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Reading guide  

This report proposes a comprehensive health surveillance and research framework for the Brussels 
Airport region. The report is built from four workpackages, preceeded by a summary: 
  
The framework is detailed in Work Package (WP) 4, which builds upon the foundation laid by three 
preceding WPs:  
 

- WP 1: Comprehensive review of health outcomes linked to environmental stresssors around 
other airports. 

- WP 2: An in-depth analysis of environmental stressor modelling and measurement (with a 
focus on noise and ultrafine particles) around airport, including data specific to the Brussels 
Airport region. 

- WP 3: An exploration of how existing (secondary) health data can be leveraged for effective 

health surveillance in the area. 

 

Notice  

This report was mainly elaborated before the publication of opinion Nr 9741 ‘The health impact of 

aircraft noise and pollutant emissions in the vicinity of Brussels airport’ of the Superior Health Council 

(SHC) (Superior Health Council, 2024). However, the opinion of the SHC, highly relevant to this study, 

was carefully considered during the finalization process of this report. 

Steering group  

This project received guidance from a steering group with members from the Flemish authorities 

(Departement Zorg, Departement Omgeving, Vlaamse MilieuMaatschappij), Brussels authorities 

(LeefMilieuBrussel) and Bond Beter Leefmilieu (BBL). The project team expresses its appreciation to 

the steering group for their valuable contributions, insights and discussion during steering group 

meetings.   
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Brussels Airport is a major European aviation hub for both passenger and cargo air traffic, playing a 

key role in the region’s economy and connectivity. However, the airport’s operations (including 

aircraft movements, ground operations and associated road traffic) generate environmental stressors 

such as noise and air pollution, raising concerns about the health of nearby residents.  

The environmental stressors of primary concern are aircraft noise and ultrafine particles (UFP). Aircraft 

noise is a well-known stressor that has been linked to various health issues, including sleep 

disturbance, cardiovascular and mental health problems as well as cognitive impairment in children. 

UFPs, on the other hand, are a relatively new area of concern. These tiny particles, less than 0.1 µm in 

aerodynamic diameter, are emitted in large quantities by aircraft engines and can penetrate deep into 

the lungs and potentially other organs, including the brain and placenta. This deep penetration raises 

concerns about the potential for both pulmonary and extrapulmonary health problems. The focus on 

aircraft noise and UFP is justified by several factors. First, airport operations are identified as primary 

contributors to ambient levels of noise and UFP in surrounding communities, whereas their 

contribution to standard air pollutants (e.g., PM2.5, NO2) appears relatively minor compared to 

emissions from road traffic, agriculture and industry. Second, although the adverse health effects of 

aircraft noise are well-established (based on health research studies around other airports, see 

further), data specific to the Brussels Airport region is lacking. Lastly, UFP, recognised as an emerging 

pollutant of concern, lacks established regulations and a comprehensive understanding of its health 

effects compared to the regulated standard air pollutants (e.g., PM2.5, NO2). Therefore, investigation 

of the health impacts of UFP and aircraft noise around Brussels Airport is of utmost importance (see 

further). In addition to noise and UFP, hazardous air pollutants (HAPs), including substances of very 

high concern related to airport operations, have also been identified as potential health concerns. 

However, a preliminary assessment performed in this study, based on modelling approaches 

extrapolated from benzene modelling, including assumptions and emission rates from literature, 

indicates that the modelled exposure levels in residential areas are generally well below health-based 

guidelines for these substances. Therefore, the health effects of HAPs are considered less of a priority 

for health concern than noise and UFP at this stage. Nevertheless, to ensure a comprehensive 

understanding of the potential health risks associated with airport operations, it is advised to advance 

the understanding of exposure to HAPs by refining modelling approaches (e.g., to account for the 

complexity of chemical processes), by performing measurements in the environment (ambient air) 

and by conducting human biomonitoring measurements for some HAPs (e.g., benzene) in the vicinity 

of Brussels Airport. This multifaceted approach will provide more accurate and reliable estimates of 

HAP exposure levels and their potential impact on the health of nearby residents.  

The current understanding of the potential health impacts of the operations at Brussels Airport relies 

primarily on theoretical impact assessments, such as the Environmental Impact Assessment (EIA, In 

Dutch: milieueffectenrapport or MER) and the E-HIS study for air traffic noise. The E-HIS tool estimated 

that in 2019, 205 000 individuals experienced severe annoyance due to aircraft noise from Brussels 

Airport, resulting in 4 100 disability-adjusted life years (DALYs). Additionally, 97 000 individuals were 

estimated to suffer from sleep disturbances, leading to 6 850 DALYs. In terms of cognitive effects, 

learning delay (children) was calculated, resulting in 74 DALYs. Furthermore, 2 900 cases of ischemic 

heart disease were calculated to be related to noise pollution from the airport, totalling 1 170 DALYs. 
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These assessments utilize modelled noise levels (Lden and Lnight
1) specific to the region around Brussels 

airport. The above estimated health burden is based on the application of exposure-response 

functions derived from other airports on the noise levels around Brussels Airport. However, relying on 

such a semi-theoretical approach has limitations. First, airport operations, local air quality patterns 

and population demographics can vary significantly between airports, making it challenging to directly 

apply findings (such as exposure-response functions) from one airport to another without considering 

the unique characteristics of each location. For example, the specific flight paths, time window of night 

flights, aircraft types and meteorological conditions at Brussels Airport may lead to different noise and 

UFP exposure patterns compared to other airports. Second, theoretical models may not fully capture 

the complexity of real-world exposure scenarios. Factors such as co-exposure to other environmental 

stressors, time-activity patterns and exposure or effect modifiers (e.g., noise insulation or individual 

sensitivity to noise) can significantly influence an individual's actual exposure to noise and air 

pollution. For instance, people having better noise insulation in their homes may experience lower 

exposure levels than predicted by the models, and people with low sensitivity or high tolerance for 

aircraft noise could experience less impact despite the exposure. 

