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Unit-I
Differential Calculus: Rolle’s theorem, mean value theorem, expansion of functions of one
variable, Taylors series Maclaurin series.

The history of the mean value theorem and its variants are studied by several
mathematicians. Vatasseri Parameshvara Nambudiri (1380-1460) was a Hindu from
the Bhrgugotra, adhering to the Ashvalayanasutra of the Rigveda. His family,
known by the surname Vatasseri, lived in the village of Alathiyur (referred to as
Asvatthagrama in Sanskrit) in Tirur, Kerala. Alathiyur is located on the northern
bank of the river Nila (Bharathappuzha) at its mouth in Kerala. He was the
grandson of a disciple of Govinda Bhattathiri (1237-1295 CE), a renowned figure
in Kerala’s astrological traditions.
Parameshvara wrote commentaries on many mathematical and astronomical works,
including those by Bhaskara I and Aryabhata. Over 55 years, he made a series of
eclipse observations, constantly comparing these with the theoretically computed
positions of the planets. He revised planetary parameters based on his observations.
One of Parameshvara’s most significant contributions was his mean value type
formula for the inverse interpolation of the sine (see, [1], [2]). In 1691, Michel Rolle
proved a particular case of the generalized mean value theorem. In the modern
form, the mean value theorem was proved by Augustin-Louis Cauchy in 1823.
A more formal statement of this theorem was known as Lagrange’s mean value
theorem, named after Joseph-Louis Lagrange.

1.1 Rolle’s theorem

Theorem 1. Let f be a function which is continuous everywhere on the interval
[a, b] and has a derivative at each point of the open interval (a, b). Also, assume
that f(a) = f(b). Then there is at least one point c in the interval (a, b) such
that f ′(c) = 0.

Proof. We prove the Rolle’s theorem geometrically.
Since f(a) = f(b) and function f is continuous in [a, b] we have the following
three cases:

5
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Case (a): Suppose that the function increases after point x = a. Since
f(a) = f(b) and function f is continuous, there must exist a point c such
that a < c < b and f has its maximum value at c. Therefore, we have
f ′(c) = 0.

Case (b): Suppose that the function decreases after point x = a. Since
f(a) = f(b) and function f is continuous, there must exist a point c such
that a < c < b and f has its minimum value at c. Therefore, we have
f ′(c) = 0.

Case (c): Suppose that the function increases after point x = a and then
attains its maximum values and then decreases and attains its minimum
value, i.e., function oscillates. Since f(a) = f(b) and function f is continu-
ous, it finally returns to its initial value. Thus, we have more than one point
c1, c2, . . . such that a < c1 < c2 < · · · < b and f has its maximum and
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minimum values at c1, c2, . . . . Therefore, we have f ′(c1) = f ′(c2) = · · · = 0.

Thus, in each case, we obtain the desired point c.

Example 1.1. Verify the Rolle’s theorem for f(x) = |x| in [−1, 1].

Solution. Here a = −1, b = 1. Given function f(x) is continuous in [−1, 1]
and f(a) = f(1) = |1| = 1, f(b) = f(−1) = | − 1| = 1, but we know that
the function f(x) = |x| is not differentiable at point x = 0, and 0 ∈ [−1, 1],
therefore the Rolle’s theorem cannot be verified.

Example 1.2. Verify the Rolle’s theorem for f(x) = ex sin x in [0, π].

Solution. Here a = 0, b = π. Given function f(x) is continuous in [0, π] and
f(a) = f(0) = e0 sin 0 = 0, f(b) = f(π) = eπ sin π = 0, so f(a) = f(b).
Also, the function f(x) = ex sin x is differentiable at every point of the interval
(0, π). Therefore, all the conditions of Rolle’s theorem are satisfied and by
Rolle’s theorem, there exists 0 < c < π such that f ′(c) = 0. Then

f ′(x) =
d

dx
(ex sin x) = ex sin x+ ex cos x.

Therefore,

f ′(c) = 0 =⇒ ec sin c+ ec cos c = 0 =⇒ ec[sin c+ cos c] = 0

=⇒ sin c+ cos c = 0 =⇒ (sin c+ cos c)2 = 0

=⇒ sin 2c = −1 =⇒ 2c =
3π

2

=⇒ c =
3π

4
.

Since c =
3π

4
∈ (0, π) the Rolle’s theorem is verified.

Example 1.3. Verify the Rolle’s theorem for f(x) = sin 3x in
󰁫
0,

π

3

󰁬
.

Solution. Here a = 0, b =
π

3
. Given function f(x) is continuous in

󰁫
0,

π

3

󰁬
and

f(a) = f(0) = sin 0 = 0, f(b) = f
󰀓π
3

󰀔
= sin

󰀕
3π

3

󰀖
= 0, so f(a) = f(b).
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Also, the function f(x) = sin 3x is differentiable at every point of the interval󰀓
0,

π

3

󰀔
. Therefore, all the conditions of Rolle’s theorem are satisfied and by

Rolle’s theorem, there exists c ∈
󰀓
0,

π

3

󰀔
such that f ′(c) = 0. Then

f ′(x) =
d

dx
(sin 3x) = 3 cos 3x.

Therefore,

f ′(c) = 0 =⇒ 3 cos 3c = 0 =⇒ cos 3c = 0

=⇒ 3c =
π

2

=⇒ c =
π

6
.

Since c =
π

6
∈
󰀓
0,

π

3

󰀔
the Rolle’s theorem is verified.

Example 1.4. Verify the Rolle’s theorem for f(x) = cos 2x in
󰁫
−π

4
,
π

4

󰁬
.

Solution. Here a = −π

4
, b =

π

4
. Given function f(x) is continuous in

󰁫
−π

4
,
π

4

󰁬

and f(a) = f
󰀓
−π

4

󰀔
= cos

󰀕
−2π

4

󰀖
= 0, f(b) = f

󰀓π
4

󰀔
= cos

󰀕
2π

4

󰀖
= 0, so

f(a) = f(b). Also, the function f(x) = cos 2x is differentiable at every point
of the interval

󰀓
−π

4
,
π

4

󰀔
. Therefore, all the conditions of Rolle’s theorem are

satisfied and by Rolle’s theorem, there exists c ∈
󰀓
−π

4
,
π

4

󰀔
such that f ′(c) = 0.

Then
f ′(x) =

d

dx
(cos 3x) = −2 sin 2x.

Therefore,

f ′(c) = 0 =⇒ −2 sin 2c = 0 =⇒ sin 2c = 0

=⇒ 2c = 0

=⇒ c = 0.

Since c = 0 ∈
󰀓
−π

4
,
π

4

󰀔
the Rolle’s theorem is verified.

Example 1.5. Verify the Rolle’s theorem for f(x) = 2 + (x− 1)2/3 in [0, 2] .
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Solution. Here a = 0, b = 2. Given function f(x) is continuous in [0, 2] and
f(a) = f (0) = 2 + (0 − 1)2/3 = 3, f(b) = f (2) = 2 + (2 − 1)2/3 = 3, so
f(a) = f(b). Note that f is not differentiable in the interval (0, 2). Indeed:

f ′(x) =
d

dx

󰀓
2 + (x− 1)2/3

󰀔
=

2

3
(x− 1)−1/3.

Therefore, f ′(1) does not exist and since 1 ∈ (0, 2), therefore all the conditions
of Rolle’s theorem are not satisfied, and so, it cannot be verified.

Example 1.6. Verify the Rolle’s theorem for f(x) = x3 − 4x.

Solution. Here the interval where the theorem is to be verified is not given. To
find the interval put f(x) = 0, i.e.,

x3 − 4x =⇒ x(x2 − 4) = 0 =⇒ x = 0,±2.

So we obtain the intervals [−2, 0], [0, 2] and [−2, 2]. Given function f(x) is
a polynomial in x, so, continuous and differentiable everywhere and f(−2) =
f(0) = f(2) = 0. Therefore, all the conditions of Rolle’s theorem are satisfied
and by Rolle’s theorem, there exists c ∈ (0, 2) such that f ′(c) = 0. Then

f ′(x) =
d

dx

󰀃
x3 − 4x

󰀄
= 3x2 − 4.

Therefore,

f ′(c) = 0 =⇒ 3c2 − 4 = 0 =⇒ c = ± 2√
3
.

Since c = − 2√
3
∈ (−2, 0) and c =

2√
3
∈ (0, 2) the Rolle’s theorem is verified.

1.2 Mean value theorem or Lagrange’s mean value theorem

Theorem 2. Let f be a function which is continuous everywhere on the interval
[a, b] and has a derivative at each point of the open interval (a, b). Then there

is at least one point c in the interval (a, b) such that f ′(c) =
f(b)− f(a)

b− a
.

Proof. We prove this theorem with the help of Rolle’s theorem.



10 • Mean value theorem or Lagrange’s mean value theorem Dr. Satish Shukla

Define a function F (x) by

F (x) = f(x) + αx (1.1)

where α is an arbitrary constant. Then, we shall show that F satisfies all the
conditions of Rolle’s theorem. Then:

(I) Since f is continuous in [a, b] and αx is a polynomial, it is continuous
everywhere, and so, their sum F (x) = f(x) + αx is also continuous in
[a, b].

(II) Since f is differentiable in (a, b) and αx is a polynomial, it is differentiable
everywhere, and so, their sum F (x) = f(x) + αx is also differentiable in
(a, b).

(III) Finally, since α was an arbitrary constant, choose α such that:

F (a) = F (b) =⇒ f(a) + αa = f(b) + αb

=⇒ α = −f(b)− f(a)

b− a)
.

Thus, F satisfies all the conditions of Rolle’s theorem. Therefore, by Rolle’s
theorem there exists c ∈ (a, b) such that

F ′(c) = 0 =⇒ f ′(c) + α = 0

=⇒ f ′(c) = −α

=⇒ f ′(c) =
f(b)− f(a)

b− a)
.

Hence the proof is complete.
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Example 1.7. Find the c of mean value theorem for the function f(x) = (x −
1)(x− 2)(x− 3) in the interval [0, 4].

Solution. Here a = 0, b = 4 and the function f is a polynomial, so, it is
continuous and differentiable everywhere. Therefore, all the conditions of the
mean value theorem are satisfied. By mean value theorem there exists a point

c ∈ (0, 4) such that f ′(c) =
f(b)− f(a)

b− a
. Now

f ′(x) = (x− 2)(x− 3) + (x− 1)(x− 3) + (x− 1)(x− 2) = 3x2 − 12x+ 11.

Therefore,

f ′(c) =
f(b)− f(a)

b− a
=⇒ 3c2 − 12c+ 11 =

f(4)− f(0)

4− 0

=⇒ 3c2 − 12c+ 11 =
6− (−6)

4
=⇒ 3c2 − 12c+ 11 = 3

=⇒ 3c2 − 12c+ 8 = 0

=⇒ c = 2± 2
√
3

3
.

Since c =
2
√
3

3
∈ (0, 4), hence the mean value theorem is verified.

Example 1.8. Verify the mean value theorem for the function f(x) = ln x in the

interval
1

e
≤ x ≤ e.

Solution. Here a =
1

e
, b = e and the function f is logarithmic, and so, it is

continuous in the interval
󰀅
1
e , e

󰀆
and differentiable in the interval

󰀃
1
e , e

󰀄
. There-

fore, all the conditions of the mean value theorem are satisfied. By mean value

theorem there exists a point c ∈
󰀃
1
e , e

󰀄
such that f ′(c) =

f(b)− f(a)

b− a
. Now

f ′(x) =
1

x
.
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Therefore,

f ′(c) =
f(b)− f(a)

b− a
=⇒ 1

c
=

f (e)− f
󰀃
1
e

󰀄

e− 1/e

=⇒ 1

c
=

ln (e)− ln

󰀕
1

e

󰀖

e− 1/e

=⇒ 1

c
=

e(1− (−1))

e2 − 1

=⇒ c =
e2 − 1

2e
.

Since c =
e2 − 1

2e
∈
󰀃
1
e , e

󰀄
, hence the mean value theorem is verified.

Example 1.9. Verify the mean value theorem for the function f(x) = ln x in the
interval [1, e].

Solution. Here a = 1, b = e and the function f is logarithmic, and so, it is
continuous in the interval [1, e] and differentiable in the interval (1, e). There-
fore, all the conditions of the mean value theorem are satisfied. By mean value

theorem there exists a point c ∈ (1, e) such that f ′(c) =
f(b)− f(a)

b− a
. Now

f ′(x) =
1

x
.

Therefore,

f ′(c) =
f(b)− f(a)

b− a
=⇒ 1

c
=

f (e)− f (1)

e− 1

=⇒ 1

c
=

ln (e)− ln (1)

e− 1

=⇒ 1

c
=

1

e− 1
=⇒ c = e− 1.

Since c = e− 1 ∈ (1, e), hence the mean value theorem is verified.
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Example 1.10. Show that on the graph of any quadratic polynomial the chord
joining the points for which x = a, x = b is parallel to the tangent line at the

midpoint x =
a+ b

2
.

OR

If f(x) = αx2 + βx + γ, where α, β, γ are constants and α ∕= 0, then find the
value of c in Lagrange’s mean value theorem in the interval [a, b].

Solution. The function f is polynomial, and so, it is continuous in the interval
[a, b] and differentiable in the interval (a, b). Therefore, all the conditions of the
mean value theorem are satisfied. By mean value theorem there exists a point

c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
. Now

f ′(x) = 2αx+ β.

Therefore,

f ′(c) =
f(b)− f(a)

b− a
=⇒ 2αc+ β =

f (b)− f (a)

b− a

=⇒ 2αc+ β =
αb2 + βb+ γ −

󰀃
αa2 + βa+ γ

󰀄

b− a

=⇒ 2αc+ β =
α(b2 − a2) + β(b− a)

b− a
=⇒ 2αc+ β = α(b+ a) + β

=⇒ c =
b+ a

2
midpoint of a, b.

Since f ′(c) =
f(b)− f(a)

b− a
, hence the slope of the tangent at midpoint c =

b+ a

2
(i.e., f ′(c)) is equal to the slope of a chord at the endpoints a, b. Therefore, the
tangent and cord are parallel.

1.3 Exercise

(Q.1) Discuss the conditions of Rolle’s theorem for the function f(x) = tan x in
the interval 0 ≤ x ≤ π.
Ans. Since tan x is not continuous at x = π

2 , the Rolle’s theorem is not
applicable.

(Q.2) Verify the Rolle’s theorem for the function f(x) = x2 in the interval [−1, 1].
Ans. c = 0.



14 • Taylor’s theorem Dr. Satish Shukla

(Q.3) Can Rolle’s theorem be applied for the function f(x) = 1− (x− 3)2/3.
Hint. For the interval, put f(x) = 0, it gives the interval [2, 4]. Then, since f
is not differentiable at x = 3 ∈ (2, 4), so, Rolle’s theorem cannot be verified.

(Q.4) Explain Rolle’s theorem for the function f(x) = (x − a)m(x − b)n in the
interval [a, b].
Ans. c = mb+na

m+n ∈ (a, b).

(Q.5) Find the c of mean value theorem for the function f(x) = x3 in the interval
[−2, 2].
Ans. c = ± 2√

3
.

(Q.6) Verifiy mean value theorem for the function f(x) = x3−3x−1 in the interval
[0, 1].
Ans. c = 1√

3
.

1.4 Taylor’s theorem

Theorem 3. Suppose that the (n− 1)th derivative f (n−1) of f is continuous on
the interval [a, b] and the nth derivative f (n) of f exists in the open interval
(a, b). Then for each x ∕= a in I there is a value c such that a < c < x and

f(x) = f(a) +
x− a

1!
f ′(a) +

(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a)

+
(x− a)n+1

(n+ 1)!
f (n+1)(c).

The last term Rn =
(x− a)n+1

(n+ 1)!
f (n+1)(c) is called the remainder therm (La-

grange’s form) after n terms.

1.4.1 Taylor’s series

Theorem 4. Suppose Rn → 0 as n → ∞, then the expression for f(x) in
the Taylor’s theorem reduces into an infinite series and this series is called the
Taylor’s series or Taylor’s series expansion of f(x) about the point x = a; and
it is given by:

f(x) = f(a) +
x− a

1!
f ′(a) +

(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a) + · · · .
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1.4.2 Various forms of Taylor’s series

Maclaurin’s series Put a = 0 in Taylor’s series obtain:

f(x) = f(0) +
x

1!
f ′(0) +

x2

2!
f ′′(0) + · · ·+ xn

n!
f (n)(0) + · · · .

Expansion of f(x+ h) in powers of x Replace x by x + h and a by h in Taylor’s
series obtain:

f(x+ h) = f(h) +
x

1!
f ′(h) +

x2

2!
f ′′(h) + · · ·+ xn

n!
f (n)(h) + · · · .

Expansion of f(x+ h) in powers of h Replace x, h by h, x respectively, in the pre-
vious series:

f(x+ h) = f(x) +
h

1!
f ′(x) +

h2

2!
f ′′(x) + · · ·+ hn

n!
f (n)(x) + · · · .

Example 1.11. Expand ln

󰀕
1 + x

1− x

󰀖
using Maclaurin’s theorem.

Solution. Here f(x) = ln

󰀕
1 + x

1− x

󰀖
. By Maclaurin’s theorem we know that

f(x) = f(0) +
x

1!
f ′(0) +

x2

2!
f ′′(0) + · · ·+ xn

n!
f (n)(0) + · · · .

Putting y = f(x), (y)0 = f(0), (y1)0 = f ′(0), (y2)0 = f ′′(0) etc., in the above
we obtain:

y = (y)0 +
x

1!
(y1)0 +

x2

2!
(y2)0 + · · ·+ xn

n!
(yn)0 + · · · . (1.2)

Now differentiating successively and putting x = 0 we obtain:

y = f(x) = ln (1 + x)− ln (1− x) =⇒ (y)0 = 0

y1 =
1

1 + x
+

1

1− x
=⇒ (y1)0 = 2

y2 = − 1

(1 + x)2
+

1

(1− x)2
=⇒ (y2)0 = 0

y3 =
2

(1 + x)3
+

2

(1− x)3
=⇒ (y3)0 = 4
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y4 = − 6

(1 + x)4
+

6

(1− x)4
=⇒ (y4)0 = 0

y5 =
24

(1 + x)5
+

24

(1− x)5
=⇒ (y5)0 = 48 and so on.

Putting these values in (1.2) we obtain:

ln

󰀕
1 + x

1− x

󰀖
= 0 +

x

1!
(2) +

x2

2!
(0) +

x3

3!
(4) +

x4

4!
(0) +

x5

5!
(48) + · · ·

= 2x+
2x3

3
+

2x5

5
+ · · · .

It is the required series.

Example 1.12. If ln sec x =
1

2
x2 + Ax4 + Bx6 + · · · , then find the values of A

and B.

Solution. Since the given value of ln sec x is a series in powers of x, we will ex-
pand ln sec x by Maclaurin’s series. Then, here f(x) = ln sec x and by Maclau-
rin’s theorem we know that

y = (y)0 +
x

1!
(y1)0 +

x2

2!
(y2)0 + · · ·+ xn

n!
(yn)0 + · · · . (1.3)

Now differentiating successively and putting x = 0 we obtain:

y = f(x) = ln sec x =⇒ (y)0 = 0

y1 =
sec x tan x

sec x
= tan x =⇒ (y1)0 = 0

y2 = sec2 x = 1 + tan2 x = 1 + y21 =⇒ (y2)0 = 1

y3 = 2y1y2 =⇒ (y3)0 = 2(y1)0(y2)0 = 0

y4 = 2y1y3 + 2y2y2 = 2y1y3 + 2y22 =⇒ (y4)0 = 2(y1)0(y3)0 + 2(y2)
2
0 = 2

y5 = 2y1y4 + 2y2y3 + 4y2y3 = 2y1y4 + 6y2y3

=⇒ (y5)0 = 2(y1)0(y4)0 + 6(y2)0(y3)0 = 0

y6 = 2y1y5 + 2y2y4 + 6y2y4 + 6y3y3 = 2y1y5 + 8y2y4 + 6y23

=⇒ (y6)0 = 2(y1)0(y5)0 + 8(y2)0(y4)0 + 6y23(0) = 16 and so on.
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Putting these values in (1.3) we obtain:

ln sec x = 0 +
x

1!
(0) +

x2

2!
(1) +

x3

3!
(0) +

x4

4!
(2) +

x5

5!
(0) +

x6

6!
(16) + · · ·

=
1

2
x2 +

1

12
x4 +

1

45
x6 + · · · .

On comparing the coefficients of various powers of x in the above and given
series we obtain

A =
1

12
, B =

1

45
.

Example 1.13. Find the first five terms in the expansion of esinx by Maclaurin’s
series.

Solution. Here f(x) = esinx. By Maclaurin’s theorem we know that

y = (y)0 +
x

1!
(y1)0 +

x2

2!
(y2)0 + · · ·+ xn

n!
(yn)0 + · · · . (1.4)

Now differentiating successively and putting x = 0 we obtain:

y = f(x) = esinx =⇒ (y)0 = 1

y1 = cos xesinx = y cos x =⇒ (y1)0 = 1

y2 = y1 cos x− y sin x =⇒ (y2)0 = 1

y3 = y2 cos x− 2y1 sin x− y cos x = y2 cos x− 2y1 sin x− y1 =⇒ (y3)0 = 0

y4 = y3 cos x− 3y2 sin x− 2y1 cos x− y2 =⇒ (y4)0 = −3

y5 = y4 cos x− 4y3 sin x− 5y2 cos x+ 2y1 sin x− y3 =⇒ (y5)0 = −8

and so on. Putting these values in (1.4) we obtain:

esinx = 1 +
x

1!
(1) +

x2

2!
(1) +

x3

3!
(0) +

x4

4!
(−3) +

x5

5!
(−8) + · · ·

= 1 + x+
x3

2
− x4

8
− x5

15
+ · · · .

It is the required series.

Example 1.14. Expand eax cos(bx) by Maclaurin’s theorem.
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Solution. Here f(x) = eax cos(bx). By Maclaurin’s theorem we know that

y = (y)0 +
x

1!
(y1)0 +

x2

2!
(y2)0 + · · ·+ xn

n!
(yn)0 + · · · . (1.5)

Now differentiating successively and putting x = 0 we obtain:

y = f(x) = eax cos(bx) =⇒ (y)0 = 1

y1 = aeax cos(bx)− beax sin(bx) = ay − beax sin(bx) =⇒ (y1)0 = a

y2 = ay1 − b2eax cos(bx)− abeax sin(bx) = ay1 − b2y + a(y1 − ay) = 2ay1 − (a2 + b2)y

=⇒ (y2)0 = a2 − b2

y3 = 2ay2 − (a2 + b2)y1 =⇒ (y3)0 = a(a2 − 3b2)

and so on. Putting these values in (1.5) we obtain:

esinx = 1 +
x

1!
(a) +

x2

2!
(a2 − b2) +

x3

3!
a(a2 − 3b2) + · · ·

= 1 + ax+ (a2 − b2)
x2

2!
+ a(a2 − 3b2)

x3

3!
+ · · · .

It is the required series.

Example 1.15. Expand ea sin
−1 x by Maclaurin’s theorem. Hence show that

eθ = 1 + sin θ +
1

2!
sin2 θ +

2

3!
sin3 θ + · · ·

where θ = sin−1 x.

Solution. Here f(x) = ea sin
−1 x. By Maclaurin’s theorem we know that

y = (y)0 +
x

1!
(y1)0 +

x2

2!
(y2)0 + · · ·+ xn

n!
(yn)0 + · · · . (1.6)

Since y = f(x) = ea sin
−1 x we have (y)0 = 1 .

Differentiating we get

y1 = ea sin
−1 x × a√

1− x2

=⇒ y1 =
ay√
1− x2

=⇒ (1− x2)y21 = a2y2. (1.7)
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Therefore, (y1)0 = a . Again differentiating (1.7) we get:

(1− x2)y2 − 2xy1 = 2a2yy1
=⇒ (1− x2)y2 − xy1 − a2y = 0. (1.8)

Therefore, (y2)0 − a2(y)0 = 0, i.e., (y2)0 = a2 . Again differentiating (1.8) we
get:

(1− x2)y3 − 3xy2 − (1 + a2)y1 = 0.

