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1 Abstract: 
Moiré magnification can be observed visually if an array of identical 
objects is viewed through an array of identical microlenses with a dif-
ferent period. Theoretical analysis and experimental results of the 
moiré image obtained by moiré magnifier are presented. Conditions for 
erect and inverted moiré magnifications are derived and interpreted. 
Virtual erect images are observed only when the period of the lens ar-
ray is larger than that of the object array, while inverted images are ob-
tainable in both cases. For equal periods, uniform field of view results. 
The relation between the relative size of the periods and the distance 
between object and lens array are derived. Expressions for image mag-
nification, orientation and size are deduced. The condition to obtain a 
demagnified moiré pattern is deduced. Rotation of the lens array with 
respect to the object array results in rotation of the erect and inverted 
moiré pattern in similar and opposite directions, respectively. 
Subject terms: Moiré effect, microlens arrays 

2 Introduction 
The term moiré is a French word meaning ‘watered 
mohair’, a glossy cloth with wavy alternating patterns 
that change forms as the wearer moves. It is also re-
ferred to the ‘watery and wavy’ appearance when lay-
ers of silk are pressed together by special tech-
niques[1]. Physically it is an optical phenomenon re-
sulting from the superposition of two or more periodic 
grid structures. The resulting moiré pattern is influ-
enced by changing any of the three geometrical pa-
rameters characterizing the individual grid structures, 
namely, period, orientation and shape.[1, 2, 3]  
Although there is a long history in the investigation of 
superposition moiré effects, only few publications ex-
ist which describe the moiré effects appearing if a pe-
riodic array of identical objects is observed through a 
periodic microlens array.[4, 5] However, this moiré 
magnification effect, as the authors of this article call 
the phenomenon, is well known from integral images 
and integral photography.[6, 7] The frequent appear-
ance of similar phenomenon in the usage of microlens 
array in conjunction with arrays of light sources, 
photo-detectors, liquid crystals displays, CCD-chips, 
etc. motivates to further investigations about this phe-
nomena.[8] 
The term ‘moiré magnifier‘ is suggested by the con-
junction of a periodic object seen through a periodic 
array of optical elements or systems. The image is 
formed as the composition, side by side, of the indi-
vidual images generated by the optical array. The im-
age formation is equal to superposition compound eyes 
as nocturnal insects and deep-water crustaceans 
have.[9] The foundations of optical array design also 
demonstrate the existence of cooperative effects.[10] 
In optical array design, the composed image is named 
as the synthetic image. By using this last approach, the 
‘moiré magnifier’ system should be named as ‘syn-
thetic magnifier’. However, we prefer to keep the term 

‘moiré magnifier’ because of the good acceptance of 
this term by the optics community after the presenta-
tion of the device by Hutley et. al.. 
The article from Hutley et. al. [4] dealt with an object 
array combined with a lens array whose period is 
nearly the same size. Experimental results for the 
magnification and orientation of moiré images and 
their fundamental dependence on the orientation of the 
lens array have been given. In our investigation, we 
explain the formation of erect and inverted moiré im-
ages for moiré magnifier consisting of microlens and 
object arrays with different periods. We derive the re-
lation between the relative period difference of the ar-
rays and the object array position in x, y, z and θ. We 
describe the rotation properties of moiré magnifiers. 

3 Basic properties of a moiré magnifier 
The basic configuration of a moiré magnifier is shown 
in Figure 1. An array of identical objects (Figure 1-b) 
is imaged by an array of identical lenses (Figure 1-c). 
For certain combinations of object and lens arrays, one 
or more magnified moiré images of the object motif 
are observed (Figure 1-d). We will now derive the 
general properties of moiré magnification. For sim-
plicity, we restrict our investigation on symmetrical 
square arrays. However, a variety of different array 
types (hexagonal, rhombic, etc.) might be used for 
moiré magnification in a similar way. 
The object array shown in Fig. 1 consists of O × O 
identical objects or motifs at a period ΛO. The lens ar-
ray consists of L × L identical lenses of ØL aperture at 
a period ΛL. The focal length of the lenses is ƒ > 0 
(positive lens). Each lens images a part of the object 
array. The actual type or shape of the lenses (circular 
or square aperture, refractive or diffractive lens, etc.) is 
not relevant for our investigation. We assume that the 
lens size is equal to the lens period ØL = ΛL, and ig-
nore all rays not hitting the lenses. The plane of the 
object array is parallel to the plane of the lens array. 
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An object portions po corresponds to an image of the 
size pi = po⋅m, wherein m is the magnification factor. 
Images of different object portions combine to form I 
× I magnified moiré images.  