Therefore, a tailored health surveillance and research framework is needed to specifically investigate 

the health impacts of Brussels Airport’s operations on nearby residents. This framework should 

consider the unique characteristics of Brussels Airport, including its specific emission sources, local air 

quality patterns and population demographics. Ideally, it would incorporate a combination of different 

research approaches, such as health surveys, exposure assessments and in-depth monitoring studies, 

to gather comprehensive data on both exposure and health outcomes as well as residents’ background 

variables. In addition, to better understand the impact of noise on the health of the surrounding 

population, this framework should also include an assessment of different noise metrics. While the 

traditional Lden (day-evening-night) and Lnight metrics provide valuable information, they may not fully 

capture the specific characteristics of aircraft noise that are most relevant to the health outcome 

under study. For example, metrics that assess the frequency and intensity of noise peaks, such as the 

maximum sound level (LAmax) or the number of events exceeding a certain threshold (number above 

threshold, NAT), could provide additional insights into the disruptive nature of aircraft noise. 

Furthermore, the intermittency ratio which quantifies the “eventfulness” of noise by measuring how 

much loud events stand out from the background noise, could be another valuable metric to consider. 

By incorporating these additional noise metrics (), researchers and policymakers can gain a more 

nuanced understanding of how different aspects of aircraft noise affect health and well-being. In 

contrast to the readily available highly time and spatial resolved noise maps for Lden and Lnight for the 

Brussels Airport region, these additional noise metrics are not yet readily available and may require 

additional data collection and modelling efforts. This information can then be used to develop more 

targeted and effective noise mitigation strategies, ultimately with the aim of improving the quality of 

life for residents living near Brussels Airport. 

 

1 Lden combines the following the A-weighted equivalent continuous sound level indicators: Lday (daytime noise, 

typically 7:00 – 19:00 averaged over the whole year), Levening (evening noise, typically 19:00 – 23:00, averaged 

over the whole year) and Lnight (nighttime noise, typically 23:00 – 7:00, averaged over the whole year). A 5 dB(A) 

penalty is added for the evening period to reflect the increased annoyance during these hours. A 10 dB(A) 

penalty is added for the nighttime period to reflect the importance of sleep and the greater annoyance caused 

by noise at night. 
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Building on existing knowledge 
This report integrates findings of different interrelated work packages that collectively provide a 

comprehensive overview of the current state of knowledge regarding the health impacts of airport-

related environmental stressors as visualised below.  

 

Firstly, a review was made of existing literature identifying well-established health outcomes linked to 

noise pollution and air quality, particularly UFP, mainly concerning airport operations (Table 1). Given 

the evidence from research around other airports, it is recommended to focus health surveillance and 

research in the region of Brussels airport on these outcomes. 

Table 1: Evidence-based pollutant – outcome pairs  

Pollutant–outcome pair  Health outcome indicators  

Aircraft noise –  

effects on sleep   

Physiologically measured awakenings in adults  

Self-reported awakenings in adults  

Self-reported sleep disturbance in adults (source specified) 

Sleep disturbance and/or awakenings in children  

Aircraft noise –  

cardiovascular effects   

Ischemic heart disease  

Hypertension  

Stroke 

Arterial stiffness  

Aircraft noise –  

annoyance  
Annoyance  

Aircraft noise –  

cognitive impairment  

Reading and oral comprehension, assessed with 

standardized tests, in children 

Aircraft noise –  

adverse birth and pregnancy 

outcomes  

Preterm delivery 

Gestational diabetes  

Aircraft noise –  

quality of life, well-being and mental 

health  

Interview measures of depression and anxiety  

Depression mediated by annoyance   

Aircraft noise –  

metabolic outcomes  

Diabetes 

Obesity    
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Pollutant–outcome pair  Health outcome indicators  

UFP (long-term) –  

cardiovascular effects 

Increased use of cardiovascular medication 

Mortality from cardiovascular disease (specifically 

observed for cardiac arrhythmias)  

UFP (short-term) –  

intermediate mechanisms  
Systemic inflammation  

UFP (short-term) –  

respiratory effects  

Exacerbation and medication use for respiratory 

complaints in children   

Decreased lung function (vulnerable subgroup: asthma) 

UFP (long-term) –  

birth outcomes  

Preterm birth  

Small for gestational age 

Congenital anomalies  
 

While there is a wealth of information available on the exposure levels to environmental stressors 

such as noise and UFP around Brussels Airport, there is a significant lack of data on the actual health 

impacts on the surrounding population. This knowledge gap hinders a comprehensive evaluation of 

the real-world impact of these stressors. To address this, the report proposes a multi-tiered approach 

for health surveillance and research around Brussels Airport, encompassing surveillance programs 

based on existing secondary data, large-scale primary data collection and in-depth monitoring studies. 

