
 i

AI at the Helm
A Case Study on building brandinaminute.com

Hassan Djirdeh
Addy Osmani

 ii

© Hassan Djirdeh | Addy Osmani

AI at the Helm — Building brandinaminute.com

www.largeapps.dev/case-studies/ai-at-the-helm

 iii

http://www.largeapps.dev/case-studies/ai-at-the-helm

Introduction ...5

AI APIs ..7
THE OLD WORLD: CUSTOM MODELS AND HIGH BARRIERS 7
TODAY: AI AS A SERVICE ...7

AI Wrappers ...9

BrandInAMinute ...11
THE IDEA ...11
THE PRODUCT ..11
THE TECH ..13

Building BrandInAMinute ..14
GENERATING A STYLE GUIDE ..15

Parallel Visual Generation ..23
LOGO GENERATION ...25
HERO IMAGE GENERATION ...27
SOCIAL MEDIA ADS ...29
BRAND ILLUSTRATION ..33

Piecing It All Together ..36

Download Capabilities ..39
INDIVIDUAL DOWNLOADS ..39
ZIP ARCHIVE ..39
PDF BRAND GUIDE ..39

Wrap Up ...42
KEEPING IT SIMPLE ..42
WHAT WE DIDN’T COVER ...42
WHERE TO GO FROM HERE ...43

 iv

Introduction
A few years ago, building an AI-powered application meant assembling
machine learning (ML) engineers, securing funding for computing
resources, and spending months training models. Today, a developer can
spin up intelligent features over a weekend. This transformation has
fundamentally changed what’s possible for individual builders and small
teams.

In this case study, we explore BrandInAMinute, a weekend project we
built that generates complete brand identities, including logos, color
palettes, and marketing materials in under a minute.

Introduction 5

https://www.brandinaminute.com/

The focus here is on the ideation process, the glue code, prompt
engineering, and system design that turn disparate AI capabilities into a
more unified product experience. While ChatGPT, Gemini, or Claude can
generate individual brand assets, they can’t orchestrate a complete,
downloadable brand kit with consistent visual identity across multiple
formats in one go. It’s this orchestration, taking a simple brand
description and transforming it into logos, color systems, and marketing
materials that work together, that creates value beyond what general-
purpose AI tools offer, even though the technical reality is surprisingly
straightforward.

Let’s begin by understanding how we arrived at this point and how AI
APIs (Application Programming Interfaces) evolved into practical
building blocks for everyday applications.

Introduction 6

https://chat.openai.com/
https://aistudio.google.com/
https://claude.ai/

AI APIs
The AI development landscape has undergone significant changes over
the past decade. What once required dedicated research teams and
substantial computational resources is now available through accessible
APIs that developers can integrate in minutes. This shift is more than just
a technical milestone; it’s redefined who can build AI-powered products
and how quickly those products can come to life.

The Old World: Custom Models and High
Barriers

Consider what building an AI-powered application looked like in 2016.
If you wanted to add intelligent features like natural language
understanding or image generation, the process was complex. You often
needed to hire machine learning (ML) engineers, secure GPU
infrastructure, collect and label data, and spend time training and refining
models. Even then, success wasn’t always certain. Models that
performed well in testing often failed in real-world scenarios.

For example, in 2015, Pinterest introduced a visual cropping tool that
enables users to search for objects within images. Behind the scenes, this
required training custom visual embeddings using deep learning models
like VGG16 and later ResNet, powered by carefully curated datasets and
investment in infrastructure and talent [Unifying visual embeddings for
visual search at Pinterest | Pinterest Engineering Blog].

Because of these challenges, AI was largely reserved for well-funded
startups and tech giants. Individual developers and small teams were
rarely able to compete with the resources needed to build and deploy
custom models.

Today: AI as a Service

Fast forward to 2025, and the landscape looks entirely different.
Companies like OpenAI, Anthropic, Google, and others have
commoditized access to state-of-the-art AI models through simple HTTP

AI APIs 7

https://medium.com/pinterest-engineering/unifying-visual-embeddings-for-visual-search-at-pinterest-74ea7ea103f0
https://medium.com/pinterest-engineering/unifying-visual-embeddings-for-visual-search-at-pinterest-74ea7ea103f0
https://medium.com/pinterest-engineering/unifying-visual-embeddings-for-visual-search-at-pinterest-74ea7ea103f0
https://openai.com/
https://www.anthropic.com/
https://www.google.com/

APIs. What used to take months of engineering can now be done in a
weekend with just a few lines of code and a credit card.

These APIs have turned AI capabilities into modular components that
developers can use much like any other service. Add text generation
here, image creation there, and speech recognition where needed. The
complexity of training, fine-tuning, and hosting models is handled by the
providers, who spread those costs across thousands of customers. This
model enables developers to focus on building products rather than
infrastructure.

A project like Pinterest’s early visual search, which once required custom
visual embeddings, model experimentation, and GPU-backed
infrastructure, could now be quickly prototyped using off-the-shelf APIs
such as OpenAI’s Vision Capabilities or Gemini’s Image Understanding.
Instead of building models from scratch, developers can focus on
crafting the user experience and connecting prebuilt tools to deliver
meaningful results in hours rather than months.

