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Abstract

Modern urban-transport planning requires evidence-based insights into current transport flows to better understand
the needs and impacts of policymaking. Urban transport includes passenger and freight vehicles, which have different
behavior, and the need for such a separation is often ignored in research and practice [1]. New digital data sources
provide an opportunity to better understand urban transport and identify where policy interventions are required. We
review the literature on digital counting techniques to monitor transport flows, including loops, Automatic-Number
Plate Recognition (ANPR) cameras and floating car data. We further investigate the potential of ANPR cameras, which
are widely deployed, and which can be augmented with vehicle category information. This article presents the
methodology that we follow for transforming raw augmented ANPR camera data into practical knowledge for city
planners. Our is aim is to provide a better understanding of passenger and freight vehicle movements and stops,
identifying similarities and differences between vehicle categories. We demonstrate our methodology on a case study
for the Mechelen-Willebroek district in Belgium, encompassing augmented data from 122 ANPR cameras for a period
of two weeks. Additionally, we also look at the car-reduced zone and how time restrictions affect the different vehicle
categories’ actions. The findings are validated with GPS data from heavy-good vehicles in the same period. The
potential of augmented ANPR camera data and promising themes and applications of this data source are illustrated
through the case study.
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1 Introduction
Information and communication technologies (ICTs)
have been transforming traditional methods of urban
management and infrastructure planning for the past two
decades [2]. In order to manage daily operations, urban-
policy makers are increasingly using real-time analytics
[2], for example, analyzing movement of vehicles in cities
in order to monitor traffic and adjust traffic lights and
speed limits [3].
In a complex environment such as the urban transporta-

tion, understanding travel behavior is a critical require-
ment of any attempt to foresee the impacts of change
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and to respond through policy. Several techniques can be
used to collect urban transport data: traffic counts (loops
or manual counts), vehicle observations, stakeholder sur-
veys, driver interviews, vehicle trip diaries, Floating-Car
Data (FCD), etc. [4–7]. Data from ANPR cameras has
already been analyzed for traffic management, to estimate
travel time and to understand vehicles travel behavior. A
more detailed discussion on literature analyzing ANPR
cameras data is provided in Section 2. In this research,
we add to the state-of-the-art by focusing on analyzing
augmented ANPR camera data to analyze different vehicle
categories, i.e light-goods vehicles, heavy-goods vehicles
and passenger vehicles, separately, and understand sim-
ilarity and differences among these categories. Although
increasingly called for, not many studies to date use a
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data source to compare different vehicle categories move-
ment. Furthermore, we provide a comprehensive view on
potentials of ANPR camera data in providing insights on
movements of vehicles in a region, while most research
concentrate on one aspect of transport. We guide our-
selves by extracting knowledge for city planners that is
relevant but missing. We provide visualizations on loca-
tions where vehicles have visited more frequently, and
their frequent trajectories. Moreover, we demonstrate the
number of vehicles during different hours of the day.
Finally, we also focus on detecting stops (often called stay-
point [8]) using ANPR cameras data, and we identify the
location of the stops as well.
Many of the data sources do not differentiate vehi-

cle categories and measure the flows of all vehicles at
once. Manual counting and doing surveys can differenti-
ate between vehicle categories, but this is cost and time
intensive. Using technology to collect data can overcome
the challenges of data collection, by providing large quan-
tities of urban data at a much lower cost than traditional
surveys [4, 5]. Data from induction loops can separate dif-
ferent vehicle categories [9], but detailed flows can not
be derived as vehicles can not be easily tracked from one
counting loop to the other. On the other hand, GPS data
are typically collected within a single vehicle category, e.g.
taxis [10–13], public transport vehicles [14, 15], passenger
cars [16–19] (e.g. as part of an insurance or fleet plan) or
freight vehicles [20–23].
What is missing are data sources that can measure both

and separate passenger and freight flows. Passenger vehi-
cles are the majority of observations, and freight vehicles
count for 10 to 18% of all vehicles on urban roads [1]. On
the other hand, these vehicles are responsible for 16% to
50% of transport-related emission of air pollutants in cities
(depending on the pollutant considered) [1, 24]. Passenger
and freight vehicles have different behavior, and it is essen-
tial to separate them to establish policies for each category
accordingly.
Collecting data on urban-goods movement is specifi-

cally challenging as there are many economic agents who
are reluctant to share information on their operations
[25]. Yet decision makers need a solid understanding of
patterns in urban freight operations and advanced fore-
casting tools to come to effective policies [26–28]. And
ideally, this would include data from both freight and pas-
senger flows, such that the effect of one on the other can
be taken into account.
In this study we take a deeper look at data generated by

Automatic Number Plate Recognition (ANPR) cameras,
and their advantage for urban authorities to understand
urban transport in their city. From a practical point of
view, using data from ANPR cameras reduces cost and
data ownership issues. First, because the cameras are
mainly used for law enforcement purposes and electronic

toll collections, there is often a dense network of cam-
eras. Moreover, unlike loops, the cameras are installed
for a specific purpose, and their use for transport mon-
itoring requires no additional investment. Second, the
cameras are often owned by authorities, or operated on
their behalf, which gives them access to the data and
overcomes ownership issues and costs linked to buying
data from private operators (e.g. FCD data). The objec-
tive of the present paper is to demonstrate how ANPR
camera data can contribute to a better contextual under-
standing of urban transport, by investigatingmovement of
passenger vehicles and freight vehicles.
For the specific challenge of differentiating passenger