Each tier offers distinct advantages and addresses specific research questions, contributing to a 

comprehensive understanding of the health impacts of airport operations. The proposed multi-tiered 

approach aims to establish a robust health surveillance system that not only monitors environmental 

conditions but also tracks health outcomes in the exposed population over time.  

A multi-tiered approach 

Surveillance based on secondary data 

Health surveillance programs based on secondary data, or data that is already routinely collected for 

other purposes, offer a cost-effective way to monitor health trends and potential associations with 

environmental stressors like those produced by an airport. In the case of Brussels Airport, this could 

involve analysing health data from national registries (e.g., the national mortality registry, the Belgian 

Cancer Registry) and other routinely collected databases (e.g., hospital discharge data, the 

Intermutualistic Agency database) that cover the entire Belgian population or a substantial proportion 

of it. 

By analysing these data at a small geographical level, such as statistical sectors (basic territorial unit 

for the dissemination of statistics in Belgium at a finer level than the municipal level), researchers can 

compare the health outcomes of communities living near the airport with those living further away in 

less or non-exposed areas, or they can study gradients within the area around the airport that are 

based on environmental data (e.g., noise or UFP contours). This allows for identifying potential areas 

of concern where residents may be experiencing a higher burden of illness due to airport-related 

stressors. For example, if a higher prevalence of cardiovascular diseases is observed in communities 

near the airport / near the airstrips compared to those further away, this could suggest a potential 

link between airport-related stressor exposure and cardiovascular health, particularly when the 

analyses account for relevant competing risk factors and socioeconomic background variables of the 

communities under study.  

Secondary data can be used in two distinct ways: for ecological studies at an aggregated level and 

cross-sectional or panel studies at an individual level. Ecological studies examine population-level 
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health data in relation to average exposure levels within specific geographical areas. This approach is 

valuable for identifying broad trends and potential areas of concern. Also, it is eminently suited for 

repeated analyses over a time to follow up time trends or impact of policy actions, since the data are 

routinely collected and the high quality of the collected data (according to international standards, 

i.e., International Classification of Disease (ICD) coding). Yet, the major weakness of ecological studies 

is that it cannot establish individual-level causal relationships. One major challenge is the ecological 

fallacy, which arises when inferences about individuals are made based on aggregated data. For 

instance, observing a higher rate of respiratory problems in a community near the airport does not 

necessarily mean that every individual in that community is experiencing issues due to airport-related 

air pollution. Individual factors, such as smoking habits or pre-existing conditions, can also contribute 

to these outcomes. When using secondary data at the individual level it is important to account for 

these individual factors and other potential confounders, such as socioeconomic status, age and sex, 

to isolate the specific effects of airport-related stressors on health as much as possible. This can be 

achieved for some health databases (detailing information regarding these factors) through various 

statistical methods, such as regression analysis or causal inference techniques, which allow 

researchers to control for the influence of these confounding variables and estimate the independent 

effect of airport-related stressors on health outcomes. 

Cross-sectional or panel studies, on the other hand, collect individual-level data on both exposure and 

health outcomes, allowing for a more detailed analysis of the relationship between airport-related 

stressors and health. By analysing individual-level data from secondary data sources, researchers can 

account for individual differences in susceptibility and exposure, providing better insights in potential 

cause-and-effect relationships. However, accessing individual-level data often requires specific data 

requests and lengthy approval processes due to privacy concerns. In contrast, ecological studies, 

which rely on aggregated data, are less prone to these data accessibility and privacy issues.  

This project involved a thorough evaluation of databases useful as secondary data sources to 

investigate relevant health effects related to noise and UFP exposure. The evaluation considered the 

databases’ coverage, time series and available indicators (prevalence, incidence, mortality, 

medication use, etc.). In conclusion, the project identified several suitable databases for health 

surveillance around Brussels Airport (see Table 2) each with its strengths and limitations. 

 

Table 2: List of secondary data sources and possible endpoints for health surveillance and research around 
Brussels Airport. 

Data source Health endpoint* Indicator 

Mortality Registry 

All-cause mortality Standardized mortality ratio 

Cause-specific mortality, e.g., cancer 
mortality, cardiovascular mortality, 
stroke mortality  

Standardized mortality ratio 

Belgian Cancer 
Registry 

Total cancer incidence Standardized incidence ratio 

Specific cancer incidence, e.g., breast 
cancer 

Standardized incidence ratio 

IMA/Farmanet 

Hypertension  
Frequency use of hypertensive 
medication 

Sleep disturbance  Frequency use of sleep medication  

Depression Frequency use of anti-depressants  

Asthma Asthma prevalence 
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Data source Health endpoint* Indicator 

Hospital discharge data  

Total cardiovascular disease, stroke  Standardized morbidity ratio 

Asthma Standardized morbidity ratio 

Diabetes Standardized morbidity ratio 

Perinatal registry Low birth weight, preterm birth  Standardized incidence ratio 

Intego  
Blood pressure Average values 

Hypertension, diabetes, obesity Incidence 

* Selected health endpoints based on evidence from research around other airports 

The use of secondary data for health surveillance also has limitations. Existing health registries may 

not capture all relevant health outcomes related to airport operations. For example, while data on 

hospitalization and medication use can provide insights into physical health conditions, they may not 

capture outcomes like sleep disturbance, annoyance or mental health issues, which are also known to 

be affected by airport-related stressors, but do not necessarily lead to general practitioner visits or 

hospitalization. 