The distance between the object plane and the lens ar-
ray is so. The period of the object array is different 
from the lens period ΛO ≠ ΛL. The moiré image is ei-
ther observed on a screen located at si or visually in 
any plane behind the lens array. 
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Figure 1. Basic configuration of a moiré magnifier. A symmetric 
square array of identical objects is imaged by a symmetric square 
array of identical lenses. The object pitch is ΛO, the lens aperture ØL, 
and the lens pitch ΛL. The distance between object plane and lenses 
is so. The moiré pattern is either observed on a screen located in the 
image plane at si or visually in any plane behind the lens array. 
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Figure 2. Examples for an object motif consisting of ‘1234’. If one 
lens images the ‘1’, the next neighbor lenses (left and right) should 
image the ‘4’ or ‘2’ to generate a complete moiré image of the object 
motif. However, the ‘4’ or ‘2’ portion might be next to ‘1’ or at a cer-
tain distance. 

The first fundamental condition for moiré magnifica-
tion requires that adjacent lenses image adjacent por-
tions po from the object motif. Figure 2 shows exam-

ples for an object motif consisting of ‘1234’. If one 
lens images the ‘1’, the next neighboring lenses (left 
and right) should image the ‘4’ or ‘2’ to generate a 
complete moiré image of the object motif. However, 
the ‘4’ or ‘2’ portion might be next to ‘1’ or at a cer-
tain distance.  

The size of an object portion po imaged by one lens is 
given by 

 po = Λo
I
L

, (1) 

wherein (L/I)2 is the number of lenses required to gen-
erate a complete moiré image of the object motif (for 
square arrays). In order to ensure a coincident super-
position of all partial images, the image size pi should 
be equal to the lens period ΛL. 
 p i = Λ L . (2) 

The relation between the image size pi, the object por-
tion po and the position of the object array so is given 
by the image equation, 
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wherein ƒ is the focal length.[6] Figure 3 illustrates the 
imaging properties of a single positive lens. As a con-
sequence of Equation (2) and (3), the marginal rays 
marked as line 1 and line 2 in Figure 3 define the ob-
ject size po. Line 3 and line 4 define the image size pi. 
Depending on the object distance so the image pi is ei-
ther erect (ƒ > so > 0; m > 1) or inverted (so > f ; m < 
0). For an object position 0 < so < 2f, the image pi is 
magnified (|m| > 1), for so > 2f, the image is demagni-
fied (0 < |m| < 1). 
We obtain four different types of moiré image as 
shown in Table 1. 

Figure 2a

ƒ > so >  0; 
pi =  + ΛL;  
erect image

so > ƒ; 
pi =   - ΛL;  
inverted image;

moiré image  =  object motif

moiré image  =  object motifmoiré image   °   object motif

moiré image   °   object motif

1 2 3 4 1 2 (I) 4 3 2 1 4 3 (II)

4 3 2 1 4 3(IV)1 2 3 4 1 2(III)

Figure 2b

 
Table 1. Different types of superimposed moiré images. Depending 
on the object position so, the image parts pi = 1, 2, 3, 4 might be 
erect or inverted. Only in case (I) and (IV), the moiré image is identi-
cal to the object motif. 

Depending on the object position so, the image part pi 
might be virtual erect or real inverted. Depending on 
the difference in period of ΛO and ΛL the image se-
quence might be direct or reversed. Therefore, we ob-
tain four different types of moiré images as shown in 
Table 1. 
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Figure 3. Imaging properties of a single lens of the lens array shown 
in Figure 1. Three different object positions are possible. (A) The ob-
ject is located at a distance |ƒ| > |so(A)| > 0 and generates a virtual, 
erect image (m > 1) at a distance si(A). (B) The object is located at a 
distance |2ƒ| > |so(B)| > |ƒ| and generates a real, inverted image (m 
< -1) at a distance si(B). (C) The object is located at a distance |∞| > 
|so(C)| > |2ƒ| and generates a real, inverted image (-1 < m < 0) at a 
distance si(C). 