and freight vehicles, we assume the possibility to aug-
ment the data with vehicle category information, e.g. by
matching the number plates to “Vehicle Registration Ser-
vice” records. This provides the opportunity to group the
vehicles into different categories, e.g. passenger vehicles,
light-goods vehicles and heavy-goods vehicles [29, 30].We
adapt a methodology for analysing such data, based on the
generic CRISP-DM framework [31].
We provide a case study of the analysis of such a data

source, with augmented ANPR camera data for the police
district of Mechelen-Willebroek in Belgium. There are
122 ANPR cameras in this police district of 92,6 square
kilometres1. Moreover, Mechelen-Willebroek district has
recently implemented a car-reduced zone of 0.27 square
kilometres. We analyze vehicles movements in this zone,
to understand the effect of such policies in the region. The
dataset was anonymized by the “Belgian Vehicle Regis-
tration Service”, removing the number plates but adding
further information on the vehicles categories. In order to
validate the results from the ANPR analysis, we have ana-
lyzed data from On-Board Units (OBU) of Heavy-Goods
Vehicles (HGVs) and compared our findings from the two
dataset.
In this research we start by reviewing the use of data

from ANPR cameras and other sensors for understand-
ing urban transport flows in Section 2. Afterwards, in
Section 3, we describe our methodology, inspired by
CRISP-DM [31], for processing and analyzing ANPR cam-
era data to observe passenger and freight vehicles move-
ments. In Section 4, in a case study we analyze augmented
ANPR camera data, for the Mechelen-Willebroek police
district. By exploring the methodology’s outputs, we
describe the observed similarities and differences between
different vehicle categories. Furthermore, we monitor the
effect of the introduced car-reduced zone of the city of
Mechelen in vehicles movements. Finally, in Section 5,
we validate results from the ANPR analysis by analyzing
GPS data from on-board units of HGVs. We investigate
the observed similarity and differences. The paper is final-
ized by a conclusion in Section 6, and a discussion on
limitations and future work in Section 7.
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2 Literature review
Inductive loops, Bluetooth detectors, Floating Car Data
(FCD), and ANPR cameras are the most common data
sources that provide information on location of vehicles in
real-time. In the following, we highlight the use of these
digital data sources with a special focus on the latter.

Inductive loop traffic detectors Inductive loops are
devices which are installed under the pavement to detect
when a vehicle passes over it, while roughly classifying
what category of vehicle it is [32]. They can hence be used
to measure lane occupancy and volume of traffic at a cer-
tain point. Furthermore, two consecutive detectors can be
placed with some distance apart to estimate average speed
[33, 34].
Loops can be used for travel time estimation as they

record velocities of vehicles at each point [35–37]. Fur-
thermore, [38] proposes a single loop system that enables
monitoring truck volume data based on weight of the
truck. By comparing GPS and loop detectors data for esti-
mating velocity and travel times, [39, 40] find out that
using each data set alone gives an error rate of below 10%
and combing both is better. Furthermore, [41] compare
two techniques for predicting traffic state by estimating
vehicles velocities using GPS data and loops detectors.

Bluetooth recognition systems Such a system records
unique MAC-Addresses (Media-Access-Control-
Address) of devices that pass it, e.g. from the smartphone
of a driver, or the hands-free sets of a vehicle [42].
[42] survey the evolution and application of these sys-

tems. For example, they have been used to estimate travel
time [43, 44]. [45] use GPS data from buses and Bluetooth
detectors data for other vehicles and studies the travel
patterns, and detects communities based on these pat-
terns. [46] studies route choice modeling of vehicles, even
though he reports that 30% of node sequences are effected
by errors of the road side Bluetooth systems. Bluetooth
recognition systems have lower detection rates than loops
and ANPR cameras because not every vehicle has a blue-
tooth device, furthermore, the category of vehicle can not
be derived from it.

Floating-Car Data (FCD) Locating vehicles in real time
is the principle of floating-car data [47]. There are two
main types of FCD, namely GPS and cellular-based sys-
tems. Global Positioning System (GPS), or more generally
a Global Navigation Satellite System (GNSS) is a naviga-
tion system that provides geo-spatial information to any
GPS receiver, e.g. a mobile phone or a vehicle’s naviga-
tion system. When locations of the receiver of a vehicle
are stored at a certain interval, a trajectory of the vehicle
is obtained. Because the receiver is on the driving vehi-
cle, it is a form of FCD. In cellular-based system a mobile

phone’s position is transmitted to the network [47]. This
approach provides a high coverage as the mobile phones
need to be turned on, but not necessarily in use.
Clearly, databases of GPS trajectories are a rich data

source for analyzing transport behavior of vehicles. Alike
other mentioned data sources, GPS data have been used
for travel time estimation [48–51]. Other performance
measures such as duration, distances, number of activities
and origin-destination have been investigated using GPS
trajectories data [20–23].
Additionally, in order to understand travel behavior

in vehicles and humans, [16, 17, 52] group users into
behavioral categories based on their travel patterns, and
researchers in [53, 54] derive mobility measures and pro-
files for the users. While analyzing GPS trajectories data
of freight vehicles, [55–57] discuss their method and chal-
lenges for identifying a stop.
Based on cellular-phone data, [58] measures traffic

speeds and travel times, and compares those with findings
from dual loop detectors. [59] also investigates vehicles
velocities. Trip distributions and densities are studied by
[60] and [61]. Finally, researchers in [62, 63] estimate
travel demands in the form of origin-destination (OD)
matrices.