Therefore, (y3)0− (1+a2)(y1)0 = 0, i.e., (y3)0 = a(1 + a2) and so on. Putting
these values in (1.6) we obtain:

ea sin
−1 x = 1 +

x

1!
(a) +

x2

2!
(a2) +

x3

3!
(1 + a2) + · · ·

= 1 + ax+
a2x2

2!
+

a(1 + a2)x3

3!
+ · · · .

Putting a = 1 and sin−1 x = θ we get

eθ = 1 + sin θ +
sin2 θ

2!
+

2 sin3 θ

3!
+ · · · .

It is the required series.

Example 1.16. Find the first five terms in the expansion of ln(1 + sin x) by
Maclaurin’s series.

Solution. Here f(x) = ln(1 + sin x). By Maclaurin’s series we know that

y = (y)0 +
x

1!
(y1)0 +

x2

2!
(y2)0 + · · ·+ xn

n!
(yn)0 + · · · . (1.9)

Since y = f(x) = ln(1 + sin x) we have (y)0 = 0 .
Differentiating we get

y1 =
cos x

1 + sin x
=⇒ (1 + sin x)y1 = cos x. (1.10)

Therefore, (y1)0 = 1 . Again differentiating (1.10) we get:

(1 + sin x)y2 + y1 cos x = − sin x. (1.11)
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Therefore, (1 + 0)(y2)0 + (y1)0 = 0, i.e., (y2)0 = −1 . Again differentiating
(1.11) we get:

(1 + sin x)y3 + 2y2 cos x− y1 sin x = − cos x. (1.12)

Therefore, (1+0)(y3)0+2(y2)0−0 = −1, i.e., (y3)0 = 1 . Again differentiating
(1.12) we get:

(1 + sin x)y4 + 3y3 cos x− 3y2 sin x− y1 cos x = sin x. (1.13)

Therefore, (1 + 0)(y4)0 + 3(y3)0 − 0 − (y1)0 = 0, i.e., (y4)0 = −2 . Again
differentiating (1.13) we get:

(1 + sin x)y5 + 4y4 cos x− 6y3 sin x− 4y2 cos x+ y1 sin x = cos x.(1.14)

Therefore, (1 + 0)(y5)0 + 4(y4)0 − 0− 4(y2)0 + 0 = 1, i.e., (y5)0 = 5 . Putting
these values in (1.9) we obtain:

ln(1 + sin x) = 0 +
x

1!
(1) +

x2

2!
(−1) +

x3

3!
(1) +

x4

4!
(−2) +

x4

5!
(5) + · · ·

= x− x2

2!
+

x3

3!
− 2x4

4!
+

5x5

5!
+ · · · .

It is the required series.

Example 1.17. Expand tan−1 x in the ascending powers of x− 1.

Solution. By Taylor’s series, we know that

f(x) = f(a) +
x− a

1!
f ′(a) +

(x− a)2

2!
f ′′(a) + · · · .

Here f(x) = tan−1 x and a = 1, therefore:

f(x) = f(1) +
x− 1

1!
f ′(1) +

(x− 1)2

2!
f ′′(1) + · · · . (1.15)

Since f(x) = tan−1 x we have f(1) =
π

4
. Differentiating we get:

f ′(x) =
1

1 + x2
=⇒ f ′(1) =

1

2
.
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Rearranging the terms in the above we get:

(1 + x2)f ′(x) = 1.

Again differentiating we get:

(1 + x2)f ′′(x) + 2xf ′(x) = 0 =⇒ f ′′(1) = −1 .

On putting these values in (1.15) we get

tan−1 x =
π

4
+

x− 1

2 · 1! − (x− 1)2

2!
+ · · · .

Example 1.18. Expand sin x in powers of x − π

2
and hence evaluate sin 91◦

correct to four places of decimals.

Solution. By Taylor’s series, we know that

f(x) = f(a) +
x− a

1!
f ′(a) +

(x− a)2

2!
f ′′(a) + · · · .

Here f(x) = sin x and a =
π

2
, therefore:

f(x) = f
󰀓π
2

󰀔
+

x− π
2

1!
f ′
󰀓π
2

󰀔
+

󰀃
x− π

2

󰀄2

2!
f ′′

󰀓π
2

󰀔
+ · · · . (1.16)

Since f(x) = sin x we have f
󰀓π
2

󰀔
= 1 . Differentiating we get:

f ′(x) = cos x =⇒ f ′
󰀓π
2

󰀔
= 0 .

Again differentiating we get:

f ′′(x) = − sin x =⇒ f ′′
󰀓π
2

󰀔
= −1 .

Again differentiating we get:

f ′′′(x) = − cos x =⇒ f ′′′
󰀓π
2

󰀔
= 0 .
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Again differentiating we get:

f (iv)(x) = sin x =⇒ f (iv)
󰀓π
2

󰀔
= 1 .

On putting these values in (1.16) we get

sin x = 1−
󰀃
x− π

2

󰀄2

2!
+

󰀃
x− π

2

󰀄4

4!
− · · · .+ · · · .

Let x = 91◦, so that,

x− π

2
= 91◦ − 90◦ = 1◦ =

π

180
radians = 0.0174 radians.

Putting the value of x− π

2
in the above series we obtain:

sin 91◦ = 1− (0.0174)2

2!
+

(0.0174)4

4!
= 0.9999

correct up to four places of decimals.

Example 1.19. Expand ln x in powers of x−1 and hence evaluate ln(1.1) correct
to four decimal places.

Solution. By Taylor’s series, we know that

f(x) = f(a)+
x− a

1!
f ′(a)+

(x− a)2

2!
f ′′(a)+

(x− a)3

3!
f ′′′(a)+

(x− a)4

4!
f (iv)(a)+· · · .

Here f(x) = ln x and a = 1, therefore:

f(x) = f (1)+
x− 1

1!
f ′ (1)+

(x− 1)2

2!
f ′′ (1)+

(x− 1)3

3!
f ′′′(1)+

(x− 1)4

4!
f (iv)(1)+· · · .

(1.17)
Since f(x) = ln x we have f (1) = 0 . Differentiating we get:

f ′(x) =
1

x
=⇒ f ′ (1) = 1 .

Again differentiating we get:

f ′′(x) = − 1

x2
=⇒ f ′′ (1) = −1 .
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Again differentiating we get:

f ′′′(x) =
2

x3
=⇒ f ′′′ (1) = 2 .

Again differentiating we get:

f (iv)(x) = − 6

x4
=⇒ f (iv)

󰀓π
2

󰀔
= −6 .

On putting these values in (1.17) we get

ln x = x− 1− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 + · · · .

Putting x = 1.1 in the above we get:

ln(1.1) = 1.1− 1− 1

2
(1.1− 1)2 +

1

3
(1.1− 1)3 − 1

4
(1.1− 1)4 + · · ·

= 0.1− 0.005 + 0.0003− 0.00002

= 0.0953

correct up to four places of decimals.

Example 1.20. Expand 2x3 + 7x2 + x− 1 in powers of x− 2.

Solution. By Taylor’s series, we know that

f(x) = f(a)+
x− a

1!
f ′(a)+

(x− a)2

2!
f ′′(a)+

(x− a)3

3!
f ′′′(a)+

(x− a)4

4!
f (iv)(a)+· · · .

Here f(x) = 2x3 + 7x2 + x− 1 and a = 2, therefore:

f(x) = f (2)+
x− 2

1!
f ′ (2)+

(x− 2)2

2!
f ′′ (2)+

(x− 2)3

3!
f ′′′(2)+

(x− 1)4

4!
f (iv)(1)+· · · .

(1.18)
Since f(x) = 2x3 + 7x2 + x− 1 we have f (2) = 45 . Differentiating we get:

f ′(x) = 6x2 + 14x+ 1 =⇒ f ′ (2) = 53 .

Again differentiating we get:

f ′′(x) = 12x+ 14 =⇒ f ′′ (2) = 38 .



24 • Taylor’s theorem Dr. Satish Shukla

Again differentiating we get:

f ′′′(x) = 12 =⇒ f ′′′ (2) = 12 .

All other higher-order derivatives are zero. On putting these values in (1.18) we
get

2x3 + 7x2 + x− 1 = 45 + 53(x− 2) + 19(x− 2)2 + 2(x− 2)3.

It is the required expansion.

Example 1.21. Use Taylor’s theorem to prove that

tan−1(x+ h) = tan−1 x+ h sin θ · sin θ
1

− (h sin θ)2 · sin 2θ
2

+ (h sin θ)3 · sin 3θ
3

− · · ·+ (−1)n−1(h sin θ)n · sinnθ
n

+ · · ·

where θ = cot−1 x.

Solution. By Taylor’s series, we know that

f(x+ h) = f(x) +
h

1!
f ′(x) +

h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + · · · . (1.19)

Here f(x+ h) = tan−1(x+ h), and so, f(x) = tan−1 x therefore differentiating
we get:

f ′(x) =
1

1 + x2
=

1

1 + cot2 θ
= sin2 θ.

Again differentiating (w.r.t. x) we get:

f ′′(x) = 2 sin θ cos θ · dθ
dx

= sin 2θ · d

dx
(cot−1 x)

= − sin 2θ · 1

1 + x2

= − sin 2θ sin2 θ (since x = cot θ).

Again differentiating we get:

f ′′′(x) =
󰀃
−2 cos 2θ sin2 θ − 2 sin θ sin 2θ cos θ

󰀄
· dθ
dx

= 2 sin θ (cos 2θ sin θ + sin 2θ cos θ) · 1

1 + x2

= 2 sin3 θ sin 3θ (since x = cot θ).
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On putting these values in (1.19) we get

tan−1(x+ h) = tan−1 x+
h

1!
(sin2 θ) +

h2

2!
(− sin 2θ sin2 θ) +

h3

3!
(2 sin3 θ sin 3θ) + · · ·

= tan−1 x+ h sin θ · sin θ
1

− (h sin θ)2 · sin 2θ
2

+ (h sin θ)3 · sin 3θ
3

− · · ·+ (−1)n−1(h sin θ)n · sinnθ
n

+ · · ·

Example 1.22. Expand tan
󰀓
x+

π

4

󰀔
as far as the term x4 and evaluate tan 46.5◦

to four places of decimals.
OR

Approximate the value of tan (46◦30′) using Taylor’s theorem.(1◦ = 60′)

Solution. By Taylor’s series we know that the expansion of f(x+ h) in powers
of x is:

f(x+ h) = f(h) +
x

1!
f ′(h) +

x2

2!
f ′′(h) +

x3

3!
f ′′′(h) + · · · . (1.20)

Here f(x + h) = tan
󰀓
x+

π

4

󰀔
, f(x) = tan x, h =

π

4
, and so, f

󰀓π
4

󰀔
= 1.

Differentiating f(x) we get:

f ′(x) = sec2 x = 1 + tan2 x = 1 + [f(x)]2 =⇒ f ′
󰀓π
4

󰀔
= 2.

Again differentiating we get:

f ′′(x) = 2f(x)f ′(x) =⇒ f ′′
󰀓π
4

󰀔
= 4.

Again differentiating we get:

f ′′′(x) = 2f(x)f ′′(x) + 2f ′(x)f ′(x) = 2f(x)f ′′(x) + 2[f ′(x)]2

=⇒ f ′′′
󰀓π
4

󰀔
= 16.

Again differentiating we get:

f (iv)(x) = 2f(x)f ′′′(x) + 2f ′(x)f ′′(x) + 4f ′(x)f ′′(x) = 2f(x)f ′′′(x) + 6f ′(x)f ′′(x)

=⇒ f (iv)
󰀓π
4

󰀔
= 80.
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On putting these values in (1.20) we get

tan
󰀓
x+

π

4

󰀔
= 1 +

x

1!
(2) +

x2

2!
(4) +

x3

3!
(16) +

x4

4!
(80) + · · ·

= 1 + 2x+ 2x2 +
8x3

3
+

10x4

3
+ · · · .

On putting x = 1.5◦ = 1.5× π

180
radians = 0.0262 (approximately) in the above

equation we get:

tan (46.5◦) = 1 + 2(0.0262) + 2(0.0262)2 +
8(0.0262)3

3
+

10(0.0262)4

3
+ · · ·

= 1.0538.

Thus, tan (46◦30′) = tan (46.5◦) = 1.0538 (correct to four places of decimals).

Example 1.23. Find the value of
√
10.

Solution. Let f(x+h) =
√
x+ h. By Taylor’s series we know that the expansion

of f(x+ h) in powers of h is:

f(x+ h) = f(x) +
h

1!
f ′(x) +

h2

2!
f ′′(x) +

h3

3!
f ′′(x) + · · · . (1.21)

Here f(x+ h) =
√
x+ h, and so, f (x) =

√
x. Differentiating f(x) we get:

f ′(x) =
1

2
√
x
.

Again differentiating we get:

f ′′(x) = − 1

4x3/2
.

Again differentiating we get:

f ′′′(x) =
3

8x5/2
.

On putting these values in (1.21) we get

√
x+ h =

√
x+

h

2
√
x
− h2

8x3/2
+

h3

16x5/2
+ · · · .
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On putting x = 9, h = 1 in the above equation we get:
√
10 =

√
9 +

1

2
√
9
− 1

8 · 93/2
+

1

16 · 95/2
+ · · ·

= 3 + 0.16667− 0.00463 + 0.00025

= 3.16229.

Thus,
√
10 = 3.1623 (correct to four places of decimals).

1.5 Exercise

(Q.1) Expand
ex

1 + ex
in Maclaurin’s series as far as the terms x3.

Ans. ex

1+ex = 1
2 +

x
4 −

8x3

3! + · · · .

(Q.2) Expand ex cosx in Maclaurin’s series.

Ans. ex cosx = 1 + x+ x2

2 − x3

3 − · · · .

(Q.3) Prove that:
󰀃
sin−1 x

󰀄2
=

2

2!
x2 +

2 · 22
4!

x4 + · · · .

Hint. Use Maclaurin’s series for y =
󰀃
sin−1 x

󰀄2
.

(Q.4) Prove that: ln (1 + ex) = ln(2) +
1

2
x+

1

8
x2 − 1

192
x4 + · · · .

Hint. Use Maclaurin’s series for y = ln (1 + ex) .

(Q.5) Prove that: ex sin x = x+ x2 +
2

3!
x3 − 22

5!
x5 + · · · .

Hint. Use Maclaurin’s series for y = ex sin x.

(Q.6) Find the Maclaurin’s series for y = sin
󰀃
m sin−1 x

󰀄
.

Ans. y = mx+
m(m2 − 1)

3!
x3 + · · · .

(Q.7) Expand tan x in powers of x− π

4
.

Ans. tan x = 1 + 2
󰀃
x− π

4

󰀄
+ 2

󰀃
x− π

4

󰀄2
+ · · · .

(Q.8) Expand 7x6 − 3x5 + x2 + 2 in powers of x− 1.
Ans. 7x6− 3x5+x2+2 = 7+29(x− 1)+76(x− 1)2+110(x− 1)3+90(x−
1)4 + 39(x− 1)5 + 7(x− 1)6.

(Q.9) Find the Taylor’s series expansion of ln(cos x) about the point
π

3
.

Ans. ln(cos x) = ln 1
2 −

√
3
󰀃
x− π

3

󰀄
− 4

2!

󰀃
x− π

3

󰀄2 − · · · .
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(Q.10) Prove that ln(x+ h) = ln x+
h

x
− h2

2x2
+

h3

3x3
− · · · .

Hint. Use Taylor’s series and expand f(x+ h) in powers of h.

(Q.11) Calculate the value of
√
5 correct to four places of decimals by taking the

first four terms in Taylor’s series.
Hint. Use Taylor’s series and expand f(x + h) =

√
x+ h in powers of h,

and put x = 4, h = 1.

(Q.12) Approximate the value of sin (61◦30′) using Taylor’s theorem.
Ans. sin (61◦30′) = 0.87881711(approximate).



Unit-II
Partial differentiation: Euler’s theorem, total differential, maxima and minima of functions of
two variables only.

2.1 Functions of several variables

Suppose, a particle is moving parallel to the earth’s surface, then at any instant
its energy depends only upon its velocity (surely, we neglect the effect of other
celestial and terrestrial bodies on the energy of the particle). Precisely, the energy
of particle

E(v) =
1

2
mv2 +K0

where v is the velocity of particle and K0 is its potential energy (which is constant).
Thus, the E(v) depends only on the velocity v. We say that the energy E of the
particle is an output, while its velocity is the input for this output function, and
for various values of input, we obtain the different outputs.
Now consider the same particle but with a different situation. Suppose, the particle
is moving in such a way that its height from the earth’s surface changes continu-
ously. Then, at any instant, its energy depends upon its velocity v, as well as, its
height h from the earth’s surface. Precisely, the energy of particle

E(v, h) = 1

2
mv2 +mgh.

What do we see? We now see that the output function E depends on the two
inputs, namely, the velocity v and the height h of the particle.
We say that the energy function E is a function of a single variable v, while the
energy function E is a function of two variables v, h.
In general, we say that a quantity y is a function f of n variables if its value depends
on n variables x1, x2, . . . , xn. Mathematically, we represent this fact by:

y = f(x1, x2, . . . , xn).

2.2 Partial derivatives

Suppose, y = f(x) is a function of a single variable. If we draw a graph of this
function by taking the values of x on the X-axis and of y on the Y -axis, then we
get a two-dimensional curve. The input x can change only along the X-axis (either
towards left or towards right), and so, we can find the rate of change of y only along

29
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the X-axis. This rate is called the derivative (total derivative) of y with respect to

x and is denoted by
dy

dx
.

We call the inputs as independent variable and the output as dependent variable.
Now consider a different case, when the dependent variable z is a function of two
independent variables (x, y). We write z = f(x, y). Now if we draw the graph of
this function by taking the values of x, y and z on three mutually perpendicular
axes, we obtain a three-dimensional surface. Then, apart from the previous case the
independent variables (x, y) (the inputs) now can change in the XY -plane in any
direction (right or left, up or down; or in any direction different from these two),
and so, we can find the rate of change of z along any such direction. Such a rate of
change is called the directional derivative of f . In particular, we are interested in
finding the rate of change (directional derivative) of f in two directions (i) along
the X-axis; and (ii) along the Y -axis, and so, we get two directional derivatives
along these two axes. The rate of change of f (or z) along the X-axis is called the

partial derivative of f (or z) with respect to x and it is denoted by
∂f

∂x
. Similarly,

the rate of change of f (or z) along the Y -axis is called the partial derivative of f

(or z) with respect to y and it is denoted by
∂f

∂y
.

Because, in moving along the X-axis, y remains constant, and
∂f

∂x
is the rate of

change of f along the X axis, we have:
∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
.

Similarly, in moving along the Y -axis x remains constant, and
∂f

∂y
is the rate of

change of f along the Y axis, we have:
∂f

∂y
= lim

k→0

f(x, y + k)− f(x, y)

k
.
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Similarly, we can define the partial derivatives of higher orders.

To find the partial derivative of z = f(x, y) with respect to x we differentiate
z by usual rules of differentiation with respect to x but treat the variable y
as constant. Similarly, when we find the partial derivative of z = f(x, y) with
respect to y we differentiate z by usual rules of differentiation with respect to
y but treat the variable x as constant. If u = f(x, y, z) is a function of three
variables, then find the partial derivative of u = f(x, y, z) with respect to x
we differentiate u by usual rules of differentiation with respect to x, but treat
all other variables y and z as constant, and so on.

Example 2.1. Find the first and second partial derivatives of the function z =
x3 + y3 − 3axy.

Solution. Given function is

z = x3 + y3 − 3axy. (2.1)

Differentiating (2.1) partially with respect to x we get:

∂z

∂x
= 3x2 − 3ay. (2.2)

Differentiating (2.1) partially with respect to y we get:

∂z

∂y
= 3y2 − 3ax. (2.3)

Differentiating (2.2) partially with respect to x and y we get:

∂2z

∂x2
= 6x;

∂2z

∂y∂x
=

∂2z

∂x∂y
= −3a.

Differentiating (2.3) partially with respect to y we get:

∂2z

∂y2
= 6y.

Example 2.2. If z(x+ y) = x2 + y2, then show that
󰀕
∂z

∂x
− ∂z

∂y

󰀖2

= 4

󰀕
1− ∂z

∂x
− ∂z

∂y

󰀖
.
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Solution. Given function is
z =

x2 + y2

x+ y
. (2.4)

Differentiating (2.4) partially with respect to x we get:

∂z

∂x
=

(x+ y)2x− (x2 + y2)

(x+ y)2
=

x2 + 2xy − y2

(x+ y)2
. (2.5)

Differentiating (2.4) partially with respect to y we get:

∂z

∂x
=

(x+ y)2y − (x2 + y2)

(x+ y)2
=

y2 + 2xy − x2

(x+ y)2
. (2.6)

From (2.5) and (2.6) we obtain:
󰀕
∂z

∂x
− ∂z

∂y

󰀖2

=

󰀗
x2 + 2xy − y2

(x+ y)2
− y2 + 2xy − x2

(x+ y)2

󰀘2

=

󰀗
2x2 − 2y2

(x+ y)2

󰀘2

=

󰀗
2(x− y)(x+ y)

(x+ y)2

󰀘2

=
4(x− y)2

(x+ y)2

and

4

󰀕
1− ∂z

∂x
− ∂z

∂y

󰀖
= 4

󰀗
1− x2 + 2xy − y2

(x+ y)2
− y2 + 2xy − x2

(x+ y)2

󰀘

= 4

󰀗
(x+ y)2 − (x2 + 2xy − y2)− (y2 + 2xy − x2)

(x+ y)2

󰀘

= 4

󰀗
(x2 + y2 + 2xy)− (x2 + 2xy − y2)− (y2 + 2xy − x2)

(x+ y)2

󰀘

= 4

󰀗
x2 + y2 − 2xy

(x+ y)2

󰀘

=
4(x− y)2

(x+ y)2
.

Therefore:
󰀕
∂z

∂x
− ∂z

∂y

󰀖2

= 4

󰀕
1− ∂z

∂x
− ∂z

∂y

󰀖
.
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Example 2.3. If u = x2 tan−1
󰀓y
x

󰀔
− y2 tan−1

󰀕
x

y

󰀖
, then show that

∂2u

∂x∂y
=

x2 − y2

x2 + y2
and

∂2u

∂x∂y
=

∂2u

∂y∂x
.

Solution. Differentiating the given function partially with respect to y we get:

∂u

∂y
= x2 × 1

1 + (y/x)2
× 1

x
−
󰀗
2y tan−1

󰀕
x

y

󰀖
+ y2 × 1

1 + (x/y)2
×
󰀕
− x

y2

󰀖󰀘

=
x3

x2 + y2
− 2y tan−1

󰀕
x

y

󰀖
+

xy2

x2 + y2

= x− 2y tan−1

󰀕
x

y

󰀖
.

Differentiating the above equation partially with respect to x we get:

∂2u

∂x∂y
=

∂

∂x

󰀗
x− 2y tan−1

󰀕
x

y

󰀖󰀘

= 1− 2y × 1

1 + (x/y)2
× 1

y
=

x2 − y2

x2 + y2
.

Similarly,
∂u

∂x
= 2x tan−1

󰀓y
x

󰀔
− y. Differentiating with respect to y we get:

∂2u

∂y∂x
= 2x× 1

1 + (y/x)2
× 1

x
− 1 =

x2 − y2

x2 + y2
.

Therefore:
∂2u

∂x∂y
=

∂2u

∂y∂x
=

x2 − y2

x2 + y2
.

Example 2.4. If v =
󰀃
x2 + y2 + z2

󰀄−1/2, then prove that
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
= 0.