It’s worth noting that not all use cases can or should rely on general-
purpose APIs. Custom models remain essential for applications that
require strict control over outputs, work with proprietary data, demand
highly optimized performance, or operate in specialized domains. The
rise of accessible APIs hasn’t eliminated the need for custom AI; it has
simply broadened the range of who can start building. Even with today’s
advanced APIs, Pinterest’s visual search across 200+ billion images may
require custom solutions to meet their scale and performance demands.

AI APIs 8

https://platform.openai.com/docs/guides/images-vision#analyze-images
https://ai.google.dev/gemini-api/docs/image-understanding

AI Wrappers
This transformation of AI from “research project” to API endpoint has
created an entirely new category of products: AI wrappers. These
applications don’t train their own models or push the boundaries of
machine learning. Instead, they combine existing AI capabilities in
thoughtful ways to solve specific problems.

The term “AI wrapper” might sound dismissive, but it describes a
powerful pattern. These products take general-purpose AI models and
package them into focused, user-friendly experiences. They’re the
equivalent of building a beautiful storefront for wholesale goods: the
value isn’t in manufacturing the product but in making it accessible and
useful for specific audiences.

Consider some success stories. Jenni AI, which helps students and
academics write better papers, has grown to over 5 million users and
generates more than $600,000 in monthly recurring revenue. The product
doesn’t utilize proprietary AI; instead, it wraps existing language models
in an interface designed specifically for academic writing workflows.

Cal AI has attracted 3 million users by taking image recognition APIs
and turning them into a dead-simple calorie tracking experience. Users
snap a photo of their meal, and the app handles the rest. It’s not
revolutionary AI, but it’s revolutionary convenience.

Perhaps most striking is Cursor, which has become the fastest-growing
SaaS product in history, scaling from $1 million to $100 million in
annual recurring revenue in just 12 months. Here’s the thing: Cursor
doesn’t even have its own AI model. It’s built on top of GPT-4, Claude,
and other models that are accessible to anyone. What Cursor does
differently is create the best possible coding experience around those
models, with features like codebase-wide context, intelligent
autocomplete, and natural language editing that feel magical in practice.

AI Wrappers 9

https://every.to/context-window/rise-of-the-ai-wrappers
https://jenni.ai/
https://x.com/Davidjpark96/status/1929379496769315163
https://apps.apple.com/us/app/cal-ai-calorie-tracker/id6480417616
https://www.cursor.com/
https://sacra.com/research/cursor-at-100m-arr/
https://sacra.com/research/cursor-at-100m-arr/
https://openai.com/index/gpt-4-research/
https://www.anthropic.com/claude

These examples reveal an essential truth about today’s AI economy. In a
world where cutting-edge AI capabilities are just an API call away, the
winning strategy often isn’t to build better AI; it’s to develop better
products with the AI that already exists. The real work happens in the
last mile: understanding user needs, designing intuitive interfaces, and
orchestrating multiple capabilities into something that feels simple and
powerful.

AI Wrappers 10

BrandInAMinute
The Idea

We’ve been building with AI APIs frequently, launching various hobby
products and experiments. Each time we started something new, we’d go
through the same brand creation process: generate a logo here, tweak
colors there, search for fonts that match, and create social assets
separately. Even with powerful AI tools at our disposal, we were still
doing the work of making everything feel unified.

We aren’t alone in this experience. A quick search for “logo design and
branding kit” on Fiverr returns thousands of results, with sellers offering
packages ranging from $50 to $500+. The demand is pretty
straightforward: people need complete brand identities, not just
individual assets. However, hiring a designer introduces delays and costs
that many early-stage projects can’t justify.

With the emergence of powerful AI image generation APIs like OpenAI’s
4o Image Generation and Google’s Gemini 2.5 image generation
capabilities, the image quality barrier had finally been crossed. Where
earlier models produced blurry, distorted images that barely followed
prompts, these new systems could generate crisp, professional visuals
that actually matched what you asked for. We saw an opportunity to
orchestrate these capabilities into a single, streamlined experience.

The Product

When users land on BrandInAMinute, they’re greeted with a simple form
that asks for four things: their brand name, a description of what they do,
and, optionally, their industry/vibe and recommended colors.

From this minimal input, the system generates a comprehensive brand kit
in under a minute. Each kit includes a professionally designed logo, a
five-color palette (comprising primary, secondary, highlight, shadow, and
background colors), typography recommendations, a portrait hero image,
two social media ad templates, a conceptual brand illustration, and two

BrandInAMinute 11

https://www.fiverr.com/search/gigs?query=logo%20design%20and%20branding%20kit
https://www.fiverr.com/search/gigs?query=logo%20design%20and%20branding%20kit
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://www.brandinaminute.com/

compelling taglines. Everything is designed to work together as a
cohesive system.

You can see the entire process in action by watching the demo video in
this Google Drive link or take a look at some of the demo brand kits we
show on the app’s homepage:

At the end of the brand kit generation process, users can download
individual assets, export everything as a ZIP file, or get a professionally
formatted PDF brand guide.