Automatic Number (or License) Plate Recognition
cameras These camera’s are installed in fixed locations
and can read a vehicle’s registration plate with high accu-
racy. Recognizing the number plates is a difficult as factors
such as illumination conditions, vehicle shadow and non-
uniform size of license plate characters, different font and
background color affect the performance of ANPR. This
makes it hard to achieve 100% overall accuracy [64, 65].
ANPR cameras are widely employed around the world,
mainly for law enforcement purposes and electronic toll
collections. [66] report on use of ANPR cameras in Lon-
don, Melbourne, Sydney and Seattle, which are among the
smartest cities according to their bench marking. Govern-
ments do not always report on the number of cameras that
have been installed, but records show that in the Nether-
lands close to 300 ANPR cameras have been installed [67],
and in Denmark 24 at fixed locations and 48 on police cars
[68]. In Australia and Belgium more than 1000 cameras
have been installed [69, 70], and in Belgium this number
is rising to three times more [70].
We review different uses of ANPR camera that have

been studied:

Travel time Travel time on roads is a common indica-
tor that can be estimated from the data received from
these cameras [71–73], furthermore the effect of events
on travel time can also be determined [74, 75]. In order
to filter out the travel time errors, [76] use the “overtak-
ing” method, which compares the travel time to the travel
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time of consecutive vehicles. In a further step, [77] have
combined the estimated travel time with historic data to
predict travel time in near future, and [78] propose to use
ANPR camera data for predicting arrival time of trucks to
their freight centers. [79] compare travel time estimation
using ANPR camera data and GPS data, and do not detect
any statistical differences. Moreover, in [5, 80] Hargrove
compares different data sources for travel time estima-
tion, using ANPR as the ground truth. [81] investigate
travel time and traffic volume using ANPR camera data.
Furthermore, vehicles are classified based on their emis-
sion standard, and finally their origin and destination is
predicted based on origin of their number plate [81].

Traffic management In order to further plan traffic-
management actions, [82] study effectiveness of a recently
installed traffic management system which has boards for
conveying messages, using ANPR in combination with
weather data. In London [75], data fromANPR and CCTV
cameras are used to understand the traffic composition of
different vehicle groups based on number of vehicles and
kilometers. Furthermore, they investigated the average
speed, and the effect of events on that. Furthermore, [83]
estimate speed profile and emission of vehicle, and [84]
propose a model for real-time queue length calculations
on freeways.

Origin-Destination [85] provide counts at each camera
point and a matrix of origin-destination between camera
pairs, that were the first and last camera observing a vehi-
cle. [86] estimate the path flows and origin-destination.
Thereafter, in [87] they optimize the use of ANPR cam-
eras by minimizing the number of cameras needed for
path estimation. Furthermore, [88] propose a trajectory
reconstruction method based on ANPR camera data.

Travel behavior Matching the number plates with some
socioeconomic factors of vehicle owners, [89] investigate
effect of household size and household median income,
on transport behavior of vehicles. [90] study the poten-
tial of carpooling using the traffic demand estimated
from ANPR camera data. Furthermore, [91] explore reg-
ularity of arrival times in different individual vehicles.
Researchers in [92–95] investigate activity patterns of
vehicles based on their spatio-temporal features.

Cameras other than ANPR cameras have also been used
to get an insight into transport. [96] estimate travel time
from surveillance cameras and [4] review current appli-
cations of video and image processing cameras for ITS.
There have been concerns about privacy regarding the use
of cameras and the potential for mass surveillance. [97]
investigate privacy risks and best practices of ANPR cam-
era data use. Succeeding the establishment of a platform

that respects the privacy of individuals, ANPR camera
data can provide useful insights into urban transport.
We contribute to both literature and practice in two

ways. First, as opposed to current research that has mostly
concentrated on one aspect of transport e.g. travel time
or origin-destination, we offer a more holistic and com-
prehensive approach on the potential of ANPR camera
data. We investigate what performance measures can be
derived from ANPR camera data for better understand-
ing of vehicles movements. Thereafter, we propose a
generic step-by-step approach to analyze ANPR data and
derive these performance measures. We also showcase
our methodology and discuss our findings on a few weeks’
data. For example, we investigate the vehicles movements
in the region by looking into observation pairs, and we do
not only look at vehicle movements but also at stops, e.g.
where and how frequently vehicles stops. Second, using
augmented ANPR camera data we explicitly differentiate
between vehicle categories, i.e light-goods vehicles, heavy-
goods vehicles and passenger vehicles, and accentuate
differences among these categories. Although increasingly
called for, no study to date has reported on a similar
endeavor.

3 Methodology
To analyze the data, we follow a methodology that is
inspired by CRISP-DM (CRoss-Industry Standard Pro-
cess for Data Mining) [31]. CRISP-DM is a standard
process that describes the different stages in a data ana-
lytics approach. These stages are “1. Business Under-
standing” where the business objectives are identified, “2.
Data Understanding” where the data are described and
explored, “3. Data Preparation” where data are selected,
cleaned, and constructed, “4. Data Modeling” where the
actual analysis is carried out and “5. Evaluation” where the
results are interpreted, and finally “6. Deployment” where
the process is operationalised.
We map these different stages to the analysis of raw

augmented ANPR camera data to get insights into urban
transport. This is non-trivial, as ANPR camera data are
raw and noisy big data, which must be carefully treated
and analysed before conclusions can be drawn from it.
Figure 1 shows the different stages, which map to the
CRISP-DM stages, and the kinds of data transformations
that are applied in each. In the following, the steps are
described in more details, highlighting our approach in
this study.

3.1 Business understanding: understanding urban
transport

Concrete and up-to-date numbers on urban transport are
often lacking for decision makers. The aim of this analysis
is to analyze raw ANPR camera data, and provide insights
into movement of different vehicle categories, e.g. passen-
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Fig. 1 Our methodology for analyzing observations of ANPR cameras

ger, light-goods and heavy-goods vehicles. The number of
vehicles, common locations, entry-exit behavior, stopping
locations and trajectories of different vehicle categories
can be compared to each other. This should lead to a bet-
ter understanding of urban transport and hence to better
and more informed decision making.