Only in case (I) and (IV) the appearing moiré image is 
identical to the object motif. A graphical explanation 
of moiré imaging is shown in Figure 4. 
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Figure 4. Formation of the (a) erect and (b) inverted moiré images. 
An object array of period ΛO is partially imaged by a lens array of pe-
riod ΛL. nΛO is the distance between two arbitrary objects parts par-
ticipating in building up the moiré image, n, is an integer number (n ≥ 
0). Let the object be divided into equal portions of size p given by 
the image equation (3).  dr is the distance from the right of pk to the 
right end of the object element. dl is the distance from the left of pk to 
the left end of the same object element. In Figure 4-a for erect moiré 
imaging, the two arrays are separated by a distance ƒ > so > 0. The 
lens (j) images the kth portion pk of the first participating object. The 
lens of order (j+1) images the portion pk+1 from the next participating 
object. In Figure 4-b for inverted moiré imaging, the two arrays are 
separated by a distance ∞ > so > ƒ. The lens (j) images the kth por-
tion pk of the first participating  object. The lens of order (j+1) images 
the portion pk-1 of the next participating object. 

4 The erect moiré pattern 
For virtual erect images, the object array is located at a 
distance ƒ > so > 0. Each lens forms a virtual erect im-
age of the related object portion po as shown in Figure 
4-a. If lens (j) images the portion pk of the object, the 
next lens of order (j+1) should image the portion pk+1 

from the next participating object. The size of pk is 
equal to pk+1. Since the size of the image portion pi is 
equal to the lens period ΛL (Equation 2), the distance 
between two imaged portions is equal to ΛL given by: 
  ΛL = pk + dr + pk + dl + nΛO  (4) 

where, nΛO is the distance between two participating 
objects, dl and dr are non-imaged parts of the object re-
lated to lens j, and n is an integer number (n ≥ 0). 
Since one object period is given by ΛO = pk + dr + dl, 
the size of the object portion perect for erect moiré im-
aging is given by, 
  (5) OLerect Np Λ−Λ=

where, N = n + 1 is an integer number (being ≥ 1). For 
all values of s0 in the range ƒ > so > 0, the size of the 
object portion perect is less than the period of the lens 
array, 0 < perect < ΛL, giving m > 1. Substituting in the 
above inequality from Equation (3), the limits of the 
integer N for the erect magnified moiré pattern is ob-
tained as,  

 
O

L
erectN

Λ
Λ

<<0 . (6) 

Erect magnified moiré images are only observed if the 
lens period ΛL is larger than object period ΛO. Each 
value of N corresponds to a different moiré magnifi-
cation at a different object array position so. 

5 The inverted moiré pattern 
The second case to be analyzed is the condition for ob-
taining inverted moiré images. The problem is treated 
in a similar way as that for erects moiré images. For 
inverted images, the object array is located at a dis-
tance ∞ > so > ƒ. As shown in Figure 4-b, each lens 
images the related object portion po. If lens (j) images 
the portion pk of the object array, the next lens (j+1) 
should image the portion pk-1 from the next par-
ticipating object. The size of the image portion pi is 
equal to the lens period ΛL (Equation 2) and given by 
 Λ ΛL r Od d n= + +l , (7) 

where, nΛO is the distance between two participating 
objects, dl and dr are the non-imaged parts of the object 
related to lens j, and n is an integer number (n ≥ 0). 
The integer number n gives the number of not-partici-
pating objects in-between two participating objects.  
Since one object period is given by ΛO = pk + dr + dl,  
the size of the object portion pinverted for inverted moiré 
imaging is given by, 
 , (8) LoNpinverted Λ−Λ=

where, N = n + 1, is an integer number (being ≥ 1). 
The condition for inverted moiré imaging is ∞ > so > 
ƒ. As shown in Figure 3, the size of the object portion 
po is defined by line 1 and 2. Three different object po-
sitions so are possible: 
a) For 2ƒ > so > ƒ, the size of the object portion is less 

than the pitch of the lens array, 0 < po < ΛL, leading 
to m < -1. Substituting for po from relation (8), the 
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limits of the integer N≥1 for the inverted magnified 
moiré pattern is obtained as,  
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From Equation (8) and (9) it is found that inverted 
moiré magnification could be observed according to 
the following conditions: 

