PAPER: IIT-JAM 2011 BIOTECHNOLOGY-BT

INSTRUCTIONS:

- (i) This test paper has a total of 100 questions.
- (ii) Each question has **4 choices** for its answer: (a), (b), (c) and (d). Only **one** of them is the correct answer.
- (iii) For each correct answer, you will be awarded 3 (three) marks.
- (iv) For each wrong answer, you will be awarded -1 (Negative one) mark.
- (v) Multiple answers to a question will be treated as a wrong answer.
- (vi) For each un-attempted question, you will be awarded 0 (zero) mark.
- 1. Mitochondria were isolated and permeabilized with a detergent. They were incubated with succinate, ADP and P_i in the presence of O_2 . ATP synthesis and O_2 consumption were measured. Which one of the following statements is *true*?
 - (a) ATP synthesis will occur but O2 consumption will not occur
 - (b) O₂ consumption will occur but ATP synthesis will not occur
 - (c) both O2 consumption and ATP synthesis will occur
 - (d) both O₂ synthesis and ATP synthesis will not occur
- 2. The DNA of an organism is 0.68 meters. What is the length of the DNA in kilobases?
 - (a) 2×10^8
- (b) 2×10^6
- (c) 2×10^5
- (d) 2×10^3
- 3. A segment of DNA (underlined) in a gene sequence $\frac{5' GGAGTATCATT}{3' CCTCATAGTAACGT 5'}$ undergoes an

inversion. The new gene sequence is

3' - CCTAATGATACCGT - 5'

(b) 5' -GGA<u>CATAGTAA</u>GCA - 3 3' -CCTGTATCATTCGT - 5'

5' – GGAAATGATACGCA – 3'

5'-GGAGTATCATTGGA-3'

(c) 3'-CCTTTACTATGCGT-5'

(d) 3'-CCTCATAGTAACCT-5'

- 4. The product of an enzyme reaction is estimated in a colorimeter. For a 1cm path length cuvette, 20% of the incident light intensity is absorbed. If the path length is increased to 2cm, the percentage of absorption is
 - (a) 36

(b) 40

- (c) 64
- (d) 90

- 5. Neisseria meningitides is a
 - (a) Gram +ve bacillus

(b) Gram +ve coccus

(c) Gram -ve bacillus

- (d) Gram -ve coccus
- 6. An enzyme solution is sterilized by
 - (a) use of an autoclave

(b) ethylene oxide

(c) membrane filtration

(d) γ -radiation

PAPER: IIT-JAM 2011

7.	RNA interference is induced by						
	(a) double strand DNA	(b)	double strand RNA				
	(c) both (a) and (b)	(d)	specific proteins				
8.	The detection and estimation of DNA products by	Rea	al Time PCR is achieved with				
	(a) SYBR green	(b)	Ethidium bromide				
	(c) Acridine orange	(d)	Green fluorescent protein				
9.	A peritrichous arrangement of flagella in bacilli is	a					
	(a) single flagellum at one pole						
	(b) single flagellum at each pole						
	(c) cluster of flagella at one pole						
	(d) uniform distribution of flagella around the cell	1					
10.	Fibroblast cells in culture survive limited number of	of pa	assages due to				
	(a) exhaustion of nutrients	(b)	contact inhibition				
	(c) shortening of telomeres		(d) loss of cell adherence				
11.	Fetal bovine serum is a component of cell culture	med	dium primarily to provide				
	(a) vitamins	(b)	growth factors				
	(c) amino acids	(d)	trace elements				
12.	Identify the correct combination between the group	ps					
	Group-I	Gr	oup-II				
	P. Mast cells	1.	Cytotoxic effect on tumour cells				
	Q. Macrophage	2.	Release of histamine				
	R. Natural Killer cells	3.	Production of immunoglobulins				
	S. B cells	4.	Ingestion of particulate antigen				
	Codes:						
	(a) P-2, Q-4, R-1, S-3	(b)	P-4, Q-1, R-3, S-2				
	(c) P-1, Q-3, R-2, S-4 CAREER END	(d)	P-4, Q-3, R-2, S-1				
13.	Mad cow disease is caused by a						
	(a) bacterium	(b)	virus				
	(c) viroid	(d)	prion				
14.	The phenomenon in which one gene inhibits the expression of another gene is called						
	(a) dominance	(b)	epistasis				
	(c) penetrance	(d)	expressivity				
15.	The major protease involved in apoptosis has at its active site						
	(a) serine	(b)	aspartate				
	(c) cysteine	(d)	histidine				
16.	The techniques to show that a protein is a homo	tetra	mer with a subunit molecular weight of				
	25kDa are						
	(a) gel filtration and native PAGE						
	(b) affinity and ion exchange chromatography						
	(c) SDS-PAGE and gel filtration						
	(d) isoelectric focusing and SDS-PAGE						