3.2 Data understanding
Data is collected by the ANPR cameras. Each observation
has a unique identifier and three attributes: timestamp,
camera identifier and vehicle number plate. Data was
enriched by adding GPS coordinates of cameras and their
description, which briefly describes street and location of
the camera.We received this data together with the ANPR
cameras observations.
Furthermore, the dataset is anonymized. In order to

anonymize the data, scanned number plates are replaced
by pseudo-identifiers, as well as a field indicating the
country code of the license plate. Each vehicle receives a
new pseudo-identifier every week.
Moreover, the dataset has been enriched by match-

ing to the records of the national “Vehicle Registration
Service”. Note that these records only include national
vehicles, and not foreign vehicles. For each observation of
a national vehicle, the vehicle kind, vehicle category and
European emission norm of the engine (Euro 0 to 6) have
been added.
As a conclusion, as shown in Fig. 2 each row of the

data consists of the observation ID, timestamp, camera id,
longitude, latitude, camera description, vehicle pseudo-id,
vehicle’s country code, vehicle kind, vehicle category and
vehicle euronorm.

Fig. 2 Attributes of the augmented ANPR camera data

3.3 Data preparation
• Cameras: Figure 3 shows the estimated vehicles

velocities. Having many observations with low
velocity is due to vehicles stopping for a while,
parking for a long time or leaving the region and
coming back after some time. On other hand, the
extremely high velocities are physically impossible,
and hence indicate noise in the data. Further analysis
revealed that it is caused by a misalignment of clocks
of some cameras, e.g. their timestamps are not
synchronized. This can effect our analysis greatly as
the order of cameras that we observe may not be the
true order. Because only a few, older, cameras had
this issue, we removed those 5 cameras with the
highest velocity observations. To avoid this in the
future, ANPR camera operators should ensure that a
clock synchronization system such as NTP is in place.

• Vehicles: Matching the national license plates to the
records of the “Vehicle Registration Service” provides
additional informationon these vehicles, namely vehicle
kind, vehicle category and its engine’s Euronorm.
This augmented data contain 59 different vehicle
kinds and 99 different vehicle categories, which is too
extensive for our purpose. Instead, we group them
into the following widely-used classification [29, 30]:

– Passenger Vehicles
– Light-Goods Vehicles (LGV): Vehicles for

transporting goods with a capacity up to 3.5
tons.

– Heavy-Goods Vehicles (HGV): Vehicles for
transporting goods with a capacity above 3.5
tons.

There are some vehicles that do not match any of the
above groups such as agriculture vehicles. Moreover,
we do not have vehicle registration information for
foreign vehicles, which account for 4% of our data.
These vehicles are removed from the data in our
analysis.

• Zones of interest: The cameras encompass the
Mechelen-Willebroek police district. It covers all the

Fig. 3 Estimated velocities of the full data
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entry and exit roads of the district and more.
Additionally, the city of Mechelen has a car-reduced
zone. All entry and exit roads to the car-reduced zone
are also covered by cameras, and it is of specific
interest to the transport planners, so it is a second
zone of interest. Figure 4 shows the
Mechelen-Willebroek district, the car-reduced zone
and the 122 ANPR camera locations.

3.4 Data modeling
Our first step in modeling the data is to sort the data
according to the date, vehicle identifier and time. There-
after, we continue our modeling by data expansion as
explained in the following.

• General: For each of our observations (apart from the
last observation of each vehicle), we add the next
camera they go to. Thereafter, we add the time it took
to get that next camera, and the distance to that
camera. There can be multiple trajectories possible
between two camera points. Uncertain of the road
the vehicle has taken, we use the straight-line
distance between the cameras. When a vehicle stops,
it comes out in our analysis as vehicles with low
velocities, which are identified as trip splitting points
(explained in the next section). Hence, while this is an
under approximation, we show in Section 5 that the
speed profiles that we get are highly correlated with
those from more accurate GPS data, which shows
that it is a reasonable approximation. Using these
measures, we can estimate the velocity of the car,
which is an underestimation of the average speed it
drove on the roads in between.

• Trip identification: As we see on Fig. 3, there are
many observations with low velocities. We identify
three reasons for this: some vehicles leave the
Mechelen-Willebroek district and come back after
some time within the same day, some vehicles park
for a long time, and some stop for a short time for
example for a delivery or visit to a shop.
[92] and [95] define a minimum and maximum travel
time between consecutive observations. If trips take

Fig. 4Map of Mechelen-Willebroek district, Car-reduced zone and
122 ANPR cameras

longer than this maximum, they are identified as a
new trip. The minimums and maximums are defined
as a function of the distance between the two
cameras and the distribution of travel times. We take
three steps, to define the threshold to split a trip. We
first determine how much time on average a vehicle
takes to drive between each camera pair. The average
time between each camera pair can vary according to
the hour of the day. We get the average time between
each camera pair per hour of working days.
Thereafter, we compare the time a vehicle take to
drive between the camera pair in comparison to the
average time. We add to each observation what is the
difference in time between the expected time and the
time that it actually takes the vehicle to get there,
showed in Fig. 5 (for below 120 minutes). We
establish a stop according to the differences between
trip duration and expected duration:

– Stops: To determine when a vehicle stopped,
we look at the difference between the actual
time driven and the expected driving time
between these cameras at that time of the day.
Figure 5 shows the time differences over all
cameras. Based on this figure, we define a stop
rather conservatively as having a time
difference that is more than 15 minutes, but
less then 5 hours with the expected time. We
have chosen these limits according to the lost
time frequencies that we have been recorded,
and investigating some individual movements.
This can be researched further in future work.