BrandInAMinute 12

https://drive.google.com/file/d/1sYmzImWajOMa0klXvRi6ZGtvpjc-ZLoS/view
https://brandinaminute.com/
https://res.cloudinary.com/ddxwdqwkr/image/upload/v1747440130/brandforge/glow/Glow-Brand-Kit_v4.pdf
https://res.cloudinary.com/ddxwdqwkr/image/upload/v1747440130/brandforge/glow/Glow-Brand-Kit_v4.pdf

The Tech

Before diving into the AI orchestration and prompt engineering that
powers BrandInAMinute, let’s quickly outline the technical foundation.
We built this as a modern web application using a straightforward stack.

The frontend is built with React and TypeScript, providing type safety
and a component-based architecture that makes the UI easy to maintain
and extend. For routing and server-side rendering, we chose React
Router v7, which gives us a full-stack framework with built-in data
loading patterns and seamless client-server transitions.

Styling is handled entirely with Tailwind CSS, which allowed us to
rapidly prototype and iterate on the design without writing custom CSS.
The utility-first approach paired well with our component library, based
on shadcn/ui, providing us with accessible, customizable UI components
out of the box.

For payments, we integrated Stripe using their React
components and server-side Node SDK. This handles the entire payment
flow, from capturing card details to processing transactions securely.

The asset generation pipeline relies heavily on the OpenAI npm
package for both text generation (creating style guides) and image
generation (logos, ads, and illustrations).

For delivering the brand kit deliverables to users, we implemented
download functionality using jsPDF for generating professional PDF
brand guides and JSZip for bundling all assets into a downloadable
archive.

You can replace any of the above tools with your preference of choice.
This is just what we used for BrandInAMinute. The patterns and
approaches we’ll discuss next are framework-agnostic and can be
adapted to whatever stack you’re comfortable with.

For the remainder of this guide, we’ll focus on the API calls we use, how
we stitch them together, and the key aspects that combine these
individual capabilities into a cohesive product. We won’t be showing
the nitty-gritty of all code implementation, but rather the key patterns
and decisions that make the system work.

BrandInAMinute 13

https://react.dev/
https://www.typescriptlang.org/
https://reactrouter.com/7.6.1/home
https://reactrouter.com/7.6.1/home
https://tailwindcss.com/
https://ui.shadcn.com/
https://stripe.com/en-ca
https://docs.stripe.com/sdks/stripejs-react
https://docs.stripe.com/sdks/stripejs-react
https://github.com/stripe/stripe-node
https://www.npmjs.com/package/openai
https://www.npmjs.com/package/openai
https://github.com/parallax/jsPDF
https://stuk.github.io/jszip/

Building BrandInAMinute
The generation pipeline of BrandInAMinute orchestrates a two-phase
process:

Phase 1: Style Guide Generation

We make a single API call to OpenAI’s GPT-4.1 to generate a
comprehensive style guide from the user’s inputs. This becomes our
source of truth for all visual assets.

Phase 2: Parallel Visual Generation

Using the style guide, we fire off five simultaneous image generation
requests to OpenAI’s image API (GPT Image 1):

• Logo

• Hero image with tagline

• Social media ad #1

• Social media ad #2 (promotional variant)

• Brand illustration

Building BrandInAMinute 14

https://platform.openai.com/docs/models/gpt-4.1
https://platform.openai.com/docs/models/gpt-image-1

In total, we make six API calls: one for the style guide and five for visual
assets. Let’s dive into how each phase works.

Generating a Style Guide

BrandInAMinute starts with a simple form. Users provide a few key
pieces of information, and from these minimal inputs, we orchestrate a
brand identity. Here’s a very simplified version of our React form
component:

Building BrandInAMinute 15

import { useState } from "react";

export function BrandForm() {
 const [brandName, setBrandName] = useState("");
 const [description, setDescription] = useState("");
 const [vibe, setVibe] = useState("");

 const handleSubmit = async (e: React.FormEvent) =>
{
 e.preventDefault();

 const formData = new FormData();
 formData.append("brandName", brandName);
 formData.append("description", description);
 formData.append("vibe", vibe);

 // Submit to API...
 };

 return (
 <form onSubmit={handleSubmit}>
 <input
 name="brandName"
 placeholder="Enter your brand name"
 required
 />
 <textarea
 name="description"
 placeholder="Describe your brand in a few
sentences"
 required
 />
 <input
 name="vibe"
 placeholder="E.g., tech, luxury, playful,
eco-friendly"
 />
 <button type="submit">Generate Brand Identity</
button>
 </form>
);
}

Building BrandInAMinute 16

We need enough information from the user to generate meaningful
results, but not so much that users feel overwhelmed. Through
experimentation, we found that a brand name and description are
essential, while an industry or vibe enhances the results without being
mandatory.

When a user submits the form, we might receive user-submitted data like
the following:

{
 brandName: "Glow",
 description:
 `Stylish sunglasses with premium lenses,
 designed for daily wear and every adventure`,
 vibe: "fashion, accessories, bright, travel-friendly"
}

We take these simple inputs and transform them into a comprehensive
style guide that will inform every visual asset we generate.

Structured Outputs

In the early days of AI APIs, getting consistent JSON responses was a
challenge. You’d ask for JSON and sometimes get it, sometimes get
markdown with JSON inside, and sometimes get an apology about not
being able to format JSON properly. With OpenAI, that changed with the
introduction of OpenAI’s Structured Outputs, which brought reliability
and control to JSON generation.

