
�i

© Addy Osmani and Hassan Djirdeh

Learn tools and techniques to build and maintain large-
scale React web applications.

www.largeapps.dev 

�iii

http://www.largeapps.dev

Modularity
“The secret to building large apps is never to build large apps.
Break your applications into small pieces. Then, assemble
those testable, bite-sized pieces into your big application.”
[Justin Meyer]

One of the key principles of building large JavaScript applications is to
modularize and componentize code. This can be described as dividing
an application into small, independent modules or components that
can be developed and tested independently.

Chapter 3 | Modularity 32

https://twitter.com/justinbmeyer

Modularity (and componentization) makes our code more reusable by
allowing us to share modules and components between different projects
and teams. This can save time and reduce costs by avoiding the need to
reinvent the wheel for every new project. In addition, by making it easier
to manage and maintain our application, we also reduce the likelihood of
bugs and make it easier to add new features in the future.

The best way to build a modular application is to start with small, self-
contained pieces of functionality that we can test and debug
independently. We can write that code as a module and make sure it
works as expected before adding more modules or components.

Modules in JavaScript
JavaScript modules allow us to break up code into separate files that can
export and import functionality. The native modules syntax provides:

• The export declaration: for exporting anything - functions, objects,
primitives, etc.

• The import declaration: for importing from other modules.

Modules encourage reusability and maintainability. We can write a
module once and reuse it across different parts of our application and in
different projects. As a result, updates to a module won’t require changes
across the entire codebase. Modules also enable encapsulation. By only
exporting the functionality we need publicly, we can hide internal
implementation details in private module scopes.

For example, we can have a UI module that exports reusable UI
components:

ui.js

export function Button({text}) {
 // button component
}

export function Header({title}) {
 // header component
}

Chapter 3 | Modularity 33

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

And import just the parts we need in other files:

page.js

import { Header } from './ui.js';

function Page() {
 return <Header title="My Page"/>;
}

As our JavaScript applications grow in size and complexity, the
importance of modularity becomes even more pronounced. Modules
allow for organized, reusable, and maintainable codebases.

With this brief understanding of JavaScript modules under our belt, let’s
now see how the concept of modules translates when working within a
React application.

Componentization in React

In the context of React, modules are often applied in a pattern called
“componentization.” React, by its nature, encourages developers to think
in terms of components. Each component represents a distinct piece of
the UI and, when built correctly, can be reused across different parts of
an application, much like how modules allow us to reuse code.

The beauty of componentization is that it aligns with the modular
approach we discussed. For instance, we might have a Button
component in one file and a Header component in another. These
components, much like JavaScript modules, can be imported and used
wherever needed in our React application. This ensures a consistent look
and behavior throughout, while also centralizing the logic and state
management for each component.

With a growing React application, the need arises to organize
components in a scalable and maintainable manner. This is where the
concepts of component libraries, atomic design, or even domain-driven
design might come into play. We discuss some of these concepts
throughout the book, but for now, we’ll delve deeper into some common

Chapter 3 | Modularity 34

https://react.dev/

and important strategies for approaching componentization in a large-
scale React application:

Identify reusable components

The first step in componentizing our React application is to identify
reusable components.

Good opportunities for componentization include:

• Repeated elements like buttons, menus, and cards.
• Sections of a page like headers, content areas, and footers.
• Logical chunks of functionality.

By identifying reusable components, we can create a library of
components that can be reused throughout our application and even in
other projects. This can save us a lot of time and effort in development
and testing.

Here’s an example of a Post component that contains functionality for a
post made by a certain author on a social network site. This includes
information like the author’s name and the post’s title, text, date, and
other post details.

A post element that contains all the functionality in one component

function Post({ post }) {
 return (
 <div>
 <img
 src={post.profileUrl}
 alt={`${post.author}'s profile`}
 />

 <h1>{post.title}</h1>

 <p>{post.text}</p>

 <div>Author: {post.author}</div>

 <div>Date: {post.date}</div>

Chapter 3 | Modularity 35

 <p>{`${post.numLikes} likes`}</p>

 <p>{`${post.numComments} comments`}</p>

 <p>{`${post.numShares} shares`}</p>

 <button>Like</button>
 <button>Share</button>
 <button>Comment</button>
 </div>
)
}

export default Post;

In this example, we’re rendering all the content of the post element in a
single component. The post prop is passed to the component as a
parameter, and we’re using it to display the title, text, author, date, and
other information of the post. We’re also including buttons to like, share,
and comment on the post.