17.	A phage infects bacteria at a multiplicity of infec	tion (moi) of 0.1. This means that			
	(a) every bacterium is infected by the phage				
	(b) one out of 10 bacteria is infected by the phase	ge			
	(c) ten phage infect one bacterium				
	(d) only 1/10 of the phage population is infection				
18.	Which one of the following fatty acids has the h				
	(a) Myristate (14:0)	(b) Stearate (18 : 0)			
	(c) Oleate (18 : 1)	(d) Linoleate (18 : 2)			
19.	Which one of the following lipids will not form	a biological membrane?			
	(a) phosphatidyl ethanolamine	(b) cerebroside			
	(c) triacylglycerol	(d) sphingomyelin			
20.	Transketolases and transaldolases are involved in				
	(a) oxidative phase of pentose phosphate pathwa	у			
	(b) non-oxidative phase of pentose phosphate par	thway			
	(c) Embden-Meyerhoff pathway				
	(d) glyoxylate pathway				
21.	In which of the following conversion is ATP syn	thesized by substrate level phosphorylation?			
	(a) isocitrate to α-ketoglutarate	(b) α-ketoglutarate to succinyl CoA			
	(c) succinyl CoA to succinate	(d) succinate to fumarate			
22.	Which one of the following is not the function o	f photosystem II?			
	(a) ATP synthesis	(b) light collection			
	(c) NADPH synthesis	(d) charge separation			
23.	Which one is the <i>incorrect</i> statement?				
	(a) cellulose has β-1, 4 linkages	(b) amylose has α -1, 6 linkages			
24.	(c) glycogen has α -1, 4 and α -1, 6 linkages O-glycosidic bonds are present in	(d) chitin has β -1, 4 linkages			
	(a) only polysaccharides but not glycoproteins	(b) both glycoproteins and polysaccharides			
	(c) DNA between base and sugar	(d) RNA between base and sugar			
25.	Under physiological conditions when $[S] \ll K_{M'}$	the catalytic efficiency is estimated by			
	(a) k_{cat} (b) K_{M}	(c) k_{cat}/K_{M} (d) V_{max}			
26.	Diacylglycerol is known to activate				
	(a) phospholipase A	(b) phospholipase C			
	(c) protein kinase A	(d) protein kinase C			
27.	The reagent required to cleave the carboxyl side	of methionine is			
	(a) cyanogen bromide	(b) trypsin			
	(c) chymotrypsin	(d) performic acid			
28.	Hormones that act on cells near the point of their circulation are	ir synthesis and not transported through blood			
	(a) prostaglandins and thromboxane	(b) estradiol and cortisol			
	(c) prednisolone and prednisone	(d) thyroxine and glucagon			
	(c) produitorione una produitollo	(a) milionino ana giacagon			

29. Match the coenzymes in Group I with the corresponding units in Group II

Group II P. Tetrahydrofolate 1. Acyl Q. Biotin 2. Electrons R. FMNH₂ 3. One carbon unit S. Coenzyme A 4. CO₂ Codes: (b) P-1, Q-4, R-3, S-2 (c) P-2, Q-3, R-4, S-1 (d) P-4, Q-2, R-1, S-3

