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Abstract: The optical properties of plano-convex refractive microlenses 
with low Fresnel Number (typically FN < 10) are investigated. It turns out 
that diffraction effects at the lens aperture limit the range of the effective 
focal length. The upper limit of the focal length is determined by the 
diffraction pattern of a pinhole with equal diameter. In addition achromatic 
microlenses can be realized because refraction and diffraction have 
opposing effects on the focal length. Gaussian beam propagation method 
has been used for simulation. The presented results are of relevance for 
applications, where microlenses with small apertures and long focal lengths 
are used, for example, Shack Hartmann wavefront sensors or confocal 
microscopes. 
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1. Introduction 

The refractive index of any transparent material is function of the wavelength. Therefore, a 
lens made in one single material shows different positions of focus at each wavelength. The 
difference in position of these focal points is known as the longitudinal primary chromatic 
aberration [1]. To correct this aberration, achromatic lenses are usually manufactured using 
two lenses of different material having different Abbe numbers combined to form a doublet or 
even triplet [1]. This method uses the different dispersion curves of the materials to obtain, at 
two well separated wavelengths, the same focal length with small variations for the other 
wavelengths in between. By their small dimensions microlenses can have low Fresnel number 
and then exhibit strong diffractive effects on the position and the shape of their focal point as 
it has been extensively studied in literature (focal shift [2] [3] [4]). We show here that for such 
lenses a range for the radius of curvature (ROC) can be found where microlenses show an 
achromatic behavior. Firstly we focus our study on the position of the peak irradiance (Zp) for 
different microlenses diameters as function of ROC. The focal length is increased by 
increasing the ROC. However at a certain value for ROC, the focal length cannot be further 
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increased. The limit is fixed by the position of the peak irradiance of the light diffracted by an 
aperture equal to the lens diameter. Secondly we study the position of the peak irradiance at 
different wavelengths. We observe two phenomena influencing Zp. One is the focal shift due 
to diffraction and the second is the chromatic aberration due to the material dispersion. 
Because these two phenomena have opposing influence on Zp, a choice for the ROC can be 
found where Zp is the same at two wavelengths. This property could be used to design 
achromatic lenses in one single material. 

2. Basic considerations 

The focal length ƒE of a plano-convex refractive lens is derived from the radius of curvature 
ROC and the refractive index n of the lens material 

)1( −
=

n

ROC
fE

.                       (1) 

The refractive index is a function of the wavelength λ, whereas n(λ2) < n(λ1) for λ2 > λ1. The 
longitudinal primary chromatic aberration, corresponds to a chromatic shift of the focal 
length, ƒE(λ2) > ƒE(λ1) for λ2 > λ1, [1]. The Fresnel number FN of a lens with a lens diameter 
Ø = 2ρ is defined by  

Ef
FN

λ
ρ 2

= .            (2) 

For large Fresnel numbers FN >> 1, geometric optics is well suitable to derive the focal length 
of a microlens. For low Fresnel numbers, the focal length is shifted towards the lens due to the 
influence of the diffraction at the lens stop. A Gaussian beam decomposition algorithm [5] is 
used for the comprehensive analysis of the refractive and diffractive properties of the 
microlenses. 

3. Plano-convex refractive microlens  

A plane wave with constant intensity profile illuminates a plano-convex refractive microlens 
as shown in Fig. 1. An aperture blocks the light outside the microlens.  

 
Fig. 1. Model of a plano-convex microlens illuminated by a plane wave. 

As an example, a microlens with diameter Ø = 635 μm, ROC = 2.03 mm, made of fused silica 
with n (633 nm) = 1.456 has been chosen. From paraxial geometric optics, the focal length is 
ƒE = 4.45 mm. The Fresnel number of the lens is FN = 35.7. As shown in Fig. 2, diffraction 
analysis [5] predicts a position of the peak irradiance Zp at 4.36 mm. The difference between 
the position of the peak irradiance Zp derived from diffraction theory and the focal length ƒE 
obtained from geometrical optics is defined as focal shift δ [6]: 

Ep fZ -=δ .            (3) 
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In the example of a microlens with a Fresnel number FN = 35.7. A focal shift of δ = -0.09 
mm, corresponding to 2% mismatch is observed. This shows a good agreement between 
geometrical optics and diffraction theory for microlenses with large Fresnel numbers. 

 

 
Fig. 2. Intensity (a.u.) distribution behind a microlens of Ø = 635 μm, ROC = 2.03 mm, 
illuminated by a plane wave at 633 nm. The lens stands in the x,y plan while z corresponds to 
the propagating axis. 