With Structured Outputs (in TypeScript), we define precisely what we
want using a Zod schema. Zod is a TypeScript-first schema validation
library that lets us define the shape of our data with type safety. In our
case, we use it to tell OpenAI precisely what structure we expect for our
style guide:

Building BrandInAMinute 17

https://platform.openai.com/docs/guides/structured-outputs
https://zod.dev/

import { z } from "zod";

const StyleGuideSchema = z.object({
 style_name: z.string(),
 inspiration: z.array(z.string()),
 color_palette: z.object({
 primary: z.string(),
 secondary: z.string(),
 highlight: z.string(),
 shadow: z.string(),
 background: z.string(),
 }),
 typography: z.object({
 primary_font: z.string(),
 secondary_font: z.string(),
 }),
 themes: z.array(z.string()),
 taglines: z.array(z.string()),
 rendering: z.object({
 technique: z.string(),
 special_effects: z.array(z.string()),
 }),
 asset_background_style: z.object({
 type: z.string(),
 details: z.string(),
 }),
 subjects: z.object({
 style: z.string(),
 details: z.string(),
 }),
 usage_notes: z.string(),
});

This schema defines a style guide containing the following:

• Visual foundation: Color palette and typography that will be
directly used in the brand kit.

• Creative direction: Themes, inspiration, and rendering
techniques that guide our image generation.

• Copy elements: Taglines that appear in our marketing materials.

Building BrandInAMinute 18

• Technical specifications: Background styles and subject details
that inform our prompts.

Before making the API call, we need to craft the prompt. After numerous
iterations, we landed on this approach that consistently produces
comprehensive, usable style guides:

function generateStyleGuidePrompt(
 brandName: string,
 description: string,
 vibe?: string
): string {
 return `
You are a senior Brand Identity Designer tasked
with generating a JSON object for a visual style
guide.

<design_brief>
Brand Name: "${brandName}"
Description: ${description}
${vibe ? `Industry/Vibe: ${vibe}` : ""}
Desired Logo Impression: Modern, professional,
memorable, clean.
</design_brief>

Generate a comprehensive style guide that
includes:
- A cohesive color palette (5 colors: primary,
 secondary, highlight, shadow, background)
- Typography recommendations
- Visual themes and inspiration keywords
- Rendering style for assets (vector, flat design,
 etc.)
- Two compelling taglines that capture the brand
 essence
- Specific guidance for visual subjects and
 backgrounds

Ensure all elements work together harmoniously
and reflect the brand's identity.
 `.trim();
}  

Building BrandInAMinute 19

While we don’t technically need to specify “return as JSON” thanks to
Structured Outputs, we found it helps reinforce the task. This prompt
evolved through trial and error, and there’s always room for
improvement, but it consistently delivers the comprehensive style guides
we need.

Now, let’s make the actual API call. OpenAI’s newer API uses a message
format with different roles. The “developer” role sets high-level
instructions about how the model should behave, while the “user” role
contains the specific request:

import { zodTextFormat } from "openai/helpers/zod";

const response = await openai.responses.parse({
 model: "gpt-4.1",
 input: [
 {
 role: "developer",
 content:
 "You are a brand style guide expert. Only " +
 "respond with valid JSON matching the " +
 "provided schema."
 },
 {
 role: "user",
 content: generateStyleGuidePrompt(
 brandName,
 description,
 vibe
)
 }
],
 text: {
 format: zodTextFormat(
 StyleGuideSchema,
 "style_guide"
)
 }
});

const styleGuide = response.output_parsed;

Let’s see what this produces for our “Glow” sunglasses brand:

Building BrandInAMinute 20

https://platform.openai.com/docs/guides/text#message-roles-and-instruction-following
https://platform.openai.com/docs/guides/text#message-roles-and-instruction-following

{
 "style_name": "Glow Modern Adventure",
 "inspiration": [
 "Minimalist fashion brands (e.g., Warby Parker,",
 "Ray-Ban)",
 "Clean typographic design",
 "Outdoor lifestyle imagery",
 "Urban adventure aesthetics"
],
 "color_palette": {
 "primary": "#FFD86F",
 "secondary": "#23272F",
 "highlight": "#FF6F61",
 "shadow": "#A2A7B8",
 "background": "#FFFFFF"
 },
 "rendering": {
 "technique":
 "Flat vector graphics with subtle gradients",
 "special_effects": [
 "Soft drop shadows",
 "Glossy light reflections to evoke lenses",
 "Slight transparency overlays for depth"
]
 },
 "asset_background_style": {
 "type": "Clean solid",
 "details":
 "Primary background is white or a subtle " +
 "gradient, keeping focus on the product"
 },
 "subjects": {
 "style": "Stylized realism",
 "details":
 "Sunglasses illustrated or photographed on " +
 "diverse, fashion-forward individuals"
 },
 "themes": [
 "Everyday adventure",
 "Effortless style",
],
 "usage_notes":
 "Maintain generous whitespace around logo " +
 "and key elements.",
 "typography": {
 "primary_font": "Montserrat Bold",
 "secondary_font": "Roboto Regular"
 },
 "taglines": [
 "See More. Live Brighter.",
 "Adventure in Style."
]
}

Building BrandInAMinute 21

Notice how different elements serve different purposes in our brand kit:

Direct usage - These appear exactly as specified:

• Color palette: All five colors are used throughout the brand kit
UI.