– Parking or out of Region: A long stop, that is,
observations where the vehicle has parked or
went out of the district for a long time, are
marked as such if the time that the vehicle
took to get to the next camera is more than 5
hours on top of the expected time.

Points where a “stop” or a “long stop” have occurred
are used to split the trajectories into smaller, coherent
trips and our calculations are over these trips. We do not

Fig. 5 Time difference in minutes, between actual trip duration and
expected duration
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make a separation between stops that are shorter than 15
minutes.

3.5 Evaluation: visualization
In order to demonstrate the counts where e.g. number of
vehicles and number of stops, and vehicles’ velocities, we
have used multi-line graphs. Multi-line graphs are used to
compare numbers from different vehicle categories.
For looking at the number of observations at each

camera, we have used maps, where each camera is shown
with a circle and the radius is related to the number of
observations. Color of the circles also indicate the den-
sity of observations. A similar map has been used to show
the trajectories of the vehicles, where lines thickness and
colors show the trajectories taken. Finally, to display the
entry-exit heat matrices are used, which use heat colors to
indicate correlations between entry and exit points.

3.6 Deployment
The framework described could be deployed to provide
periodic reports on the vehicle behavior, which allow to
study and compare how it is evolving over time. However
this paper is an exploratory study where we analyse the
results of a case study of two weeks.

4 Case study on theMechelen-Willebroek region
In this case study, we analyze data from 2 weeks, Mon-
day 8/1/2018 to Saturday 13/1/2018 andMonday 5/2/2018
to Saturday 10/2/20181. The data have been analyzed for
the police district of Mechelen-Willebroek in Belgium.
Mechelen and Willebroek are the largest cities in the
district and have 86.137 and 26.230 inhabitants respec-
tively (2018)2. There are 122 ANPR cameras in this police
district of 92,6 square kilometres2.
All major approach roads in this district have trajectory

controls with ANPR cameras [98]. Furthermore, Meche-
len city has the largest car-reduced zone in Belgium,
where vehicles above 10 tons are not allowed, and from
11h to 18h motorized traffic can not enter these streets
without a permit. The ANPR cameras are used to enforce
these regulations [98], thus essentially all approach roads
have ANPR cameras.

4.1 Data quality
We provide an overview on the number of vehicles in dif-
ferent days of our analysis period. Figures 6 and 7 show
the number of vehicles in the region and car-reduced
zone respectively. We observe a similar behavior between
the working days, except on "2018-01-10" where data are
missing, and this day has been removed from further
analysis.

1The dates are not the choice of the authors, and its the days that have been
selected by the project commissioner.
2https://www.vlaanderen.be

Fig. 6 Number of vehicles in the district

Determining the number of unique vehicles in a region
each day is one of themeasures provided with ANPR cam-
era data, which cannot be achieved through traditional
data sources such as loops or manual counts, as they can
only count on a certain point, and do not observe when
the vehicle leaves the region.
We observe that the number of passenger vehicles is

much larger than the number of freight vehicles. Further-
more, in the Mechelen-Willebroek district, the number
of LGVs (9% of all vehicles) are around twice the num-
ber of HGVs (3.5% of all vehicles) . This difference is
higher in the car-reduced zone, where LGVs are 14.3%
of all vehicles while HGVs are 2.7% of all vehicles. This
is due to the restriction on larger vehicles in this region
(no vehicles about 10 ton). We can see that freight vehi-
cles behavior changes greatly between working days and
weekends. On Saturdays, the number of HGVs decreases
to a great extent. While the number of LGVs decrease as
well, the difference is smaller. Finally, there are also less
passengers’ vehicles on Saturdays, but the difference is not
as big.

4.2 Trajectories
Insights in vehicles’ trajectories can help to locate areas
that are most frequented, and hence most exposed to
nuisances such as wear-and-tear of infrastructure, air
pollution and noise. Depending on the area, this would
indicates where policy interventions of different kinds

Fig. 7 Number of vehicles in the car-reduced zone

https://www.vlaanderen.be
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Fig. 8 Passengers observations

may be desirable e.g. road maintenance, planting trees
and safety measures. Especially non-primary roads, where
many freight vehicles pass, deserve further attention [99].
Figures 8, 9 and 10 show the number of observations of

passenger vehicles, LGVs and HGVs at different cameras
respectively. The frequency in these visualizations is the
average number of observations per working day.
In addition to single-camera counts, ANPR camera data

enable us to see the flow of vehicles from one camera
to the other. This gives us the opportunity to look into
the trajectories that are taken more often. Figures 11, 12
and 13 show the trajectories between camera pairs by
passenger vehicles, LGVs and HGVs. Frequencies in these
visualizations shows how many times on average working
days, vehicles have driven these trajectories.
We observe in both setups that the east-west road in the

region is the main passage through the region. Through
these figures, it is highlighted that HGVs use the sec-
ondary roads relatively less than LGVs and Passengers
vehicles. LGVs are used often for smaller deliveries, e-
commerce and as service vehicles such as electricians and
maintenance services. Hence, this can explain their sim-
ilar behavior to passenger vehicles and frequent visits to
residential areas.