Figure 3 shows the intensity distribution of a microlens with a Fresnel number FN = 6.29. A 
focal shift of δ = -6.23 mm, corresponding to 11% mismatch is observed. 

 

 
Fig. 3. Intensity (a.u.) distribution behind a microlens of Ø = 635 μm and ROC = 25.2 mm 
illuminated by a plane wave at 633 nm. The lens stands in the x,y plan while z corresponds to 
the propagating axis. 

Figure 4 shows the intensity distribution of a microlens with a Fresnel number FN = 0.3.  A 
focal shift of δ = -416.86 mm, corresponding to 75% mismatch is observed. 
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Fig. 4. Intensity (a.u.) distribution behind a microlens of Ø = 635 μm, ROC = 252 mm, 
illuminated by a plane wave at 633 nm. The lens stands in the x,y plan while z corresponds to 
the propagating axis. 

 

Figure 5 shows the intensity distribution behind a pinhole with same diameter. A pinhole with 
no refractive power corresponds to a microlens with ROC = ∞.  

 

 
Fig. 5. Intensity (a.u.) distribution behind an aperture of Ø = 635 μm illuminated by a plane 
wave at 633 nm. The lens stands in the x,y plan while z corresponds to the propagating axis. 

 

 

The observed peak irradiance position Zp = 162.93 mm is the maximum obtainable focus spot 
position for a microlens of  Ø = 635 μm diameter.  

4. Refractive and diffractive regime 

These phenomena are now analyzed for different microlens diameters illuminated by a plane 
wave at 633 nm. 
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Fig. 6. ROC [mm] versus position of peak irradiance for six diameters of microlenses 
illuminated by a plane wave at 633nm.  

 

Figure 6 shows Zp function of ROC for different microlens diameters. For low ROC (typically 
ROC < 1 mm for Ø = 635 μm microlens) the peak irradiance corresponds to the focal length 
obtained by Eq. (1). For increasing values of ROC, the peak irradiance converges to a 
maximum value Zp max illustrated by vertical dash lines in Fig. 6. This value corresponds to the 
peak irradiance position obtained for a pinhole with no optical power, i.e. ROC = ∞. To check 
the validity of the present approach, the values of Zp max obtained by the Gaussian beam 
decomposition algorithm are now compared to the values derived from the Rayleigh-
Sommerfeld integral.  

The scalar field U(r,z ) at the point P is given by [7], 

( ) ( ) ( ) ( )∫Σ= dS
R
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where Σ is the surface limited by the aperture in z0 = 0. For a plane wave diffracted at the 

circular aperture and propagating along the optical axis we have ( ) 000 AA =r and 2
0

2 r+= zR  

with 0r=0r . Furthermore, for paraxial approximation we assume that ( ) 1≈θcos . 

Substituting these relations into Eq. (4) and introducing polar co-ordinates yields to 
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where 
0ρ is the radius of the limiting aperture at 00 =z . Integrating Eq. (5) and approximating 

the square root in the phase by the first two terms of the Taylor series yields to 
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describing the intensity distribution along the optical axis. The maximum intensity is found by 
setting the derivative of Eq. (6) equal to zero, 
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which implies that π=ρ
z2

k 2
0 . The position of peak irradiance of an aperture obtained by the 

Rayleigh-Sommerfeld integral is 

λ
ρ 2

0=pZ .            (8) 

The peak irradiance positions Zp of pinholes with Ø = 2ρ0 diameters obtained from Rayleigh-
Sommerfeld, are shown as dashed lines in Fig. 6. The Gaussian beam decomposition 
algorithm corresponds well to the Rayleigh-Sommerfeld approach. 

5. Achromaticity 

As described in the previous section microlenses exhibit a refractive regime following the 
linear law predicted by classical optics and a diffractive regime where the peak irradiance 
converges to a maximum value. As shown in Fig. 7, both effects are related to the wavelength 
λ. In the diffractive regime, the peak irradiance Zp is strongly dominated by the focal shift 
introduced by diffraction at the aperture and converges to a maximum value proportional to 
the inverse of the wavelength, see Eq. (8). 

 
Fig. 7. ROC versus position of peak irradiance Zp for microlenses of Ø = 635 μm illuminated 
by a plane wave at two different wavelengths. 