- 30. Bacteria, auxotrophic for fatty acids were grown at 40°C in the presence of a mixture of fatty acids. Which of the fatty acid combinations will be incorporated into the membrane?
 - (a) saturated and long chain fatty acids
- (b) saturated and short chain fatty acids
- (c) unsaturated and short chain fatty acids
- (d) unsaturated and long chain fatty acids
- 31. Which one of the following statements is *incorrect*?
 - (a) Mer B is a bacterial protein similar to eukaryotic actin
 - (b) FtsZ protein found in most of the bacteria is a tubulin homologue
 - (c) AmiC hydrolyzes peptidoglycan to separate daughter cells
 - (d) FtsZ is an inhibitor of Z ring assembly
- 32. Massive doses of methylene blue are sometimes given for cyanide poisoning. Which one of the following statements is *incorrect*?
 - (a) reduction potential of methylene blue is similar to oxygen
 - (b) cyanide blocks transfer of electrons from cytochrome oxidase to oxygen
 - (c) in cyanide poisoning, all the respiratory chain components become reduced and electron transport stops
 - (d) methylene blue can reduce the various components of the respiratory chain to restore ATP synthesis.
- 33. A disease manifests only in the homozygous recessive condition. A couple has two children. If both parents are heterozygous for the disease causing gene, what is the probability that both the children are normal? Assume that the disease causing gene is not sex linked.
 - (a) 1/16

- (b) 3/16
- (c) 9/16
- (d) 12/16

34. Match the entries in Group-I with those in Group-II.

Group-II P. Glucagon 1. Eicosanoid Q. Prednisolone 2. Peptide R. Prostaglandin E1 3. Catecholamine S. Epinephrine 4. Steroid Codes: (a) P-3, Q-2, R-4, S-1 (b) P-2, Q-4, R-1, S-3 (c) P-2, Q-3, R-4, S-1 (d) P-4, Q-1, R-3, S-2

- 35. An amino acid has a non-ionizable R group. The pK_a for the NH₂ group is 9.4 and for the COOH group is 2.8. Consider the following statements:
 - P. At a pH of 6.1, 50% of the amino acid molecules which migrate towards the cathode when placed between two electrodes

- Q. At a pH of 2.8, 50% of the amino acid molecules in solution are of the form $H_3N C COO^-$
- R. The pI of the amino acid is 6.1
- S. On titration of the amino acid solution with NaOH, the amino group is deprotonated before the carboxylic group

Which pair of the above statement is correct?

(a) Q, R

(b) P, S

(c) P, R

(d) Q, S

36. A wild type (W) strain of a bacterium is red due to the conversion of a colourless precursor X to R. Two colourless mutants M1 and M2 (with mutations in Gene 1 and Gene 2, respectively) were obtained. The following chart shows the observed colour of the bacterium when grown in a medium supplemented with either X, Y or Z.

	Supplement				
		X	Υ /	Z	
Strain	W	Red	Red	Red	
	M1	White	Red	White	
	M2	White	Red	Red	

Which one of the following describes the correct pathway for red pigment synthesis?

(a) $X \xrightarrow{\text{Gene 1}} Y \xrightarrow{\text{Gene 2}} Z \longrightarrow R$

(b) $X \xrightarrow{\text{Gene 2}} Y \xrightarrow{\text{Gene 1}} Z \longrightarrow R$

(c) $X \xrightarrow{\text{Gene 1}} Z \xrightarrow{\text{Gene 2}} Y \longrightarrow R$

- (d) $X \xrightarrow{\text{Gene 2}} Z \xrightarrow{\text{Gene 1}} Y \longrightarrow R$
- 37. Which one of the following is *not* an autoimmune disorder?

(a) AIDS

(b) Systemic Lupus erythematosus

(c) Rheumatoid Arthritis

- (d) Myesthenia Gravis
- 38. Which one of the following is *not* common to both chloroplast and mitochondria?

(a) electron transport

(b) electron donor - acceptor pair

(c) proton pump

- (d) independent genomes
- 39. Match the entries in Group I with those in Group II

Group I

Group II

P. LH

1. Corpus Luteum for production of estrogen and progesterone

Q. hCG

- 2. Leydig cells for production of testosterone
- R. GnRH
- 3. Sertoli cells for maintenance of spermatogenesis
- S. Testosterone
- 4. Pituitary gonadotrophs for production of LH and FSH

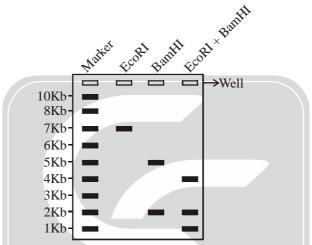
Codes:

