equation of the form & _ Tyt a Here — = — # — = —
dr  asx + by + o 17 by 2

therefore, putting + = X + h,y = Y 4+ k we have dr = dX dy = dY. The
equation (5.5) reduces into the following form:

dY 2(X+h)+ (Y +k)+3

dX (X +h)+2(Y +k)+1
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This shows that
dY 2X+Y + (2h+k+3)

— ) 5.6
dX X+2Y+(h+2k+1) (5.6)
Choosing h and k such that
2h+k+3 = 0
h+2k+1 = 0.
On solving we get h = —5/3 and k = 1/3. Now (5.6) becomes
dY B 2X +Y
dX X +2Y°
This equation is homogeneous in X and Y, therefore, putting Y = VX, we get
d_Y — V + d_V d h
i X and so, we have
V+ﬂ B 2X+VX_ 24V
dX  X+4+2VX 142V
. dV B 1 n 2V
axX — |1-V2 1-V2

On integrating we obtain:

1, (1+V o
L+V o 22y
— = CCU-VX

— 1 = C*X'1-V)3a+V).
Putting V =Y/X, X =x—h=2+5/3 and Y = y — 1/3 the solution will be:

4 32
<x+y+§>(3€—y+2)0:1. 0

Example 5.10. Solve: (2z 4+ y + 1)dz + (4= + 2y — 1)dy = 0.

Solution. (i) The given equation can be written as

dy — 2rx+y+1
dv 4o +2y—1

d b
It is the equation of the form & _at oyt Cl. Here — = - = — =
dx a2T + be + Co a9 4 bg
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therefore, the above equation is written as:

d 2 1
W_ __Tryt. (5.7)
dx 22 +y) — 1
. dy dv . .
Putting 2z + y = v we have 2 + Tr  dp The equation (5.7) reduces into the
x x
following form:
dv 5 _ v+1 . dv  3(v—1)
dx o w-—1 dr  2v—1"
This gives:
2v—1
Y dv = 3dx.
v—1
On integrating we obtain:
2v —1 20 —1)+1 1
3x+c:f Y dU:J =1+ dv:J 2+ dv
v—1 v—1 v—1
= 2v+1In(v—1).
Putting v = 2z + y the solution will be:
r+2y+In2r+y—1) =c. [
Example 5.11. Solve: (1 -+ e“’”/y) dz + /Y (1 — f) dy = 0.
()
Solution. The given equation can be written as:
(1 + ex/y) d_a: — Y <1 _ f) .
dy Y
_ dx v . :
Putting x = vy and — = v 4+ y — in the given equation we have
dy dy
d d
(1+e“)(v+yd—Z) =—c"(l1-v) = v+e”+(1+e“)yd—z =0
d
— (1+ e”)yd—; = —(v+e")
1+e" d
= te dv = ——y.

v+e y
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It is the variable separable form, therefore, on integrating we obtain:
In(v + €”) + In(y) In(C)

— In[(v+e€")y] = In(C)
— (v+e")y = C.

Putting v = x/y the solution will be:

z + yelV = C.

5.7 Exercise

_ dy 5, dy
(Q.1) Solve: y T =a (y + dx) .

Ans. Variable separable, y = C(1 — ay)(z + a).

dy - 2 —
(Q.2) Solve: == =¢€"7Y 4 ze™7.
dz ;

Ans. Variable separable, eV = e* 4 % +C.

(Q.3) Solve: (e¥ +1)cosx dx + e¥sinx dy = 0.
Ans. Variable separable, sinz(e? + 1) = C.

(Q.4) Solve: Z—i =cos(z+y+1).

Hint. Put x +y+ 1 =wv. Ans. tan (Lyﬂ) =1x+c.

2
(Q.5) Solve: (z + 2y)(dx — dy) = dx + dy.

2y — 1

Hint. Write it &y _rry— -

dve z+4+2y+1

Ans. %[:1;+2y—|—%1n(3x—|—6y—1)] =xz+C.

and put z + 2y = v

(Q.6) Solve: Z—y =Y 4 sin (Q)

r x x
Hint. Put % = . Ans. cosec (%) + cot (%) = cx.

dy y—x+1

7) Solve: & = 24—,

(Q7) Solve dvr  y+x—5

Hint. Solve as Example 5.10.
Ans. tan™! (g_—:;) + 3In {1 - (%)2} = —In(z — 3) + In(C).

y dy 2?2 +y? —1
.8) Solve: = —= =
(Q8) Solve xdaz+2($2+y2)+1




115

d 1 d
Hint. Put 2% 4 4 = v, and 220 - = 20 _ 4
rdr 2z dx

5.8 Examples on linear differential equations

Theorem 8. If P and () are two integrable functions of x, then prove that the

d
solution of differential equation d—y + Py = (@ is given by
x

y-efpdx:C’—FJQedexdx.
where C' is an arbitrary constant.