 

In the refractive domain, the peak irradiance Zp respectively the focal length ƒE is inversely 
proportional to the refractive index n(λ). The dispersion curve of a material approximated by 
the Cauchy Formula [1] Eq. (9), 

4
2

2
1

0 ++=
λλ

CC
Cn ,            (9) 

leads to a decreasing refractive index for increasing wavelengths. In the refractive regime, the 
position of the peak irradiance (Zp) is equal to the focal length given by Eq. (1).  

Figure 8 shows the peak irradiance position function of ROC at different wavelengths λ. 
The longitudinal primary chromatic aberration δλ is the difference of the peak irradiance 
positions for different wavelengths δλ = Zp(λ1) - Zp(λ2), expressed along the optical axis [1]. 
In classical optics, an achromatic lens is designed to have the same focal length for two well-
separated wavelengths, i.e. δλ = 0. 
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Fig. 8. ROC versus position of peak irradiance Zp for a microlens of Ø = 635 μm, illuminated 
by a plane wave at four different wavelengths. The crossings between two curves 
corresponding to achromatic microlenses are shown with circles. 

 

In Fig. 8, we observe that for each pair of wavelengths the different graphs are crossing in one 
point. From the UV to the IR a value for ROC is found where the longitudinal chromatic 
aberrations are zero for two different wavelengths. For our example of a microlens with 
diameter Ø = 635 μm, the peak radiance at 248 nm and 1550 nm are equal zp(248 nm) = 
zp(1550 nm) = 21.7mm for ROC = 10.8 mm, Fig. 7. 

 
Fig. 9. Relative variations on Zp calibrated at 550 nm for five microlenses of Ø = 635 μm for 
five ROC, illuminated by a plane wave at different wavelengths. 

 

Similar to classical achromats an achromatic microlens does not show an achromatic behavior 
over the full wavelength range in-between λ1 and λ2. The variation of achromats inside the 
range between these two design wavelengths is usually called secondary color aberration [1]. 
In classical optics the design of achromatic lenses can be made for any desired Zp. In the 
present case, chromatic aberrations are directly related to the diameter and the ROC as these 
are the only free parameters. For a fixed diameter of microlenses, the appearance of 
diffraction effect, used for chromatic aberration corrections, depends on the ROC as seen in 
Fig. 6. This implies for each design one position of the peak irradiance.  
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To investigate an achromatic design for a microlens we fix a diameter. Then to allow 
comparisons a wavelength of reference fixing Zp is required. It is now possible to plot the 
relative variations of this Zp against the wavelength of a defined spectrum. For example, Fig. 9 
shows the variations as function of the wavelength of Zp expressed in percent of the Zp 
calibrated at 550 nm. This is done for different ROC while for each lens Zp at 550 nm is taken 
to normalize. The effect of diffraction appears when ROC increases. Correction of chromatic 
aberrations is possible for curve shapes that show a maximum in the desired wavelengths 
region. It would seem that small curvature (large radius of curvature) of the plot at the 
maximum would lead to small chromatic aberration in Fig. 9. Curves for ROC = 20.2 mm (FN 
= 4), 12.6 mm (FN = 6) and 10.1 mm (FN = 8) in Fig. 9 show a maximum. Note, that the FN 
are calculated at 550 nm. The maximum shifts to shorter wavelengths for increasing ROC. 
The microlens with a ROC fixed to 10.1 mm shows less than 1 ‰ variation on Zp from 530 
nm to 690 nm. For comparison the microlens with ROC=2 mm is not influenced by 
diffraction effects and shows more than 8 ‰ variations on Zp inside the same range. For this 
wavelengths range we see from Fig. 9 that the lens with ROC=10.1 mm represents an 
optimum design for a lens of 635 μm diameter. The position of the peak irradiance is 21.5 
mm. 

6. Conclusion  

It is well known from geometric optics that increasing the focal length of any lens leads to 
increase its ROC. This is the case for lenses having large values of FN >>1. By comparison, 
microlenses by their small diameters impose small value for ROC and then short focal length. 
When designing a microlens with large ROC, diffraction at the lens aperture may severely 
dominate the optical properties of the microlens and limit the range of the effective focal 
length. The upper limit of the focal length is determined by the diffraction pattern of a pinhole 
with equal diameter. Moreover refraction and diffraction have opposing influence on the 
position of the peak irradiance when changing the wavelength of illumination. Diffraction at 
the lens stop can be used to correct chromatic aberration introduced from the dispersion of the 
lens material. For microlenses with low Fresnel numbers (FN<10), achromatic designs can be 
realized in one single material. 
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