Therefore, while secondary data surveillance offers a valuable basis for monitoring health trends and 

identifying potential areas of concern, it should be complemented with other research approaches, 

such as large-scale primary data collection and in-depth monitoring studies, to gain a more 

comprehensive understanding of the health impacts and disease burden of airport operations. 

Large-scale primary data collection 

To overcome the limitations of secondary data, this report proposes conducting large-scale primary 

data collection through questionnaires. This approach allows for the collection of detailed individual-

level data on self-reported health outcomes, noise annoyance, sleep disturbance, stress and other 

relevant factors, including demographic, socioeconomic status, lifestyle factors and residential history. 

Following respondents over time would furthermore give rise to a unique and tailored general 

population cohort. By collecting this comprehensive data, researchers can gain a deeper 

understanding of the health impacts of airport-related stressors on individuals living near Brussels 

Airport.  

One of the key advantages of primary data collection is the ability to link self-reported health 

outcomes with modelled noise and UFP exposure data (at the home, work and/or school address of 

the residents, as a proxy for personal exposure). These exposure models can estimate noise levels at 

specific locations based on factors like flight paths, aircraft types, meteorological conditions and local 

topography. By linking this modelled exposure data with individual-level health data, researchers can 

establish site-specific exposure-response functions, which quantify the relationship between 

exposure levels and the probability of experiencing adverse health effects. This information is crucial 

for identifying vulnerable subgroups within the population, such as those living in areas with higher 

noise levels or those with specific demographic characteristics (e.g., age, socioeconomic status) that 

may make them more susceptible to the negative health effects of noise or UFP. Additionally, by 

collecting detailed information on individual health conditions and lifestyle factors through 

questionnaires, researchers can identify individuals with pre-existing health conditions that may be 

exacerbated by noise or UFP exposure. This information can then be used to develop targeted 
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interventions and policies to protect public health and specifically the health of these vulnerable 

subgroups.  

In addition to self-reported data, the report suggests incorporating non-invasive measurements to 

complement the questionnaires. These measurements could include self-sampling for biomarker 

analysis, such as cortisol levels in hair or saliva, which can indicate stress responses associated with 

noise exposure, or inflammatory markers in urine (e.g., CC16) which can indicate airway inflammation 

related to UFP exposure. Additionally, wearable devices like smartwatches or fitness trackers could be 

used to collect data on sleep patterns, heart rate variability and physical activity, providing further 

insights into the physiological and behavioural impacts of airport-related stressors.  

By combining questionnaires with modelled noise and UFP exposure data and biological 

measurements, researchers can establish a more comprehensive and nuanced understanding of the 

health impacts of airport operations on nearby residents.  

In-depth monitoring studies 

In-depth monitoring studies are proposed to delve deeper into the causal relationships and underlying 

biological mechanisms linking airport-related stressors to specific health outcomes. These studies 

would involve a smaller, targeted group of participants compared to large-scale surveillance, allowing 

for more intensive data collection and the use of high-precision technologies.  

For instance, an in-depth sleep study could use actimetry in combination with electrocardiography to 

objectively measure sleep patterns, arousals and awakenings in relation to nighttime noise exposure. 

This approach goes beyond self-reported sleep disturbances and provides physiological data on the 

actual impact of noise on sleep quality. Additionally, advanced sound sensors could be deployed inside 

and outside participants’ homes to capture detailed noise data, including sound pressure levels, 

frequency content and the timing of the noise events. This would allow researchers to correlate 

specific noise events with sleep disruptions and assess the impact of different noise characteristics on 

sleep quality. The specific protocol for this study has been validated in a pilot project within the PIO 

program (in Dutch: Programma Innovatieve Overheidsopdrachten). 

Similarly, in-depth studies could investigate the impact of UFP exposure on inflammatory responses 

and lung function. This could involve collecting blood samples from participants at regular intervals to 

measure inflammatory markers, such as C-reactive protein and interleukin-6. Additionally, spirometry 

tests could be conducted to assess lung function. While personal UFP monitoring would be ideal, it is 

currently not feasible due to high costs and uncertainties associated with the technology. Therefore, 

modelled UFP exposure at the address level should be used as a proxy for personal exposure. By 

combining these different data sources, researchers can gain a more comprehensive understanding 

of the biological pathways through which UFP exposure may affect health. 

Such in-depth monitoring studies would provide valuable insights into the causal relationships 

between airport-related stressors and specific outcomes, as well as the underlying biological 

mechanisms. This information can inform the development of targeted interventions and policies to 

mitigate the adverse health effects of airport operations. For example, while a causal link between 

nighttime noise exposure and sleep disruptions has already been established in literature, there is 

currently no evidence specific to the Brussels Airport region. By investigating the relationship between 

various noise metrics, such as those assessing noise peaks or the intermittency ratio, and sleep 

disturbance in this specific context, policymakers can gain valuable insights into the most impactful 

noise characteristics. This information can then be used to develop more targeted and effective noise 

mitigation strategies. For instance, if noise peaks during specific nighttime hours are found to be 
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particularly disruptive, policymakers could consider implementing stricter noise regulations or 

curfews during those specific time windows or promoting the use of noise-reducing measures in 

homes near airports.  