(a) P-3, Q-2, R-1, S-4

(b) P-2, Q-4, R-1, S-3

(c) P-2, Q-1, R-4, S-3

- (d) P-3, Q-2, R-4, S-1
- 40. A competitive reversible enzyme inhibitor
 - (a) increases K_{M} , decreases V_{max}


- (b) increases V_{max} , decreases K_{M}
- (c) increases $\boldsymbol{K}_{\!M}\!,$ does not change $\boldsymbol{V}_{\!max}$
- (d) increases $\boldsymbol{V}_{max}\!\text{, does not change }\boldsymbol{K}_{\!M}$

- 41. Consider the following statements
 - Statement 1: A sudden 100 meter sprint by an athlete will increase the pH of blood.
 - Statement 2: Fate of pyruvate under anaerobic condition in skeletal muscle is lactate.

Which one of the following statement is true?

- (a) Statement 1 and 2 are correct and 1 is the outcome of 2
- (b) Statement 2 is incorrect and statement 1 is correct
- (c) Statement 1 and 2 are correct and 1 is not the outcome of 2
- (d) Statement 2 is correct and statement 1 is incorrect
- 42. A 7kb circular plasmid was completely digested with either EcoRI or BamHI or both. The digestion pattern is shown below.

Which one of the following is the *correct* restriction map of the plasmid?

- 43. The *lac* repressor binds its operator with a $K_d = 10^{-10}$ M. In a strain of *E. coli*, the intracellular repressor concentration is 10^{-12} M. Induction of the *lac* operon in this strain
 - (a) does not require lactose

(b) requires lactose

(c) requires glucose

(d) requires both glucose and lactose

- 44. The frequency of occurrence of a disease is one in a million individuals. This disease results from the homozygosity in a recessive allele. The population satisfies all the assumptions of the Hardy-Weinberg equilibrium. The frequency of the dominant allele and frequency of carriers of the disease respectively are
 - (a) 0.9 and 0.19

(b) 0.09 and 0.019

(c) 0.999 and 0.0019

- (d) 0.009 and 0.00019
- 45. Identify the major product of the following reaction + AICl₃ AICl₃

$$(a) \begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

46. Which one of the following compounds is optically active?

(a)
$$CH_3$$
 (b) CH_3 (c) CH_3 (d) CH_3 CH_3

Which one of the following compounds shows a fragmentation peak corresponding to an enolic species (m/z = 58) in the mass spectrum?

(a)
$$H_3C$$
 CH_3
 CH_3
(b) H_3C
 CH_3
 CH_3

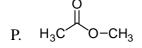
48. Correlate the reactions in Group I with the reagent (s) and condition (s) in Group II:

Group-II

Group-II

P.
$$H_3C$$

CH₃


1. Excess CH_3I ; Ag_2O , H_2O , heat

R.
$$H_3C$$
 CH_3 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3

- 4. $CH_2 = PPh_3$ (a) P-4, Q-3, R-2 (b) P-3, Q-1, R-4
- (c) P-4, Q-3, R-1 (d) P-3, Q-2, R-1

- 49. Synthetic Rubber Buna-N is a copolymer of
 - (a) 1, 3-butadiene and acrylonitrile
- (b) 2-chloro-1, 3-butadiene and acetonitrile
- (c) 2-chloro-1, 3-butadiene and acrylonitrile
- (d) 1, 3-butadiene and acetonitrile
- 50. Arrange the following compounds in the increasing order of their reactivity towards hydrolysis

R.
$$H_3C$$
 NH- CH_3

(a)
$$R < S < P < Q$$

(b)
$$P < R < S < Q$$

(c)
$$P < R < Q < S$$

(d)
$$R < P < S < Q$$

51. Match the reactants and reagents in Group I with the product in Group II

Group I

P.
$$H_3C$$
 H H_3O^+

1. CH₃CD₂OH

Q. H_3C H D_3O^+

2. CH₃CHDOD

R. H_3C OCH₃ LiAID₄ H_3O^+

3. CH₃CH₂OD

(a) P-2, Q-4, R-1

(b) P-4, Q-1, R-2

(c) P-1, Q-3, R-4

- (d) P-4, Q-3, R-1
- 52. The total number of isomers exhibited by the complexes, $[Co(en)_2Br]^+$ and $[Co(en)_3]^{3+}$, respectively, are {'en' is ethylene diamine}
 - (a) 3 and 2
- (b) 2 and 2
- (c) 2 and 3
- (d) 3 and 3
- 53. The order in which Δ_0 increases for the homoleptic octahedral complexes of Fe³⁺ is
 - (a) $F^- < Br^- < CN^- < NCS^-$