• Typography: Font recommendations are displayed in the
typography card.

• Taglines: Featured in hero images and social media ads.

Image generation guidance - These inform our prompts for visual
assets:

• Rendering technique: “Flat vector graphics” guides the logo
style

• Special effects: “Glossy light reflections” might appear in
product shots

• Themes: “Everyday adventure” influences the overall visual
narrative

• Inspiration: References to Warby Parker help establish the
aesthetic benchmark

This style guide becomes the DNA for everything that follows. The logo,
ads, and illustration all reference these colors, themes, and visual
directions to maintain consistency across the entire brand kit.

Building BrandInAMinute 22

https://warbyparker.com/

Parallel Visual Generation
With our style guide in hand, we now enter the second phase: generating
all the visual assets. We need to create five different images, each serving
a specific purpose in the brand kit.

Before diving into the code, it’s worth noting that OpenAI’s GPT Image
1 model offers three quality tiers: low, medium, and high. For
BrandInAMinute, we use medium quality throughout, which provides us
with the best balance between generation speed, cost, and visual quality.

After generating the style guide, we navigate the user to the /
results route, where we orchestrate multiple image generations in
parallel:

// app/routes/results.tsx
export async function loader({
 request
}: LoaderFunctionArgs) {
 const url = new URL(request.url);
 const styleGuideB64 = url.searchParams.get(
 "styleGuide"
);
 const brandName = url.searchParams.get("brandName");
 const description = url.searchParams.get(
 "description"
);
 const vibe =
 url.searchParams.get("vibe") || "";

 // Decode the style guide from base64
 const styleGuideJson = atob(styleGuideB64);
 const styleGuide = JSON.parse(styleGuideJson);

 // Generate all assets in parallel
 const [
 imageUrl,
 heroImageUrl,
 adImageUrl,
 secondAdImageUrl,
 brandIllustrationUrl
] = await Promise.all([
 generateLogo(
 brandName,

Parallel Visual Generation 23

https://platform.openai.com/docs/models/gpt-image-1
https://platform.openai.com/docs/models/gpt-image-1

 description,
 vibe,
 styleGuide
),
 generateHeroImage(
 brandName,
 styleGuide.taglines[0],
 vibe,
 styleGuide
),
 generateAdImage(
 brandName,
 styleGuide.taglines[0],
 vibe,
 styleGuide,
 "social_media"
),
 generateAdImage(
 brandName,
 styleGuide.taglines[1],
 vibe,
 styleGuide,
 "promotional"
),
 generateBrandIllustration(
 brandName,
 description,
 vibe,
 styleGuide
)
]);

 return {
 imageUrl,
 heroImageUrl,
 adImageUrl,
 secondAdImageUrl,
 brandIllustrationUrl,
 styleGuide,
 brandName
 };
}

The key insight here is using Promise.all() for parallel execution. Since
each OpenAI image generation takes approximately 30 seconds, running
them sequentially would take 150 seconds (2.5 minutes). By running
them in parallel, we reduce this to just 30 seconds total.

Parallel Visual Generation 24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

Let’s examine each image generation function and see what it produces.

Logo Generation

The logo is arguably the most important visual asset. It needs to be
versatile, memorable, and work across different contexts. Notice how we
embed various elements from the style guide directly into the prompt:

async function generateLogo(
 brandName: string,
 description: string,
 vibe: string,
 styleGuide: StyleGuide
) {
 const logoPrompt = `
Generate a professional **combination mark logo**
for the brand "${brandName}".

Structure: The logo MUST consist of:
1. A unique, simple, abstract or symbolic
icon/symbol.
2. The brand name "**${brandName}**" clearly
typeset beside or below the symbol.

Visual Style:
- Adhere strictly to a
**${styleGuide.rendering.technique} vector art
style**.
- The overall aesthetic should be
${styleGuide.style_name}, reflecting themes of
${styleGuide.themes.join(", ")}.
- Inspired by:
${styleGuide.inspiration.join(", ")}.
- Subject style: ${styleGuide.subjects.style}
with ${styleGuide.subjects.details}.
- **Crucially Important:** Keep the design
**minimalist, clean, modern, and instantly
recognizable**.

Color Palette and Contrast:
- Use **ONLY** these colors:
 - Primary: ${styleGuide.color_palette.primary}
 - Secondary:
${styleGuide.color_palette.secondary}
- **ESSENTIAL:** Set the logo background to the
primary color (${styleGuide.color_palette.primary})

Parallel Visual Generation 25

and ensure great contrast.
- The logo symbol and text must have excellent
contrast against the chosen background color.

Typography:
- The text style should visually match the
characteristics of
${styleGuide.typography.primary_font}.
- The text MUST be clearly visible and have high
contrast.

Technical Requirements:
- Show the logo against the selected colored
background.
- Centered composition.
- No photographic elements, no complex
illustrations, no realistic textures, not 3D.