Additional considerations 

Citizen science: a complementary approach to health surveillance and research 

Citizen science projects offer a complementary approach to health surveillance and research around 

Brussels Airport by actively involving the public in data collection and analysis. This approach could 

leverage readily available tools like smartphone apps and wearable devices to gather large-scale data 

on noise exposure, sleep patterns, physical activity and other relevant health outcomes. This data can 

then be combined with modelled noise exposure data and other relevant information to assess the 

impact of airport operations on health and well-being. By participating in data collection, citizens gain 

a better understanding of the issue and contribute to finding solutions, fostering collaboration 

between the community, researchers and policymakers.  

However, it is important to acknowledge that the primary responsibility for monitoring and addressing 

the health impacts of airport operations lies with the relevant authorities and stakeholders, not with 

individual citizens. While citizen science can provide valuable complementary data, it should not be 

seen as a replacement for rigorous scientific research and evidence-based policymaking.  

Strategies for ensuring representativeness and validity in health data collection  

Ensuring the representativeness and validity of data collected through various research approaches is 

crucial for understanding the health impacts of airport operations on surrounding communities. This 

involves implementing strategies to encourage participation from diverse groups and mitigate 

potential biases. 

For studies utilizing secondary data sources (e.g., health registries), it is important to select 

comprehensive data sources that cover the entire population or a substantial portion of it. Statistical 

methods can be employed to account for potential confounding factors (if present) and analyse the 

data at a granular level to identify areas with higher exposure levels and potential health disparities. 

Collaboration with relevant authorities and institutions is necessary to address data accessibility and 

privacy concerns.  

In large-scale primary data collection through questionnaires, stratified sampling techniques can 

ensure adequate representation of different demographic groups and exposure levels. Additionally, 

measures such as reminders, incentives and follow-up calls can minimize non-response bias.  

For in-depth monitoring studies involving smaller, targeted groups, partnering with local healthcare 

providers or community organizations can help identify and recruit eligible participants. Offering 

compensation and minimizing participant burden can improve recruitment and retention rates.  

Additionally, targeted outreach efforts, clear instructions, user-friendly tools and incentives can 

encourage participation from diverse groups. Addressing potential biases, such as self-selection bias 

and technological barriers (e.g., limited access to smartphones or wearable devices), can be achieved 

through weighting techniques and alternative data collection methods. 

By implementing these strategies across different research approaches, researchers can ensure that 

the data collected reflects the experiences and health outcomes of the entire community living near 

the airport, leading to more robust and reliable findings. 
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Recommendations and future directions 
This report provides a comprehensive framework for health surveillance and research around Brussels 

Airport. While the framework outlines the general approach, the specifics, such as which exposure-

outcome pairs to investigate and the detailed study approaches, will be determined in subsequent 

phases of the project. This process should involve a thorough evaluation of existing data sources (for 

now covered in WP3), consultation with relevant stakeholders (e.g., community members, airport 

authorities, health officials) and prioritization of research questions based on the specific needs and 

concerns of the local community. Additionally, it should also involve the development of detailed 

research protocols for both primary and secondary data. These protocols should outline the research 

question(s), study area, methodologies, data access procedures, communication plans and other 

relevant aspects.  

This report advocates for a multifaceted approach to future research and surveillance efforts around 

Brussels Airport, integrating diverse research designs and data sources to comprehensively 

understand the health impacts of airport-related stressors comprehensively. This approach should 

consider the combined effects of multiple exposures, such as noise and UFP exposure, as their 

interaction may amplify adverse health outcomes.  

The primary goal of this framework is to establish a baseline understanding of the current health 

situation of residents living near the airport. This will involve collecting environmental exposure data 

(noise and UFP) and data on various health outcomes (such as cardiovascular and respiratory health, 

sleep disturbance, annoyance and (mental) well-being) and comparing them with residents in less 

exposed areas. This will help identify health disparities and areas of concern that require further 

investigation. Additionally, this framework aims to establish a long-term surveillance program to 

monitor the community’s health over time, assess the effectiveness of mitigation measures and 

identify any emerging health concerns. By continuously monitoring the health of the community, 

stakeholders can proactively address any potential risks and ensure residents’ well-being. 

Future research should investigate the impact of emerging aviation technologies and fuels, such as 

sustainable aviation fuels (SAFs), on air quality and public health. While these technologies hold 

promise for reducing emissions, their potential health effects remain unclear and require thorough 

investigation. A deeper understanding of the emission and dispersion of UFP, particularly in relation 

to different aircraft types and operational modes, is also crucial for developing effective mitigation 

strategies.  