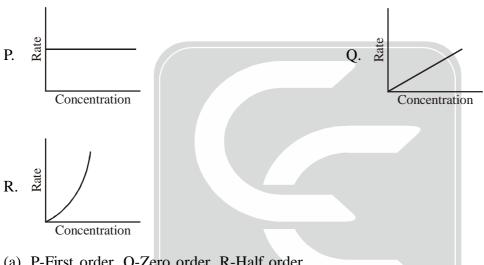
(b) $Br^- < F^- < NCS^- < CN^-$

(c) $F^- < CN^- < Br^- < NCS^-$

- (d) $Br^- < NCS^- < F^- < CN^-$
- 54. The spin-only magnetic moments of $[Fe(CN)_6]^{4-}$ and $[FeCl_6]^{2-}$ in Bohr magnetons respectively, are
 - (a) 0 and 1.73
- (b) 4.73 and 5.73
- (c) 0 and 5.73
- (d) 4.73 and 1.73
- 55. A dilute solution of MnCl₂ is almost colourless. The reason for this is
 - (a) only spin forbidden transition
 - (b) only Lapporte forbidden transition
 - (c) odd number of unpaired spins
 - (d) both spin and Lapporte forbidden transition
- 56. *Nitrobacter* oxidizes nitrite to nitrate. The number of electrons involved in this oxidation process is
 - (a) 1

(b) 2

- (c) 3
- (d) 4



- 57. The bond order in carbon monoxide (CO) decreases from three, when bonded to transition metals in their low oxidation states, because
 - (a) π -electrons of CO are donated to metal center
 - (b) σ -electrons of CO are donated to metal center
 - (c) p-electrons of metal center are transferred to empty π orbitals of CO
 - (d) d-electrons of metal center are transferred to empty π^* orbitals of CO
- 58. For [ICl₄]⁻, the number of lone pairs present on the central atom, and the shape of the ion respectively, are
 - (a) 2, octahedral

(b) 1, trigonal bipyramidal

(c) 1, square pyramidal

- (d) 0, tetrahedral
- 59. The correct orders of the reactions deduced from the graphs given below, are

- (a) P-First order, Q-Zero order, R-Half order
- (b) P-Zero order, Q-First order, R-Second order
- (c) P-Pseudo-first order, Q-Second order, R-Third order
- (d) P-Second order, Q-First order, R-Zero order
- 60. A large hot water bath at a constant temperature of 360 K is kept in the laboratory. The water bath loses 60 Joules of heat energy to the surroundings which is at 300K. Assuming that the heat transfer is a reversible process, the total entropy change (in J K⁻¹) would be
 - (a) +0.33

- (b) -0.033
- (c) +0.20
- (d) +0.033
- The equilibrium constant for the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 298K, is K_p . The 61. equilibrium constant for the reaction, $1/2N_2(g) + 3/2H_2(g) \rightleftharpoons NH_3(g)$, at the same temperature
 - (a) $K_{\rm p}^{1/2}$

- (b) K_p
- (c) K_p^2 (d) $K_p/2$
- The value of the equilibrium constant of an electrochemical cell reaction is 10 and its standard 62. e.m.f. is 0.0148V at 298K. The number of electrons transferred in the overall cell reaction is

(b) 1

- (c) 4
- 63. The difference in the number of nodes for the quantum numbers n = 4 and n = 1, for a 1 - Dbox is
 - (a) 1