Fig. 9 LGVs observations

Fig. 10 HGVs observations

4.3 Entry-Exit
In Figs. 11, 12 and 13, we observed the trajectories of vehi-
cles, monitoring frequency of vehicles traveling between
each camera pair. The direction of movement is implicit.
Hence, we do a complementary analysis of entry/exit
flows in the region. We can observe where vehicles enter
and exit the region, which provides information on the
main entry and exit points and the ratio of trips from ori-
gin (row) to the destination (column). Such analysis can be
done for each of the vehicle categories separately, but here
we are demonstrating it for all vehicles together.
Figure 14 shows the cameras and their labels (add that

A/B (former In Out) refers to different road direction),
and Fig. 15 shows the entry-exit matrix with heat colors.
Figure 15 shows which entry exit points are used together.
In our analysis, most vehicles use the same entry point
as their exit points. Furthermore, we can see that vehicles
that enter from the primary roads on the west side of the
district and exit from the same point as they entered, have
the highest frequencies. These serve as the main gates to
the district. Vehicles that enter from these points, also
often exit from points that are further on the same road,
which indicated the through-traffic roads. Vehicles that
use three cameras on the north-west side to enter, use

Fig. 11 Passengers trajectories
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Fig. 12 LGVs trajectories

one point as an exit. This is the industrial zone, and vehi-
cles entering and leaving from these points are mostly
destination traffic.

4.4 Hourly behavior
Transportation flows change considerably throughout the
day. Looking at the number of vehicles per hour of the day
allows to see this in more detail. Particularly, in light of
enforced time windows such as in the car-reduced zone,
analyzing hourly vehicle behavior indicates the extent to
which such restrictions have effect.
Figures 16 and 17, demonstrate the number of vehicles

on different hours of the days, on average working days
in the Mechelen-Willebroek district and the car-reduced
zone respectively.
At the district level, passenger vehicles and LGVs have

two peaks, one in the morning and one in the afternoon.
HGVs reach their peak between 10h and 11h, while they
have a relatively consistent number during the day. HGVs
start and stop driving the earliest, followed by LGVs. Pas-
senger vehicles have the latest peak in the mornings and
evenings, and their peak are the highest as well.
In the car-reduced zone, almost all freight vehicles visit

before 11h, and both LGVs and HGVs barely move after

Fig. 13 HGVs trajectories

Fig. 14Map of top cameras in Entry-Exit matrix

that, due to the restrictions. Passenger vehicles, have the
two morning and evening peaks, and their evening peak
(18h-19h) is stronger.

4.5 Stops
Vehicles’ stops information provides cities insights on
movements of vehicles goods, and enables adequate local-
ization of infrastructure, e.g. parking, loading and unload-
ing areas. As explained in Section 3.4, if a vehicle has a
delay of more than 15 minutes to get to the next camera,
we estimate that the vehicle has stopped during their jour-
ney. If this delay is above 5 hours, we do not consider this
as a stop, but as a long stop meaning the vehicle has made
a parking at their destination or has left the region during
this period. The delay is the difference between the time a
vehicle takes to drive between a camera pair in compari-
son to the average time vehicles take between the camera
pairs at that hour.
Figures 18 and 19 present the number of stops estimated

per hour in region and car-reduced zone. We observe that
HGVs peak is earlier than LGVs, and that the peak of
freight vehicles stops in the car-reduced zone is between
10 and 11h.
When we detect that there are stops between camera

pairs, we associate the location of the stop to the camera,

Fig. 15 Entry-Exit Matrix
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Fig. 16 Average number of vehicles in the region per hour

after which the stops has occurred. Figures 20, 21 and 22
show for passenger vehicles, LGVs and HGVs the cameras
around which the stops have taken place. Frequencies in
these visualizations show the averages on working days.
For passenger and LGVs, a camera on the south is the

main point after which the vehicles are stopping. Around
this camera, a retail park, distribution center of one of
the chain supermarkets and the south industrial park are
the main attractions. On the other hand, for the HGVs,
a camera on the north-west side is the main point after
which the vehicles are stopping. This region is the indus-
trial zone in the district.

4.6 Emission standards
Based on the emission standards of the engine, each vehi-
cle in Europe has a euro level associated with it, euro
6 being the best and euro 0 the worst. In line with
cities’ efforts to control and reduce air pollution, such
information indicates whether local intervention, e.g. low
emission zone, is required and which vehicle categories
should be targeted. Figure 23 show a comparison between
the Euronorms associated with average number of LGVs
vs HGVs that drive in Mechelen-Willebroek district per
working day. We see that the larger vehicles have better
Euronorms proportionally.

4.7 Velocities
Cities are actively trying to lower vehicle speed, to
decrease number of accidents. Investigating velocities, we
can investigate if users respond to restrictions. Moreover,
this analysis can be focused on certain sensitive roads
by looking at the velocity profiles of individual cameras.
Based on distances between camera pairs, and the time
that vehicles take to drive between them, we estimate

Fig. 17 Average number of vehicles in the car-reduced zone per hour

Fig. 18 Average number of stops in the region per hour

velocities of vehicles. Figure 24 shows the average velocity
of different vehicle categories at various hours of the day.
We can see that during the night there is fewer traffic (and
fewer stopping), and that the morning congestion peak is
worse than evening. Furthermore, there is no significant
difference between vehicle categories, while HGVs have a
slightly higher estimated velocity in most hours. This can
be explained by the observation that HGVs drive mostly
on primary road, and they go to secondary roads, where
the speed limit is lower, only if they are stopping.