By implementing the proposed framework, including surveillance programs based on secondary data, 

large-scale primary data collection and in-depth monitoring studies, robust evidence can be generated 

to inform decision-making and develop targeted interventions. This evidence-based approach will 

enable the development of strategies to mitigate the adverse health effects of airport operations and 

protect the well-being of communities living near Brussels Airport, ensuring that the airport’s 

economic benefits are balanced with the imperative of safeguarding public health.  
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Aims and objectives of Work Package 1 

Work Package (WP) 1 aims to achieve the following objectives:  

- Identify health outcomes that are associated with airport-related environmental stressors 

based on scientific evidence;  

- Identify gaps in research that need to be addressed to establish the link between airport-

related stressors and health outcomes;  

- Provide input for relevant research questions and surveillance approaches to assess the 

health impact of Brussels Airport on nearby communities. 

To achieve these objectives, we have analysed the available scientific literature and knowledge on 

airport-related stressors and their impact on health. We have extracted relevant information from 

previously published extensive reviews and integrated science assessments. Additionally, detailed 

information regarding study approaches and methods is collected in a searchable database (Excel file) 

and discussed in this report to propose relevant research and surveillance approaches (input for WP4).  

In Chapter 1, we provide an overview of the scientific evidence linking airport-related environmental 

stressors to health effects and provide an answer to the following questions:  

- Which health outcomes are associated with one or more of the airport-related environmental 

stressors? What is the strength1 and the quality2 of this evidence?  

- What are key evidence gaps for research linking airport operations and health? Where is the 

evidence weak? Which exposure-health outcomes pairs require further investigation? 

In Chapter 2, we discuss research methods and approaches that have been used to study the link 

between airport activities and community health. In addition, we highlight important aspects to 

consider when designing such a study.  

Notice  

This report was mainly elaborated before the publication of opinion Nr 9741 ‘The health impact of 

aircraft noise and pollutant emissions in the vicinity of Brussels airport’ of the Superior Health Council 

(SHC) (Superior Health Council, 2024). The opinion of the SHC was highly relevant for this study and 

considered during the finalization process of this report.   

 

 

 

1 The strength of evidence relates to the certainty of the study findings. It reflects the degree of confidence in 

the conclusions drawn from the research. It addresses the question of how convincing or compelling the findings 

are supporting a particular hypothesis.  

2 The quality of evidence of a study refers to how well the research was designed, conducted and analyzed, 

which ultimately affects the reliability and validity of the findings (e.g., GRADE scoring system). It addresses the 

question of whether the study was conducted in a manner that allows confidence in the validity of its findings. 



 

3 

 

Table of Contents 

Aims and objectives of Work Package 1 ________________________________________________ 2 

Notice __________________________________________________________________________ 2 

List of acronyms __________________________________________________________________ 4 

1 Community health effects related to airport operations _______________________________ 6 

1.1 Evidence bases for health outcomes related to airport operations ___________________ 8 

1.1.1 Aircraft noise health effects _____________________________________________ 9 

1.1.2 Air pollution health effects _____________________________________________ 14 

2 Research approaches and considerations _________________________________________ 21 

2.1 Paired data on exposure and health outcomes _________________________________ 21 

2.1.1 Assessment of exposure to airport-related stressors  ________________________ 21 

2.1.2 Measuring health outcomes ____________________________________________ 29 

2.1.3 Combined exposure and health measurements _____________________________ 32 

2.2 Considerations when designing studies _______________________________________ 33 

2.2.1 Population and study area _____________________________________________ 33 

2.2.2 The interaction between noise and air pollution effects and the issue of possible mutual 

confounding ________________________________________________________________ 34 

2.2.3 Identification of vulnerable groups concerning the effects of airport-related stressors 

on health 36 

2.2.4 Exposure/effect modifiers _____________________________________________ 37 

2.2.5 Sensitivity analyses ___________________________________________________ 40 

2.2.6 Assessment of annoyance due to multiple sources   _________________________ 41 

2.2.7 Noise annoyance as a mediator and noise sensitivity as a moderator ____________ 41 

2.2.8 Dose-response relationships ____________________________________________ 42 

2.2.9 Sample size and power calculations ______________________________________ 42 

2.2.10 Bias _______________________________________________________________ 43 

3 Input for Work Package 4 ______________________________________________________ 44 

References _____________________________________________________________________ 45 

 

  



 

4 

 

List of acronyms 

%HA 
percentage of the population highly annoyed 
by noise ____________________________ 26 
%HSD 
percentage of the population highly sleep 
disturbed by noise____________________ 26 
µg 
micrograms _________________________ 23 
BMI 
body mass index _____________________ 12 
cm3 
cubic centimeter _____________________ 14 
CO 
carbon monoxide _____________________ 6 
dB 
decibels ____________________________ 24 
dB(A) 
A-weighted decibels __________________ 24 
ECG 
electrocardiography __________________ 33 
EU 
European Union ______________________ 6 
European Protection Agency ____________ 8 
GRADE 
Grading of Recommendations Assessment, 
Development and Evaluation ____________ 8 
HA 
highly annoyed ______________________ 27 
HAP 
hazardous air pollutant _________________ 6 
HRV 
heart rate variability __________________ 35 
HSD 
highly sleep disturbed _________________ 27 
ICCAN 
Independent Commission of Civil Aviation 
Noise ______________________________ 25 
IR 
intermittency ratio ___________________ 26 
ISA 
Integrated Science Assessment __________ 8 
LAeq 
A-weighted equivalent continuous sound level
 __________________________________ 24 
LAmax 
A-weighted maximum sound level _______ 25 
Lday 