Figure 3-1. Post component

The approach of having all the UI of a certain element be kept within one
component can be simple and quick to implement, but it can also make

Chapter 3 | Modularity 36

the component more difficult to maintain and test as the codebase grows.
Modularity and componentization can help with maintaining and testing,
as well as making the component more reusable and flexible.

Divide your application into smaller components

Breaking our application down into smaller, more manageable
components is a key aspect of componentization. Instead of building
large, monolithic components, we can instead divide our application into
smaller components that are easier to develop, test, and maintain.

Smaller components are also more flexible and can be reused in different
contexts, making our application more adaptable and scalable.

For example, we can break the Post component into smaller
components as follows:

• PostHeader
• PostContent
• PostFooter

Figure 3-2. PostHeader, PostContent, and PostFooter components

Chapter 3 | Modularity 37

PostHeader

The PostHeader component can hold the responsibility for displaying
the header of the post. It can take props for the author’s name, profile
picture, and timestamp.

The PostHeader component

function PostHeader({
 authorName,
 profileUrl,
 timestamp
}) {
 return (
 <div>
 <img
 src={profileUrl}
 alt={`${authorName}'s profile`}
 />
 <p>{authorName}</p>
 <p>{timestamp}</p>
 </div>
);
}

export default PostHeader;

PostContent

The PostContent component will be responsible for displaying the
main content of the post. It can take a prop for the post’s text and perhaps
also an array of media elements (e.g., images, videos).

The PostContent component

function PostContent({ text, media }) {
 return (
 <div>
 <p>{text}</p>
 {media.map((element, index) => (
 <img
 key={index}

Chapter 3 | Modularity 38

 src={element.url}
 alt={element.alt}
 />
))}
 </div>
);
}

export default PostContent

PostFooter

The PostFooter component would be responsible for displaying the
footer of the post and can take props for the number of likes, comments,
and shares.

The PostFooter component

function PostFooter({
 numLikes,
 numComments,
 numShares,
}) {
 return (
 <div>
 <p>{`${numLikes} likes`}</p>
 <p>{`${numComments} comments`}</p>
 <p>{`${numShares} shares`}</p>

 <button>Like</button>
 <button>Share</button>
 <button>Comment</button>
 </div>

);
}

export default PostFooter

Chapter 3 | Modularity 39

Post

The Post component will finally be responsible for combining all of
these smaller components into a cohesive post element. It can take props
for the post’s author, content, and footer and pass these props down to
each of the child components that require them.

The parent Post component

function Post({
 author,
 content,
 footer,
}) {
 return (
 <div>
 <PostHeader
 authorName={author.name}
 profileUrl={author.profileUrl}
 timestamp={author.timestamp}
 />

 <PostContent
 text={content.text}
 media={content.media}
 />

 <PostFooter
 numLikes={footer.numLikes}
 numComments={footer.numComments}
 numShares={footer.numShares}
 />
 </div>
);
}

export default Post

By dividing the post into smaller components like this, we make the code
more modular and easier to maintain. We can also reuse these smaller
components in other parts of the application, making it more scalable and
adaptable.

Chapter 3 | Modularity 40

While it’s tempting to make everything a component, it’s essential to
strike a balance. Too granular, and you might end up with a codebase
that’s hard to navigate. Too broad, and you miss out on the benefits listed
above. How we decide to break down components can be based on
multiple factors:

• Reusability: Do we want a specific UI element or functionality to
be repeated in various parts of the application? If so, it might be a
good candidate to be turned into its own component.

• Simplicity and readability: How readable is the component’s
code? Would it be easier to read and understand the code if the
component was broken down into smaller sub-components with
their own focused responsibilities?

• Improved testability: Can the component be tested more
effectively when it’s smaller and has a focused responsibility?
Smaller components often have less internal state and fewer side
effects, making them easier to isolate in tests and ensuring that
each piece of functionality works as intended.

• Performance considerations: Would breaking down the
component optimize rendering or reduce unnecessary operations?
In frameworks like React, smaller components can sometimes lead
to fewer re-renders with the capability to memoize components
and computations. This could sometimes improve the app’s overall
performance.