(b) 2

- (c) 3
- (d) 4

(a) $\omega/2$

(b) ω

64. An aqueous solution contains 0.01 mol of formic acid ($pK_a = 3.8$) and 0.1 mol of so The pH of the solution is				nd 0.1 mol of sodium formate.	
	(a) 3.8	(b) 4.8	(c) 2.8	(d) 1.8	
65.	An electron is released with a speed of 1600 ms ⁻¹ in the x-y plane. There is a uniform magnetic field of 1×10^{-3} T along the z-direction. The radius of circular path that the electron will traverse will be close to (Mass of the electron = 9×10^{-31} kg, Charge of the electron = 1.6×10^{-19} C)				
	(a) 10 nm	(b) $10 \mu m$	(c) 10 mm	(d) 10 m	
66.				of 10 ms ⁻¹ from the top of a round is (Acceleration due to	
	(a) 1 J	(b) 15 J	(c) 150 J	(d) 1500 J	
67.	materials given in Grou (E_{in}) the slab		on from Group I	ectrostatic field (E _{out}). For the I that describes the field inside	
	Group-I		Group-II		
	P. Conductor		1. $E_{in} = 0$		
	Q. Dielectric		$2. E_{in} < E_{out}$		
			3. $E_{in} > E_{out}$		
	() P 1 10 2		$4. E_{in} = E_{out}$		
	(a) P-1 and Q-2		(b) P-2 and C		
60	(c) P-4 and Q-3		(d) P–3 and Q		
68.	In reverse bias, the current in a p-n junction diode is negligible because the				
	(a) currents due to the electron and the holes cancel each other				
	(b) current is only due to the holes and the current due to the electrons is shut off				
	(c) current due to the majority carriers is negligible and the current is only due to the minority carriers				
		majority carriers reverses i	ts direction		
69.	Exposure to X-rays is considered harmful due to their ability to ionize molecules in tissue. The				
	following property of X-rays is directly responsible for this aspect				
	(a) X-rays have large amplitude				
	(b) X-rays have high frequency				
		a velocity of $3 \times 10^8 \text{ ms}^{-1}$			
	_	associated with X-rays in	_		
70.	The electrical resistance of a metallic wire decreases with				
	(a) increasing temperature and increasing radius of the wire				
	(b) decreasing temperature and decreasing radius of the wire				
		ture and decreasing radius			
	, ,	ature and increasing radius			
71.		• •		horizontal plane at a constant, the angular velocity becomes	

(d) 4ω

(c) 2ω

A stick partially immersed in a half-filled glass of water appears broken at the air-water interface

(b) total internal reflection

72.

because of

(a) refraction of light

	(c) diffraction of light		(d) dispersion of	light	
73.	Two independent and identical circular conducting loops have radius r . They are symmetrical circular conducting loops have radius r .			r. They are symmetrically	
placed parallel to the x-y plane about the z-axis with their centres at (0			$0, 0, \pm z_0$). The currents in		
	the loops are equal and co	unter-propagating. The r	nagnetic field along	g the z-direction (B_z) at the	
	origin is				
	(a) zero, as the B_z fields	produced by the individual	ual loops cancel ea	ach other	
(b) non-zero, and two times the $\boldsymbol{B}_{\boldsymbol{z}}$ field produced by the individual loops					
		the B _z field produced by the individual loop			
- 4	(d) non-zero, and four tin				
74.	A satellite has an elliptical	orbit around the earth. I	ts maximum distan	ce from earth is d_1 and the	
	The ratio of the velocities		igentiai velocities a	are V_1 and V_2 respectively.	
	The facto of the velocities	di these distances is			
	(a) $\frac{V_1}{V_2} = \frac{d_1}{d_2}$	(b) $\frac{V_1}{V_2} = \sqrt{\frac{d_2}{d_1}}$	(c) $\frac{V_1}{V_1} - \frac{d_2}{d_2}$	(d) $\frac{V_1}{V_1} = 1$	
	V_2 d_2	$V_2 \bigvee d_1$	$V_2 - d_1$	V_2	
		Stross			
75.	The dimensions of the rational control of the rational	io Stress Strain are			
	(a) $ML^{-4}T^{-2}$	(b) $ML^{-1}T^{-2}$	(c) $ML^{-2}T^{-1}$	(d) $ML^{-2}T^{-2}$	
76.	· ·		, , ,	Assuming the surface area	
				n the upper and the lower	
	surface of the aircraft is (a		_		
	(a) 5%	(b) 25%	(c) 50%	(d) 95%	
77.	The surface temperature of	of the Sun is around 60	000K and its peak	wavelength of emission is	
			surface is 200K, t	he peak wavelength of the	
	radiation from the Moon		() 15	(1) (0)	
	(a) 3000 Å	(b) 1200 Å	(c) 15 μm	(d) 60 μm	
78.	Two waves on a str	ing have a displace	ement given by	$y_1 = y_0 \sin(kx - \omega t) \text{and} $	
	$y_2 = y_0 \cos(kx - \omega t + \phi)$. If superposition of these waves results in a <i>null</i> displacement, then w			ull displacement, then what	
	should be the choice of ϕ ?				
	(a) $\phi = 0$	(b) $\phi = \pi/2$	(c) $\phi = \pi$		
	(d) Such a \$\phi\$ is not possi-	ible			
79.	An optical communication system operating at 1.5 µm is used to transmit a number of audio				
channels of bandwidth 8 KHz. Supposing that 1% of the optical source frequency			e frequency is the available		
channel bandwidth, the number of audio channels that can be accommodated are					
	(a) 10	(b) 10^4	(c) 10^8	(d) 10^{12}	