(i) If the lens period ΛL is larger than the object 
period ΛO. For the same values of ΛL and ΛO 
inverted moiré magnification could be ob-
served for different object positions depend-
ing on the value of N. 

(ii) If the lens period ΛL is smaller than the object 
period ΛO. Inverted moiré magnification is 
only observed for N = 1 and ΛL < ΛO < 2ΛL. 

b) For so = 2ƒ (anti-principal planes position), the size 
of the object portion po is equal to the period of the 
lens array ΛL, leading to m = -1. The composite im-
age consists of locally inverted parts of the object. 
If the object period ΛO is equal to the lens period 
ΛL, a pattern similar to case III in Table 1 is ob-
served. 

c) For ∞ > so > 2ƒ, the size of the object portion po is 
larger than the pitch of the lens array ΛL and -1 < m 
< 0. The lower limit for of the integer N ≥ 1 for a 
inverted demagnified moiré pattern is,  

 N L

O
>

2Λ
Λ

. (10) 

6 Magnification 
From the image equation (2) and Figure 3, the sign of 
the image portion pi is positive or negative, corre-
sponding to erect (ƒ > so > 0) or inverted (  > s∞ o > ƒ) 
imaging. From Equation (5) and (8), and the image 
equation (3), the magnification m of a moiré magnifier 
is always given by 

 
OL

L

N
m

Λ−Λ
Λ

= . (11) 

For erect imaging, the moiré image is always magni-
fied (m > 1). For inverted imaging, the moiré image is 
either magnified (m < -1) or demagnified (-1 < m < 0). 

7 Image formation and observation 
In the simplest case, a lens array of L × L lenses and 
ΛL lens period generates one complete magnified im-
age of the object pattern (see Figure 1-d). In this case, 
the array size LΛL is equal to the size of the moiré im-
age. The object pattern has been magnified by factor m 
and we get the condition LΛL = |m|ΛO. In a more gen-
eral case, the lens array generates I × I magnified im-
ages of the object pattern, leading to 
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m
LI

Λ
Λ

= . (12) 

From Equation (11) and (12) the object period oΛ  is 
given by 

 Lo INL
L

Λ
±

=Λ  (13) 

The positive sign holds for virtual erect images, the 
negative sign holds for inverted images. For |ΛL - NΛO| 
< ΛL a magnified image is obtained. For NΛO - ΛL > 
ΛL a demagnified image is obtained. Each value of ΛO 
corresponds to a different object array position so 
given by 

 s fNo
o

L
=

Λ
Λ

. (14) 

The size of the magnified image mΛO is given by 

 L
OL

o
o N

m Λ
Λ−Λ±

Λ
=Λ

)(
. (15) 

The number of object patterns O, in one dimension, 
that contribute to one moiré image is equal to the 
magnification m,  

 m=O . (16) 

The number of lenses L/I, in one dimension, that gen-
erate one moiré image is given by 
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= . (17) 

The moiré image generated by a moiré magnifier could 
be observed on a screen located at the image distance si, 
given by 

 
OL

O
i N

Nfs
Λ−Λ

Λ
−= . (18) 

As a consequence of Equation (2), the moiré image 
can be observed by the naked eye at any position be-
hind the lens. 
For virtual erect moiré images, if the observer moves 
transversely to the lens array, the image appears to 
move in the same direction. For inverted moiré pat-
tern, the image moves in the opposite direction. This 
corresponds to the sign of the magnification factor m 
as indicated in Equation (15). 
A numerical example describing the generation of 
three different types of moiré images can be obtained 
by considering a moiré magnifier system consisting of 
a lens array period ΛL = 9u and object array of period 
ΛO = 4u where u is an arbitrary length-unit. Table 2 
shows numerically the possible values of N satisfying 
the moiré magnifier inequalities (Equation (6), (9), and 
(10)), for ΛL / ΛO = 9/4. 
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Table 2. Numerical example for a lens array period ΛL = 9 u and ob-
ject array period ΛL = 4 u (arbitrary length-unit u). The table shows 
the possible values of N satisfying the moiré magnifier inequalities 
for ΛL / ΛO = 9/4. 