Implement a Design System

A design system is a collection of reusable components, guidelines, and
assets that help teams build cohesive products. Many popular design
systems exist today, such as Material by Google, Polaris by
Shopify, Human Interface Guidelines by Apple, Fluent Design System by
Microsoft, and more.

Building a design system can help us standardize the design and
development of components in our React application. Furthermore, using
an existing open-source design system, like Material by Google, can
expedite the development process by providing a well-documented set of

Chapter 3 | Modularity 41

http://material.io/
https://polaris.shopify.com/
https://developer.apple.com/design/human-interface-guidelines/
https://www.microsoft.com/design/fluent/#/
http://material.io/

components and patterns. This allows us to focus on application-specific
logic and functionality.

We go into more detail discussing how reusable components play a role
in building and maintaining design systems in the upcoming chapter—
Design Systems.

Lazy-loading
Lazy-loading is a technique for loading resources only when they are
needed. This can be useful for improving the performance of an
application by reducing the amount of resources that need to be loaded
initially.

In React, we can optimize the performance and responsiveness of
applications by judiciously loading components only when they are
required (i.e., lazily). We’re able to achieve this with the help of
React’s lazy function and Suspense component.

• lazy: a function that allows us to load components on demand.

• Suspense: a component that can be used to display a fallback
component while the lazy component is being loaded.

Let’s go through an example of how we can use lazy-loading in a React
application to load the Post component we created earlier. We’ll first
start with a basic example of importing the Post component statically,
and then show how to use dynamic imports with React.lazy() to
load the component dynamically.

Static import

With a standard static import, the Post component is imported at the top
of the file with the import declaration:

Static import of the Post component

import React from 'react';

// importing the Post component
import Post from './components/Post';

Chapter 3 | Modularity 42

https://react.dev/reference/react/lazy
https://react.dev/reference/react/Suspense
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

function App() {
 return (
 <div>
 <Post />
 </div>
);
}

export default App;

If the Post component is large and takes a long time to load, this can
impact the initial loading time of its parent App component, especially if
the Post component is not immediately needed on the initial render.
This is because static imports will ensure that the entire Post
component and its dependencies are fetched and executed before the App
component is initialized.

Dynamic import

To avoid this issue, we can attempt to load the Post component lazily
(i.e., dynamically) with React’s lazy() function.

Dynamic import of the Post component

import React, { lazy, Suspense } from 'react';

// dynamically importing the Post component
const Post = lazy(
 () => import("./components/Post"),
);

function App() {
 return (
 <div>
 {/* using Suspense to render fallback while
 Post is dynamically loading */}
 <Suspense fallback={<div>Loading...</div>}>
 <Post />
 </Suspense>
 </div>
);
}

Chapter 3 | Modularity 43

export default App;

In the example above, we leverage the dynamic import() syntax to
asynchronously load the Post component. The import() function
returns a promise that resolves to the imported module, allowing us to
utilize it in conjunction with React’s lazy() function to create a lazily-
loaded component.

With this approach, the Post component is only loaded when it’s
actually needed, reducing the initial bundle size and improving the load
times of the App component.

The Suspense component is used to display a loading message or
placeholder while the Post component is being loaded.

Lazy-load on interaction

We can also use this lazy-loading pattern to dynamically load
components on interaction/click.

Here’s an example of how we can import the Post component with a
click instead of dynamically loading the component as the parent is being
rendered.

Lazy-loading the Post component on button click

import React, { useState } from "react";

function App() {
 const [Post, setPost] = useState(null);

 const handleClick = () => {
 import("./components/Post").then((module) => {
 setPost(() => module.default);
 });
 };

 return (
 <div>
 {Post ? (
 <Post />

Chapter 3 | Modularity 44

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import

) : (
 <button onClick={handleClick}>
 Load Post
 </button>
)}
 </div>
);
}

export default App;

In this example, we use the useState Hook to initialize a Post state
variable as null. When the button is clicked, we use the dynamic
import() function to load the Post component and then set it to the
value of the Post state. Once Post is set, it will be rendered to the
screen.