5 Validation with gPS data
To validate accuracy and level of details in our finding
from ANPR camera data, GPS data from HGVs have been
used as a secondary dataset to validate the results. GPS
trajectories data are a rich data source, and through this
validation we compare the quality of ANPR camera data
to GPS data.
As part of a dynamic road-pricing scheme in Belgium,

HGVs have been equipped with On-Board Units (OBU),
that submit location of the vehicle every 30 seconds to
a server. Time stamp, GPS coordinates, current driving
speed and direction, as measured by the GPS devices,
are recorded every 30 seconds. Regarding the vehicles,
the dataset contains the country code of the license plate,
the European emission norm and a pseudo-identifier that
changes every day at 2:00 UTC. The data have been
analyzed by the methodology introduced in [55] as vali-
dation for ANPR camera data analysis. Results achieved
using this methodology to analyse OBU data have been
used by cities, e.g. Brussels local government.
Both ANPR cameras and OBU data, have trajectories

of HGVs, which are vehicles that transport goods above

Fig. 19 Average number of stops in the car-reduced zone per hour
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Fig. 20 Passengers Stops

3.5 tons. On the other hand, in the ANPR camera dataset,
HGVs have been categorized based on vehicle kind and
category, and we may not have been able to identify all
the HGVs, as sometimes the vehicle kind and category
descriptions are too general. Furthermore, in the ANPR
camera dataset we do not have information on vehicle
kind and category of foreign vehicles, while in the OBU
dataset foreign vehicles that drive in Belgium also should
have an OBU. The analysis has been done for the same
region as the ANPR camera data, given the convex-hull of
the ANPR cameras.
In Fig. 25, we compare the number of HGVs observed

with OBU and ANPR. We observe a very similar pattern
but there are more unique vehicle observations with OBU.
There are a number of differences between the ANPR and
OBU analysis that contribute to the absolute differences:
OBU data also contain foreign vehicles, ANPR data does
not and also does not contain vehicles that could not be
matched by the vehicle registrar (e.g. ANPR errors) or
whose vehicle category is not known. The definition of
heavy-good vehicle is also different for both data sources,

Fig. 21 LGVs Stops

Fig. 22 HGVs Stops

and the OBU data are much more fine-grained and also
captures vehicles that drive inbetween cameras or on
highway ramps. However, with OBU there is also a danger
of over-counting when vehicles start their car and drive a
very short distance within a distribution center, which we
have tried to detect as much as possible. The main find-
ing is that even though there are some differences in the
counts, the trends in the two datasets are the same, and
can be used to monitor patterns of behavior.
Figure 26 compares the velocities calculated fromANPR

cameras en OBU data. Velocities are calculated based
on straight distances between observations versus time
taken, and are an underestimation, as discussed before,
and not the actual speed of the vehicles. OBU velocity
estimates are higher, but the same trends at the peak
hours, and night versus day are viewed. This confirms
the validity of using straight line for velocities, as we
have a small underestimation, but the rest of the informa-
tion shows similar behavior and patterns. Additionally, in
Fig. 27 and 28 we can observe similar trajectories when
using mapmatched OBU trajectories or ANPR camera
pairs. This indicates that ANPR camera data, even though
much less fine-grained can reveal trajectory patterns in a
region.

Fig. 23 Euronorm of HGVs
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Fig. 24 Velocity of Vehicles

Finally, in Fig. 29, we see the density of stop locations
from the OBU data. In Fig. 22 we also make the estima-
tion of where HGVs stop using the ANPR camera data.
While, GPS data have a higher resolution, our estima-
tion with ANPR largely indicates the same regions as
we observe with OBU. On the north-west, which is the
industrial zone, we have the highest density of stops, and
the other regions detected by analyzing OBU data match
the observations with ANPR camera data.
We conclude from this analysis of HGV data that even

though ANPR cameras have a lower coverage than GPS
data, which leads to incomplete trajectories, we can still
analyze and observe the main movement patterns from
analyzing ANPR data. The insight such as number of vehi-
cles, number of stops, estimated velocities, trajectories
and even location of stops are all valid. The insights into
number of vehicles, stops, estimated velocities, trajecto-
ries and even location of stops (albeit at a higher spatial
granualarity) show the same trends, though we do observe
a systematic over/under-counting for OBU/ANPR.

6 Conclusion
In the case study, we explored the potential of analyzing
ANPR data for better understanding of vehicles’ move-
ments, with a focus not just on one aspect such as travel
times or stop detection, but a comprehensive approach to
derive data-driven insights for city planners. We explored
the vehicles movements in the region by looking at the
frequency of vehicle observations by each camera, and we

Fig. 25 Number of HGVs

Fig. 26 HGVs Velocity

further analyzed that by looking into frequency of trav-
els between each camera pair. To complement this, we
investigated the entry-exit matrix, to identify the main
entry and exit gates that are used together in vehicles’
trips. Furthermore, hourly behavior of vehicles in the
region and specifically in the car-reduced zone was stud-
ied. In a novel approach, we also inspected frequency
and location of vehicles’ stops. Finally, vehicles velocity
and emission standard were also studied. In all of these
analysis, we differentiate between vehicle categories, i.e
light-goods vehicles, heavy-goods vehicles and passen-
ger vehicles, and accentuate similarities and differences
between these categories. These can be used by city plan-
ners to evaluate road use, road restrictions, and safety
aspects, considering different categories of vehicles. Fur-
thermore, they can monitor impact of policy measures
and other changes. e.g. land use changes.
We contribute to both literature and practice by (i.) tak-

ing a holistic approach in identifying performance mea-
sures that can be derived from ANPR camera data, while
most research concentrate on one aspect of transport. (ii.)
Our approach for detecting stops, and estimating their
location is a novel approach. (iii.) Explicit investigation of
different vehicle groups (from one data source), and find-
ing similarities and differences is often called for, and no