For each value of N, the object position, so, and its cor-
responding object portion, po, and magnification, m, 
are calculated. Considering that the object array motif 
of the above moiré magnifier system consists of '1234', 
the Figures 5, 6 and 7 describe the generation of the 
different magnified images corresponding to different 
object array positions, so. Figure 5 shows the possible 
erect magnified moiré images, which are correspond-
ing to the object array position, 0 < |so| < ƒ. 

 
Figure 5. Erect magnified moiré images corresponding to the object 
array position, 0 < |so| < ƒ, and the value N = 1 (Figure 5-a) respec-
tively N = 2 (Figure 5-b) as shown in Table 2. 

 
Figure 6. Inverted magnified moiré images corresponding to the ob-
ject array position, ƒ < |so| < 2ƒ, and the value N = 3 (Figure 6-a) re-
spectively N = 4 (Figure 6-b) as shown in Table 2. 

 
Figure 7. Inverted demagnified moiré image corresponding to the 
object array position, 2ƒ < |so|, and the value N = 5 as shown in Ta-
ble 2. 

Figure 5-a corresponds to N = 1, Figure 5-b to N = 2 
as given in Table 2. Figure 6 shows the possible in-
verted magnified moiré images which are corre-
sponding to the object array position, ƒ < |so| < 2ƒ. 
Figure 6-a corresponds to N = 3, Figure 6-b to N = 4. 
Figure 7 shows an inverted demagnified moiré image 
which corresponds with the object array position, 2ƒ < 
|so| and N = 5. 
The mathematical relations derived in this paper were 
confirmed experimentally. We have used a square lat-
tice lens array of converging lenses. The size of the 
lens array is 42.73 mm2, its period, ΛL, is 1.07 mm, 
and the focal length, ƒ, is 2.43 mm. Object arrays with 
different periods, Λo, are computer generated and 
printed onto transparency using a laser printer. The 
scheme of the experimental set-up is shown in Figure 
8. 
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6

Figure 8. Experimental setup used for testing moiré magnifiers. The 
object array is placed in front of the lens array and illuminated by dif-
fuse white light. The lens array is moved longitudinally in the z-di-
rection and to adjust the object-to-lens distance, so. The real moiré 
images are projected on a screen and then recorded by a camera 
connected to a computer. In case of virtual moiré images, the im-
ages are received directly by the camera. 

Diffused white light is used to illuminate the moiré 
magnifier system. The object array is placed in front of 
the lens array. The lens array is attached to a micro 
translation stage to move it longitudinally in the z-di-
rection and to adjust the object array distance, so. The 
real moiré images are projected on a screen and then 
recorded by a camera connected to a computer. In case 
of virtual moiré images, the images are received di-
rectly by the camera. Table 3 shows the different ob-
ject array periods, ΛO, with their corresponding se-
lected value of N, and positions, so. Also, the resulting 
magnification and image type are given for an aligned 
position. The experimental values are obtained from 
the recorded images. A selection of the resultant im-
ages is shown in Figure 9, 10, and 11. 
 

Original image 

  
Figure 9. Object and image plane for a situation of real inverted 
magnified moiré patterns as described in Table 3. 

 
Original image 

  
Figure 10. Object and image plane for a situation of real inverted 
demagnified moiré patterns as described in Table 3. 

 

Original image 

  
Figure 11. Object and image plane for a situation of virtual erect 
magnified moiré patterns as described in Table 3. 

The object pattern is shown left, the observed moiré 
pattern on the right. 