Reference Description: The company is:
${description}. ${vibe ? `Vibe: ${vibe}.` : ""}
 `;

 const result = await openai.images.generate({
 model: "gpt-image-1",
 prompt: logoPrompt,
 n: 1,
 size: "1536x1024",
 quality: "medium"
 });

 const base64Image = result.data?.[0].b64_json;
 return `data:image/png;base64,${base64Image}`;
}

For our sunglasses brand, the above will generate a logo that features a
minimalist sun or light-related icon (perhaps rays, a lens shape, or
abstract circles) rendered in the brand’s golden yellow (#FFD86F),
paired with “GLOW” in clean, bold typography.

Parallel Visual Generation 26

Keep in mind that it’s AI, so the exact logo design will vary each time.
Sometimes, it might be a sunburst, other times overlapping circles
suggesting light or even abstract rays, but it will always maintain the
specified colors and modern, minimalist aesthetic.

Hero Image Generation

The hero image serves as the primary visual for websites and
presentations. It needs to be impactful while incorporating the brand’s
tagline:

async function generateHeroImage(
 brandName: string,
 tagline: string,
 vibe: string,
 styleGuide: StyleGuide
): Promise<string> {
 const heroPrompt = `
Create a branded hero image for the company
"${brandName}".
The image should reflect the brand's tone:
"${vibe}" and themes:
${styleGuide.themes.join(", ")}.

Style the image in a modern, editorial, and

Parallel Visual Generation 27

polished aesthetic.
Include a subject that visually aligns with the
brand's personality.

Use background elements like abstract shapes,
gradients, or soft patterns that incorporate:
- Primary color:
${styleGuide.color_palette.primary}
- Secondary color:
${styleGuide.color_palette.secondary}

TEXT PLACEMENT REQUIREMENTS:
- Overlay this tagline prominently: "${tagline}"
in bold, modern typography.
- CRITICAL: Position the text with generous
margins from all edges (at least 15% from any
edge).
- Ensure the text is centered or positioned in a
visually balanced way.
- Place text in an area with good contrast for
maximum readability.
- Do NOT place text at the very top, bottom, or
edges of the image.

Ensure a strong visual hierarchy with clean
studio lighting and high clarity.
Do not include logos or any text besides the
specified tagline.
 `;

 const result = await openai.images.generate({
 model: "gpt-image-1",
 prompt: heroPrompt,
 n: 1,
 size: "1024x1536",
 quality: "medium"
 });

 const base64Image = result.data?.[0]?.b64_json;
 return `data:image/png;base64,${base64Image}`;
}

The above will generate a portrait hero image that showcases a lifestyle
scene related to sunglasses and adventure. The AI might create an image
with a model wearing sunglasses against a bright background, or perhaps
an abstract composition suggesting sunshine and travel. The tagline “See

Parallel Visual Generation 28

Brighter Days” should appear prominently in the image with safe
margins.

Social Media Ads

We generate two different ad variants to provide variety for marketing
campaigns:

async function generateAdImage(
 brandName: string,
 tagline: string,
 vibe: string,
 styleGuide: StyleGuide,
 adType: string = "social_media"
): Promise<string> {

Parallel Visual Generation 29

 let adPrompt = "";

 if (adType === "social_media") {
 adPrompt = `
Create a compelling social media advertisement
image for the brand "${brandName}".

Content Requirements:
- Feature the brand name "${brandName}"
prominently.
- Include this tagline: "${tagline}"
- Create a visually engaging composition for
social media feeds.
- Design for a Facebook/Instagram-style square
format.

Text Positioning Requirements:
- Position ALL text elements with generous
margins (at least 15% from any edge).
- Ensure no text is placed too close to borders.
- Place text over areas with appropriate contrast.

Visual Style:
- Follow a ${styleGuide.style_name} aesthetic.
- Use themes: ${styleGuide.themes.join(", ")}.
- The image should reflect the brand's tone:
"${vibe}"

Color Palette:
- Primary: ${styleGuide.color_palette.primary}
- Secondary: ${styleGuide.color_palette.secondary}
- Highlight: ${styleGuide.color_palette.highlight}

Background:
- Type:
${styleGuide.asset_background_style?.type || "clean"}
- Details:
${styleGuide.asset_background_style?.details ||
 "minimal"}
 `;
 } else if (adType === "promotional") {
 adPrompt = `
Create a promotional advertisement image for
the brand "${brandName}".

Content Requirements:
- Feature the brand name "${brandName}"
prominently.
- Include this tagline: "${tagline}"

Parallel Visual Generation 30

- Create a visually striking composition that
conveys value.
- Design for a web display ad format.

Visual Style:
- Follow a ${styleGuide.style_name} aesthetic with
emphasis on eye-catching elements.
- Use themes: ${styleGuide.themes.join(", ")}.
- Create a sense of urgency or opportunity.

Color Palette:
- Primary: ${styleGuide.color_palette.primary}
- Secondary: ${styleGuide.color_palette.secondary}
- Highlight: ${styleGuide.color_palette.highlight}
(use for CTA or important elements)

Technical Requirements:
- Apply bold, attention-grabbing typography.
- Include visual elements that suggest value.
- Maintain brand consistency while driving action.
 `;
 }

 const result = await openai.images.generate({
 model: "gpt-image-1",
 prompt: adPrompt,
 n: 1,
 size: "1024x1024",
 quality: "medium"
 });

 const base64Image = result.data?.[0].b64_json;
 return `data:image/png;base64,${base64Image}`;
}

The above will generate a social media ad that’s optimized for Instagram
or Facebook feeds. The AI will create a square composition featuring
sunglasses prominently, with “GLOW” branding and the tagline “See
Brighter Days” integrated into the design.