Solution. Differentiating the given function partially with respect to x we get:

∂v

∂x
= −1

2

󰀃
x2 + y2 + z2

󰀄−3/2 × 2x

= −x
󰀃
x2 + y2 + z2

󰀄−3/2
.
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Again differentiating with respect to x we obtain:

∂2v

∂x2
= −

󰀃
x2 + y2 + z2

󰀄−3/2 − x

󰀕
−3

2

󰀖󰀃
x2 + y2 + z2

󰀄−5/2 × 2x

=
󰀃
x2 + y2 + z2

󰀄−5/2 󰀅
3x2 −

󰀃
x2 + y2 + z2

󰀄󰀆

=
󰀃
x2 + y2 + z2

󰀄−5/2 󰀃
2x2 − y2 − z2

󰀄
.

Using symmetry of v in x, y and z we obtain:

∂2v

∂y2
=

󰀃
x2 + y2 + z2

󰀄−5/2 󰀃
2y2 − x2 − z2

󰀄

and ∂2v

∂z2
=

󰀃
x2 + y2 + z2

󰀄−5/2 󰀃
2z2 − x2 − z2

󰀄
.

Adding the above three we get:

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
=

󰀃
x2 + y2 + z2

󰀄−5/2 󰀃
2x2 − y2 − z2

󰀄

+
󰀃
x2 + y2 + z2

󰀄−5/2 󰀃
2y2 − x2 − z2

󰀄

+
󰀃
x2 + y2 + z2

󰀄−5/2 󰀃
2z2 − x2 − z2

󰀄

=
󰀃
x2 + y2 + z2

󰀄−5/2 󰀃
2x2 − y2 − z2 + 2y2 − x2

−z2 + 2z2 − x2 − z2
󰀄

=
󰀃
x2 + y2 + z2

󰀄−5/2 · 0
= 0.

Example 2.5. If u = ln
󰀃
x3 + y3 + z3 − 3xyz

󰀄
, then show that

󰀕
∂

∂x
+

∂

∂y
+

∂

∂z

󰀖2

u = − 9

(x+ y + z)2
.

Solution. Differentiating the given function partially with respect to x we get:

∂u

∂x
=

3x2 − 3yz

x3 + y3 + z3 − 3xyz
.

Using symmetry of u in x, y and z we obtain:

∂u

∂y
=

3y2 − 3xz

x3 + y3 + z3 − 3xyz
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and ∂u

∂z
=

3z2 − 3xy

x3 + y3 + z3 − 3xyz
.

Adding the above three we get:

∂u

∂x
+

∂u

∂y
+

∂u

∂z
=

3x2 − 3yz

x3 + y3 + z3 − 3xyz
+

3y2 − 3xz

x3 + y3 + z3 − 3xyz

+
3z2 − 3xy

x3 + y3 + z3 − 3xyz

=
3x2 − 3yz + 3y2 − 3xz + 3z2 − 3xy

x3 + y3 + z3 − 3xyz

=
3(x2 + y2 + z2 − yz − xz − xy)

x3 + y3 + z3 − 3xyz

=
3(x2 + y2 + z2 − yz − xz − xy)

(x+ y + z)(x2 + y2 + z2 − yz − xz − xy)

=
3

x+ y + z
.

Thus:
∂u

∂x
+

∂u

∂y
+

∂u

∂z
=

3

x+ y + z
.

Therefore:
󰀕

∂

∂x
+

∂

∂y
+

∂

∂z

󰀖2

u =

󰀕
∂

∂x
+

∂

∂y
+

∂

∂z

󰀖󰀕
∂u

∂x
+

∂u

∂y
+

∂u

∂z

󰀖

=

󰀕
∂

∂x
+

∂

∂y
+

∂

∂z

󰀖󰀕
3

x+ y + z

󰀖

=
∂

∂x

󰀕
3

x+ y + z

󰀖
+

∂

∂y

󰀕
3

x+ y + z

󰀖

+
∂

∂z

󰀕
3

x+ y + z

󰀖

= − 3

(x+ y + z)2
− 3

(x+ y + z)2
− 3

(x+ y + z)2

= − 9

(x+ y + z)2
.

Example 2.6. If u = exyz, then show that
∂3u

∂x∂y∂z
= (1 + 3xyz + x2y2z2)exyz.
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Solution. Differentiating the given function partially with respect to x we get:

∂u

∂z
= exyz · xy.

Again differentiating with respect to y we get:

∂2u

∂y∂z
= (exyz · xz) · xy + exyz · x

= exyz
󰀃
x+ x2yz

󰀄
.

Again differentiating with respect to x we get:

∂3u

∂x∂y∂z
= exyz · yz ·

󰀃
x+ x2yz

󰀄
+ exyz · (1 + 2xyz) .

= (1 + 3xyz + x2y2z2)exyz.

Example 2.7. If xxyyzz = c, then show that
∂2z

∂x∂y
= −(x ln ex)−1 at point

x = y = z.

Solution. Given that: xxyyzz = c. Taking logarithm we obtain:

x ln x+ y ln y + z ln z = ln c.

Differentiating the given function partially with respect to x (note that, z is a
function of x and y both, so, it will not be treated as constant) we get:

x · 1
x
+ ln x+ z · 1

z

∂z

∂x
+ ln z

∂z

∂x
= 0

=⇒ 1 + ln x+ (1 + ln z)
∂z

∂x
= 0

=⇒ ∂z

∂x
= −1 + ln x

1 + ln z
.

By symmetry of the function z in the variables x and y we obtain:

∂z

∂y
= −1 + ln y

1 + ln z
.



Dr. Satish Shukla Partial derivatives • 37

Differentiating the above equation partially with respect to x we obtain:

∂2z

∂x∂y
=

∂

∂x

󰀗
−1 + ln y

1 + ln z

󰀘

= (1 + ln y) · 1

(1 + ln z)2
· 1
z
· ∂z
∂x

= (1 + ln y) · 1

(1 + ln z)2
· 1
z
·
󰀗
−1 + ln x

1 + ln z

󰀘

= −(1 + ln x)(1 + ln y)

z(1 + ln z)3
.

Putting x = y = z in the above equation we get:

∂2z

∂x∂y
= −(1 + ln x)(1 + ln x)

z(1 + ln x)3

= − 1

z(1 + ln x)

= − 1

z(ln e+ ln x)

= −(x ln ex)−1.

Example 2.8. If v = rn, where r2 = x2 + y2 + z2, then show that

vxx + vyy + vzz = n(n+ 1)rn−2.

Solution. Given that: r2 = x2 + y2 + z2. Differentiating partially with respect
to x we get:

2r
∂r

∂x
= 2x =⇒ ∂r

∂x
=

x

r
.

By symmetry of the function r in the variables x and y we obtain:

∂r

∂y
=

y

r
,
∂r

∂z
=

z

r
.

Now, given that v = rn. Differentiating partially with respect to x we obtain:

∂v

∂x
= nrn−1 ∂r

∂x
= nrn−1 · x

r
= nxrn−2.
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Again differentiating with respect to x we get:

∂2v

∂x2
=

∂

∂x
(nxrn−2) = nrn−2 + n(n− 2)xrn−3 ∂r

∂x

= nrn−2 + n(n− 2)xrn−3 · x
r

= nrn−4
󰀅
r2 + (n− 2)x2

󰀆

Again by symmetry, we obtain:

∂2v

∂y2
= nrn−4

󰀅
r2 + (n− 2)y2

󰀆

and ∂2v

∂z2
= nrn−4

󰀅
r2 + (n− 2)z2

󰀆
.

Adding the above three equalities we obtain:

vxx + vyy + vzz =
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

= nrn−4
󰀅
r2 + (n− 2)x2

󰀆
+ nrn−4

󰀅
r2 + (n− 2)y2

󰀆

+nrn−4
󰀅
r2 + (n− 2)z2

󰀆

= nrn−4
󰀅
3r2 + (n− 2)

󰀃
x2 + y2 + z2

󰀄󰀆

= nrn−4
󰀅
3r2 + (n− 2)r2

󰀆

= nrn−4 (n+ 1) r2

= n(n+ 1)rn−2.

Example 2.9. If u = f(r) and x = r cos θ, y = r sin θ, then prove that

∂2u

∂x2
+

∂2u

∂y2
= f ′′(r) +

1

r
f ′(r).

Solution. Given that x = r cos θ and y = r sin θ. By squaring and adding these
two we obtain

r2 = x2 + y2.

Differentiating the above equation with respect to x partially we obtain: 2r
∂r

∂x
=

2x, i.e.
∂r

∂x
=

x

r
.
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Similarly, we obtain:
∂r

∂y
=

y

r
.

Given that u = f(r). Differentiating u with respect to x partially we get:

∂u

∂x
= f ′(r)

∂r

∂x

=⇒ ∂u

∂x
=

x

r
f ′(r).

Again differentiating the above equation with respect to x partially and using

the formula
d

dx
(f1f2f3) = f ′

1f2f3 + f1f
′
2f3 + f1f2f

′
3 we get:

∂2u

∂x2
=

∂

∂x

󰁫x
r
f ′(r)

󰁬

=⇒ ∂2u

∂x2
=

x

r
f ′′(r)

∂r

∂x
+

1

r
f ′(r)− x

r2
∂r

∂x
f ′(r)

=⇒ ∂2u

∂x2
=

x2

r2
f ′′(r) +

1

r
f ′(r)− x2

r3
f ′(r). (2.7)

Since the given functions are symmetric in x and y we obtain:

∂2u

∂y2
=

y2

r2
f ′′(r) +

1

r
f ′(r)− y2

r3
f ′(r). (2.8)

Adding equations (2.7) and (2.8) we obtain

∂2u

∂x2
+

∂2u

∂y2
=

1

r2
f ′′(r)

󰀃
x2 + y2

󰀄
+

2

r
f ′(r)− 1

r3
f ′(r)

󰀃
x2 + y2

󰀄

=
1

r2
f ′′(r) · r2 + 2

r
f ′(r)− 1

r3
f ′(r) · r2

= f ′′(r) +
2

r
f ′(r)− 1

r
f ′(r)

= f ′′(r) +
1

r
f ′(r).

Example 2.10. If x = r cos θ, y = r sin θ, then prove that
∂r

∂x
=

∂x

∂r
and

1

r

∂x

∂θ
=

r
∂θ

∂x
.
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Solution. Given that x = r cos θ (2.9)
y = r sin θ. (2.10)

Squaring and adding these two we obtain r2 = x2 + y2. So, as we found in the

previous example:
∂r

∂x
=

x

r
. Again dividing (2.10) by (2.9) we get

y

x
=

sin θ

cos θ
= tan θ

=⇒ θ = tan−1
󰀓y
x

󰀔
.

Differentiating the above equation partially with respect to θ we obtain:

∂θ

∂x
=

1

1 +
󰀃
y
x

󰀄2 ×
󰀓
− y

x2

󰀔

= − y

x2 + y2
= −r sin θ

r2

= −sin θ

r
.

On differentiating equation (2.9) partially with respect to r we get:

∂x

∂r
= cos θ =

x

r

=⇒ ∂x

∂r
=

∂r

∂x
.

Again differentiating equation (2.9) partially with respect to θ we get:

∂x

∂θ
= −r sin θ = −r

󰀕
−r

∂θ

∂x

󰀖

=⇒ 1

r

∂x

∂θ
= r

∂θ

∂x
.

2.3 Chain Rule for Partial Differentiation

Suppose z = f(x, y) be a function of two variables, where x = x(t), y = y(t) are
functions of another variable t. Suppose there is a small change δt in the variable t,
due to which there are small changes δx and δy in the variables x and y respectively.
Because of these changes in x and y, suppose there is a small change δz in the

function z = f(x, y). Then, the rate of change of z in X direction will be
∂z

∂x
, and

so the change in z along the X direction will be
∂z

∂x
δx. Similarly, the change in z in
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Y direction will be
∂z

∂y
δy. Since the changes are very small the total approximate

change in z will be:

δz ≈ ∂z

∂x
δx+

∂z

∂y
δy.

Therefore, the rate of change of z with respect to t:

δz

δt
≈ ∂z

∂x

δx

δt
+

∂z

∂y

δy

δt
.

For instantaneous rate of change, letting δ → 0, and so, δx, δy → 0 in the above
inequality we obtain:

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

In a general case, if z = f(x, y), x = x(r, s) and y = y(r, s), then we have:

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r
∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
.

The above results can be generalized for a function of n variables.

Example 2.11. If u = f(x, y) and x = r cos θ, y = r sin θ, then prove that
󰀕
∂u

∂x

󰀖2

+

󰀕
∂u

∂y

󰀖2

=

󰀕
∂u

∂r

󰀖2

+
1

r2

󰀕
∂u

∂θ

󰀖2

.

Solution. Since x = r cos θ, y = r sin θ we have:

∂x

∂r
= cos θ,

∂x

∂θ
= −r sin θ

and ∂y

∂r
= sin θ,

∂y

∂θ
= r cos θ.

Now by chain rule, we have:

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r

= cos θ
∂u

∂x
+ sin θ

∂u

∂y
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and
∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ

= −r sin θ
∂u

∂x
+ r cos θ

∂u

∂y
.

Therefore:
󰀕
∂u

∂r

󰀖2

+
1

r2

󰀕
∂u

∂θ

󰀖2

=

󰀕
cos θ

∂u

∂x
+ sin θ

∂u

∂y

󰀖2

+
1

r2

󰀕
−r sin θ

∂u

∂x
+ r cos θ

∂u

∂y

󰀖2

=
󰀃
cos2 θ + sin2 θ

󰀄󰀕∂u

∂x

󰀖2

+
󰀃
sin2 θ + cos2 θ

󰀄󰀕∂u

∂y

󰀖2

=

󰀕
∂u

∂x

󰀖2

+

󰀕
∂u

∂y

󰀖2

.

Example 2.12. If u = x log(xy) where x3 + y3 + 3xy = 1, find
du

dx
.

Solution. Since

u = x log(xy) (2.11)

we have:
∂u

∂x
= x

󰀝
1

xy
.y

󰀞
+ log(xy) = 1 + log(xy),

and ∂u

∂y
= x

󰀝
1

xy
.x

󰀞
=

x

y
.

also,

x3 + y3 + 3xy = 1 (2.12)

Differentiating (2.12), w.r.t. x, we get

3x2 + 3y2
dy

dx
+ 3

󰀕
x
dy

dx
+ y

󰀖
= 0

dy

dx
= −

󰀕
x2 + y

x+ y2

󰀖
(2.13)
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we know that
du

dx
=

∂u

∂x
+

∂u

∂y

dy

dx

= 1 + log(xy) +
x

y

󰀝
−
󰀕
x2 + y

x+ y2

󰀖󰀞

= 1 + log(xy)− x(x2 + y)

y(x+ y2)
.

Example 2.13. If u = f(x−y, y−z, z−x), then prove that
∂u

∂x
+
∂u

∂y
+
∂u

∂z
= 0.

Solution. Let

X = x− y (2.14)
Y = y − z (2.15)
Z = z − x. (2.16)

Then we have u = f(X, Y, Z), i.e., u is a function of X, Y, Z. Differentiating
(2.14), (2.15) and (2.16) with respect to x, y, z we get:

∂X

∂x
= 1,

∂X

∂y
= −1,

∂X

∂z
= 0

∂Y

∂x
= 0,

∂Y

∂y
= 1,

∂Y

∂z
= −1

∂Z

∂x
= −1,

∂Z

∂y
= 0,

∂Z

∂z
= 1.

Now by the chain rule of partial differentiation, we get:

∂u

∂x
=

∂u

∂X

∂X

∂x
+

∂u

∂Y

∂Y

∂x
+

∂u

∂Z

∂Z

∂x

=
∂u

∂X
· 1 + ∂u

∂Y
· 0 + ∂u

∂Z
(−1)

=
∂u

∂X
− ∂u

∂Z
,
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∂u

∂y
=

∂u

∂X

∂X

∂y
+

∂u

∂Y

∂Y

∂y
+

∂u

∂Z

∂Z

∂y

=
∂u

∂X
(−1) +

∂u

∂Y
· 1 + ∂u

∂Z
· 0

= − ∂u

∂X
+

∂u

∂Y

and
∂u

∂z
=

∂u

∂X

∂X

∂z
+

∂u

∂Y

∂Y

∂z
+

∂u

∂Z

∂Z

∂z

=
∂u

∂X
· 0 + ∂u

∂Y
(−1) +

∂u

∂Z
· 1

= − ∂u

∂Y
+

∂u

∂Z
.

Adding the above three equalities we get

∂u

∂x
+

∂u

∂y
+

∂u

∂z
=

∂u

∂X
− ∂u

∂Z
− ∂u

∂X
+

∂u

∂Y
− ∂u

∂Y
+

∂u

∂Z
= 0.

Example 2.14. Transform the Laplace equation
∂2u

∂x2
+

∂2u

∂y2
= 0 into the polar

coordinates.

Solution. We know that the relation between cartesian coordinates (x, y) and
the polar coordinates (r, θ) are given by x = r cos θ, y = r sin θ, i.e., r2 = x2+y2

and θ = tan−1
󰀓y
x

󰀔
. Therefore:

∂r

∂x
=

x

r
= cos θ,

∂r

∂y
=

y

r
= sin θ

and ∂θ

∂x
= −sin θ

r
,
∂θ

∂y
=

cos θ

r
.

Now by chain rule, we have:

∂u

∂x
=

∂u

∂r

∂r

∂x
+

∂u

∂θ

∂θ

∂x
= cos θ

∂u

∂r
− sin θ

r

∂u

∂θ

=

󰀕
cos θ

∂

∂r
− sin θ

r

∂

∂θ

󰀖
u.
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The above relation is true for all functions u, and so:

∂

∂x
≡ cos θ

∂

∂r
− sin θ

r

∂

∂θ
.

Similarly, we have

∂u

∂y
=

∂u

∂r

∂r

∂y
+

∂u

∂θ

∂θ

∂y
= sin θ

∂u

∂r
+

cos θ

r

∂u

∂θ

=

󰀕
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

󰀖
u.

The above relation is true for all functions u, and so:

∂

∂y
≡ sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

Therefore:

∂2u

∂x2
=

∂

∂x

󰀕
∂u

∂x

󰀖

=

󰀕
cos θ

∂

∂r
− sin θ

r

∂

∂θ

󰀖󰀕
cos θ

∂u

∂r
− sin θ

r

∂u

∂θ

󰀖

= cos θ
∂

∂r

󰀕
cos θ

∂u

∂r
− sin θ

r

∂u

∂θ

󰀖
− sin θ

r

∂

∂θ

󰀕
cos θ

∂u

∂r
− sin θ

r

∂u

∂θ

󰀖

= cos2 θ
∂2u

∂r2
− sin θ cos θ

󰀕
− 1

r2
∂u

∂θ
+

1

r

∂2u

∂r∂θ

󰀖

−sin θ

r

󰀕
− sin θ

∂u

∂r
+ cos θ

∂2u

∂r∂θ

󰀖
+

sin θ

r2

󰀕
cos θ

∂u

∂θ
+ sin θ

∂2u

∂θ2

󰀖

Similarly,
∂2u

∂y2
=

∂

∂y

󰀕
∂u

∂y

󰀖

=

󰀕
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

󰀖󰀕
sin θ

∂u

∂r
+

cos θ

r

∂u

∂θ

󰀖

= sin2 θ
∂2u

∂r2
+ sin θ cos θ

󰀕
− 1

r2
∂u

∂θ
+

1

r

∂2u

∂r∂θ

󰀖

+
cos θ

r

󰀕
cos θ

∂u

∂r
+ sin θ

∂2u

∂r∂θ

󰀖
+

cos θ

r2

󰀕
− sin θ

∂u

∂θ
+ cos θ

∂2u

∂θ2

󰀖
.
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Therefore the Laplace equation will be:

∂2u

∂x2
+

∂2u

∂y2
= 0

=⇒
󰀃
cos2 θ + sin2 θ

󰀄 ∂2u

∂r2
+

sin2 θ + cos2 θ

r

∂u

∂r
+

sin2 θ + cos2 θ

r2
∂2u

∂θ2
= 0

=⇒ ∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.

2.4 Exercise

(Q.1) If z = f(x, y), x = eu + e−v, y = e−u + ev, then prove that:

∂z

∂u
− ∂z

∂v
= x

∂z

∂x
− y

∂z

∂y
.

Hint: Use the chain rule of partial differentiation.

2.5 Homogeneous function

A function f in two variables x and y is called homogeneous of degree n in x and
y if for any variable t we have

f(tx, ty) = tnf(x, y).

Example 2.15. The function f(x, y) = ax2+bxy+cz2 is a homogeneous function
of degree 2 in x and y as

f(tx, ty) = a(tx)2 + b(tx)(ty) + c(tz)2

= t2
󰀅
ax2 + bxy + cz2

󰀆

= x2f(x, y).

In general, an expression of the form:

a0x
n + a1x

n−1y + a2x
n−2y2 + · · ·+ any

n

is a homogeneous function of degree n in x and y.

Remark 2.1. If u = f(x, y) is a homogeneous function of degree n in x and y,
then for any value t we have:

f(tx, ty) = tnf(x, y).
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Replacing t by
1

x
we get:

f
󰀓
1,

y

x

󰀔
=

1

xn
f(x, y) =⇒ f(x, y) = xnf

󰀓
1,

y

x

󰀔
.

Since, in f
󰀓
1,

y

x

󰀔
first argument is 1 (constant) and the second is

y

x
, hence

f
󰀓
1,

y

x

󰀔
can be assumed as a function of

y

x
only, i.e.,

f
󰀓
1,

y

x

󰀔
=a function of

y

x
= φ

󰀓y
x

󰀔
(say).

Therefore, we conclude that if u = f(x, y) is a homogeneous function of degree
n in x and y, then it can be written as:

u = f(x, y) = xnφ
󰀓y
x

󰀔
.

In general, a function f(x, y, z, . . .) is said to be a homogeneous function of
degree n in x, y, z, . . . , if it can be expressed in the form xnφ

󰀃
y
x,

z
x, . . .

󰀄
.

2.5.1 Euler’s theorem on homogeneous functions

Theorem 5. If u be a homogeneous function of degree n in x and y, then:

x
∂u

∂x
+ y

∂u

∂y
= nu.

Proof. Since u is a homogeneous function of degree n in x and y, therefore we
can assume that

u = xnφ
󰀓y
x

󰀔
.

On differentiating with respect to x and y partially we obtain:

∂u

∂x
= nxn−1φ

󰀓y
x

󰀔
+ xnφ′

󰀓y
x

󰀔
· y

󰀕
− 1

x2

󰀖

=⇒ ∂u

∂x
= nxn−1φ

󰀓y
x

󰀔
− yxn−2φ′

󰀓y
x

󰀔
(2.17)

and
∂u

∂y
= xnφ′

󰀓y
x

󰀔
· 1
x

=⇒ ∂u

∂y
= xn−1φ′

󰀓y
x

󰀔
. (2.18)
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Multiplying (2.17) by x and (2.18) by y and adding we get:

x
∂u

∂x
+ y

∂u

∂y
= nxnφ

󰀓y
x

󰀔
= nu.

Remark 2.2. In general, if u be a homogeneous function of degree n in x, y, z, . . . ,
then:

x
∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z
+ t

∂u

∂t
. . . = nu.

2.5.2 Relation between second order derivatives of homogeneous functions

Theorem 6. If u is a homogeneous function of degree n, then:

(i) x
∂2u

∂x2
+ y

∂2u

∂x∂y
= (n− 1)

∂u

∂x
;

(ii) x
∂2u

∂x∂y
+ y

∂2u

∂y2
= (n− 1)

∂u

∂y
;

(iii) x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= n(n− 1)u.

Proof. Since, u is a homogeneous function of x and y of degree n, therefore by
Euler’s theorem, we have:

x
∂u

∂x
+ y

∂u

∂y
= nu. (2.19)

Differentiating (2.19) partially with respect to x, we get:

x
∂2u

∂x2
+

∂u

∂x
+ y

∂2u

∂x∂y
= n

∂u

∂x

=⇒ x
∂2u

∂x2
+ y

∂2u

∂x∂y
= (n− 1)

∂u

∂x
. (2.20)

Again, differentiating (2.19) partially with respect to y, we get:

x
∂2u

∂y∂x
+

∂u

∂y
+ y

∂2u

∂y2
= n

∂u

∂y

=⇒ x
∂2u

∂x∂y
+ y

∂2u

∂y2
+ = (n− 1)

∂u

∂y
. (2.21)
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Multiplying (2.20) by x and (2.21) by y and adding, we get:

x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= (n− 1)

󰀕
x
∂u

∂x
+ y

∂u

∂y

󰀖

=⇒ x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= (n− 1)nu

=⇒ x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= n(n− 1)u. (2.22)

Theorem 7. If u is a function of x and y (not necessarily homogeneous in x and
y) and F is a function such that F (u) = f(x, y) is homogeneous of degree n in
x and y, then

x
∂u

∂x
+ y

∂u

∂y
= n

F (u)

F ′(u)
.