80. Consider the following statements

Statement 1: The large energy released in a nuclear fission reaction is due to the extraction of the binding energies of the nucleons.

Statement 2: The coulomb binding energies are comparable to the nuclear binding energy at an inter-nucleon distance of 1 femtometer.

- (a) statement 1 and 2 are true, and 2 is the correct explanation for 1
- (b) statement 1 and 2 are true, and 2 is not the correct explanation for 1
- (c) statement 1 is false and the statement 2 is true
- (d) statement 1 is true and the statement 2 is false
- 81. Match the elements in Group II that are used widely in the devices listed in Group I

	Group I		Group II
P.	Detector	1.	Soft-iron core
Q.	Rectifier	2.	Polymer
R.	Transformer	3.	Photodiode
S.	Amplifier	4.	Diode
		5.	Transistor
(a)	P-4, Q-1, R-2, S-3	(b)	P-2, Q-5, R-1, S-4
(c)	P-1, Q-2, R-5, S-3	(d)	P-3, Q-4, R-1, S-5

- 82. The wattage rating of Heater I and Heater II are marked as 500W and 1000W, respectively and are specified for operation at 200V. Both these heaters are connected in series to a 200 V dc supply. Which one of them will produce more heat and what is the total heat generated?
 - (a) heater I produces more heat, and the total heat generated is 333 W
 - (b) heater I produces more heat, and the total heat generated is 1500 W
 - (c) heater II produces more heat, and the total heat generated is 333 W
 - (d) heater II produces more heat, and the total heat generated is 1500 W
- 83. For a real number x, let [x] denote the greatest integer less than or equal to x. Let K be a real number and the function f is defined by

$$f(x) = \begin{cases} \left[x \sin\left(\frac{\pi x}{2}\right) \right] & \text{for } x < 1 \\ Kx + 1 & \text{for } x \ge 1, \end{cases}$$

If $\lim_{x\to 1} f(x)$ exists, then the value of f(2) is equal to

- (a) -2 (b) -1 (c) 1 (d) 2
- 84. The area of a circle is increasing at the rate of 10 cm²/sec. If the initial area is 1 cm², then the time at which the perimeter of the circle equals $\sqrt{10\pi}$ cm is
 - (a) $\frac{1}{4} \sec$ (b) $\frac{3}{20} \sec$ (c) $\frac{2\pi 5}{20} \sec$ (d) $\frac{2}{5} \sec$
- 85. The value of the integral $\int_{0}^{2\pi} (1 + \sin x + \sin^2 x) dx$ is
 - (a) 0
- (b) π

- (c) 2π
- (d) 3π

Three balls were chosen randomly from a bag containing 5 white balls and 6 red balls. The

86.