Parallel Visual Generation 31

For the promotional variant, the above will generate an ad that’s more
sales-focused. The AI might create a layout showcasing multiple
sunglass styles, special offer messaging, or a dynamic composition with
the “Style for Every Adventure” tagline. It will likely include elements
suggesting value or urgency, perhaps a “Shop Now” call-to-action or
visual elements like arrows or badges.

Parallel Visual Generation 32

Brand Illustration

The brand illustration provides a conceptual, artistic representation of the
brand’s essence:

async function generateBrandIllustration(
 brandName: string,
 description: string,
 vibe: string,
 styleGuide: StyleGuide
): Promise<string> {
 const illustrationPrompt = `
Create a conceptual illustration that represents
the essence of the brand "${brandName}".

Content Requirements:
- This is NOT a logo, but a creative illustration

Parallel Visual Generation 33

representing the brand's values.
- Do not include the brand name text in the
illustration.
- Create an artistic, conceptual visual that
communicates the brand's core essence.
- The illustration should be symbolic and
metaphorical rather than literal.

Brand Details:
- Brand name: "${brandName}"
- Brand description: "${description}"
- Brand vibe/tone: "${vibe}"

Visual Style:
- Follow a ${styleGuide.style_name} aesthetic.
- Use themes related to:
${styleGuide.themes.join(", ")}.
- Subject style: ${styleGuide.subjects.style}
with ${styleGuide.subjects.details}.
- The illustration should feel imaginative,
creative, and distinctive.

Color Palette:
- Primary: ${styleGuide.color_palette.primary}
- Secondary: ${styleGuide.color_palette.secondary}
- Highlight: ${styleGuide.color_palette.highlight}
- Shadow: ${styleGuide.color_palette.shadow}
- Background: ${styleGuide.color_palette.background}
- Use these colors thoughtfully to convey mood
and meaning.

Technical Requirements:
- Create a high-quality illustration with
professional brand asset aesthetic.
- It should be memorable and unique, distinct
from generic stock imagery.
- The final illustration should feel custom-made
for this specific brand.
 `;

 const result = await openai.images.generate({
 model: "gpt-image-1",
 prompt: illustrationPrompt,
 n: 1,
 size: "1024x1024",
 quality: "medium"
 });

 const base64Image = result.data?.[0].b64_json;

Parallel Visual Generation 34

 return `data:image/png;base64,${base64Image}`;
}

The above will generate a brand illustration that abstractly represents the
concept of enhanced vision and bright adventures. The AI might create
overlapping lens shapes with light effects, abstract sun rays filtering
through geometric forms, or a conceptual landscape viewed through a
prism of colors.

Parallel Visual Generation 35

Piecing It All Together
With all five images generated, we now have the raw materials for a
complete brand kit. But dropping these assets onto a page isn’t enough.
The magic happens in how we surface and present them as a cohesive,
professional package that feels greater than the sum of its parts.

We’ll have a page component responsible in surfacing the entire brand
kit interface:

export function BrandResults() {
 const {
 imageUrl,
 heroImageUrl,
 adImageUrl,
 secondAdImageUrl,
 brandIllustrationUrl,
 styleGuide,
 brandName,
 } = useLoaderData();

 const { color_palette, typography, taglines } =
 styleGuide;

 return (
 <div className="brand-kit-container">
 {/* Brand Assets Grid */}
 <div className="grid grid-cols-12 gap-5">
 {/* Logo Card - Full Width */}
 <BrandCard
 backgroundColor={color_palette.primary}
 className="col-span-full"
 >
 <img
 src={imageUrl}
 alt={`${brandName} logo`}
 />
 </BrandCard>

 {/* Color Palette Section */}
 <ColorPalette
 styleGuide={styleGuide}
 onColorSwatchClick={
 handleColorSwatchDownload
 }

Piecing It All Together 36

 />

 {/* Typography Card */}
 <TypographyCard
 primaryFont={typography.primary_font}
 backgroundColor={color_palette.highlight}
 />

 {/* Taglines Cards */}
 <TaglineCard
 tagline={taglines[0]}
 palette={color_palette}
 />
 <TaglineCard
 tagline={taglines[1]}
 palette={color_palette}
 />

 {/* Social Icons Grid */}
 <SocialMediaIcons palette={color_palette} />
 </div>
 </div>
);
}

The presentation layer adds value through dynamic color integration
(every element uses the generated palette), typography, interactive
swatches (colors can be downloaded individually), pre-styled social
icons, and visual tagline cards.

This transforms five separate AI outputs into a unified brand system that
feels intentionally crafted, not just generated.

Piecing It All Together 37

Piecing It All Together 38

Download Capabilities
A brand kit isn’t truly useful until users can take it with them. We
implemented three download options, each serving different needs:

Individual Downloads

Each asset has a hover-activated download button. Users can grab just
the logo or a specific ad without downloading everything. This uses a
simple fetch-and-download pattern, converting the base64 images to
downloadable blobs.