Proof. Given that F (u) = f(x, y) is a homogeneous function of degree n in x
and y, therefore by Euler’s theorems, we have

x
∂F (u)

∂x
+ y

∂F (u)

∂y
= nF (u)

=⇒ xF ′(u)
∂u

∂x
+ yF ′(u)

∂u

∂y
= nF (u)

=⇒ x
∂u

∂x
+ y

∂u

∂y
= n

F (u)

F ′(u)
.

This proves the result.

Example 2.16. If u = sin−1

󰀕
x

y

󰀖
+tan−1

󰀓y
x

󰀔
, then prove that x

∂u

∂x
+y

∂u

∂y
= 0.

Solution. Given that

u = sin−1

󰀕
x

y

󰀖
+ tan−1

󰀓y
x

󰀔

= sin−1

󰀝󰀓y
x

󰀔−1
󰀞
+ tan−1

󰀓y
x

󰀔

= ψ
󰀓y
x

󰀔
.
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Hence, u = x0ψ
󰀓y
x

󰀔
is a homogeneous function of degree n = 0 in x and y.

Hence, by Euler’s theorem, we have:

x
∂u

∂x
+ y

∂u

∂y
= nu

= 0 · u
= 0.

This proves the result.

Example 2.17. If u = xφ
󰀓y
x

󰀔
+ ψ

󰀓y
x

󰀔
, then prove that

x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= 0.

Solution. Let v = xφ
󰀓y
x

󰀔
and w = ψ

󰀓y
x

󰀔
, then u = v + w. Now v = xφ

󰀓y
x

󰀔

is a homogeneous function of x and y of degree 1, so from the relation (2.22)
we have,

x2
∂2v

∂x2
+ 2xy

∂2v

∂x∂y
+ y2

∂2v

∂y2
= 1(1− 1)v = 0 (2.23)

again w = ψ
󰀓y
x

󰀔
is a homogeneous function of x and y of degree 0, so from

the relation (2.22) we have,

x2
∂2w

∂x2
+ 2xy

∂2w

∂x∂y
+ y2

∂2w

∂y2
= 0(0− 1)w = 0 (2.24)

adding (2.23) and (2.24), we get

x2
∂2(v + w)

∂x2
+ 2xy

∂2(v + w)

∂x∂y
+ y2

∂2(v + w)

∂y2
= 0

x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= 0.

This is the required result.
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Example 2.18. If u = sin−1

󰀕
x2 + y2

x+ y

󰀖
, then show that

x
∂u

∂x
+ y

∂u

∂y
= tan u.

Solution. Given that:

u = sin−1

󰀕
x2 + y2

x+ y

󰀖

=⇒ sin u =
x2 + y2

x+ y
= f(x, y) (say).

Again,

f(tx, ty) =
(tx)2 + (ty)2

tx+ ty
= t · x

2 + y2

x+ y

= t1f(x, y).

Thus, f is a homogeneous function of degree 1. Hence, by Euler’s theorem, we
have:

x
∂f

∂x
+ y

∂f

∂y
= 1 · f

=⇒ x
∂(sin u)

∂x
+ y

∂(sin u)

∂y
= 1 · sin u

=⇒ x cosu
∂u

∂x
+ y cosu

∂u

∂y
= sin u

=⇒ x
∂u

∂x
+ y

∂u

∂y
=

sin u

cosu

=⇒ x
∂u

∂x
+ y

∂u

∂y
= tan u.

This is the required result.

Example 2.19. Show that x
∂u

∂x
+ y

∂u

∂y
= 2u log u, where log u =

x3 + y3

3x+ 4y
.

Solution. Given that

log u =
x3 + y3

3x+ 4y
= f(x, y) (say).
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Then:

f(tx, ty) =
(tx)3 + (ty)3

3(tx) + 4(ty)
= t2

x3 + y3

3x+ 4y

= t2f(x, y).

Hence, f is a homogeneous function of degree 2 in x and y. By Euler’s theorem,
we get

x
∂f

∂x
+ y

∂f

∂y
= 2f (2.25)

But
∂f

∂x
=

1

u

∂u

∂x
and

∂f

∂y
=

1

u

∂u

∂y

Hence (2.25) becomes

x

󰀕
1

u

∂u

∂x

󰀖
+ y

󰀕
1

u

∂u

∂y

󰀖
= 2 log u

=⇒ x
∂u

∂x
+ y

∂u

∂y
= 2u log u.

This gives the required result.

Example 2.20. If u = tan−1

󰀕
x3 + y3

x+ y

󰀖
, then show that:

(A) x
∂u

∂x
+ y

∂u

∂y
= sin 2u.

(B) x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= 2 cos 3u sin u.

Solution. Given that:

u = tan−1

󰀕
x3 + y3

x+ y

󰀖

=⇒ tan u =
x3 + y3

x+ y
= f(x, y) (say).

Again,

f(tx, ty) =
(tx)3 + (ty)3

tx+ ty
= t2 · x

3 + y3

x+ y
= t2f(x, y).
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Thus, f is a homogeneous function of degree 2. Hence, by Euler’s theorem, we
have:

x
∂f

∂x
+ y

∂f

∂y
= 2 · f

=⇒ x
∂(tan u)

∂x
+ y

∂(tan u)

∂y
= 2 tan u

=⇒ x sec2 u
∂u

∂x
+ y sec2 u

∂u

∂y
= 2 tan u

=⇒ x
∂u

∂x
+ y

∂u

∂y
=

2 tan u

sec2 u

=⇒ x
∂u

∂x
+ y

∂u

∂y
= sin 2u.

which is the required result (A). Again, differentiating (A), i.e., the above equa-
tion partially with respect to x, we get:

x
∂2u

∂x2
+

∂u

∂x
+ y

∂2u

∂x∂y
= 2 cos 2u

∂u

∂x

=⇒ x
∂2u

∂x2
+ y

∂2u

∂x∂y
= (2 cos 2u− 1)

∂u

∂x
. (2.26)

Again, differentiating (A) partially with respect to y, we get:

x
∂2u

∂y∂x
+

∂u

∂y
+ y

∂2u

∂y2
= 2 cos 2u

∂u

∂y

=⇒ x
∂2u

∂x∂y
+ y

∂2u

∂y2
+ = (2 cos 2u− 1)

∂u

∂y
. (2.27)

Multiplying (2.26) by x and (2.27) by y and adding, we get:

x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= (2 cos 2u− 1)

󰀕
x
∂u

∂x
+ y

∂u

∂y

󰀖

=⇒ x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= (2 cos 2u− 1) sin 2u

=⇒ x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= 2 cos 2u sin 2u− sin 2u

=⇒ x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= sin 4u− sin 2u = 2 cos 3u sin u.

This proves the required result (B).
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2.6 Exercise

(Q.1) If u = sin−1

󰀕
x2y2

x+ y

󰀖
, then show that: x

∂u

∂x
+ y

∂u

∂y
= 3 tan u.

Hint: f(x, y) = sin u =
x2y2

x+ y
is a homogeneous function of degree 3 in x

and y.

(Q.2) If u = cos−1

󰀕
x+ y√
x+

√
y

󰀖
, then show that: x

∂u

∂x
+ y

∂u

∂y
= −1

2
cot u.

Hint: f(x, y) = cosu =
x+ y√
x+

√
y

is a homogeneous function of degree
1

2
in

x and y.

(Q.3) If u = sin−1

󰀕
x+ y√
x+

√
y

󰀖
, then show that:

• x
∂u

∂x
+ y

∂u

∂y
=

1

2
tan u.

• x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= −sin u cos 2u

4 cos3 u
.

Hint: f(x, y) = sin u =
x+ y√
x+

√
y

is a homogeneous function of degree
1

2
in

x and y.

2.7 Maxima and minima of function of two variables
2.7.1 Necessary condition for maxima or minima of a function of two variables

Suppose z = f(x, y) is a function of two variables x and y. We say that there is a
maxima of the function f at point (a, b) if f(a+ h, b+ k)− f(a, b) < 0 for all h, k
(positive or negative). Similarly, say that there is a minima of function f at point
(a, b) if f(a+ h, b+ k)− f(a, b) > 0 for all h, k (positive or negative). We discuss
the necessary conditions for maxima or minima of f analytically and geometrically.
The Taylor’s series for the function f about the point (a, b) is given by:

f(a+h, b+k) = f(a, b)+

󰀗
h

∂

∂x
+ k

∂

∂y

󰀘
f(a, b)+

1

2!

󰀗
h

∂

∂x
+ k

∂

∂y

󰀘2
f(a, b)+ · · ·

Neglecting the higher-order terms we get:

f(a+ h, b+ k) = f(a, b) + hfx(a, b) + kfy(a, b)

+
1

2!

󰀅
h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b)

󰀆
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or

f(a+ h, b+ k)− f(a, b) = hfx(a, b) + kfy(a, b) +
1

2!

󰀅
h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b)

󰀆
. (2.28)

If there is a maxima (or minima) at (a, b) the LHS of the above equation is negative
(or positive). Therefore the RHS must be negative (or positive) for all values of h
and k. Note that, the first two terms of the RHS change their sign with a change
in the signs of h and k (as h and k become positive and negative), and so, LHS
will be negative (or positive) for all h and k if the first two terms become zero, i.e.,

fx(a, b) = fy(a, b) = 0.

Geometrically, since at maxima or
minima, the tangent plane to the
surface z = f(x, y) becomes paral-
lel to the XY -plane, its normal at
point (a, b) must be in Z-direction.
Since the direction ratios of normal
are fx(a, b), fy(a, b) and fz(a, b), at
maxima or minima we must have
fx(a, b) = fy(a, b) = 0.

2.7.2 Second derivative test

Putting fx(a, b) = fy(a, b) = 0 in equation (2.28) we obtain:

f(a+ h, b+ k)− f(a, b) =
1

2!

󰀅
h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b)

󰀆
. (2.29)

Let r = fxx(a, b), s = fxy(a, b), t = fyy(a, b), then:

h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b) = h2r + 2hks+ k2t

=
1

r
(hr + ks)2 + k2

󰀕
t− s2

r

󰀖
.

On putting this value in (2.29) we get:

f(a+ h, b+ k)− f(a, b) =
1

2!

󰀗
1

r
(hr + ks)2 + k2

󰀕
t− s2

r

󰀖󰀘
.

For maxima, the LHS, and so the RHS should be negative and it is possible if r < 0

and t− s2

r
< 0, i.e., rt− s2 > 0.

For minima the LHS, and so the RHS should be positive and it is possible if r > 0

and t− s2

r
> 0, i.e., rt− s2 > 0.
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For saddle point the LHS, and so the RHS should be positive as well as negative
(should change the sign) and it is possible in the following two ways: (i) if r > 0

and t − s2

r
< 0, i.e., rt − s2 < 0. (ii) if r < 0 and t − s2

r
> 0, i.e., rt − s2 < 0.

Thus, for saddle point, we must have rt− s2 < 0.
Finally, if rt− s2 = 0, then the neglected terms in the series become effective and
we need further investigation.
2.7.3 Working rules for finding the maxima and minima.

Let
D(x, y) = fxx(x, y)fyy(x, y)−

󰀅
fxy(x, y)

󰀆2
.

We follow the following steps:

(1) Find the first derivatives fx(x, y) and fy(x, y) and solve the equations:

fx(x, y) = 0

fy(x, y) = 0.

Solution(s) of the above system is (are) the critical point(s). Suppose, a critical
point is (a, b);

(2) if D(a, b) > 0 and fxx(a, b) > 0, then f(x, y) has a local minimum at (a, b);

(3) if D(a, b) > 0 and fxx(a, b) < 0, then f(x, y) has a local maximum at (a, b);

(4) if D(a, b) < 0, then f(x, y) has a saddle point at (a, b);

(5) if D(a, b) = 0, then we cannot draw any conclusions and further investigations
are required.

Example 2.21. Discuss the maxima and minima of f(x, y) = x3 + y3 − 3axy.

Solution. Given function is f(x, y) = x3 + y3 − 3axy. Differentiating partially
with respect to x and y we get:

fx(x, y) = 3x2 − 3ay, fy(x, y) = 3y2 − 3ax.

First, we find the critical point. Then:

fx(x, y) = 0, fy(x, y) = 0 =⇒ 3x2 − 3ay = 0, 3y2 − 3ax = 0.

Since f is symmetric in x and y, a solution of the above system is x = y.
Putting x = y in the above equation we get:

3x2 − 3ax = 0 =⇒ 3x(x− a) = 0

=⇒ x = 0, a.
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Since x = y, we get two critical points (0, 0) and (a, a). Now, by differentiating
fx(x, y) and fy(x, y) again with respect to x and y we get:

fxx(x, y) = 6x, fxy(x, y) = −3a, fyy(x, y) = 6y.

Now we find D at each critical point. Then:
(i).

D(0, 0) = fxx(0, 0)fyy(0, 0)−
󰀅
fxy(0, 0)

󰀆2

= 0 · 0−
󰀅
− 3a

󰀆2

= −9a2

< 0.

Since D(0, 0) < 0, the critical point (0, 0) is a saddle point.
(ii).

D(a, a) = fxx(a, a)fyy(a, a)−
󰀅
fxy(a, a)

󰀆2

= 6a · 6a−
󰀅
− 3a

󰀆2

= 36a2 − 9a2 = 27a2

> 0.

Since D(0, 0) > 0, there are maxima or minima at the critical point (a, a). We
consider two cases:
If a < 0, then fxx(a, a) = 6a < 0 and so there is a maxima of function f and
its maximum value is

fmax = f(a, a) = a3 + a3 − 3a · a · a = −a3.

If a > 0, then fxx(a, a) = 6a > 0 and so there is a minima of function f and
its minimum value is

fmin = f(a, a) = a3 + a3 − 3a · a · a = −a3.

Example 2.22. Discuss the maxima and minima of u = xy +
a3

x
+

a3

y
.

Solution. Given function is u = xy +
a3

x
+

a3

y
. Differentiating partially with

respect to x and y we get:

ux(x, y) = y − a3

x2
, uy(x, y) = x− a3

y2
.
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First, we find the critical point. Then:

ux(x, y) = 0, uy(x, y) = 0 =⇒ y − a3

x2
= 0, x− a3

y2
= 0.

Since f is symmetric in x and y, a solution of the above system is x = y.
Putting x = y in the above equation we get:

x− a3

x2
= 0 =⇒ x3 − a3 = 0

=⇒ x = a.

Since x = y, we get the critical point (a, a). Now, by differentiating ux(x, y)
and uy(x, y) again with respect to x and y we get:

uxx(x, y) =
2a3

x3
, uxy(x, y) = 1, uyy(x, y) =

2a3

y3
.

Now we find D at each critical point. Then:

D(a, a) = uxx(a, a)uyy(a, a)−
󰀅
uxy(a, a)

󰀆2

= 2 · 2−
󰀅
1
󰀆2

= 3

> 0.

Since D(a, a) > 0, there are maxima or minima at critical point (a, a). Then
ux,x(a, a) = 2 > 0, and so, there is a minima of function u and its minimum
value is

umin = u(a, a) = a2 + a2 + a2 = 3a2.

Example 2.23. Discuss the maxima and minima of f(x, y) = xy(a− x− y).

Solution. Given function is f(x, y) = xy(a− x− y) = axy − x2y − xy2. Differ-
entiating partially with respect to x and y we get:

fx(x, y) = ay − 2xy − y2, fy(x, y) = ax− x2 − 2xy.

First, we find the critical point. Then:

fx(x, y) = 0, fy(x, y) = 0 =⇒ ay − 2xy − y2 = 0, ax− x2 − 2xy = 0.

Since f is symmetric in x and y, a solution of the above system is x = y.
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Putting x = y in the above equation we get:

ax− x2 − 2x · x = 0 =⇒ x(a− 3x) = 0

=⇒ x = 0,
a

3
.

Since x = y, we get two critical points
󰀓a
3
,
a

3

󰀔
and (a, a). Now, by differentiating

fx(x, y) and fy(x, y) again with respect to x and y we get:

fxx(x, y) = −2y, fxy(x, y) = a− 2x− 2y, fyy(x, y) = −2x.

Now we find D at each critical point. Then:
(i).

D(0, 0) = fxx(0, 0)fyy(0, 0)−
󰀅
fxy(0, 0)

󰀆2

= 0 · 0−
󰀅
a
󰀆2

= −a2

< 0.

Since D(0, 0) < 0, the critical point (0, 0) is a saddle point.
(ii).

D
󰀓a
3
,
a

3

󰀔
= fxx

󰀓a
3
,
a

3

󰀔
fyy

󰀓a
3
,
a

3

󰀔
−
󰀅
fxy

󰀓a
3
,
a

3

󰀔 󰀆2

= −2a

3
·
󰀕
−2a

3

󰀖
−
󰀅
− a

3

󰀆2

=
4a2

9
− a2

9
> 0.

Since D
󰀓a
3
,
a

3

󰀔
> 0, there is a maxima or minima at the critical point

󰀓a
3
,
a

3

󰀔
.

We consider two cases:
If a > 0, then fxx

󰀓a
3
,
a

3

󰀔
= −2a

3
< 0 and so there is a maxima of function f

and its maximum value is

fmax = f
󰀓a
3
,
a

3

󰀔
=

a2

9

󰀓
a− a

3
− a

3

󰀔
=

a3

27
.

If a < 0, then fxx

󰀓a
3
,
a

3

󰀔
= −2a

3
> 0 and so there is a minima of function f

and its minimum value is

fmin = f
󰀓a
3
,
a

3

󰀔
=

a2

9

󰀓
a− a

3
− a

3

󰀔
=

a3

27
.
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Example 2.24. Discuss the maxima and minima of f(x, y) = x3y2(1− x− y).

Solution. Given function is f(x, y) = x3y2(1 − x − y) = x3y2 − x4y2 − x3y3.
Differentiating partially with respect to x and y we get:

fx(x, y) = 3x2y2 − 4x3y2 − 3x2y3, fy(x, y) = 2x3y − 2x4y − 3x3y2.

First, we find the critical point. Then: fx(x, y) = 0, fy(x, y) = 0 implies

3x2y2 − 4x3y2 − 3x2y3 = 0;

2x3y − 2x4y − 3x3y2 = 0

=⇒ x2y2(3− 4x− 3y) = 0;

x3y(2− 2x− 3y) = 0

=⇒ 4x+ 3y = 3;

2x+ 3y = 2.

On solving the above equations we get x =
1

2
, y =

1

3
. Therefore, the critical

point is
󰀕
1

2
,
1

3

󰀖
. Now, by differentiating fx(x, y) and fy(x, y) again with respect

to x and y we get:

fxx(x, y) = 6xy2 − 12x2y2 − 6xy3, fxy(x, y) = 6x2y − 8x3y − 9x2y2,

fyy(x, y) = 2x3 − 2x4 − 6x3y.

Now at critical point
󰀕
1

2
,
1

3

󰀖
we have

D

󰀕
1

2
,
1

3

󰀖
= fxx

󰀕
1

2
,
1

3

󰀖
fyy

󰀕
1

2
,
1

3

󰀖
−
󰀗
fxy

󰀕
1

2
,
1

3

󰀖󰀘2

=

󰀕
−1

9

󰀖󰀕
−1

8

󰀖
−
󰀕
− 1

12

󰀖2

=
1

72
− 1

144
> 0.

Since D
󰀕
1

2
,
1

3

󰀖
> 0, there is a maxima or minima at the critical point

󰀕
1

2
,
1

3

󰀖
.

Since fxx

󰀕
1

2
,
1

3

󰀖
= −1

9
< 0, there is a maxima of function f and its maximum

value is

fmax = f

󰀕
1

2
,
1

3

󰀖
=

󰀕
1

2

󰀖3󰀕
1

3

󰀖2󰀕
1− 1

2
− 1

3

󰀖
=

1

72
· 1
6
=

1

432
.
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Example 2.25. Discuss the maxima and minima of f(x, y) = sin x sin y sin(x +
y).

Solution. Given function is f(x, y) = sin x sin y sin(x + y). Differentiating par-
tially with respect to x and y we get:

fx(x, y) = cos x sin y sin(x+ y) + sin x sin y cos(x+ y)

= sin y sin(2x+ y).

By symmetry of f in x and y we have

fy(x, y) = sin x sin(x+ 2y).

First, we find the critical point. Then:

fx(x, y) = 0, fy(x, y) = 0 =⇒ sin y sin(2x+ y) = 0, sin x sin(x+ 2y) = 0.

Since f is symmetric in x and y, a solution of the above system is x = y.
Putting x = y in the above equation we get:

sin x sin 3x = 0 =⇒ sin x = 0 or sin 3x = 0

=⇒ x = 0, π,
π

3
,
2π

3
.

Since x = y, we get four critical points (0, 0), (π, π),
󰀓π
3
,
π

3

󰀔
and

󰀕
2π

3
,
2π

3

󰀖
.

Now, by differentiating fx(x, y) and fy(x, y) again with respect to x and y we
get:

fxx(x, y) = 2 sin y cos(2x+y), fxy(x, y) = sin(2x+2y), fyy(x, y) = 2 sin x cos(x+2y).

Now we find D at each critical point. Then:
(i).

D(0, 0) = fxx(0, 0)fyy(0, 0)−
󰀅
fxy(0, 0)

󰀆2

= 0 · 0−
󰀅
0]2

= 0.

Since D(0, 0) = 0, we cannot draw any conclusions and further investigations
are required.
(ii).

D(π, π) = fxx(π, π)fyy(π, π)−
󰀅
fxy(π, π)

󰀆2

= 0 · 0−
󰀅
0]2

= 0.
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Since D(0, 0) = 0, we cannot draw any conclusions and further investigations
are required.
(iii).

D
󰀓π
3
,
π

3

󰀔
= fxx

󰀓π
3
,
π

3

󰀔
fyy

󰀓π
3
,
π

3

󰀔
−
󰁫
fxy

󰀓π
3
,
π

3

󰀔󰁬2

= 2 ·
√
3

2
(−1) · 2 ·

√
3

2
(−1)−

󰀥
−
√
3

2

󰀦2

=
9

4
.

Since D
󰀓π
3
,
π

3

󰀔
> 0, there is a maxima or minima at the critical point

󰀓π
3
,
π

3

󰀔
.

Now fxx

󰀓π
3
,
π

3

󰀔
= 2 ·

√
3

2
(−1) = −

√
3 < 0, and so, there is a maxima of

function f and its maximum value is

fmax = f
󰀓π
3
,
π

3

󰀔
= sin

󰀓π
3

󰀔
· sin

󰀓π
3

󰀔
· sin

󰀓π
3
+

π

3

󰀔
=

3
√
3

8
.

(iv).
D

󰀕
2π

3
,
2π

3

󰀖
= fxx

󰀕
2π

3
,
2π

3

󰀖
fyy

󰀕
2π

3
,
2π

3

󰀖
−
󰀗
fxy

󰀕
2π

3
,
2π

3

󰀖󰀘2

= 2 ·
√
3

2
· 1 · 2 ·

√
3

2
· 1−

󰀥√
3

2

󰀦2

=
9

4
.

Since D

󰀕
2π

3
,
2π

3

󰀖
> 0, there is a maxima or minima at the critical point

󰀕
2π

3
,
2π

3

󰀖
. Now fxx

󰀕
2π

3
,
2π

3

󰀖
= 2 ·

√
3

2
· 1 =

√
3 > 0, and so, there is a

maxima of function f and its minimum value is

fmin = f

󰀕
2π

3
,
2π

3

󰀖
= sin

󰀕
2π

3

󰀖
· sin

󰀕
2π

3

󰀖
· sin

󰀕
2π

3
+

2π

3

󰀖
= −3

√
3

8
.