(a) -16/3

	probability that exactly 2 white balls and 1 red ball were chosen is equal to				
	(a) 1/12 (b)) 1/10	(c) 3/10	(d) 2/3	
87.	Consider the following statem	nent			
	"All peacocks dance and somegation of the above?	ne elephants sing." V	Vhich one of the fo	ollowing statements is the	
	(a) some peacocks sing and	all elephants dance			
	(b) all peacocks do not dance	e and some elephants	do not sing		
	(c) all peacocks sing and sor	ne elephants do not o	dance		
	(d) some peacocks do not da	ance or all elephants	do not sing		
88.	The total number of relations		=		
	(a) 2^3 (b)) 2 ⁶	(c) 2^9	(d) 2^{12}	
89.	Given that $1 + 2i$ and 2 are r number, then the value of K		nation $x^3 - 4x^2 + 9x$	+K=0 where K is a real	
	(a) -10 (b)) -6	(c) 6	(d) 10	
90.	A frog is moving along a str	aight line by jumping	. It always jumps t	he same distance which is	
	a natural number. If the frog t	touches the ground ex	xactly 12 times in a	stretch of 90 units length,	
	the size of each step is				
	(a) 6 units (b)	7 units	(c) 8 units	(d) 9 units	
91.	The value of the determinant	$\begin{vmatrix} x & 2y & -3z \\ x^2 & 2y^2 & -3z^2 \\ x^3 & 2y^3 & -3z^3 \end{vmatrix}$ is			
	(a) $xyz(x-y)(x-z)(z-y)$		(b) $xyz(y-x)(x-x)$	-z)(z-y)	
	(c) $6xyz(x-y)(y-z)(z-x)$	DEED END	(d) $6xyz(y-x)(x$	-z)(z-y)	
92.	Let l , k be real numbers such consistent.				
	5x + 2y + 5z = 7				
	2x + z = l				
	2y + 2z - x = k				
	Then l and k satisfy				
	(a) $k+3l=7$		(b) $k = 0$ and $l = 0$	- 1	
	(c) $k=1$ and $l=0$		(d) $2l - k = 7$		
93.	If the straight lines $\frac{x-1}{2} = \frac{2}{x^2}$	-	$\frac{x-1}{3} = \frac{y+1}{k} = \frac{5-z}{5}$	are perpendicular to each	
	other, then the value of k is e	equal to			

(b) -4/3

(c) -8/9 (d) -1/9

- The value of $\cos\left(\cos^{-1}\left(-\frac{1}{2}\right)-\sin^{-1}(-1)\right)$ is equal to 94.
 - (a) $-\frac{\sqrt{3}}{2}$
- (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$
- (d) $\frac{\sqrt{3}}{3}$
- 95. Consider the following data 8, 3, 4, 1, 6, 8. The mean deviation about the mean for the above data is equal to
 - (a) 13/6

- (b) 7/3
- (c) 15/6
- (d) 8/3
- The area of the triangle whose vertices have the coordinates (2, 6), (0, 0) and (3, 1) is 96.
 - (a) 1/2 sq. units
- (b) 3/2 sq. units
- (c) 8 sq. units
- (d) 10 sq. units
- The coordinates of a point that divides the line segment joining the points (-1, 2) and (1, -4)97. internally in the ratio 2:3 are
 - (a) $\left(-\frac{1}{5}, -\frac{2}{5}\right)$ (b) $\left(\frac{1}{5}, -\frac{8}{5}\right)$ (c) $\left(\frac{1}{5}, -1\right)$ (d) $\left(\frac{7}{5}, -\frac{11}{5}\right)$

- For x > 0, define $f(x) = x^2 3x 4$. Invoking the chain rule, the derivative of the inverse function 98. f^{-1} at x = 0 is
 - (a) $-\frac{1}{2}$

- (c) 3 (d) -5
- Let K be a real number and let the function F be defined by $F(x) = \int_{0}^{x^{2}} (Kt^{2} + t + 1)dt$. If the 99.

derivative of F at x=1 is π , then the value of K is equal to

- (a) $2\pi 3$
- (b) $\frac{3}{2}(2\pi-3)$ (c) $\frac{\pi-4}{2}$
- The maximum value of the function $f(x) = \sin(\pi x) \pi x + 2$ on the interval [-1, 1] is equal to 100.
 - (a) $2-\pi$

- (b) $\pi + 2$
- (c) 2
- (d) 4