daytime A-weighted equivalent continuous 
sound level over a 12 hours period, typically 7-
19h, averaged over a whole year ________ 24 
Lden 
Levening 
eveningtime A-weighted equivalent 
continuous sound level over a 4 hours period, 
typically 19-23h, averaged over a whole year
 __________________________________ 24 
Lnight 
nighttime A-weighted equivalent continuous 
sound level over a 8 hours period, typically 23-
7h, averaged over a whole year _________ 24 
m 
meter _____________________________ 28 
NAT 
number above threshold ______________ 26 
nm 
nanometer _________________________ 14 
NO2 
nitrogen dioxide ______________________ 6 
NOx 
nitrogen oxide ________________________ 6 
O3 
ozone ______________________________ 6 
Pb 
lead ________________________________ 6 
PM 
particulate matter _____________________ 6 
PM10 
particulate matter with an aerodynamic 
diameter below 10 micrometer __________ 6 
PM2.5 
particulate matter with an aerodynamic 
diameter below 2.5 micrometer__________ 6 
PNC 
particle number concentration __________ 14 
PWV 
pulse wave velocity ___________________ 45 
RIVM 
Dutch National Institute for Public Health and 
the Environment _____________________ 15 
SEL 
sound exposure level _________________ 26 
SES 
socioeconomic status _________________ 39 
SOx 
sulfur oxide __________________________ 6 
UFP 



 

5 

 

ultrafine particle ______________________ 6 
WHO 
World Health Organization ______________ 6 

WP 
Work Package ________________________ 2 

  



 

6 

 

1 Community health effects related to airport operations 

Airport operations impose a dual environmental burden in the form of air and noise pollution. It is 

crucial to understand the types of pollutants emitted and how exposure to air and noise pollution 

affects surrounding communities to develop effective strategies to mitigate their adverse impact.  

Most airport emissions come from aeroplanes, especially combustion gases and fine particles formed 

from burning jet fuel and from the idling or taxiing of planes on taxiways. Air pollution levels at and 

around airports are further impacted by emissions resulting from traffic associated with airport 

operations, auxiliary power units, ground power units and ground support equipment within airports 

as well as vehicle traffic going to and from the airport. Air pollutants from airport operations include 

a variety of pollutants with varying quantities of emissions. The air pollutants of most concern related 

to airport operations (aircraft and road traffic activity) include particulate matter (PM; classified by 

size as PM10, PM2.5 and ultrafine particles (UFP)), ozone (O3), carbon monoxide (CO), nitrogen oxides 

and dioxide (NOx and NO2), sulphur oxides (SOx) and lead (Pb) (Kim, 2015). These pollutants are 

categorized as standard air pollutants, which are known to cause harm to human health and the 

environment and are monitored and regulated by the European Union (EU), except for UFP and black 

carbon (both part of PM2.5). Several studies have shown that airport-related activities significantly 

contribute to elevated UFP levels downwind from runways during take-off and landing (Hudda et al., 

2014; Keuken et al., 2015; Peters et al., 2016). Their potential health risks and the lack of established 

regulations and comprehensive understanding compared to standard air pollutants classify UFP as an 

emerging pollutant. Furthermore, some hazardous air pollutants (HAPs) (e.g., benzene and 

naphthalene and other substances considered as substances of very high concern are also related to 

airport operations (see Section 1.1.2.3 Hazardous air pollutants (HAPs) and output WP2). Up to now, 

not much is known about the levels and effects of these pollutants in neighbourhoods around airports 

and the limited knowledge focuses on emissions rather than on exposure and health impact. Noise 

pollution is another major concern for communities located near airports where aeroplanes generate 

a lot of noise during take-off and landing. Noise pollution refers to the persistent environmental noise 

that exceeds safe levels for human health. Studies have shown that people are generally more 

sensitive to aircraft noise compared to road or railway noise at similar decibel levels (Gély & Márki, 

2022). This heightened sensitivity is reflected in the stricter noise guidelines implemented by the 

World Health Organization (WHO) for aircraft noise (45 dB(A) Lden, 40 dB(A) Lnight (details on noise 

indicators see Section 2.1.1.1 Choice of metric)) compared to road traffic noise (53 dB(A) Lden, 45 dB(A) 

Lnight) (WHO Regional Office for Europe, 2018).  

There have been numerous studies that prove air pollution exposure can cause respiratory and 

cardiovascular issues (see Section 1.1.2 Air pollution health effects). However, it proves challenging to 

directly link airport-specific contributions to air pollution with specific health outcomes for two main 

reasons. First, airport emissions are a relatively small contributor to overall air pollution levels 

(except for UFP). Second, pollutants released by airports are rather similar in composition to those 

from traffic and other combustion sources (except for UFP), making it difficult to isolate their specific 

effects. Likewise, different noise sources, such as air traffic and road traffic, can also contribute to 

similar health problems like sleep disturbances, annoyance, cardiovascular issues and potentially 

cognitive difficulties.  

Table 1 visually depicts the distinct environmental health evidence profiles of airport emissions. 