Example 2.26. Discuss the maxima and minima of f(x, y) = sin x + sin y +
sin(x+ y).

Solution. Given function is f(x, y) = sin x+ sin y + sin(x+ y). Differentiating
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partially with respect to x and y we get:

fx(x, y) = cos x+ cos(x+ y).

By symmetry of f in x and y we have

fy(x, y) = cos y + cos(x+ y).

First, we find the critical point. Then:

fx(x, y) = 0, fy(x, y) = 0 =⇒ cos x+ cos(x+ y) = 0, cos y + cos(x+ y) = 0.

Since f is symmetric in x and y, a solution of the above system is x = y.
Putting x = y in the above equation we get:

cos x+ cos(2x) = 0 =⇒ cos x+ 2 cos2 x− 1 = 0

=⇒ 2 cos2 x+ cos x− 1 = 0

=⇒ cos x =
−1±

√
1 + 8

4
= −1,

1

2

=⇒ x = π,
π

3
.

Since x = y, we two three critical points (π, π),
󰀓π
3
,
π

3

󰀔
and

󰀕
5π

3
,
5π

3

󰀖
. Now,

by differentiating fx(x, y) and fy(x, y) again with respect to x and y we get:

fxx(x, y) = − sin x−sin(x+y), fxy(x, y) = − sin(x+y), fyy(x, y) = − sin y−sin(x+y).

Now we find D at each critical point. Then:
(i).

D(π, π) = fxx(π, π)fyy(π, π)−
󰀅
fxy(π, π)

󰀆2

= 0 · 0−
󰀅
0]2

= 0.

Since D(0, 0) = 0, we cannot draw any conclusions and further investigations
are required.
(ii).

D
󰀓π
3
,
π

3

󰀔
= fxx

󰀓π
3
,
π

3

󰀔
fyy

󰀓π
3
,
π

3

󰀔
−
󰀅
fxy

󰀓π
3
,
π

3

󰀔 󰀆2

= (−
√
3) · (−

√
3)−

󰀥
−
√
3

2

󰀦2

=
9

4
> 0.
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Since D
󰀓π
3
,
π

3

󰀔
> 0, there is a maxima or minima at the critical point

󰀓π
3
,
π

3

󰀔
.

Now fxx

󰀓π
3
,
π

3

󰀔
= −

√
3 < 0, and so, there is a maxima of function f and its

maximum value is

fmax = f
󰀓π
3
,
π

3

󰀔
= sin

󰀓π
3

󰀔
+ sin

󰀓π
3

󰀔
+ sin

󰀓π
3
+

π

3

󰀔
=

3
√
3

2
.

(iii).
D

󰀕
5π

3
,
5π

3

󰀖
= fxx

󰀕
5π

3
,
5π

3

󰀖
fyy

󰀕
5π

3
,
5π

3

󰀖
−
󰀅
fxy

󰀕
5π

3
,
5π

3

󰀖󰀆2

= (
√
3) · (

√
3)−

󰀥√
3

2

󰀦2

=
9

4
> 0.

Since D

󰀕
5π

3
,
5π

3

󰀖
> 0, there is a maxima or minima at the critical point

󰀕
5π

3
,
5π

3

󰀖
. Now fxx

󰀕
5π

3
,
5π

3

󰀖
=

√
3 > 0, and so, there is a minima of function

f and its minimum value is

fmin = f

󰀕
5π

3
,
5π

3

󰀖
= sin

󰀕
5π

3

󰀖
+ sin

󰀕
5π

3

󰀖
+ sin

󰀕
5π

3
+

5π

3

󰀖
= −3

√
3

2
.

Example 2.27. Discuss the maxima or minima of sin x sin y sin z, where x, y and
z are the angles of a triangle.

Solution. Since x, y and z are the angles of the triangle, we have x+ y + z = π
or z = π − (x + y). Now the given function is f(x, y) = sin x sin y sin z. On
putting the value of z we have

f(x, y) = sin x sin y sin [π − (x+ y)] = sin x sin y sin(x+ y).

Now follow the process of Example 2.25.

Example 2.28. Find the point on the surface z2 = xy + 1 nearest to the origin.

Solution. Suppose the required point on the surface z2 = xy + 1 is (x, y, z).
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Then we have to find this point such that its distance from the origin, i.e.

d =
󰁳
x2 + y2 + z2

is minimum. Since d and d2 get their minimum values together, for simplicity,
we calculate the point of minima of

d2 = x2 + y2 + z2.

Since the point (x, y, z) is situated on the surface therefore z2 = xy + 1. On
putting this value in the above equation we get: d2 = f(x, y) = x2+y2+xy+1.
Differentiating partially with respect to x and y we get:

fx(x, y) = 2x+ y.

By symmetry of f in x and y we have

fy(x, y) = 2y + x.

First, we find the critical point. Then:

fx(x, y) = 0, fy(x, y) = 0 =⇒ 2x+ y = 0, 2y + x = 0.

Since f is symmetric in x and y, a solution of the above system is x = y.
Putting x = y in the above equation we get:

3x = 0 =⇒ x = 0.

Since x = y, the critical point is (0, 0). Now, by differentiating fx(x, y) and
fy(x, y) again with respect to x and y we get:

fxx(x, y) = 2, fxy(x, y) = 1, fyy(x, y) = 2.

Now we find D at critical point (0, 0). Then:

D(0, 0) = fxx(0, 0)fyy(0, 0)−
󰀅
fxy(0, 0)

󰀆2

= 2 · 2−
󰀅
1]2

= 3.

Since D(0, 0) = 3 > 0, there are maxima or minima at the critical point (0, 0).
Now fxx (0, 0) = 2 > 0, and so, there is a minima of function f at point
x = y = 0, and from the equation of surface z2 = xy + 1, at this point we have
x = y = 0 and so z2 = 0 ·01, i.e., z = ±1. Thus, the distance of point (0, 0,±1)
of the surface will be minimum from the origin.
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Example 2.29. If the perimeter of a triangle is constant, prove that the area of
this triangle is maximum when the triangle is equilateral.

Solution. We know that the area of a triangle is given by

∆ =
󰁳
s(s− a)(s− b)(s− c)

where a, b, c are the sides of triangle and 2s = a+ b+ c. We have to maximize
the area ∆. Since ∆ and ∆2 get their maximum values together, for simplicity,
we calculate the point of minima of

∆2 = s(s− a)(s− b)(s− c).

Since the perimeter is constant we have c = 2s− a− b. On putting this value
in the above equation we get: ∆2 = f(a, b) = s(s − a)(s − b)(a + b − s).
Differentiating partially with respect to a and b we get:

fa(a, b) = s(s− b)[−(a+ b− s) + (s− a)]

= s(s− b)(2s− 2a− b). (2.30)

By symmetry of f in x and y we have

fb(a, b) = s(s− a)(2s− 2b− a).

First, we find the critical point. Then, fa(a, b) = 0, fb(a, b) = 0 implies that

s(s− b)(2s− 2a− b) = 0, s(s− a)(2s− 2b− a) = 0.

Since f is symmetric in a and b, a solution of the above system is a = b. Putting
a = b in the above equation we get:

s(s− a)(2s− 2a− a) = 0 =⇒ s = 0, s = a, a =
2s

3
.

Since s = 0, s = a are not possible, we have a = b =
2s

3
, and so, the critical

point is
󰀕
2s

3
,
2s

3

󰀖
. Now, by differentiating fa(a, b) and fb(a, b) again with

respect to a and b we get:

faa(a, b) = −2s(s− b), fab(a, b) = s(2a+ 2b− 3s), fbb(a, b) = −2s(s− a).
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Now we find D at each critical point. Then:

D

󰀕
2s

3
,
2s

3

󰀖
= faa

󰀕
2s

3
,
2s

3

󰀖
fbb

󰀕
2s

3
,
2s

3

󰀖
−
󰀗
fab

󰀕
2s

3
,
2s

3

󰀖󰀘2

=

󰀕
−2s2

3

󰀖󰀕
−2s2

3

󰀖
−
󰀗
−s2

3

󰀘2
=

s4

3
.

Since D

󰀕
2s

3
,
2s

3

󰀖
=

s4

3
> 0, there is a maxima or minima at the critical

point
󰀕
2s

3
,
2s

3

󰀖
. Now faa

󰀕
2s

3
,
2s

3

󰀖
= −2s2

3
< 0, and so, there is a maxima

of function f at point x = y =
2s

3
, i.e., the area is maximum. Also, since

2s = a+ b+ c, at point
󰀕
2s

3
,
2s

3

󰀖
we have c = 2s− a− b =

2s

3
. Therefore, for

maximum area we have a = b = c =
2s

3
, i.e., the triangle is equilateral.

2.8 Exercise

(Q.1) Discuss the maxima or minima of the function f(x, y) = x3− 3xy2− 15x2−
15y2 + 72x.

Ans. Critical point (6, 0) (minima), with fmin = f(6, 0) = 108, (4, 0) (max-
ima), with fmax = f(4, 0) = 112, (5, 1) and (5,−1) are saddle points.

(Q.2) Discuss the maxima or minima of the function f(x, y) = x3 − 4xy + 2y2.

Ans. Critical point (0, 0) (saddle point) and (4/3, 4/3) (minima), with
fmin = f(4/3, 4/3) = −32

27.

(Q.3) Discuss the maxima or minima of the function f(x, y) = cos x cos y cos z,
where x, y and z are the angles of a triangle.
Hint. Since x + y + z = π the given function is reduced to f(x, y) =
− cos x cos y cos(x+ y).

(Q.4) Discuss the maxima or minima of the function f(x, y) = cos x+cos y+cos z,
where x, y and z are the angles of a triangle.
Hint. Since x + y + z = π the given function is reduced to f(x, y) =
cos x+ cos y − cos(x+ y).

(Q.5) Discuss the maxima and minima of f(x, y) = x3 + y3 − 3xy.

Ans. Critical point (0, 0) (saddle point) and (1, 1) (minima), fmin = f(a, a) =
−1.



Unit-III
Matrices, determinants, rank, normal form. Systems of linear equations and their solutions.

3.1 Vectors and their linear combination and generated space.

We consider the three-dimensional Euclidian space and denote it by R3. Each vec-
tor of this space can be represented by its position vector. For example, if O is
the origin and

−→
OP is the vector with tail O and head P , where coordinates of P

are (x1, x2, x3), then
−→
OP = x1î+ x2ĵ + x3k̂ is completely described by its coordi-

nates (x1, x2, x3), i.e., all the information about
−→
OP is contained in the coordinates

(x1, x2, x3). Therefore, all the vectors of R3 are represented by their coordinates
and we write R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}. In further discussion, we repre-

sent a vector by X =

󰀵

󰀷
x1
x2
x3

󰀶

󰀸, since it same as (x1, x2, x3) in the sense that both

the notations give the same information about the vector. The vector X =

󰀵

󰀷
x1
x2
x3

󰀶

󰀸

is also called a column vector or column matrix. Similarly, we can define a row
vector or a row matrix by X ′ = [ x1, x2, x3 ].

Suppose, X1 =

󰀵

󰀷
1
0
0

󰀶

󰀸 , X2 =

󰀵

󰀷
1
1
0

󰀶

󰀸 are two three dimensional vectors and a1, a2 ∈

R. Then, the expression

X = a1X1 + a2X2 = a1

󰀵

󰀷
1
0
0

󰀶

󰀸+ a2

󰀵

󰀷
1
1
0

󰀶

󰀸 =

󰀵

󰀷
a1 + a2

a2
0

󰀶

󰀸

is called a linear combination of the vectors X1, X2. Obviously, by changing the
values of a1 and a2 we can find infinitely many linear combinations of X1 and X2.
The set of all linear combinations of X1 and X2 is called the space generated by
the vectors X1 and X2. These notions can be generalized for an arbitrary number
of vectors of n-dimensional vectors.

68
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3.1.1 Linear independence and dependence of vectors.

Vectors X1, X2, . . . , Xn are called linearly dependent if any one of them is a linear
combination of other vectors, otherwise vectors are called linearly independent.

3.1.2 Echelon form of a matrix.

We can always reduce the given matrix into a matrix which is in the following form:

(1) All nonzero rows are above any zero row;

(2) the pivot (first nonzero entry from the left) of any row is always strictly to the
right of the pivot of the row above it.

Such a form of matrix is called the echelon form.

3.1.3 Rank of a Matrix.

Suppose that

A =

󰀵

󰀹󰀹󰀷

a11 a12 · · · a1n
a21 a22 · · · a2n
... ... · · · ...

am1 am2 · · · amn

󰀶

󰀺󰀺󰀸 = [X1 X2 . . . Xn]

where X1 =

󰀵

󰀹󰀹󰀷

a11
a21
...
am1

󰀶

󰀺󰀺󰀸, X2 =

󰀵

󰀹󰀹󰀷

a21
a22
...
am2

󰀶

󰀺󰀺󰀸 . . ., Xn =

󰀵

󰀹󰀹󰀷

a1n
a2n
...

amn

󰀶

󰀺󰀺󰀸 are the colomn vectors.

Then the number of linearly independent column vectors in X1, X2, . . . , Xn is
called the column rank of matrix A. Similarly, the matrix A can be written

as A =

󰀵

󰀹󰀹󰀷

X ′
1

X ′
2...

X ′
m

󰀶

󰀺󰀺󰀸 where X ′
1 = [a11 a12 · · · a1n], X ′

1 = [a21 a22 · · · a2n] , . . . , X ′
m =

[am1 am2 · · · amn]. Then, the number of linearly independent row vectors in X ′
1, X

′
2, . . . , X

′
m

is called the row rank of matrix A. An interesting property of matrices says that
the row and column ranks of a matrix are always equal and this common value is
called the rank of a matrix and is denoted by ρ(A).
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How to find the rank of a matrix. We use the following two methods of finding
the rank of matrices:
(I). Method of determinants. The rank of a matrix can also be calculated
using determinants. The rank of a matrix is the order of the largest square
submatrix of the given matrix with a nonzero determinant. To find this, we
search for a submatrix with a nonzero determinant, and we start with the
largest possible submatrix of the given matrix. If this largest submatrix has a
nonzero determinant, then the order of the submatrix is the rank of the given
matrix. If the determinant of largest is zero, then we go to the submatrix of
order less than 1 from the largest submatrix and repeat this process till we
get a submatrix with nonzero determinant.
(II). Method of Echelon form. In this method, we first reduce the given metric
into echelon form by applying the elementary transformations, and then, the
number of nonzero rows in the reduced echelon form is the rank of the given
matrix.

Example 3.1. Find one nonzero minor of the highest order of the matrix A =󰀵

󰀷
1 −2 3
−2 4 −1
−1 2 7

󰀶

󰀸 , hence find its rank.

Solution. We start with the highest order minor, i.e., the minor of order 3

|A| =

󰀏󰀏󰀏󰀏󰀏󰀏

1 −2 3
−2 4 −1
−1 2 7

󰀏󰀏󰀏󰀏󰀏󰀏
= 1(28 + 2) + 2(−14− 1) + 3(−4 + 4)

= 30− 30 = 0.

Therefore, the highest minor of order 3 is zero. We next consider the second
highest order minor, i.e., the minor of order 2:

=

󰀏󰀏󰀏󰀏
−2 3
4 −1

󰀏󰀏󰀏󰀏 = 2− 12 = −10 ∕= 0.

Thus, the highest order nonzero minor of A is of order 2, and so, ρ(A) = 2.

Example 3.2. In each case, find the rank of the matrix A =

󰀵

󰀷
1 1 1

b+ c c+ a a+ b
bc ca ab

󰀶

󰀸
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Solution. Again, we start with the highest order minor of A, then:

|A| =

󰀏󰀏󰀏󰀏󰀏󰀏

1 1 1
b+ c c+ a a+ b
bc ca ab

󰀏󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏󰀏

1 0 0
b+ c a− b a− c
bc c(a− b) b(a− c)

󰀏󰀏󰀏󰀏󰀏󰀏
(applying C2 → C2 − C1, C3 → C3 − C1)

=

󰀏󰀏󰀏󰀏
a− b a− c

c(a− b) b(a− c)

󰀏󰀏󰀏󰀏
= −(a− b)(b− c)(c− a).

We consider the following cases:
Case I. When a = b = c. In this case |A| = 0, and so, ρ(A) < 3. Also, for

a = b = c we have A =

󰀏󰀏󰀏󰀏󰀏󰀏

1 1 1
2a 2a 2a
a2 a2 a2

󰀏󰀏󰀏󰀏󰀏󰀏
. Clearly, all the minors of order 2 of A

are zero, and so, ρ(A) < 2. Now, clearly the minor of order 1 of A is nonzero ,
therefore ρ(A) = 1.
Case II. When a = b ∕= c. In this case |A| = 0, and so, ρ(A) < 3. Also,

for a = b ∕= c we have A =

󰀏󰀏󰀏󰀏󰀏󰀏

1 1 1
a+ c a+ c 2a
ac ac a2

󰀏󰀏󰀏󰀏󰀏󰀏
, and a minor of order 2

=

󰀏󰀏󰀏󰀏
1 1

a+ c 2a

󰀏󰀏󰀏󰀏 = a − c ∕= 0. Therefore, ρ(A) = 2. Since A is symmetric in

a, b, c, therefore, if any two of a, b, c are equal, and the remaining is not equal
to the first two, the rank of A remains 2.
Case III. When a ∕= b ∕= c. In this case |A| ∕= 0, and so, ρ(A) = 3.

Nullity of a square Matrix. The nullity of a matrix is the excess of the order of
the matrix over its rank, and it is denoted by ν(A). If A is a square matrix of
order n and ρ(A) = r, the ν(A) = n− ρ(A) = n− r.

Example 3.3. Determine the rank and nullity of the following matrices:

A =

󰀵

󰀹󰀹󰀷

12 22 32 42

22 32 42 52

32 42 52 62

42 52 62 72

󰀶

󰀺󰀺󰀸 .
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Solution. Given matrix is: A =

󰀵

󰀹󰀷

1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

󰀶

󰀺󰀸 .

Applying R4 → R4 −R3, R3 → R3 −R2; R2 → R2 −R1 we obtain:

A ∼

󰀵

󰀹󰀷

1 4 9 16
3 5 7 9
5 7 9 11
7 9 11 13

󰀶

󰀺󰀸 .

Applying R4 → R4 −R3, R3 → R3 −R2; R2 → R2 −R1 we obtain:

A ∼

󰀵

󰀹󰀷

1 4 9 16
2 1 −2 −7
2 2 2 2
2 2 2 2

󰀶

󰀺󰀸 .

Applying R3 → 1
2R3; R3 ↔ R1 we obtain:

A ∼

󰀵

󰀹󰀷

1 1 1 1
2 1 −2 −7
1 4 9 16
2 2 2 2

󰀶

󰀺󰀸 .

Applying R4 → R4 − 2R1, R3 → R3 −R1; R2 → R2 − 2R1 we obtain:

A ∼

󰀵

󰀹󰀷

1 1 1 1
0 −1 −4 −9
0 3 8 15
0 0 0 0

󰀶

󰀺󰀸 .

Applying R3 → R3 + 3R2 we obtain:

A ∼

󰀵

󰀹󰀷

1 1 1 1
0 −1 −4 −9
0 0 −4 −12
0 0 0 0

󰀶

󰀺󰀸 .

The above matrix is in the echelon form, therefore, the rank of matrix A:

ρ(A) = no. of nonzero rows in the echelon form= 3 and ν(A) = 4− 3 = 1.
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Example 3.4. Determine the rank and nullity of the following matrices:

(i)

󰀵

󰀷
1 2 3
1 4 2
2 6 5

󰀶

󰀸 (ii)

󰀵

󰀹󰀷

0 1 −3 −1
1 0 1 1
3 1 0 2
1 1 −2 0

󰀶

󰀺󰀸

Solution. (i). Let A =

󰀵

󰀷
1 2 3
1 4 2
2 6 5

󰀶

󰀸 . Applying the transformation R2 → R2 −

R1, R3 → R3 − 2R1 we have:

A ∼

󰀵

󰀷
1 2 3
0 2 −1
0 2 −1

󰀶

󰀸 .

Applying the transformation R3 → R3 −R2 we have:

A ∼

󰀵

󰀷
1 2 3
0 2 −1
0 0 0

󰀶

󰀸 .

The above matrix is in the echelon form, therefore, the rank of matrix A:

ρ(A) = no. of nonzero rows in the echelon form= 2 and ν(A) = 3− 2 = 1.

(II). Let A =

󰀵

󰀹󰀷

0 1 −3 −1
1 0 1 1
3 1 0 2
1 1 −2 0

󰀶

󰀺󰀸 . Applying the transformation R1 ↔ R2 we

have

A ∼

󰀵

󰀹󰀷

1 0 1 1
0 1 −3 −1
3 1 0 2
1 1 −2 0

󰀶

󰀺󰀸 .

Applying R3 → R3 − 3R1, R4 → R4 −R1 we have:

A ∼

󰀵

󰀹󰀷

1 0 1 1
0 1 −3 −1
0 1 −3 −1
0 1 −3 −1

󰀶

󰀺󰀸 .
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Applying R3 → R3 −R2, R4 → R4 −R2 we have:

A ∼

󰀵

󰀹󰀷

1 0 1 1
0 1 −3 −1
0 0 0 0
0 0 0 0

󰀶

󰀺󰀸 .

The above matrix is in the echelon form, therefore, the rank of matrix A:
ρ(A) = no. of nonzero rows in the echelon form= 2 and ν(A) = 4− 2 = 2.

3.2 Normal form of a Matrix

By elementary row and column transformation, every matrix can be reduced into
one of the following forms:

󰀗
Ir 0
0 0

󰀘
;

󰀗
Ir
0

󰀘
;
󰀅
Ir 0

󰀆
; [Ir]

where r is the rank of the matrix. The above four forms are called the normal form
of the matrix.

Example 3.5. Reduce the following matrix into the normal form and find its
rank and nullity:

A =

󰀵

󰀹󰀷

2 3 −1 −1
1 −1 −2 −4
3 1 3 −2
6 3 0 −7

󰀶

󰀺󰀸 .

Solution. Applying R1 ↔ R2:

A ∼

󰀵

󰀹󰀷

1 −1 −2 −4
2 3 −1 −1
3 1 3 −2
6 3 0 −7

󰀶

󰀺󰀸 .

Applying R2 → R2 − 2R1, R3 → R3 − 3R1, R4 → R4 − 6R1:

A ∼

󰀵

󰀹󰀷

1 −1 −2 −4
0 5 3 7
0 4 9 10
0 9 12 17

󰀶

󰀺󰀸 .
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Applying R2 → R2 −R3:

A ∼

󰀵

󰀹󰀷

1 −1 −2 −4
0 1 −6 −3
0 4 9 10
0 9 12 17

󰀶

󰀺󰀸 .

Applying R3 → R3 − 4R2, R4 → R4 − 9R2:

A ∼

󰀵

󰀹󰀷

1 −1 −2 −4
0 1 −6 −3
0 0 33 22
0 0 66 44

󰀶

󰀺󰀸 .

Applying R4 → R4 − 2R3:

A ∼

󰀵

󰀹󰀷

1 −1 −2 −4
0 1 −6 −3
0 0 33 22
0 0 0 0

󰀶

󰀺󰀸 .

Applying the following series of operations in order:

C2 → C2 + C1, C3 → C3 + 2C1, C4 → C4 + 4C1;

C3 → C3 + 6C2, C4 → C4 + 3C2; C4 → C4 −
2

3
C3; C3 →

1

33
C3 :

A ∼

󰀵

󰀹󰀷

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

󰀶

󰀺󰀸 =

󰀗
I3 0
0 0

󰀘
.

It is the required normal form of the matrix and the rank of matrix ρ(A) = 3,
and the nullity ν(A) = 4− 3 = 1.