Proof. The given differential equation is:

On multiplying (5.8) by ef Fé

we get:
6dech_y + Pedezy _ prsz.
€T

The above equation can be written as

di (y : efpdx) = e Py,
x
Integration of the above equation gives:
y-efpdx:C’—Ferfpdxdx. O
. dy . . dy T+ ycosw
Example 5.12. Solve: % _ dy _ _ztycosz
xample olve: (i) secx o =Y +sinz (i) < —

Solution. (i) The given equation can be written as

dy ( ) .
— — (cosx)y = sinx cos x.
dx Y
It is a linear differential equation in y. Here P = —cosx, () = sinxcosz.

Therefore,
IF. — ede:v _ 6f—cos:r dv _ e~ sinT
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Therefore, the solution of the given equation will be:

yx LF. = C—|—J(‘Q><I.F. dx
— ye M = (O 4 (‘Sinxcosx X e ST dy
— ye N = (O 4 Jr txetdr (putting sinz = t)
— ye_s?” = C —te ! — e._t |
— ye M = (O —sinxe MY — e Y,

(ii) The given equation can be written as:

dy cos T x
—t Yy =
dr  1+sinx 1 +sinz
COS
It is a linear differential equation in y. Here P = —,x, = —L,.
14 sinz 14 sinz

Therefore,

IF. = edem _ ef Trons dr _ eln(l—i—smm) — 1 +sinz.

Therefore, the solution of the given equation will be:

yxLF. = C+JQ><I.F.dx

x
—> y(1 +s1 = (C— | ——— x (1 +si d
y(1 +sinx) C Jl o X (1 +sinz) dx

CL‘2

— y(1+sinz) = C—?. 0

d
Example 5.13. Solve: d—y + 2y tanx = sinx, given that vy (g) = 0.
x

Solution. The given equation is a linear differential equation in y. Here P =
2tanx, () = sinx. Therefore,

IF. — edex _ €f2tan:r: dr _ ten(secx) — sec 1.

Therefore, the solution will be y x LF. = C' + [ @ x LF. dz, i.e.

— ysec’r = C+fsin:1:><8602:r: dx

— ysec’z = C +secz.
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Applying the condition y (g) =0, i.e., putting x = g and y = 0 in the above

equation we get:
0=2+4+C = C=-2.

Therefore, the solution will be: ysec?z = —2 + sec z. ]

d
Example 5.14. Solve: (i) 1/1 — y2dx = (sin™'y — x)dy. (ii) (y — ) % = a’.

Solution. (i) One can see that the given equation cannot be written in a form
so that it is linear in y. But the equation can be written as

dx 1 sin"ly
= —L
dy 1 —y? V1—19?

1 sin"ly
V1—19? V1—y?

1 o
IF. = el Pdy — ef \/1—y2dy — sin 1y.

It is linear in x. Here P = Therefore

and Q) =

Hence, the solution of the given equation will be:

rxI1F. = C+ erI.F.dy
J

o1

- [ sin” "y
— g™ Y = O+ | —=
J /1 —1?
— eV = O+ r‘Ifet dt (t =sin"'y)
J
1

— et Y = (O 4t — ¢
3 _1 . —
— r = Ce ™ 4ginly—1.

sinty dy

(ii) One can see that the given equation cannot be written in a form so that it
is linear in y. But the equation can be written as

d:c+ 1 Yy
—+ ==
dy a? a?

1
It is linear in . Here P = — and () = % Therefore
a a

IF. = el Py — of 2ty — pu/a®
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Therefore, the solution will be:  x LF. = C' + [ Q x LF. dy, i.e.

— ze¥/” = C’+J%€y/a2 dy
a

1 ey/a? ev/a
— y/a2 = C —_— — ]_ .
e i a2 |? 1/a? J 1/a?
ey/a?
sy (O y/a® _
xe + ye a
— r = C’e_y/“2+y—a2. O

d d
Example 5.15. Solve: (i) d_y +y = 2%y5. (ii) d—y + sin(2y) = 2° cos? y.
T T

Solution. (i) Dividing by zy% the given equation we get

d 1
y @ | Sy =gt
dr =x
It is the Bernoulli’s differential equations, therefore, putting vy = wv, i.e.,
e dy 1dv . ,
y ° —— = ——= — in the above equation, we get:
dx 5 dx
dv 5 5
— — —v = —oz".
dr =x
It is linear in v. Here, P = —% and Q = —5x? therefore,
(5 1
LF. =l Pdv — g~ Jade — —_
I