ZIP Archive

Using JSZip, we bundle everything into organized folders. Beyond the
raw images, we generate PNG color swatches for each palette color and
include a JSON file with typography and tagline information. The ZIP
structure looks like:

BrandName-Brand-Assets.zip
├── images/
│ ├── BrandName-Logo.png
│ ├── BrandName-Hero.png
│ └── ...
├── colors/
│ ├── BrandName-Primary-Color.png
│ ├── BrandName-Secondary-Color.png
│ └── ...
├── typography_info.json
└── README.txt

PDF Brand Guide

The most comprehensive option generates a multi-page PDF
using jsPDF. Here’s a simplified pseudo-code structure (the actual
implementation involves more careful coordinate calculations, text
measurement, and page flow logic):

Download Capabilities 39

https://stuk.github.io/jszip/
https://github.com/parallax/jsPDF

async function generateBrandKitPDF(
 styleGuide,
 brandName,
 images,
) {
 const pdf = new jsPDF({
 orientation: "portrait",
 format: "a4",
 });

 // Cover page with logo on primary color background
 pdf.setFillColor(styleGuide.color_palette.primary);
 pdf.rect(0, 0, width, height, "F");
 pdf.addImage(images.logo, centerX, centerY);

 // Table of contents
 pdf.addPage();
 tocItems.forEach((item) => {
 pdf.text(item.title, leftMargin, y);
 pdf.text(item.pageNumber, rightMargin, y);
 });

 // Colors & Typography page
 pdf.addPage();
 // Render color swatches with hex values
 colors.forEach((color) => {
 pdf.setFillColor(color.hex);
 pdf.rect(x, y, swatchWidth, swatchHeight, "F");
 pdf.text(
 color.name + " " + color.hex,
 x + padding,
 y + center,
);
 });
}

The resulting PDF is a professional brand guide with proper page
headers, footers, and navigation.

Download Capabilities 40

These download options allow users to leave with professional assets
they can immediately use in their projects, whether they need a quick
logo for social media or a complete brand guide for their design team.

Download Capabilities 41

Wrap Up
BrandInAMinute was a simple weekend project that transforms a simple
brand description into a complete visual identity. By orchestrating six AI
API calls (one for the style guide and five for visual assets), we create
logos, color palettes, typography recommendations, hero images, social
ads, and brand illustrations that all work together as a cohesive system.
The entire process takes under a minute and delivers assets users can
download individually, as a ZIP archive, or as a polished PDF brand
guide.

Keeping It Simple

One deliberate choice we made was avoiding user accounts and
authentication entirely. No sign-ups, no passwords, no email verification
flows. Users land on the site, fill out a form, make a payment, and get
their brand kit.

We also kept the tech stack straightforward: React, TypeScript, and
Tailwind for the front-end, OpenAI’s APIs for the heavy lifting, and
Stripe for payments. No complex state management, no unnecessary
abstractions. Just the code needed to wire everything together.

What We Didn’t Cover

There are a few implementation details we glossed over in this case
study. The Stripe integration, for instance, adds a payment step between
form submission and brand generation. We used React Stripe.js to embed
payment forms directly in a modal, keeping users on our site throughout
the entire flow. We even managed to get a dozen or so sales right out of
the box without having to market the app much yet. Just sharing it with a
few friends and posting it on our socials was enough to validate that
people are willing to pay for this kind of instant brand generation.

Wrap Up 42

https://github.com/stripe/react-stripe-js

We also didn’t dive into error handling, retry logic for failed API calls, or
the caching layer we added to avoid regenerating assets when users
refresh the page.

Where to Go From Here

If time allows, BrandInAMinute could easily grow to include more brand
assets like favicons for websites, app icons for iOS and Android, email
signature templates, or business card designs. Each addition is just
another API call with a well-crafted prompt.

The style guide generation could also become interactive, letting users
tweak colors, adjust themes, or regenerate specific elements they’re not
happy with. Instead of a one-shot generation, imagine a collaborative
flow where users guide the AI toward their vision through iterative
refinement.

We could also let users generate variations. Not happy with the first hero
image? Generate five more. Want to see the logo with different color
combinations?

Wrap Up 43

There’s potential for industry-specific templates, too. A restaurant might
need menu designs and storefront mockups. A SaaS startup might want
product screenshots with their branding applied. An e-commerce brand
might need packaging concepts. Each vertical could have its own
specialized generation pipeline.

The core insight remains the same: in a world where powerful AI
capabilities are just an API call away, the opportunity isn’t in building
better models. It’s in thoughtfully combining existing capabilities to
solve real problems. BrandInAMinute does one thing well, but it’s just
the beginning of what’s possible when you put AI at the helm.

Wrap Up 44

	Introduction
	AI APIs
	The Old World: Custom Models and High Barriers
	Today: AI as a Service
	AI Wrappers
	BrandInAMinute
	The Idea
	The Product
	The Tech
	Building BrandInAMinute
	Generating a Style Guide
	Parallel Visual Generation
	Logo Generation
	Hero Image Generation
	Social Media Ads
	Brand Illustration
	Piecing It All Together
	Download Capabilities
	Individual Downloads
	ZIP Archive
	PDF Brand Guide
	Wrap Up
	Keeping It Simple
	What We Didn’t Cover
	Where to Go From Here