Note that using React’s lazy() function with dynamic imports only
works with default exports, so if the Post component has named
exports, we'll need to adjust the import statement accordingly. Also, keep
in mind that dynamic imports with React’s lazy() function should only
be used for large components that are not needed immediately, as it adds
some complexity to the code and can cause issues with server-side
rendering.

Lazy-load with the Intersection Observer API

Intersection Observer is a JavaScript API that allows us to detect when
an element is visible in the viewport. This can be useful for
implementing on-demand code splitting, where code is loaded when the
user scrolls to a specific section of the page.

To use the Intersection Observer API in your React application, we can
create our own custom functionality or import this functionality from a
third-party library like react-intersection-observer.

Here’s a rough example of how we could use a custom
useIntersectionObserver() Hook to lazily load
the Post component when it enters the viewport:

Chapter 3 | Modularity 45

https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://github.com/thebuilder/react-intersection-observer

Lazy-loading with Intersection Observer

import React, {
 useState,
 useRef,
 lazy,
 Suspense,
} from "react";
import useIntersectionObserver from "./hooks";

const Post = lazy(
 () => import("./components/Post"),
);

function App() {
 const [shouldRenderPost, setShouldRenderPost] =
 useState(false);
 const postRef = useRef(null);

 const handleIntersect = ([entry]) => {
 if (entry.isIntersecting) {
 setShouldRenderPost(true);
 }
 };
 useIntersectionObserver(
 postRef,
 handleIntersect,
 { threshold: 0 },
);

 return (
 <div>
 <div style={{ height: "1000px" }}>
 Some content before the post
 </div>

 <div ref={postRef}>
 {shouldRenderPost ? (
 <Suspense
 fallback={<div>Loading...</div>}
 >
 <Post />
 </Suspense>
) : (

Chapter 3 | Modularity 46

 <div>Loading...</div>
)}
 </div>

 <div style={{ height: "1000px" }}>
 Some content after the post
 </div>
 </div>
);
}

export default App;

In the above example, we’re using a useIntersectionObserver()
Hook to watch for changes in the visibility of the postRef element, and
trigger the handleIntersect() callback when it enters the
viewport. The shouldRenderPost state property is set to a value of
true when the element is intersecting, which triggers the rendering of
the Post component inside a Suspense component.

Note that this example assumes that the
useIntersectionObserver() Hook is defined somewhere in our
codebase.

By loading resources only when they are needed, lazy-loading
components can significantly minimize the initial load of an application,
thereby improving user experience and resource utilization. While lazy-
loading focuses on loading components only when necessary, the concept
of code-splitting takes this a step further by breaking down an entire
application into smaller chunks that can be loaded independently.

Code-splitting
Code splitting is a technique for optimizing the performance of large
applications by splitting the application’s code into smaller, more
manageable chunks.

By having a modular or componentized application structure, we
naturally pave the way for more efficient code-splitting. When
components are designed to be self-contained and independent, it
becomes easier to separate them into distinct chunks that can be loaded

Chapter 3 | Modularity 47

on demand. This modular approach aligns perfectly with the core idea
behind code-splitting, where the aim is to load only the necessary code
for the user at any given moment rather than loading the entire
application upfront.

In React applications, code-splitting patterns commonly include:

• Splitting by route: Load page modules as user navigates.
• Splitting by component: Lazy-load large components like graphs

and tables.
• On-demand loading: Load code when a user clicks buttons,

dropdowns, etc.

Figure 3-3. Code-splitting a monolithic bundle.js into granular chunks.

The first step in implementing code splitting is to identify the critical
path of our application. The critical path is the sequence of resources that
must be loaded before our application can be displayed to the user. By

Chapter 3 | Modularity 48

identifying this critical path, we can determine which resources should
be loaded first and which resources can be loaded later using advanced
code-splitting techniques.

In the next few sections, we’ll discuss some strategies for approaching
advanced code splitting in a large React application.

Entry point splitting

The entry point is the initial JavaScript file that is loaded when a user
visits a website. With entry point splitting, we break up the initial
JavaScript file into smaller chunks that are only loaded when
needed, reducing the initial load time for the page.

For example, imagine we have a website with:

• A home page
• A product page
• And a contact page

Each of the pages has its own unique JavaScript code. If we load all of
the code at once, the initial page load time could be slow. With entry
point splitting, we can break up the code for each page into separate
chunks. With this type of splitting, when a user visits:

• The home page: only the code for the home page is loaded.
• The product page: only the code for the product page is loaded.
• The contact page: only the code for the contact page is loaded.