3.3 Solution of System of Linear Equations.

Consider a system of m linear equations in n variables:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾
(3.1)
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In matrix form, this system can be written as AX = B, where A =

󰀵

󰀹󰀹󰀷

a11 a12 · · · a1n
a12 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

󰀶

󰀺󰀺󰀸

is the coefficient matrix, X =

󰀵

󰀹󰀹󰀷

x1
x2
...
xn

󰀶

󰀺󰀺󰀸 is the variable vector and b =

󰀵

󰀹󰀹󰀷

b1
b2
...
bn

󰀶

󰀺󰀺󰀸 is the

constant vector.
We denote the augmented matrix by

󰀅
A B

󰀆
and

󰀅
A B

󰀆
=

󰀵

󰀹󰀹󰀷

a11 a12 · · · a1n b1
a12 a22 · · · a2n b2
... ... . . . ... ...

am1 am2 · · · amn bn

󰀶

󰀺󰀺󰀸 .

Then, we follow the following procedure to test the consistency and obtain the
solution of the system (3.1):

(A) If ρ
󰀃󰀅

A B
󰀆󰀄

∕= ρ(A), then system is inconsistent, and has no solution.

(B) If ρ
󰀃󰀅

A B
󰀆󰀄

= ρ(A) = n, then the system is consistent and has a unique
solution.

(C) If ρ
󰀃󰀅

A B
󰀆󰀄

= ρ(A) < n, then the system is consistent and has infinitely
many solutions with n− ρ(A) independent variables.

Example 3.6. Show that the following system is consistent and solve it:

x+ y + z = 3
x+ 2y + 3z = 4
x+ 4y + 9z = 6.

Solution. Write the system as: AX = B, A =

󰀵

󰀷
1 1 1
1 2 3
1 4 9

󰀶

󰀸 , X =

󰀵

󰀷
x
y
z

󰀶

󰀸 , B =

󰀵

󰀷
3
4
6

󰀶

󰀸 . Now, augmented matrix will be

󰀅
A B

󰀆
=

󰀵

󰀷
1 1 1 3
1 2 3 4
1 4 9 6

󰀶

󰀸 .
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Applying R2 → R2 −R1, R3 → R3 −R1

󰀅
A B

󰀆
∼

󰀵

󰀷
1 1 1 3
0 1 2 1
0 3 8 3

󰀶

󰀸 .

Applying R3 → R3 − 3R2

󰀅
A B

󰀆
∼

󰀵

󰀷
1 1 1 3
0 1 2 1
0 0 2 0

󰀶

󰀸 .

It is the echelon form of the augmented matrix and it is clear that ρ
󰀃󰀅

A B
󰀆󰀄

=
ρ(A) = 3, which is equal to the number of unknown variables. Therefore, the
given system is consistent and has a unique solution. From the echelon form we
have the equations:

x+ y + z = 3
y + 2z = 1

2z = 0.

Therefore, the solution is: x = 2, y = 1, z = 0.

Example 3.7. Test for consistency and solve (if consistent):

5x+ 3y + 7z = 4
3x+ 26y + 2z = 9
7x+ 2y + 10z = 5.

Solution. Write the system as: AX = B, A =

󰀵

󰀷
5 3 7
3 26 2
7 2 10

󰀶

󰀸 , X =

󰀵

󰀷
x
y
z

󰀶

󰀸 , B =

󰀵

󰀷
4
9
5

󰀶

󰀸 . Now, augmented matrix will be

󰀅
A B

󰀆
=

󰀵

󰀷
5 3 7 4
3 26 2 9
7 2 10 5

󰀶

󰀸 .
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Applying R1 → R1 − 2R2

󰀅
A B

󰀆
∼

󰀵

󰀷
−1 −49 3 −14
3 26 2 9
7 2 10 5

󰀶

󰀸 .

Applying R2 → R2 + 3R1, R3 → R3 + 7R1

󰀅
A B

󰀆
∼

󰀵

󰀷
−1 −49 3 −14
0 −121 11 −33
0 −341 31 −93

󰀶

󰀸 .

Applying R3 → R3 − 31
11R2

󰀅
A B

󰀆
∼

󰀵

󰀷
−1 −49 3 −14
0 −121 11 −33
0 0 0 0

󰀶

󰀸 .

It is the echelon form of the augmented matrix and it is clear that ρ
󰀃󰀅

A B
󰀆󰀄

=
ρ(A) = 2, which is less than the number of unknown variables (3). There-
fore, the given system is consistent and has infinitely many solutions. Since
n−ρ(A) = 3−2 = 1, so one variable in the given system is independent. From
the echelon form we have two equations:

−x− 49y + 3z = −14
−121y + 11z = −33.

Since one variable is independent, let z = k, then from the above equations:

x =
7

11
− 16

11
k, y =

3 + k

11
, z = k.

Example 3.8. Show that the following system is inconsistent:

x− 2y + z − w = −1
3x− 2z + 3w = −4
5x− 4y + w = −3.

Solution. The augmented matrix of the given system is:

󰀅
A B

󰀆
=

󰀵

󰀷
1 −2 1 −1 −1
3 0 −2 3 −4
5 −4 0 1 −3

󰀶

󰀸 .
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Applying R2 → R2 − 3R1, R3 → R3 − 5R1

󰀅
A B

󰀆
∼

󰀵

󰀷
1 −2 1 −1 −1
0 6 −5 6 −1
0 6 −5 6 2

󰀶

󰀸 .

Applying R3 → R3 −R2

󰀅
A B

󰀆
∼

󰀵

󰀷
1 −2 1 −1 −1
0 6 −5 6 −1
0 0 0 0 3

󰀶

󰀸 .

It is the echelon form of the augmented matrix and it is clear that ρ
󰀃󰀅

A B
󰀆󰀄

=
3 ∕= ρ(A) = 2. Therefore, the given system is inconsistent and has no solu-
tion.

Example 3.9. Investigate the values of λ and µ so that the equations:

x+ y + z = 6
x+ 2y + 3z = 10
x+ 2y + λz = µ,

have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

Solution. Write the system as AX = B, where A =

󰀵

󰀷
1 1 1
1 2 3
1 2 λ

󰀶

󰀸 , X =

󰀵

󰀷
x
y
z

󰀶

󰀸 , B =

󰀵

󰀷
6
10
µ

󰀶

󰀸 . Now, augmented matrix will be

󰀅
A B

󰀆
=

󰀵

󰀷
1 1 1 6
1 2 3 10
1 2 λ µ

󰀶

󰀸 .

Applying R2 → R2 −R1, R3 → R3 −R1

󰀅
A B

󰀆
∼

󰀵

󰀷
1 1 1 6
0 1 2 4
0 1 λ− 1 µ− 6

󰀶

󰀸 .
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Applying R3 → R3 −R2

󰀅
A B

󰀆
∼

󰀵

󰀷
1 1 1 6
0 1 2 4
0 0 λ− 3 µ− 10

󰀶

󰀸 .

It is the echelon form of the augmented matrix. Now, we consider the following
cases:

(i) System has no solution: It is possible only when ρ
󰀃󰀅

A B
󰀆󰀄

∕= ρ(A), i.e.,
when λ = 3 and µ ∕= 10.

(ii) System has a unique solution: It is possible only when ρ
󰀃󰀅

A B
󰀆󰀄

=
ρ(A) = 3, i.e., λ ∕= 3 and µ ∈ R.

(iii) System has infinitely many solutions: It is possible only when ρ
󰀃󰀅

A B
󰀆󰀄

=
ρ(A) < 3, i.e., λ = 3 and µ = 10.

Example 3.10. For what value(s) of k the equations:

x+ y + z = 1
x+ 2y + 4z = k
x+ 4y + 10z = k2,

have a solution and solve completely in each case.

Solution. The augmented matrix of the given system is:

󰀅
A B

󰀆
=

󰀵

󰀷
1 1 1 1
1 2 4 k
1 4 10 k2

󰀶

󰀸 .

Applying R2 → R2 −R1, R3 → R3 −R1

󰀅
A B

󰀆
∼

󰀵

󰀷
1 1 1 1
0 1 3 k − 1
0 3 9 k2 − 1

󰀶

󰀸 .

Applying R3 → R3 − 3R2

󰀅
A B

󰀆
∼

󰀵

󰀷
1 1 1 1
0 1 3 k − 1
0 0 0 k2 − 3k + 2

󰀶

󰀸 . (3.2)
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The system of equations will have a solution if it is consistent, i.e., if ρ
󰀃󰀅

A B
󰀆󰀄

=
ρ(A), and it is possible only when k2− 3k+2 = 0, i.e., k = 1 or k = 2. In both
cases we have ρ

󰀃󰀅
A B

󰀆󰀄
= ρ(A) = 2 < 3 (no. of variables). Therefore, in

both cases, we have 3−2 = 1 independent variable and infinitely many solutions
of the given system. We consider the following cases:
Case I. If k = 1, then from (3.2) we have the following equations:

x+ y + z = 1
y + 3z = 0.

Since one variable is independent, choose z = a we have the following solution:

x = 1 + 2a, y = −3a, z = a.

Case II. If k = 2, then from (3.2) we have the following equations:

x+ y + z = 1
y + 3z = 1.

Since one variable is independent, choose z = b we have the following solution:
x = 2b, y = 1− 3b, z = b.

Example 3.11. For what value of k the equations:

2x− 3y + 6z − 5t = 3
y − 4z + t = 1

4x− 5y + 8z − 9t = k,

(i) have no solution (ii) have infinitely many solutions.

Solution. The augmented matrix of the given system is:

󰀅
A B

󰀆
=

󰀵

󰀷
2 −3 6 −5 3
0 1 −4 1 1
4 −5 8 −9 k

󰀶

󰀸 .

Applying R3 → R3 − 2R1

󰀅
A B

󰀆
∼

󰀵

󰀷
2 −3 6 −5 3
0 1 −4 1 1
0 1 −4 1 k − 6

󰀶

󰀸 .
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Applying R3 → R3 −R2

󰀅
A B

󰀆
∼

󰀵

󰀷
2 −3 6 −5 3
0 1 −4 1 1
0 0 0 0 k − 7

󰀶

󰀸 .

The system of equations will have a solution if it is consistent, i.e., if ρ
󰀃󰀅

A B
󰀆󰀄

=
ρ(A), and it is possible only when k − 7 = 0, i.e., k = 7. In this case, we have
ρ
󰀃󰀅

A B
󰀆󰀄

= ρ(A) = 2 < 4 (no. of variables). Therefore, we have 4− 2 = 1
independent variables and infinitely many solutions of the given system. Now,
for k=7, the above system reduces to:

2x− 3y + 6z − 5t = 3
y − 4z + t = 1.

Since two variables are independent, choose z = a and t = b we have the
following solution:

x = 3 + 3a+ b, y = 1 + 4a− b, z = a, t = b.

3.4 Homogeneous system of equations

We consider the following system of equations:

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0.

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾
(3.3)

Note that, in the above system all the constants of R.H.S. are zero and such a
system is called the homogeneous system. In matrix form, it can be written as
AX = 0, where A is the coefficient matrix and X is the variable vector. In such
systems the augmented matrix is

󰀅
A B

󰀆
=

󰀅
A 0

󰀆
. Note that, in any case, the

rank of the coefficient matrix A and the rank of the augmented matrix
󰀅
A B

󰀆
are

equal. Therefore, homogeneous systems are always consistent and have a solution,
namely, x1 = x2 = · · · = xn = 0 is always a solution of system (3.3) and it is called
the zero solution or trivial solution.

Note: (A) If ρ(A) = n =number of variables, then system (3.3) has only the
trivial solution.
(B) If ρ(A) < n =number of variables, then system (3.3) has a nontrivial
solution.
(C) For a homogeneous system, we find the rank of only A, not of

󰀅
A B

󰀆
.
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Example 3.12. Solve the equations: x + 3y − 2z = 0, 2x − y + 4z = 0, x −
11y + 14z = 0.

Solution. The coefficient matrix of the given system is:

A =

󰀵

󰀷
1 3 −2
2 −1 4
1 −11 14

󰀶

󰀸

Applying R2 → R2 − 2R1, R3 → R3 −R1

A ∼

󰀵

󰀷
1 3 −2
0 −7 8
0 −14 16

󰀶

󰀸 .

Applying R3 → R3 − 2R2

A ∼

󰀵

󰀷
1 3 −2
0 −7 8
0 0 0

󰀶

󰀸 .

It is the echelon form. Clearly, ρ(A) = 2 < 3 =number of variables. Therefore,
the system has a nontrivial solution and the n − ρ(A) = 3 − 2 = 1 variable is
independent. By the echelon form, we have the following equations:

x+ 3y − 2z = 0
−7y + 8z = 0.

Since one variable is independent, choose z = k, we obtain from the above
equations:

x = −10k

7
, y =

8k

7
, z = k.

Example 3.13. For which value of ‘b’ the following system:

2x+ y + 2z = 0
x+ y + 3z = 0

4x+ 3y + bz = 0

has (i) trivial solution (ii) nontrivial solution. Find the nontrivial solution.
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Solution. The coefficient matrix of the given system is:

A =

󰀵

󰀷
2 1 2
1 1 3
4 3 b

󰀶

󰀸

Applying R1 ↔ R2; then R2 → R2 − 2R1, R3 → R3 − 4R1

A ∼

󰀵

󰀷
1 1 3
0 −1 −4
0 −1 b− 12

󰀶

󰀸 .

Applying R3 → R3 −R2

A ∼

󰀵

󰀷
1 1 3
0 −1 −4
0 0 b− 8

󰀶

󰀸 .

It is the echelon form. We consider the following cases:
(i) If b ∕= 8, then obviously ρ(A) = 3 =number of variables and so system has
a trivial solution.
(ii) If b = 8, then obviously ρ(A) = 2 < 3 =number of variables and so system
has nontrivial solution. In this case, n − ρ(A) = 3 − 2 = 1 variable will be
independent. By the echelon form, we have the following equations:

x+ y + z = 0
−y − 4z = 0.

Since one variable is independent, choose z = k, we obtain from the above
equations:

x = k, y = −4k, z = k.

3.5 Exercise

(Q.1) Investigate the values of λ and µ so that the equations:

2x+ 3y + 5z = 9
7x+ 3y − 2z = 8
2x+ 3y + λz = µ,

have (i) no solution and (ii) a unique solution (iii) an infinite number of
solutions. Ans. (i) λ = 5, µ ∕= 9 (ii) λ ∕= 5, µ ∈ R (iii) λ = 5, µ = 9.



Dr. Satish Shukla Homogeneous system of equations • 85

(Q.2) Test the consistency of the system:

x+ 2y − z = 3
2x− 2y + 3z = 2
3x− y + 2z = 1
x− y + z = −1.

Ans. Consistent and has a unique solution x = −1, y = 4, z = 4.

(Q.3) Show that the following system is consistent and sole it:

x+ 2y − 5z = −9
3x− y + 2z = 5
2x+ 3y − z = 3.

Ans. Consistent and has a unique solution x = 1/2, y = 3/2, z = 5/2.

(Q.4) Examine the consistency of the following system:

5x+ 3y + 14z = 4
y + 2z = 1

x− y + 2z = 0
2x+ y + 6z = 2.

Ans. Inconsistent (has no solution).

(Q.5) Show that the system of equations as given below is consistent if and only if
a+ c = 2b and find the solution(s) when exists:

3x+ 4y + 5z = a
4x+ 5y + 6z = b
5x+ 6y + 7z = c.

(Q.6) Find the values of λ so that the system of equations has a non-trivial solution
and hence find the non-trivial solution:

(λ− 1)x+ (3λ+ 1)y + 2λz = 0
(λ− 1)x+ (4λ− 2)y + (λ+ 3)z = 0

2x+ (3λ+ 1)y + 3(λ− 1)z = 0.

Ans. λ = 0, 1, 3.

(Q.7) Solve the following system of equations completely:

2w + 3x− y − z = 0
4w − 6x− 2y + 2z = 0

−6w + 12x+ 3y − 4z = 0.

Ans. w = k1
2 , x = k2

2 , y = k1, z = k2.



Unit-IV
Numerical methods for solving nonlinear equations: method of bisection, secant method, false
position, Newton-Raphson’s method, fixed point method and its convergence.

4.1 Numerical methods for solving nonlinear equations

Algebraic function: A function f(x) is called an algebraic function if it can be
expressed using a finite number of terms, involving only the algebraic operations
addition, subtraction, multiplication, division, and raising to a fractional power of
the variable x.
Transcendental function: A function f(x) is called a Transcendental function if
it has any root which is not a root of any algebraic function. They are built on
functions like logs, exponents, trigonometric functions and inverse trigonometric
functions.
Intermediate value theorem: If f(x) is a continuous function in the interval [a, b]
and there are two numbers x, y in the interval [a, b] such that f(x) and f(y) have
opposite signs (or f(a) · f(b) < 0). Then, there is a root of function f(x) between
x and y.

Next, we discuss some methods to find the approximate roots of a given function.

4.1.1 Bisection method

This method is based on the intermediate value theorem. In this method, first, we
find an interval [a, b] such that f(a) and f(b) have opposite signs. By intermediate
value theorem, there exists a root of the function f(x), between a and b. Now,

we bisect this interval by taking mean of a and b and find the point x1 =
a+ b

2
.

If f(x1) = 0, then we are done. If f(x1) ∕= 0, then we find f(x1). If f(x1) has
an opposite sign to f(a), then the bisected interval is taken [a, x1], otherwise it is
[x1, b]. We repeat the same process with the bisected interval till we get the desired
root.

86
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Bisection Method

Example 4.1. Find a root of the equation x3 − 4x = 9 by bisection method
correct up to three places of decimals.

Solution. Here f(x) = x3 − 4x− 9. We have to find a root of f(x). Then, since
f(2) = −9 < 0 and f(3) = 10 > 0. Therefore f(2) · f(3) < 0, and so, there is
a root of f(x) in the interval [2, 3].
Step I. Let

x1 =
2 + 3

2
= 2.5

and
f(x1) = f(2.5) = −3.375 < 0, and so, f(x1) · f(3) < 0.

Therefore, there is a root of f(x) in the interval [2.5, 3].
Step II. Let

x2 =
2.5 + 3

2
= 2.75.

The
f(x2) = f(2.75) = 0.7969 > 0, and so, f(x1) · f(x2) < 0.

Therefore, there is a root of f(x) in the interval [2.5, 2.75].
Step III. Let

x3 =
2.5 + 2.75

2
= 2.625.

Then,

f(x3) = f(2.625) = −1.4121 < 0, and so, f(x2) · f(x3) < 0.
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Therefore, there is a root of f(x) in the interval [2.625, 2.75].
Step IV. Let

x4 =
2.75 + 2.625

2
= 2.6875.

Then,

f(x4) = f(2.6875) = −0.3391 < 0, and so, f(x2) · f(x4) < 0.

Therefore, there is a root of f(x) in the interval [2.6875, 2.75].
Step V. Let

x5 =
2.75 + 2.6875

2
= 2.7188.

Then

f(x5) = f(2.7188) = 0.2218 > 0, and so, f(x5) · f(x4) < 0.

Therefore, there is a root of f(x) in the interval [2.6875, 2.7188].
Step VI. Let

x6 =
2.6875 + 2.7188

2
= 2.7031.

Then

f(x6) = f(2.7031) = −0.0615 < 0, and so, f(x6) · f(x5) < 0.

Therefore, there is a root of f(x) in the interval [2.7031, 2.7188].
Step VII. Let

x7 =
2.7031 + 2.7188

2
= 2.711.

Then
f(x7) = f(2.711) = 0.0806 > 0, and so, f(x7) · f(x6) < 0.

Therefore, there is a root of f(x) in the interval [2.7031, 2.711].
Step VIII. Let

x8 =
2.7031 + 2.711

2
= 2.7071.

Then

f(x8) = f(2.7071) = 0.01028 > 0, and so, f(x8) · f(x6) < 0.

Therefore, there is a root of f(x) in the interval [2.7031, 2.7071].
Step IX. Let

x9 =
2.7071 + 2.7031

2
= 2.7051.
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Then

f(x9) = f(2.7051) = −0.0256 < 0, and so, f(x8) · f(x9) < 0.

Therefore, there is a root of f(x) in the interval [2.7051, 2.7071].
Step X. Let

x10 =
2.7071 + 2.7051

2
= 2.7061, and so, f(x10) = f(2.7061) = −0.0077 < 0.

Therefore, f(x10) · f(x8) < 0, and so, there is a root of f(x) in the interval
[2.7061, 2.7071].
Step XI. Let x11 = 2.7061+2.7071

2 = 2.7066.
Since x10 = x11 (up to the three places of the decimal), therefore x = 2.706 is
the required root of the given equation.

Example 4.2. By using the bisection method, find an approximate root of the
equation sin x = 1/x, that lies between x = 1 and x = 1.5 (measured in
radians). Carry out computation up to 7th stage.

Solution. Let f(x) = x sin x − 1. Then we have to find a root of f(x) lies
between 1 and 1.5, i.e., the root lies in the interval [1, 1.5]. Then, since f(1) =
−0.1585 < 0 and f(1.5) = 0.4962 > 0. Therefore f(1) · f(1.5) < 0, and so,
there is a root of f(x) in the interval [1, 1.5].
Step I. Let

x1 =
1 + 1.5

2
= 1.25

and
f(x1) = f(1.25) = 0.1862 > 0, and so, f(x1) · f(1) < 0.

Therefore, there is a root of f(x) in the interval [1, 1.25].
Step II. Let

x2 =
1 + 1.25

2
= 1.125.

The
f(x2) = f(1.125) = 0.0150 > 0, and so, f(x2) · f(1) < 0.

Therefore, there is a root of f(x) in the interval [1, 1.125].
Step III. Let

x3 =
1 + 1.125

2
= 1.0625.

Then,

f(x3) = f(1.0625) = −0.0718 < 0, and so, f(x2) · f(x3) < 0.
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Therefore, there is a root of f(x) in the interval [1.0625, 1.125].
Step IV. Let

x4 =
1.0625 + 1.125

2
= 1.09375.

Then,

f(x4) = f(1.09375) = −0.02836 < 0, and so, f(x2) · f(x4) < 0.

Therefore, there is a root of f(x) in the interval [1.09375, 1.125].
Step V. Let

x5 =
1.09375 + 1.125

2
= 1.10937.

Then

f(x5) = f(1.10937) = −0.00664 < 0, and so, f(x2) · f(x5) < 0.

Therefore, there is a root of f(x) in the interval [1.10937, 1.125].
With a similar process, we obtain:x6 = 1.11719 and x7 = 1.11328. Therefore,
x = 1.11328 is the required root of the given equation.

4.1.2 Secant method

Suppose, we have to find a root α of equation f(x) = 0 which is between x0 and
x1. Instead of taking the average (as we do in the Bisection method) we now do a
linear approximation to the root α. For this, we join the points P (x0, f(x0)) and
Q(x1, f(x1)) so that the chord PQ to the curve y = f(x) is constructed. Then,
the equation of this chord will be:

y − f(x1) =
f(x1)− f(x0)

x1 − x0
(x− x1).

Suppose, this cord PQ intersect the X-axis at point (x2, 0). Then, from the above
equation, we have

0− f(x1) =
f(x1)− f(x0)

x1 − x0
(x2 − x1), or:

x2 = x1 −
x1 − x0

f(x1)− f(x0)
f(x1).

Then, x2 is the first approximation of α. Now join the points P ′(x2, f(x2)) and
Q(x1, f(x2)) so that the chord P ′Q to the curve y = f(x) is constructed. Then,
the equation of this chord will be:

y − f(x2) =
f(x2)− f(x1)

x2 − x1
(x− x2).

Suppose, this cord P ′Q intersect the X-axis at point (x3, 0). Then, from the above
equation, we have
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0− f(x2) =
f(x2)− f(x1)

x2 − x1
(x3 − x2), or:

x3 = x2 −
x2 − x1

f(x2)− f(x1)
f(x2).

Then, x2 is the second approximation of α and obviously, the value x2 is more
close to α than the x1 (first approximation). We repeat this process till we get the
desired accuracy.

Secant Method

4.1.3 General formula for secant method

First, find the values x0 and x1 by the Intermediate value theorem (as we have done
in the bisection method), then use the following formula for further approximation:

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn), n = 1, 2, . . . .