Fig. 27 OBU: HGVs Trajectories (per lane)
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Fig. 28 ANPR: HGVs trajectories (per pair counting both directions)

study to date has reported on similar analysis. (iv.) We
validation results of ANPR analysis using GPS data from
on-board units of HGVs.
Separating passenger and freight vehicles by augment-

ing the data, showed that light-good vehicles behave much
more like passenger vehicles, while heavy-good vehicles
behave differently. More importantly, it allows to quantify
what the proportion of vehicles is at the different points,
which allows decision makers to consider how to best
manage these flows where it matters. It also allows to
monitor changes over time, e.g. for light-goods vehicles
which are increasingly used for urban freight. Finally, it
also allows to compare vehicle behavior per hour of the
day, which showed that in the car-reduced zone almost all
deliveries are before the closing of the time-window, and
that this peak partly overlaps with the morning rush hour,
even given that the time-window closes only at 11:00. Such
insights can guide policy making regarding the choice of

Fig. 29 OBU: HGVs Stops

the size of a car-reduced zone (which impacts the peak
amount of deliveries) and the timing (which impacts the
amount of overlap with rush hour).
Overall we see much potential for more advanced use of

ANPR cameras for monitoring and understanding vehicle
behavior, especially when augmented with vehicle infor-
mation. It allows to compare different types of flows in
ways that were nearly impossible to quantify at that scale
before.

7 Limitations and future work
Data quality The quality of the data is an important
aspect when handling such big data sources. In princi-
ple, ANPR cameras register the license plate of every
passing vehicle. However, there are cases where the cam-
era system fails to read the image of the plate correctly,
or where one of the letters or numbers is misread. In
our case, the data were augmented with vehicle infor-
mation from the national vehicle registration service,
which revealed that 11% of the data entries could not
be matched with vehicle information, including 4% for-
eign vehicles. Additionally, while the service maintains
detailed information on vehicle kind and type, there were
also missing values in that (presumably for older vehicles).
Given the detailed categorization it was not always clear
whether is a heavy-goods, light-goods or passenger one;
let alone that passenger vehicles can be used to transport
goods and some light-goods vehicles are actually used as
family car. Other issues that impact data quality is that
for privacy reasons, the license plates were hashed into
a numeric ID, and as with any hash function their may
be hash collisions such that two vehicles with a differ-
ent plate get the same numeric ID. We indeed observed a
few cases where vehicles with the same ID had different
vehicle information. A final challenge we encountered is
that some camera’s were much older than others, which
impacts reading quality, but which also revealed that there
was no mechanism in place to synchronize all the clocks.
We had to remove data from 5 cameras because we could
not reliably estimate the true time of the observations. To
avoid this in the future, ANPR camera operators should
ensure that a clock synchronization system such as NTP
is in place. This stresses the importance of data quality.
However, many of these issues have technical solutions
(e.g. clock synchronisation, recognition accuracy, vehicle
database quality) and can be expected to improve over
time. Moreover, any data source has quality issues and
this data should not be used to obtain to-the-number
accurate records but rather good estimates of the mag-
nitudes of volumes and of trends across time and across
different locations. In that respect, ANPR cameras offer
an unprecedented amount of observations, 24/7 at every
installed location and for all motorized vehicles.



Hadavi et al. European Transport Research Review           (2020) 12:37 Page 14 of 17

Camera locations ANPR data can be used to monitor
not just how many vehicles pass each point, but also give
an estimate of the flows. In our case study, this highlighted
similar trends as did the much finer-grained GPS data.
However, this also depends on the placing of the cameras.
ANPR cameras are generally installed for police reasons,
the most common being to monitor entry/exit points of a
region (e.g the police district) or to limit access to a region
(e.g. the car-reduced zone or small communes), or for
section control to measure the average vehicle speed on a
road and fine speed violators. It is especially these latter
cameras that provide most insight into urban transport,
as they are placed on key roads that have a lot of traf-
fic passing by. The comparison with the GPS trajectories
also shows where cameras may be missing to get a more
complete picture. In general, placing cameras near freight
zones can provide more insights into freight flows and
we recommend it be considered when planning camera
placement.

Data integration When more data sets are integrated,
richer insights are derived. GPS data of other vehicle
types, e.g. passenger, light-goods and public transport
vehicles can enhance our understanding of vehicle move-
ments greatly. Data from mobile phones can provide sim-
ilar insights into vehicle movements. Contextual data can
also enrich our analysis by providing a more sophisti-
cated interpretation of any achieved results. For instance,
socio-demographic data such as the number of residents
in each region, shops, parking spots, etc. can provide
valuable insights into the transport flows and their pur-
pose. Additionally, our results can be combined with other
data sources such as weather, accidents and, events to
investigate how various environmental factors affect the
transport behavior.

Driven distances In our analysis, in calculating the
driven distances we have taken the length of a direct
line between every two points. A higher accuracy could
have been achieved, instead, by calculating the distances
between the two points.

Borders In this study, our access to data has geographical
limits. Hence, we do not have a full understanding of vehi-
cle movements e.g., where their origins and destinations
are if these points have been out of our data scope.

Stop detection Identifying stopping/staying points of
vehicles is challenging in the analysis ANPR data. Stops
are an important part of vehicle movement, as they
explain many of the movements’ intentions. Furthermore,
they provide valuable information for city planners on on-
road stopping behavior (double parking) and the use of

loading/unloading zones. We established a stop accord-
ing to the differences between trip duration and expected
duration. Stop detection methodology can be improved,
where perhaps more of the context of the vehicle’s move-
ments should be taken into account: what driving pattern
did it have before/after, where is it, etc.

Follow-up tools The current indicators provide a snap-
shot view of the current situation given a set of data. This
can be used to generate weekly or monthly reports. How-
ever, in such a setting the differences between the current
period and the previous period also play an important
role. Such a more discriminative setting, with a focus on
automatically detecting trends and changes, is another
avenue of future work.
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