This type of code-splitting results in faster load times and a better user
experience since only the necessary code is loaded for each specific page,
reducing the amount of redundant or unnecessary data being fetched.

Vendor splitting

Vendor splitting is a technique used to separate out third-party
dependencies from your own code. When we use a third-party library
or framework, the code for that library is included in our JavaScript
bundle. This can make the bundle larger and slower to load and can also
cause cache invalidation issues when the library is updated.

Chapter 3 | Modularity 49

With vendor splitting, we can break out the code for these third-party
dependencies into a separate chunk that can be cached independently.
This means that when we update our own code, the end user won’t need
to re-download the entire library since it’s already cached. This can result
in faster load times and a better user experience by optimizing caching
and reducing unnecessary data downloads.

Dynamic splitting

Dynamic splitting is a technique used to load JavaScript code on
demand, as needed. This is useful for large-scale JavaScript applications
where different parts of the code are only needed in certain situations.
For example, if we have an application with a dashboard and a settings
page, the code for the dashboard might not be needed when the user is on
the settings page, and vice versa.

With dynamic splitting, we can load the code for each page or
component only when it's needed. This can reduce the initial load time
for the page and improve performance overall. It can also help to keep
the size of the JavaScript bundle under control, which is important for
large-scale applications.

Dynamic splitting differs from entry-point splitting in that it doesn’t rely
solely on predefined entry points. Instead, it leverages tools and patterns
like React’s lazy and Suspense or the dynamic import() function
to split code at specific modules or components. This allows developers
to granularly control when different parts of the codebase are loaded
based on user interactions or other runtime conditions.

Component-level splitting

In component-level code-splitting, each component is lazy-loaded
only when it’s needed, which means that the application loads only the
components that are required for the current page. This technique can
lead to more efficient use of bandwidth, but it can sometimes increase
latency due to the need to load components on demand.

Chapter 3 | Modularity 50

Route-based splitting

In route-based code-splitting, the application is split into separate
bundles based on routes. When a user navigates to a different route, the
appropriate bundle is loaded on demand, reducing the amount of code
that needs to be downloaded initially. This technique can help reduce the
initial load time of an application, but it may not be as efficient as
component-level code-splitting in terms of bandwidth usage.

Trade-offs with aggressive code-splitting

Aggressive code-splitting refers to the practice of extensively breaking
down the application’s JavaScript into numerous small chunks. While
code-splitting has clear benefits in terms of loading only the necessary
code for a given view or action, there are some difficulties associated
with aggressive code-splitting.

1. Granularity trade-off: When we aggressively code-split, we end
up with a large number of smaller chunks of code. This can be
good for caching and de-duplication but bad for compression and
browser performance. Smaller chunks compressed individually get
lower compression rates, and loading performance can be
impacted, even with as low as 25 chunks and very severely at
100+ chunks.

2. Interoperability: Different browsers, servers, and CDNs may
implement code-splitting differently, which can sometimes lead to
compatibility issues.

3. Overhead: While code-splitting can improve loading
performance, it can also introduce additional overhead due to the
need to process, fetch, and parse multiple files. This could
sometimes slow down an application, especially on slower devices
or networks.

4. Debugging: With a large number of smaller chunks, it can be
difficult to debug the code and identify issues as the code is spread
across multiple files.

Chapter 3 | Modularity 51

5. Build complexity: Aggressive code-splitting can make the build
process more complex and time-consuming, as the codebase is
broken down into multiple smaller chunks that need to be
managed and sometimes built separately.

Wrap up
Modularity, through componentization, not only makes our applications
more maintainable and scalable but also enhances the developer
experience by providing a clear structure and reusability of components.

As applications grow in complexity, there’s an ever-increasing need to
optimize for performance and user experience. Code-splitting allows us
to break down applications into manageable chunks, ensuring users load
only the necessary code at the right time. Having our application broken
down into components makes implementing code-splitting efficient, as
we can dynamically load individual components based on user
interaction or the current view.

In the next chapter, we’ll spend a bit more time discussing and sharing
helpful resources on the topic of Performance.

Chapter 3 | Modularity 52