Example 4.3. Find the root of equation x log10(x) = 1.2 by the Secant method
correct up to three places of decimals.

Solution. Let f(x) = x log10(x) − 1.2. Then, we have to find the root of f(x).
Note that, f(1) = −1.2, f(2) = −0.598 and f(3) = 0.231. Therefore, there
is a root of f(x) between 2 and 3. Let x0 = 2 and x1 = 3. Then the first
approximation:

x2 = x1 −
x1 − x0

f(x1)− f(x0)
f(x1) = 3− 3− 2

f(3)− f(2)
f(3) = 3− 1

0.231− (−0.598)
× 0.231

= 2.721.
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Then, f(x2) = f(2.721) = −0.017. Now, the second approximation:

x3 = x2 −
x2 − x1

f(x2)− f(x1)
f(x2) = 2.721− 2.721− 3

f(2.721)− f(3)
f(2.721)

= 2.721− −0.279

−0.017− 0.231
× (−0.017)

= 2.740.

Then, f(x3) = f(2.740) = −0.0005. Now, the third approximation:

x4 = x3 −
x3 − x2

f(x1)− f(x2)
f(x3) = 2.740− 2.740− 2.721

f(2.740)− f(2.721)
f(2.740)

= 2.740− 0.019

−0.0005− (−0.017)
× (−0.0005)

= 2.740.

Therefore, α = 2.740 is the root of the given equation (correct up to the three
decimal places).

Example 4.4. Find the root of equation x4 − x − 10 = 0 by Secant method
correct up to four places of decimals.

Solution. Let f(x) = x4 − x− 10 = 0. Then, we have to find the root of f(x).
Note that, f(1.8) = −1.3024 and f(2) = 4. Therefore, there is a root of f(x)
between 0 and 2. Let x0 = 1.8 and x1 = 2. Then the first approximation:

x2 = x1 −
x1 − x0

f(x1)− f(x0)
f(x1) = 2− 2− 1.8

f(2)− f(1.8)
f(2) = 2− 0.2

4− (−1.3024)
× 4

= 1.8491.

Then, f(x2) = f(1.8491) = −0.1584. Now, the second approximation:

x3 = x2 −
x2 − x1

f(x2)− f(x1)
f(x2) = 1.8491− 1.8491− 2

f(1.8491)− f(2)
f(1.8491)

= 1.8491− −0.1509

−0.1584− 4
× (−0.1584)

= 1.8548.
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Then, f(x3) = f(1.8548) = −0.0192. Now, the third approximation:

x4 = x3 −
x3 − x2

f(x3)− f(x2)
f(x3) = 1.8548− 1.8548− 1.8491

f(1.8548)− f(1.8491)
f(1.8548)

= 1.8548− 0.0057

−0.0192− (−0.1584)
× (−0.0192)

= 1.8555.

Then, f(x4) = f(1.8555) = −0.0021 Now, the fourth approximation:

x5 = x4 −
x4 − x3

f(x4)− f(x3)
f(x4) = 1.8555− 1.8555− 1.8548

f(1.8555)− f(1.8548)
f(1.8555)

= 1.8555− 0.0007

−0.0021− (−0.0192)
× (−0.0021)

= 1.8555.

Therefore, α = 1.8555 is the root of the given equation (correct up to the four
decimal places).

4.1.4 Method of false position (regula-falsi) method

It is the oldest method for finding the real roots of an equation, and this method
is a combination of Bisection and Secant methods.
Formula for Regula-falsi method. In this method, for the approximation of the
root α of the equation f(x) = 0,we use the following formula:

c = b− b− a

f(b)− f(a)
f(b)

where a and b are such that f(a) < 0 and f(b) > 0. Note that, in this method the
values of a and b changes in each step.

Example 4.5. Find the root of the equation cos x = xex using the regula-falsi
method correct to four decimal places.

Solution. Let f(x) = cos x − xex. Then we have to find the root of f(x). Now
since f(0) = 1 > 0, f(1) = −2.1779 < 0, therefore a = 1 and b = 0. By the
formula, the first approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0− 0− 1

f(0)− f(1)
f(0) =

1

1− (−2.1779)
= 0.3146.

Then, f(0.3146) = 0.5198 > 0. Therefore, the root is between 0.3146 and 1



94 • Numerical methods for solving nonlinear equations Dr. Satish Shukla

and, now a = 1 and b = 0.3146. Then, the second approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.3146− 0.3146− 1

f(0.3146)− f(1)
f(0.3146)

= 0.3146− −0.6854

0.5198− (−2.1779)
× 0.5198

= 0.4476.

Then, f(0.4476) = 0.2012 > 0. Therefore, the root is between 0.4476 and 1
and, now a = 1 and b = 0.4476. Then, the third approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.4476− 0.4476− 1

f(0.4476)− f(1)
f(0.4476)

= 0.4476− −0.5524

0.2012− (−2.1779)
× 0.2012

= 0.4943.

Then, f(0.4943) = 0.0699 > 0. Therefore, the root is between 0.4943 and 1
and, now a = 1 and b = 0.4943. Then, the fourth approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.4943− 0.4943− 1

f(0.4943)− f(1)
f(0.4943)

= 0.4943− −0.5057

0.0699− (−2.1779)
× 0.0699

= 0.5100.

Then, f(0.5100) = 0.0234 > 0. Therefore, the root is between 0.5100 and 1
and, now a = 1 and b = 0.5100. Then, the fifth approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.5100− 0.5100− 1

f(0.5100)− f(1)
f(0.5100)

= 0.5100− −0.49

0.0234− (−2.1779)
× 0.0234

= 0.5152.

Then, f(0.5152) = 0.0077 > 0. Therefore, the root is between 0.5152 and 1
and, now a = 1 and b = 0.5152. Then, the sixth approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.5152− 0.5152− 1

f(0.5152)− f(1)
f(0.5152)

= 0.5152− −0.4848

0.0077− (−2.1779)
× 0.0077

= 0.5169.
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Then, f(0.5169) = 0.0026 > 0. Therefore, the root is between 0.5169 and 1
and, now a = 1 and b = 0.5169. Then, the seventh approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.5169− 0.5169− 1

f(0.5169)− f(1)
f(0.5169)

= 0.5169− −0.4831

0.0026− (−2.1779)
× 0.0026

= 0.5174.

Then, f(0.5174) = 0.001 > 0. Therefore, the root is between 0.5174 and 1 and,
now a = 1 and b = 0.5174. Then, the eighths approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.5174− 0.5174− 1

f(0.5174)− f(1)
f(0.5174)

= 0.5174− −0.4826

0.001− (−2.1779)
× 0.001

= 0.5176.

Then, f(0.5176) = 0.0004 > 0. Therefore, the root is between 0.5176 and 1
and, now a = 1 and b = 0.5176. Then, the ninth approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 0.5176− 0.5176− 1

f(0.5176)− f(1)
f(0.5176)

= 0.5176− −0.4824

0.0004− (−2.1779)
× 0.0004

= 0.5176.

Therefore, the required root is α = 0.5176 (correct to four decimal places).

Example 4.6. Use the method of false position and find the fourth root of 32
correct to three decimal places.

Solution. Let x = 321/4, i.e., x4 = 32 and f(x) = x4 − 32. Then, the fourth
root of 32 is the root of f(x). Now since f(2) = −16 < 0 and f(3) = 49 > 0,
therefore root lies between 2 and 3, and so, a = 2 and b = 3. By the formula,
the first approximation for the root α :

c = b− b− a

f(b)− f(a)
f(b) = 3− 3− 2

f(3)− f(2)
f(3) = 3− 1

49− (−16)
× 49 = 2.2461.

Then, f(2.2461) = −6.5483 < 0. Therefore, the root is between 2.2461 and 3
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and, now a = 2.2461 and b = 3. Then, the second approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 3− 3− 2.2461

f(3)− f(2.2461)
f(3) = 3− 0.7539

49− (−6.5483)
× 49

= 2.335.

Then, f(2.335) = −2.2732 < 0. Therefore, the root is between 2.335 and 3
and, now a = 2.335 and b = 3. Then, the third approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 3− 3− 2.335

f(3)− f(2.335)
f(3) = 3− 0.665

49− (−2.2732)
× 49

= 2.3644.

Then, f(2.3644) = −0.7475 < 0. Therefore, the root is between 2.3644 and 3
and, now a = 2.3644 and b = 3. Then, the fourth approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 3− 3− 2.3644

f(3)− f(2.3644)
f(3) = 3− 0.6356

49− (−0.7475)
× 49

= 2.3739.

Then, f(2.3739) = −0.2422 < 0. Therefore, the root is between 2.3739 and 3
and, now a = 2.3739 and b = 3. Then, the fifth approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 3− 3− 2.3739

f(3)− f(2.3739)
f(3) = 3− 0.6261

49− (−0.2422)
× 49

= 2.378.

Then, f(2.378) = −0.0222 < 0. Therefore, the root is between 2.378 and 3
and, now a = 2.378 and b = 3. Then, the sixth approximation for α :

c = b− b− a

f(b)− f(a)
f(b) = 3− 3− 2.378

f(3)− f(2.378)
f(3) = 3− 0.622

49− (−0.0222)
× 49

= 2.3783.

Therefore, the required root is 321/4 = α = 0.378 (correct to three decimal
places).

4.1.5 Newton-Raphson method or Newton’s method

The NewtonâĂŞRaphson method was named after English mathematicians Isaac
Newton and Joseph Raphson. In this method, we approximate the root of an
equation f(x) = 0 with a tangential approximation. In the Secant and Regula-Falsi
methods, the approximation is done with a chord joining the two initial guesses.
Here we start with an initial guess x0 which is reasonably close to the true root,
then the function is approximated by its tangent line drawn at the point (x0, f(x0)).
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Newton-Raphson Method

Suppose, x0 is the initial guess (initial approximation) of the root α then we draw
a tangent at point (x0, f(x0)) to the curve. Then the slope of this tangent will be
f ′(x0) and its equation will be:

y − f(x0) = f ′(x0)(x− x0).

Suppose, this tangent intersect the X-axis at point P (x1, 0), then we obtain from
the above equation: 0− f(x0) = f ′(x0)(x1 − x0), i.e.,

x1 = x0 −
f(x0)

f ′(x0)
.

The quantity x1 is called the first approximation of the root α and obviously, it
is more close to α than the initial approximation x0. We again draw a tangent at
the newly obtained point (x1, F (x1)), and repeat the same process to get second
approximation:

x2 = x1 −
f(x1)

f ′(x1)
.

For further approximations, we repeat this process until we have the root (up to
the desired accuracy).
Formula for Newton-Raphson method. First find the two values a and b such
that f(a) < 0, f(b) > 0 by using the Intermediate value theorem and then initial

approximation x0 =
a+ b

2
(or, you can choose from a and b which one is closer to

the root). Then use the following formula for further approximation:

xn+1 = xn −
f(xn)

f ′(xn)
, n = 1, 2, . . . .
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Note. Although Newton’s method converges faster towards the root of f(x)
than the previous method (Secant method), it demands the differentiability
of the function y = f(x). If f ′(x) is not available, then one can use the secant
method.

Example 4.7. Find the positive root of the equation x4−x = 10 correct to three
decimal places, using the Newton-Raphson method.

Solution. Let
f(x) = x4 − x− 10.

Then we have to find the positive root of f(x). Since f(1) = −10 < 0and
f(2) = 4 > 0, there is a positive root of f between 1 and 2. Obviously, the root
is more closer to 2 than 1. Therefore, let the initial approximation x0 = 2. Now

f ′(x) = 4x3 − 1.

Then, the first approximation:

x1 = x0 −
f(x0)

f ′(x0)
= 2− 24 − 2− 10

4× 23 − 1
= 2− 4

31
= 1.871.

Now, the second approximation:

x2 = x1 −
f(x1)

f ′(x1)
= 1.871− (1.871)4 − 1.871− 10

4× (1.871)3 − 1
= 1.871− 0.3835

25.199
= 1.856.

Now, the third approximation:

x3 = x2 −
f(x2)

f ′(x2)
= 1.856− (1.856)4 − 1.856− 10

4× (1.856)3 − 1
= 1.871− 0.010

24.574
= 1.856.

Therefore, α = 1.856 is the positive root of the given equation (correct to three
places of decimals).

Example 4.8. By Newton-Raphson method, find the real root of the equation
3x = cos x+ 1.

Solution. Let
f(x) = 3x− cos x− 1.

Then we have to find the real root of f(x). Since f(0) = −2 < 0and f(1) =
1.4597 > 0, there is a root of f between 0 and 1. Therefore, let the initial
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approximation x0 =
0 + 1

2
= 0.5. Now

f ′(x) = 3 + sin x.

Then, the first approximation:

x1 = x0 −
f(x0)

f ′(x0)
= 0.5− 3× 0.5− cos(0.5)− 1

3 + sin(0.5)

= 0.6085.

Now, the second approximation:

x2 = x1 −
f(x1)

f ′(x1)
= 0.6085− 3× 0.6085− cos(0.6085)− 1

3 + sin(0.6085)

= 0.6071.

Now, the third approximation:

x3 = x2 −
f(x2)

f ′(x2)
= 0.6071− 3× 0.6071− cos(0.6071)− 1

3 + sin(0.6071)

= 0.6071.

Therefore, α = 0.6071 is the positive root of the given equation (correct to four
places of decimals).

4.1.6 Fixed point method

Definition 4.1 (Fixed point). A point, say, α is called a fixed point of a function
g(x) if it satisfies the equation g(α) = α.

Fixed point Method: In this method, the equation f(x) = 0 is first converted into
the form x = g(x) and then we use the following iterative scheme called the Picard
iteration:

xn = g(xn−1), n = 1, 2, . . .

with some initial guess x0. It is also called the fixed point iterative scheme. Again,
we first find the values a and b such that f(a) < 0 and f(b) > 0, and then the
initial guess x0 can be obtained by a similar process as we have used in Newton’s
method.



100 • Numerical methods for solving nonlinear equations Dr. Satish Shukla

Important Note.

• The solution of f(x) = 0 is the fixed point of the function g(x), that is
why, this method is called the fixed point method.

• In the fixed point method, the convergence of the Picard iterative scheme
is a must, and for the convergence of this scheme, we have to ensure the
condition of convergence given by

|g ′(x)| < 1 for all x ∈ [a, b].

• We observe that the function g(x) is not unique and can be chosen in
infinitely many ways. We should choose such a “g” for which the condition
|g ′(x)| < 1 for all x ∈ [a, b] is satisfied.

Example 4.9. Obtain the root of the equation x3 − 2x + 5 = 0 and correct up
to four decimal places using the fixed point method.

Solution. The given equation is f(x) = x3 − 2x + 5 = 0. First, we find a and
b. Then since f(−3) = −16 < 0 and f(−2) = 1 > 0, therefore a = −3 and
b = −2. We write this equation in the following form

x = (2x− 5)1/3 = g(x).

Then, g ′(x) =
2

3 (2x− 5)2/3
. Now, it is easy to see that g ′(x) < 1 for all x lying

in the interval [−3,−2]. Therefore, the formula for the Picard iteration will be:

xn = g(xn−1) = (2xn−1 − 5)1/3 .

Let the initial guess be x0 = −2, then by the above formula the first approxi-
mation:

x1 = (2x0 − 5)1/3 = (2× (−2)− 5)1/3 = −2.0800.

Then, the second approximation:

x2 = (2x1 − 5)1/3 = (2× (−2.0800)− 5)1/3 = −2.0923.

Then, the third approximation:

x3 = (2x2 − 5)1/3 = (2× (−2.0923)− 5)1/3 = −2.0942.
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Then, the fourth approximation:

x4 = (2x3 − 5)1/3 = (2× (−2.0942)− 5)1/3 = −2.0944.

Then, the fifth approximation:

x5 = (2x4 − 5)1/3 = (2× (−2.0944)− 5)1/3 = −2.0945.

Then, the sixth approximation:

x6 = (2x5 − 5)1/3 = (2× (−2.0945)− 5)1/3 = −2.0945.

Therefore, the root of the given equation α = −2.0945 (correct up to four
decimal places).

4.2 Exercise

(Q.1) Find the roots of the following equations, using the Bisection method, Secant
method and False position method, correct to three decimal places:

(1) x3 − 2x− 5 (2) x3 − x2 − 1 = 0
(3) cos x = xex (4) x log10(x) = 1.2
(5) x3 − x− 11 which lies between 2 and 3.

Ans. (1) 2.687 (2) 1.46 (3) 0.519 (4) 2.875 (5) 2.375

(Q.2) Using the Newton-Raphson method find a root of the following equations
correct to three decimal places:

(1) x3 + x− 1 = 0 (2) xex = 2
(3) x3 − 3x+ 1 = 0 (4) x log10(x) = 1.2

Ans. (1) 0.686 (2) 0.853 (3) 1.532 (4) 2.741

(Q.3) Find the square root of 12 by Newton’s method. Ans. 3.4641

(Q.4) Obtain the root of the equation x3 − 3x− 5 = 0 correct up to four decimal
places using the fixed point method.
Hint: Here f(2) = −3 < 0 and f(3) = 13 > 0, so, a = 2, b = 3. Write the
given equation into the following form

x = (3x+ 5)1/3 = g(x).

Now you can see that |g ′(x)| =
󰀏󰀏󰀏 1

(3x+5)2/3

󰀏󰀏󰀏 < 1 for all x ∈ [2, 3]. Now apply
the Picard iteration scheme and find the solution of the given equation.
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5.1 Differential equations

An equation involving one dependent variable and its derivatives with respect to
one or more independent variables is called a differential equation. For example,
the following equations are examples of differential equations:

(a) exdx+ eydy = 0;

(b) y = x
dy

dx
;

(c)
󰀗
d2y

dx2
+ 2

󰀘3/2
= 5

dy

dx
+ y;

(d)
∂2z

∂x2
+

∂2z

∂y2
= 0.

5.1.1 Ordinary differential equations

A differential equation containing the differential coefficients with respect to a single
independent variable is called an ordinary differential equation. For example, (i),
(ii) and (iii) are ordinary differential equations but not (iv). In this course, we deal
with ordinary differential equations only.

5.1.2 Order and degree of differential equations

The order of the highest derivative appearing in a differential equation is called
the order of the differential equations. The order of the differential equations (i),
(ii) and (iii) are 1,1 and 2 respectively. The degree of a differential equation is
the degree of the highest derivative appearing in it after the equation has been
expressed in a form free from the radicals and fractions as far as the derivatives

are concerned. For example, the degree of differential equation y = x
dy

dx
+

x

dy/dx

is 2, while the degree of the differential equation
󰀗
d2y

dx2
+ 2

󰀘3/2
= 5

dy

dx
+ y is 3.

102
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5.2 Formation of differential equations

Consider a particle falling freely under gravity. Suppose it starts falling from rest
and moves towards the ground. We want to calculate the distance travelled at any
time during its fall. The laws of motion suggest that if the initial velocity of the
particle is u and the velocity after time t is v, then the relation between u, v and t
is given by:

v = u+ gt

where g is the gravitational acceleration. In the case of free fall from the rest u = 0,

hence we have v = gt, and since v =
ds

dt
, where s represents the distance traveled

by particle in time t, hence:
ds

dt
= gt.

The above equation is a differential equation, and its solution gives the distance
travelled by the particle at any time t during the motion.

The above discussion illustrates how differential equations are formed in real-
life problems. In theoretical mathematics, a differential equation is formed when
we eliminate the parameter of a family of curves with the help of derivatives and
obtain a relation between the variables and derivatives.

Example 5.1. Form the differential equation of the family of straight lines y =
mx, where m is the parameter of the family. What are the order and degree of
the differential equation?

Solution. The given equation of the family of straight lines is:

y = mx. (5.1)

Differentiating (5.1) with respect to x we get
dy

dx
= m. On putting this value

in (5.1) we get y =
dy

dx
x, i.e.

dy

dx
=

y

x
.

This is the required differential equation of the family of straight lines. The
order and degree of the differential equation both are 1.

Example 5.2. Form the differential equation of the family of cosine curves y =
A cos(x + α), where A and α denote the parameters of the family. What are
the order and degree of the differential equation?
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Solution. The given equation of the family of curves is:

y = A cos(x+ α). (5.2)

Differentiating (5.2) with respect to x we get:

dy

dx
= −A sin(x+ α).

Again differentiating the above we get:

d2y

dx2
= −A cos(x+ α).

On putting the value of A cos(x+ α) from the above equation in (5.2) we get:

d2y

dx2
+ y = 0.

This is the required differential equation of the family of cosine curves. The
order of the differential equation is 2 and the degree is 1.

Example 5.3. Form the differential equation of the family of curves y = ceax,
where c and a denote the parameters of the family. What are the order and
degree of the differential equation?

Solution. The given equation of the family of curves is:

y = ceax. (5.3)

Differentiating (5.3) with respect to x we get:

dy

dx
= caeax.

On putting the value of ceax from the above equation in (5.2) we get:

dy

dx
− ay = 0.

This is the required differential equation of the family of cosine curves. The
order and degree of the differential equation both are 1.

5.3 Exercise

(Q.1) Form the differential equation of the simple harmonic motion for the family
of cosine waves x = a cos(nt + α). What is the degree and order of this
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differential equation?

Ans:
d2x

dt2
+ n2x = 0. Order is 2 and degree is 1.

(Q.2) Obtain the differential equation of all circles of radius a and the centre (h, k).
What is the degree and order of this differential equation?

Ans:

󰀥
1 +

󰀕
dy

dx

󰀖2
󰀦3/2

d2y

dx2

= a. Order and degree both are equal to 2.

(Q.3) Obtain the differential equation of the coaxial circles of the system x2+y2+
2ax+ c2 = 0, where c is a constant and a is the family parameter. What is
the degree and order of this differential equation?

Ans: 2xy
dy

dx
= y2 − x2 + c2. Order and degree both are equal to 1.

(Q.4) Form the differential equation of the family of curves given by: y = c1 cos 2x+
c2 sin 2x. What is the degree and order of this differential equation?

Ans:
d2y

dx2
+ 4y = 0. Order is 2 and degree is 1.

(Q.5) Form the differential equation of the family of curves given by the equation:
y = ex (A cos x+B sin x). What is the degree and order of this differential
equation?

Ans:
d2y

dx2
− 2

dy

dx
+ 2y = 0. Order is 2 and degree is 1.

5.4 First order linear differential equations

A differential equation of first order and first degree is called a first-order linear
differential equation. A first-order linear differential equation is of the following
form:

φ

󰀕
dy

dx
, y, x

󰀖
= 0. (5.4)

If (5.4) can be written in the following form:

dy

dx
= ψ(x, y).

Then, we use the following techniques to solve such equations:

(i) Variable separable form:
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(a) In this form ψ can be factorised in the form ψ(x, y) = ϕ(x)υ(y). Now,
the equation can be solved by separating variables.

(b) If ψ cannot be factorised, but is in the form ψ(x, y) = f(ax + by + c),
then such equations can be solved by substituting v = ax+ by + c.

(ii) Homogeneous differential equation:

(a) If ψ cannot be factorised, but ψ(x, y) =
f(x, y)

g(x, y)
, where f and g homoge-

neous functions in x and y of same degree. Such equations can be solved
by the substitution y = vx.

(b) Differential equation reducible into homogeneous form: It is the following
form:

dy

dx
=

a1x+ b1y + c1
a2x+ b2y + c2

,
a1
a2

∕= b1
b2
.

Such equations can be reduced into variable separable form by substituting
x = X + h, y = Y + k, where h, k are the constants. While, in case of
a1
a2

= b1
b2

, such equations can be solved by the substitution ax+ by = v.

(iii) Leibnitz’s linear differential equations:

(a) If the differential equation is not in the previous forms, but can be ex-

pressed in the form
dφ(y)

dx
+Pφ(y) = Q, where P and Q are the functions

of x only. Then, such a form is called the linear differential equation in
φ(y). Its solution is given by

φ(y)× I.F. = C +

󰁝
(Q× I.F.)dx

where the integrating factor I.F. = e
󰁕
Pdx.