Therefore, the solution will be:
vxLF. = C’—|—JQ><I.F. dx

1 1
= U X :C+f—5x2><—dx

] x>
v 5

— <= = C+ —.
° +2332

Putting v = y 2, the solution of given equation will be:

1 5
—=0C+ —.
25y T 972
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(ii) Dividing by cos? y the given equation we get

d
sec’y &y + 2z tany = 2.
dx

d d
Putting tany = v, i.e., sec? d—y = d—v, the above equation is reduced into the
x x
following form:
d
i + 220 = a°
dx

The above equation is linear in v. Here P = 2z, () = z3. Therefore, ILF. =
edex — €f2zd1’ — 6$2.

The solution will be: v X LF. = C + J Q x LF. dz, ie.

2

ve* = (C+ f 3% dx

2 dt
— ve' = C’—l—ftet— (t = 2?)

2
z? L t
— ve’ = C+ 5(6 —e)
1
— (tany)e”c2 = C+ 5(3526952 — exz). 0
d dy t
Example 5.16. Solve: (i) %( 2y +xy) = 1. (ii) % — fji = (1+x)e” -secy.

Solution. (i) The given differential equation cannot be arranged in the form of
linear or Bernoulli’s differential equations in which y is the dependent variable.
But, it can be written as:

dx 9 3

— —xy = x7Y°.

dy Y Y

The above equation is of Bernoulli type with x as the dependent variable. There-
fore, by dividing by =2 we get

dx
-2 ~1 3
xrt——x y=1y".
dy y=y
N . . Ly dx dv : :
Substituting 7" = v, i.e., x T the above equation reduced into the
) )
following form:
dv 3
— t+yv = —y".

dy
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This equation is linear in v. Here P =y, Q = —y°, therefore LF. = ¢/ P% =
el vl = ¢v’/2 and the solution will be: v x LF. = C + [Q xLF. dy

— eV’ ? = O+ f el dy
— ve!? = C+ f —2te! dt (t =9°/2)
— ve!’/? = O+ —2[te" — €]

2

— eV 2 = 0 -2 [%eyQ/Q — ey2/2]

Hence, the solution is: 1 = Ce ¥ /2 4 (2 —9?).
(ii) Dividing by secy the given equation:

d 1
cosx% 172 siny = e"(1 4 z).
. : : dy dv :
Substitute siny = v, i.e., cosy—— = —, the above equation becomes
dr  dx
dv 1 -
— — =e“(1 :
priak L (1+x)
1
This equation is linear in v. Here P = e Q =e*(1+x) and
x
1
J R
LF. =l Pdv = ¢ L
14+

and the solution will be:

vxLF. = C—i—foI.F.d:c

1
— v = C’—I—Jex(l—i—x) dx
I+ I+
1
— v = (C+e".
l1+x
Hence, the solution is: siny = C(1 + x)(1 4+ z)e”. O

5.9 Exercise

(Q.1) Solve: cosz dy = (sinx — y)dzx.

Hint: Linear in y. Ans. y(secz + tanx) =secx + tanx — x + C.
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dy 2
2 lve: x1 — =—1 :
(Q.2) Solve: zIn(x) o +y " n(x)

Hint: Linear in y.  Ans. yln(z) = C — 2(1 + In(z)).

d
(Q.3) Solve: coshx d_y + ysinh z = 2 cosh? z sinh .
T

Hint: Linear in y. Ans. ycoshx = C + %COShg x.

d
(Q.4) Solve: d—y + y_ 22, given y = 1, when z = 1.
r

Hint: Linear in y. Ans. xy = % + %564.

d
Q.5) Solve: (1 + 22 il + 22y — 42° = 0, subject to y(0) = 0.
d
x

Hint: Linear in y. Ans. y(1 + 2?) = %.

d
(Q.6) Solve: x % +y = y* In(x).

Hint: Bernoulli’s differential equations, arrange it in the standard form, then
put y ' =wv. Ans. y(1+1In(z) + Cz) = 1.

dx

Hint: Put ¢ =v. Ans. e =(C + %62‘”.

(Q.7) Solve: e¥ (@ + 1) = e”.

dy 2*+y*+1
. lve: — = ———,
(Q.8) Solve < 20y

. . . dy vy 1 )
Hint: Rewrite the equation: 2yd ~— = x + —, then put y* = v.
x

de  x
Ans. y?> = Cx + 2% — 1.

(Q.9) Solve: y(2zy + e*)dx = e*dy.

d
Hint: Rewrite the equation: y_z—y -y

dx
Ans. e = Cy + 2%

~1 =22 then put y~! = v.
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