8 Translation and rotation 
In the above analysis an aligned moiré magnifier is 
considered, that is, the axes of both object and lens ar-
ray are parallel and coincident. If the lens is translated 
with respect to the object array, the moiré pattern ap-
pears to move. Each lens images another part of the re-
lated object. The direction of the movement depends 
on the relative motion of the arrays, the lens period, 
ΛL, the object period, ΛO, and the value of N, and is de-
scribed by Equation (15). From the experiment it could 
be observed that for real moiré images, the resultant 
translation and rotation are in the same direction as 
those of the object array. While, it is in opposite direc-
tion for virtual patterns as we could expect from the 
sign of the magnification. The apparent motion speed 
of the resulted moiré image is proportional to the mag-
nification value. 
Moiré magnification is based on a periodically re-
peated object pattern imaged by a periodical array of 
identical lenses. The object period is the shortest dis-
tance between two identical parts of adjacent object 
unit cells along the lens array axes. Assume that we 
have an aligned configuration where moiré magnifica-
tion appears. If the lens array (or the object array) is 
rotated by a small angle then the moiré image rotates 
and changes its magnification. For larger rotations, the 
moiré image might disappear and reappear at certain 
angles. 
If one of the two arrays is rotated an angle Θ relative 
to the other, the distance to the next identical object 
part located on the lens axis will change. Accordingly, 
a new rectangular lattice of the object array, aligned 
with the lens array grid, with a new period is created at 
a certain rotation angle. The new period ratio, 
ΛL/ΛO,new, may satisfy or not moiré magnifier require-
ments at the same object array position, so. Therefore, 
moiré magnified images may appear and disappear as 
the object rotates. 
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Let assume a square grid of object with period ΛO, that 
produces a moiré magnifier effect for a given position. 

2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1

Λo  Λo,new x·Λo

y·
Λ

o Λo,new 

Θ

12

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

2

3 4

1

1

 
Figure 12. Rotation of the object array. A symmetric square array of 
identical objects ("1234") produces a new object period, ΛO,new, for a 
rotation by an angle Θ. 

A new square grid of repeated objects is obtained 
when the object rotates and the rotation angle obeys 
the following relation (see Figure 12), 

 Θ = tan −1 y
x

 
 

 
 , (19) 

where, x and y are integer numbers greater than, or 
equal, to zero (Θ changes from 0° to 90°). The new ob-
ject array, aligned with the lens array, has a new pitch, 
which is equal to 

    Λ O,new = ΛO
x

cosΘ
= ΛO

y
sinΘ

= ΛO x2 + y2 . (20) 

Thus, the varying rotation angles create new periods 
ratios, which define different moiré pattern character-
istics. 
An aligned position in which moiré magnification ap-
pears has a fixed value of N. If the distance between 
the two arrays remains unchanged then the imaged 
portion, p, will be the same although one of the two ar-
rays rotates with respect to the other, 

 p = ΛL − NΛO = ΛL − Nnew ΛO,new . (21) 

From this equation and Equation (20) the condition to 
obtain moiré magnification after rotation becomes, 

 N new =
N

x2 + y2
 (22) 

which is a very restricted condition to be fulfilled by 
the involved integer numbers. It is clear from Equation 
(11), that the magnification depends on the imaged 
portion and the lens pitch. So the magnification will 
keep constant for different rotation angles at the same 
object array position so. 

9 Summary 
If an array of identical lenses is used to view an array 
of identical objects, the phenomena of moiré magnifi-
cation might occur. For certain array positions, a mag-
nified image of the repeated object pattern is observed 
on a screen or by eye. The moiré image might be erect 
or inverted, magnified or demagnified. A shift in z or a 
rotation in θ of the lens array versus the object array 
might generate different magnified pattern. The object 
position in z and θ, which is necessary to observe a 
magnified moiré image is related to the difference in 
the array periods. A demagnified moiré image is ob-
served, when the object period exceeds the lens period 
and the object array is located at a distance exceeding 
twice the focal length. 
As one moves across the lens array, the moiré image 
appears to move in the same direction in case of vir-
tual erect moiré pattern and in the opposite direction in 
case of real inverted moiré pattern. 
The mathematical relations were in good agreement 
with the experiments performed for all three types of 
moiré magnified patterns. 
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