(b) Sometimes the equation cannot be reduced in the equation linear in φ(y),

but linear in φ(x), i.e., the equation is reduced in the form
dφ(x)

dy
+

Pφ(x) = Q, where P and Q are the functions of y only. Then, such an
equation is solved with the same process, as used, in the previous case,
only, the roles of x and y are changed.

(c) Bernoulli’s differential equations. It is the equation of the following form:

dy

dx
+ Py = Qyn

where P and Q are the functions of only x and n ∕= 1 (because for n = 1
equation reduces into the variable separable form). Such equations can
be solved by dividing the equation by yn, then substituting y1−n = v.



Dr. Satish Shukla Examples on variable separable form • 107

5.5 Examples on variable separable form

Example 5.4. Solve: (i) 3ex tan y dx + (1 − ex) sec2 y dy = 0; (ii)
dy

dx
=

1 + x+ y + xy.

Solution. (i) The given equation can be written as:

3ex

1− ex
dx = −sec2 y

tan y
dy.

It is a variable separable form, therefore, integrating the above equation we get:

3

󰁝
ex

1− ex
dx = −
󰁝

sec2 y

tan y
dy

=⇒ 3

󰁝
ex

ex − 1
dx = −
󰁝

sec2 y

tan y
dy

Process of integration yields:

3 ln (ex − 1) = ln (tan y) + lnC

=⇒ (ex − 1)3 = C tan y.

(ii) From the given equation we have:

dy

dx
= 1 + x+ y + xy =⇒ dy

dx
= (1 + x) + y(1 + x)

=⇒ dy

dx
= (1 + x)(1 + y) =⇒ dy

1 + x
=

dx

1 + y
.

Example 5.5. Solve: (i) sec2 x tan ydx + sec2 y tan xdy = 0; (ii) (1 + y2)dx −
xydy = 0.

Solution. (i) The given differential equation can be written as:

sec2 x

tan x
dx = −sec2 y

tan y
dy.

It is a variable separable form, hence integrating we get
󰁝

sec2 x

tan x
dx = −
󰁝

sec2 y

tan y
dy

=⇒ ln(tan x) = − ln(tan y) + C
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(ii) The given differential equation can be written as:

1

x
dx =

y

1 + y2
dy.

It is a variable separable form, hence integrating we get
󰁝

1

x
dx =

󰁝
y

1 + y2
dy

=⇒ ln(x) =
1

2
ln
󰀃
1 + y2

󰀄
+ ln(C)

=⇒ x = C
󰁳
1 + y2.

Example 5.6. Solve: (i)
dy

dx
= (4x+ y+1)2; (ii)

dy

dx
= cos(x+ y) + sin(x+ y).

Solution. (i) The given differential equation is:
dy

dx
= (4x + y + 1)2, which is

of the form
dy

dx
= f(ax + by + c). Therefore, putting 4x + y + 1 = v we have

4+
dy

dx
=

dv

dx
, i.e.,

dy

dx
=

dv

dx
− 4. Putting these values in the given equation, we

get
dv

dx
= 4 + v2 =⇒ dv

v2 + 4
= dx.

Integrating, we get

1

2
tan−1

󰀓v
2

󰀔
= x+ C =⇒ tan−1

󰀕
4x+ y + 1

2

󰀖
= 2(x+ C).

(ii) given differential equation is:
dy

dx
= cos(x+ y) + sin(x+ y), which is of the

form
dy

dx
= f(ax+ by+ c). Therefore, putting x+ y = v we have

dy

dx
=

dv

dx
− 1.

Putting these values in the given equation, we get

dy

dx
= 1 + cos v + sin v =⇒ dv

1 + cos v + sin v
= dx.

Integrating, we get
󰁕 dv

1+cos v+sin v =
󰁕

dx+ C. Since

1 + cos v + sin v = 1 +
1− tan2

󰀃
v
2

󰀄

1 + tan2
󰀃
v
2

󰀄 +
2 tan

󰀃
v
2

󰀄

1 + tan2
󰀃
v
2

󰀄 = 2
1 + tan

󰀃
v
2

󰀄

sec2
󰀃
v
2

󰀄
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we obtain

1

2

󰁝
sec2

󰀃
v
2

󰀄
dv

1 + tan
󰀃
v
2

󰀄 =

󰁝
dx+ C

=⇒ ln
󰁫
1 + tan

󰀓v
2

󰀔󰁬
= x+ C

=⇒ ln

󰀗
1 + tan

󰀕
x+ y

2

󰀖󰀘
= x+ C

5.6 Examples on Homogeneous differential equation

Example 5.7. Solve: (i) xdy−ydx =
󰁳
x2 + y2 dx; (ii) x(x−y)dy+y2dx = 0.

Solution. (i) The given equation can be written as

dy

dx
=

y +
󰁳
x2 + y2

x
.

This is homogeneous differential equation, therefore putting y = vx and
dy

dx
=

v + x
dv

dx
, we obtain:

v + x
dv

dx
=

vx+
√
x2 + v2x2

x

=⇒ dx

x
=

dv√
1 + v2

.

This is a variable separable form, therefore integrating we get
󰁝

dx

x
=

󰁝
dv√
1 + v2

+ C

=⇒ ln(x) = ln
󰀓
v +

󰁳
1 + v2

󰀔
+ ln(c)

=⇒ x = c
󰀓
v +

󰁳
1 + v2

󰀔

=⇒ x2 = c
󰀓
y +

󰁳
x2 + y2

󰀔
.

(ii) The given equation can be written as

dy

dx
= − y2

x(x− y)
.
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It is homogeneous differential equation, therefore putting y = vx and
dy

dx
=

v + x
dv

dx
, we obtain:

v + x
dv

dx
= − v2x2

x(x− vx)

=⇒ x
dv

dx
= − v2

(1− v)
− v =⇒ dx

x
=

v − 1

v
dv.

It is a variable separable form, therefore integrating we get

ln(x) = v − ln(v) + ln(c)

=⇒ vx = cev

=⇒ y = cey/x.

Example 5.8. Solve: (i) y2dx+(xy+x2)dy = 0; (ii) (x2− y2)dx+2xydy = 0.

Solution. (i) The given equation can be written as:

dy

dx
= − y2

xy + x2
.

This is homogeneous differential equation, therefore putting y = vx and
dy

dx
=

v + x
dv

dx
, we obtain:

v + x
dv

dx
= − v2x2

vx2 + x2
= − v2

v + 1

=⇒ x
dv

dx
= −v + 2v2

1 + v
=⇒ 1 + v

v(1 + 2v)
dv = −dx

x
.

This is a variable separable form, therefore integrating we get
󰁝

1 + v

v(1 + 2v)
dv = − ln(x) + ln(c)

=⇒
󰁝 󰀗

1

v
− 1

2v + 1

󰀘
dv = − ln(cx)

=⇒ ln(v)− 1

2
ln(1 + 2v) = − ln(cx)

=⇒ c2x2v2

2v + 1
= 1.
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Putting v = y/x we get:
c2y2x

2y + x
= 1.

(ii) The given equation can be written as:

dy

dx
= −y2 − x2

2xy
.

It is homogeneous differential equation, therefore putting y = vx and
dy

dx
=

v + x
dv

dx
, we obtain:

v + x
dv

dx
= −v2 − 1

2v

=⇒ x
dv

dx
= −1 + v2

2v

=⇒ 2v

1 + v2
dv =

dx

x
.

It is a variable separable form, therefore integrating we get

ln(1 + v2) = ln(x) + ln(c)

=⇒ 1 + v2 = cx

=⇒ x2 + y2 = cx3.
ln(1 + v2) = ln(x) + ln(c)

=⇒ 1 + v2 = cx

=⇒ x2 + y2 = cx3.

Example 5.9. Solve: (2x+ y + 3)dx = (2y + x+ 1)dy.

Solution. (i) The given equation can be written as

dy

dx
=

2x+ y + 3

x+ 2y + 1
. (5.5)

It is the equation of the form
dy

dx
=

a1x+ b1y + c1
a2x+ b2y + c2

. Here
a1
a2

=
2

1
∕= b1

b2
=

1

2
,

therefore, putting x = X + h, y = Y + k we have dx = dX, dy = dY. The
equation (5.5) reduces into the following form:

dY

dX
=

2(X + h) + (Y + k) + 3

(X + h) + 2(Y + k) + 1
.
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This shows that
dY

dX
=

2X + Y + (2h+ k + 3)

X + 2Y + (h+ 2k + 1)
. (5.6)

Choosing h and k such that

2h+ k + 3 = 0

h+ 2k + 1 = 0.

On solving we get h = −5/3 and k = 1/3. Now (5.6) becomes

dY

dX
=

2X + Y

X + 2Y
.

This equation is homogeneous in X and Y , therefore, putting Y = V X , we get
dY

dX
= V +

dV

dX
, and so, we have

V +
dV

dX
=

2X + V X

X + 2V X
=

2 + V

1 + 2V

=⇒ 2
dV

dX
=

󰀗
1

1− V 2
+

2V

1− V 2

󰀘
.

On integrating we obtain:

1

2
ln

󰀕
1 + V

1− V

󰀖
− ln(1− V 2) = 2 ln(X) + ln(C)

=⇒ 1 + V

1− V
= C2(1− V 2)2X4

=⇒ 1 = C2X4(1− V )3(1 + V ).

Putting V = Y/X , X = x−h = x+5/3 and Y = y− 1/3 the solution will be:
󰀕
x+ y +

4

3

󰀖
(x− y + 2)3C2 = 1.

Example 5.10. Solve: (2x+ y + 1)dx+ (4x+ 2y − 1)dy = 0.

Solution. (i) The given equation can be written as

dy

dx
= − 2x+ y + 1

4x+ 2y − 1
.

It is the equation of the form
dy

dx
=

a1x+ b1y + c1
a2x+ b2y + c2

. Here
a1
a2

=
2

4
=

b1
b2

=
1

2
,
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therefore, the above equation is written as:

dy

dx
= − 2x+ y + 1

2(2x+ y)− 1
. (5.7)

Putting 2x+ y = v we have 2 +
dy

dx
=

dv

dx
. The equation (5.7) reduces into the

following form:

dv

dx
− 2 = − v + 1

2v − 1
=⇒ dv

dx
=

3(v − 1)

2v − 1
.

This gives:
2v − 1

v − 1
dv = 3dx.

On integrating we obtain:

3x+ c =

󰁝
2v − 1

v − 1
dv =

󰁝
2(v − 1) + 1

v − 1
dv =

󰁝 󰀗
2 +

1

v − 1

󰀘
dv

= 2v + ln(v − 1).

Putting v = 2x+ y the solution will be:

x+ 2y + ln(2x+ y − 1) = c.

Example 5.11. Solve:
󰀃
1 + ex/y

󰀄
dx+ ex/y

󰀕
1− x

y

󰀖
dy = 0.

Solution. The given equation can be written as:
󰀓
1 + ex/y

󰀔 dx

dy
= −ex/y

󰀕
1− x

y

󰀖
.

Putting x = vy and
dx

dy
= v + y

dv

dy
in the given equation we have

(1 + ev) (v + y
dv

dy
) = −ev (1− v) =⇒ v + ev + (1 + ev)y

dv

dy
= 0

=⇒ (1 + ev)y
dv

dy
= −(v + ev)

=⇒ 1 + ev

v + ev
dv = −dy

y
.
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It is the variable separable form, therefore, on integrating we obtain:

ln(v + ev) + ln(y) = ln(C)

=⇒ ln [(v + ev)y] = ln(C)

=⇒ (v + ev)y = C.

Putting v = x/y the solution will be:

x+ yex/y = C.

5.7 Exercise

(Q.1) Solve: y − x
dy

dx
= a

󰀕
y2 +

dy

dx

󰀖
.

Ans. Variable separable, y = C(1− ay)(x+ a).

(Q.2) Solve:
dy

dx
= ex−y + x2e−y.

Ans. Variable separable, ey = ex +
x3

3
+ C.

(Q.3) Solve: (ey + 1) cos x dx+ ey sin x dy = 0.

Ans. Variable separable, sin x(ey + 1) = C.

(Q.4) Solve:
dy

dx
= cos(x+ y + 1).

Hint. Put x+ y + 1 = v. Ans. tan
󰀃
x+y+1

2

󰀄
= x+ c.

(Q.5) Solve: (x+ 2y)(dx− dy) = dx+ dy.

Hint. Write it
dy

dx
=

x+ 2y − 1

x+ 2y + 1
and put x+ 2y = v

Ans. 1
3

󰀅
x+ 2y + 4

3 ln(3x+ 6y − 1)
󰀆
= x+ C.

(Q.6) Solve:
dy

dx
=

y

x
+ sin

󰀓y
x

󰀔
.

Hint. Put y
x = v. Ans. cosec

󰀃
y
x

󰀄
+ cot

󰀃
y
x

󰀄
= cx.

(Q.7) Solve:
dy

dx
=

y − x+ 1

y + x− 5
.

Hint. Solve as Example 5.10.

Ans. tan−1
󰀃
y−2
x−3

󰀄
+ 1

2 ln
󰁫
1 +

󰀃
y−2
x−3

󰀄2󰁬
= − ln(x− 3) + ln(C).

(Q.8) Solve:
y

x

dy

dx
+

x2 + y2 − 1

2(x2 + y2) + 1
= 0.
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Hint. Put x2 + y2 = v, and
y

x

dy

dx
=

1

2x

dv

dx
− 1.

5.8 Examples on linear differential equations

Theorem 8. If P and Q are two integrable functions of x, then prove that the

solution of differential equation
dy

dx
+ Py = Q is given by

y · e
󰁕
Pdx = C +

󰁝
Qe
󰁕
Pdxdx.

where C is an arbitrary constant.

Proof. The given differential equation is:

dy

dx
+ Py = Q. (5.8)

On multiplying (5.8) by e
󰁕
Pdx we get:

e
󰁕
Pdxdy

dx
+ Pe
󰁕
Pdxy = e
󰁕
PdxQ.

The above equation can be written as

d

dx

󰀓
y · e
󰁕
Pdx

󰀔
= e
󰁕
PdxQ.

Integration of the above equation gives:

y · e
󰁕
Pdx = C +

󰁝
Qe
󰁕
Pdxdx.

Example 5.12. Solve: (i) sec x
dy

dx
= y + sin x (ii)

dy

dx
= −x+ y cos x

1 + sin x
.

Solution. (i) The given equation can be written as

dy

dx
− (cos x)y = sin x cos x.

It is a linear differential equation in y. Here P = − cos x, Q = sin x cos x.
Therefore,

I.F. = e
󰁕
Pdx = e
󰁕
− cosx dx = e− sinx.
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Therefore, the solution of the given equation will be:

y × I.F. = C +

󰁝
Q× I.F. dx

=⇒ ye− sinx = C +

󰁝
sin x cos x× e− sinx dx

=⇒ ye− sinx = C +

󰁝
t× e−t dx (putting sin x = t)

=⇒ ye− sinx = C − te−t − e−t

=⇒ ye− sinx = C − sin xe− sinx − e− sinx.

(ii) The given equation can be written as:

dy

dx
+

cos x

1 + sin x
y = − x

1 + sin x
.

It is a linear differential equation in y. Here P =
cos x

1 + sin x
, Q = − x

1 + sin x
.

Therefore,

I.F. = e
󰁕
Pdx = e
󰁕 cos x

1+sin x dx = eln(1+sinx) = 1 + sin x.

Therefore, the solution of the given equation will be:

y × I.F. = C +

󰁝
Q× I.F. dx

=⇒ y(1 + sin x) = C −
󰁝

x

1 + sin x
× (1 + sin x) dx

=⇒ y(1 + sin x) = C − x2

2
.

Example 5.13. Solve:
dy

dx
+ 2y tan x = sin x, given that y

󰀓π
3

󰀔
= 0.

Solution. The given equation is a linear differential equation in y. Here P =
2 tan x, Q = sin x. Therefore,

I.F. = e
󰁕
Pdx = e
󰁕
2 tanx dx = e2 ln(secx) = sec2 x.

Therefore, the solution will be y × I.F. = C +
󰁕
Q× I.F. dx, i.e.

=⇒ y sec2 x = C +

󰁝
sin x× sec2 x dx

=⇒ y sec2 x = C + sec x.



Dr. Satish Shukla Examples on linear differential equations • 117

Applying the condition y
󰀓π
3

󰀔
= 0, i.e., putting x =

π

3
and y = 0 in the above

equation we get:
0 = 2 + C =⇒ C = −2.

Therefore, the solution will be: y sec2 x = −2 + sec x.

Example 5.14. Solve: (i)
󰁳
1− y2dx = (sin−1 y − x)dy. (ii) (y − x)

dy

dx
= a2.

Solution. (i) One can see that the given equation cannot be written in a form
so that it is linear in y. But the equation can be written as

dx

dy
+

1󰁳
1− y2

x =
sin−1 y󰁳
1− y2

.

It is linear in x. Here P =
1󰁳

1− y2
and Q =

sin−1 y󰁳
1− y2

. Therefore

I.F. = e
󰁕
Pdy = e
󰁕 1√

1−y2
dy

= esin
−1 y.

Hence, the solution of the given equation will be:

x× I.F. = C +

󰁝
Q× I.F. dy

=⇒ xesin
−1 y = C +

󰁝
sin−1 y󰁳
1− y2

sin−1 y dy

=⇒ xesin
−1 y = C +

󰁝
tet dt (t = sin−1 y)

=⇒ xesin
−1 y = C + tet − et

=⇒ x = Ce− sin−1

+ sin−1 y − 1.

(ii) One can see that the given equation cannot be written in a form so that it
is linear in y. But the equation can be written as

dx

dy
+

1

a2
x =

y

a2
.

It is linear in x. Here P =
1

a2
and Q =

y

a2
. Therefore

I.F. = e
󰁕
Pdy = e
󰁕 1

a2
dy = ey/a

2

.
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Therefore, the solution will be: x× I.F. = C +
󰁕
Q× I.F. dy, i.e.

=⇒ xey/a
2

= C +

󰁝
y

a2
ey/a

2

dy

=⇒ xey/a
2

= C +
1

a2

󰀥
y
ey/a

2

1/a2
−
󰁝
1 · e

y/a2

1/a2

󰀦

=⇒ xey/a
2

= C + yey/a
2 − ey/a

2

1/a2

=⇒ x = Ce−y/a2 + y − a2.

Example 5.15. Solve: (i) x
dy

dx
+ y = x3y6. (ii)

dy

dx
+ x sin(2y) = x3 cos2 y.

Solution. (i) Dividing by xy6 the given equation we get

y−6 dy

dx
+

1

x
y−5 = x2.

It is the Bernoulli’s differential equations, therefore, putting y−5 = v, i.e.,

y−6 dy

dx
= −1

5

dv

dx
in the above equation, we get:

dv

dx
− 5

x
v = −5x2.

It is linear in v. Here, P = − 5
x and Q = −5x2 therefore,

I.F. = e
󰁕
Pdx = e−

󰁕 5
xdx =

1

x5
.

Therefore, the solution will be:

v × I.F. = C +

󰁝
Q× I.F. dx

=⇒ v × 1

x5
= C +

󰁝
−5x2 × 1

x5
dx

=⇒ v

x5
= C +

5

2x2
.

Putting v = y−5, the solution of given equation will be:

1

x5y5
= C +

5

2x2
.
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(ii) Dividing by cos2 y the given equation we get

sec2 y
dy

dx
+ 2x tan y = x3.

Putting tan y = v, i.e., sec2 y
dy

dx
=

dv

dx
, the above equation is reduced into the

following form:
dv

dx
+ 2xv = x3.

The above equation is linear in v. Here P = 2x, Q = x3. Therefore, I.F. =
e
󰁕
Pdx = e
󰁕
2xdx = ex

2
.

The solution will be: v × I.F. = C +

󰁝
Q× I.F. dx, i.e.:

vex
2

= C +

󰁝
x3ex

2

dx

=⇒ vex
2

= C +

󰁝
tet

dt

2
(t = x2)

=⇒ vex
2

= C +
1

2
(et − et)

=⇒ (tan y)ex
2

= C +
1

2
(x2ex

2 − ex
2

).

Example 5.16. Solve: (i)
dy

dx
(x2y3+xy) = 1. (ii)

dy

dx
− tan y

1 + x
= (1+x)ex · sec y.

Solution. (i) The given differential equation cannot be arranged in the form of
linear or Bernoulli’s differential equations in which y is the dependent variable.
But, it can be written as:

dx

dy
− xy = x2y3.

The above equation is of Bernoulli type with x as the dependent variable. There-
fore, by dividing by x2 we get

x−2 dx

dy
− x−1y = y3.

Substituting x−1 = v, i.e., x−2 dx

dy
= − dv

dy
the above equation reduced into the

following form:
dv

dy
+ yv = −y3.
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This equation is linear in v. Here P = y, Q = −y3, therefore I.F. = e
󰁕
Pdy =

e
󰁕
ydy = ey

2/2, and the solution will be: v × I.F. = C +
󰁕
Q× I.F. dy

=⇒ vey
2/2 = C +

󰁝
−y3ey

2/2 dy

=⇒ vey
2/2 = C +

󰁝
−2tet dt (t = y2/2)

=⇒ vey
2/2 = C +−2[tet − et]

=⇒ vey
2/2 = C − 2

󰀗
y2

2
ey

2/2 − ey
2/2

󰀘

Hence, the solution is: 1
x = Ce−y2/2 + (2− y2).

(ii) Dividing by sec y the given equation:

cos x
dy

dx
− 1

1 + x
sin y = ex(1 + x).

Substitute sin y = v, i.e., cos y
dy

dx
=

dv

dx
, the above equation becomes

dv

dx
− 1

1 + x
v = ex(1 + x).

This equation is linear in v. Here P = − 1

1 + x
, Q = ex(1 + x) and

I.F. = e
󰁕
Pdx = e

󰁝
− 1

1 + x
dx

=
1

1 + x

and the solution will be:

v × I.F. = C +

󰁝
Q× I.F. dx

=⇒ v
1

1 + x
= C +

󰁝
ex(1 + x)

1

1 + x
dx

=⇒ v
1

1 + x
= C + ex.

Hence, the solution is: sin y = C(1 + x)(1 + x)ex.

5.9 Exercise

(Q.1) Solve: cos x dy = (sin x− y)dx.

Hint: Linear in y. Ans. y(sec x+ tan x) = sec x+ tan x− x+ C.
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(Q.2) Solve: x ln(x)
dy

dx
+ y =

2

x
ln(x).

Hint: Linear in y. Ans. y ln(x) = C − 2
x(1 + ln(x)).

(Q.3) Solve: cosh x
dy

dx
+ y sinh x = 2 cosh2 x sinh x.

Hint: Linear in y. Ans. y cosh x = C + 2
3 cosh

3 x.

(Q.4) Solve:
dy

dx
+

y

x
= x2, given y = 1, when x = 1.

Hint: Linear in y. Ans. xy = 3
4 +

1
4x

4.

(Q.5) Solve: (1 + x2)
dy

dx
+ 2xy − 4x2 = 0, subject to y(0) = 0.

Hint: Linear in y. Ans. y(1 + x2) = 4x2

3 .

(Q.6) Solve: x
dy

dx
+ y = y2 ln(x).

Hint: Bernoulli’s differential equations, arrange it in the standard form, then
put y−1 = v. Ans. y

󰀃
1 + ln(x) + Cx

󰀄
= 1.

(Q.7) Solve: ey
󰀕
dy

dx
+ 1

󰀖
= ex.

Hint: Put ey = v. Ans. ex+y = C + 1
2e

2x.

(Q.8) Solve:
dy

dx
=

x2 + y2 + 1

2xy
.

Hint: Rewrite the equation: 2y
dy

dx
− y2

x
= x+

1

x
, then put y2 = v.

Ans. y2 = Cx+ x2 − 1.

(Q.9) Solve: y(2xy + ex)dx = exdy.

Hint: Rewrite the equation: y−2dy

dx
− y−1 = 2x

ex , then put y−1 = v.
Ans. ex = Cy + x2.
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