Airport activities are considered primary contributors to ambient levels of noise and UFP in 

surrounding communities. Conversely, their contribution to standard air pollutants, such as PM2.5, O3 
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and NO2, appears relatively modest (see output WP2 for more details). The influence of airport 

operations on HAP emissions and immissions remains an area of ongoing investigation. As discussed 

below, a wealth of health effect studies exists for both general and aviation-specific noise exposure, 

providing a robust understanding of its harmful effects. However, the health consequences of UFP 

exposure are not yet fully understood, although research is ongoing and expanding (also see UFP 

report3). Standard air pollutants, on the other hand, have been extensively studied, with a well-

established link to a significant disease burden. Since airport operations contribute little to overall 

ambient levels of these standard air pollutants, they are primarily considered co-exposures when 

evaluating health risks around airports. 

Table 1: Environmental evidence profiles of environmental stressors in general and airport-specific settings.  

Stressor  Contribution 

airport 

Availability of health studies Burden of disease 

General  Airport  General  Airport 

Noise Significant   Abundant  Abundant  Large  Large 

UFP Significant  Growing Growing Unknown Unknown 

Standard air 
pollutants 
(e.g., PM2.5, 
NO2)  

(rather) 

Limited  

Abundant  Mainly as co-

exposure  

Large    (rather) 

Limited 

HAPs Under 

study*  

Limited to abundant 

(depending on the 

specific compound) 

None Limited to abundant 

(depending on the 

specific compound) 

Unknown  

*The contribution of airport-related operations to HAP levels in ambient air is assessed as part of WP2. 

Such distinct evidence profiles of airport-related stressors underscore the relevance for surveillance 

of effects related to noise around Brussels Airport, and the need for further research on the health 

effects of airport-related UFP and noise exposure (although effects are well recognised, further 

research is needed to better understand the mechanisms and impact of mitigation measures). 

Additionally, investigation into the combined effects of aircraft noise and UFP exposure on human 

health would provide valuable insights for developing effective mitigation strategies around airports. 

The following sections highlight the potential adverse health effects of the identified airport-related 

stressors on nearby communities. These stressors, primarily noise and air pollution from airport 

operations, can have both direct and indirect effects on human health. A direct effect of aircraft noise 

includes sleep disturbance which in turn can negatively impact cognitive function and learning abilities 

(i.e., indirect effect). Likewise, UFPs can directly irritate the lungs and airways leading to respiratory 

problems while exposure to UFPs can also weaken the immune system, making individuals more 

susceptible to respiratory infections (i.e., indirect effect).  

In general, evidence-based health indicators can be considered within one or several of the following 

areas:  

- (Patho)physiological functioning: This includes measures like self-reported health 

complaints, blood pressure changes, performance impacts and sleep disruptions 

(awakenings); 

 

3See report ‘gezondheidseffecten-UFP-vliegverkeer’ at Milieugezondheidskundig aandachtsgebied Luchthavens 

| Zorg (zorg-en-gezondheid.be) 

https://zorg-en-gezondheid.be/milieugezondheidskundig-aandachtsgebied-luchthavens
https://zorg-en-gezondheid.be/milieugezondheidskundig-aandachtsgebied-luchthavens


 

8 

 

- Well-being: This category explores how airport-related factors might influence perceived 

overall health, risk perception (i.e., feelings of being at risk due to airport proximity) and 

general annoyance levels; 

- Medical resource use: This examines potential links between airport-related stressors and 

healthcare utilization, such as hospital admissions and medication usage.  

Important criteria for the interpretation of these health indicators are (i) (biological) plausibility of 

possible effects, (ii) evidence for an exposure-response relation based on scientific literature, (iii) 

number of people potentially affected and (iv) public concern.  

We here focus on health impacts that are (likely) caused by airport-related stressors. While both 

toxicological and epidemiological data play a role in risk assessment, in this report we only consider 

epidemiological studies as they reflect real-world exposure conditions, allow direct observations of 

health outcomes and can account for confounding factors that might both influence exposure and 

effect risks. Most information presented is deduced from the WHO systematic reviews, Integrated 

Science Assessments (ISA) by the Environmental Protection Agency (EPA) and other relevant reports 

on health effects from noise and air pollution exposure. Appendices I and II provide more details about 

noise and air pollution, respectively. The Grading of Recommendations Assessment, Development and 

Evaluation (GRADE) approach was used in these reports and rates the quality of evidence as ‘high’, 

‘moderate’, ‘low’ or ‘very low’, with implications for the need for further research. This rating is based 

on the study designs, consistency and other data features on a given question. It was developed for 

clinical medicine and has been adapted for use with environmental health exposures (Morgan et al., 

2016). While structured, GRADE is not a deterministic approach that delivers an automatic answer. 

Instead, it is applied to bodies of evidence, considering all eligible data. Accordingly, studies of 

differing quality are considered together, and reviewers must ultimately judge the direction of the 

evidence (harmful effect or no effect). GRADE encourages transparency and consistency, but its strict 

methods mean it is typically difficult to obtain high quality evidence for environmental health risks. 

Moderate quality evidence is considered sufficiently robust, but low or very low quality evidence can 

still be informative and highlight potential health risks and areas that require further investigation 

with more robust research methods. Appendices I and II summarise the overall quality of evidence 

and direction of effect (whether the stressor is harmful or has no effect), drawing together the 

conclusions on the quality of evidence from the existing reviews and integrating new evidence where 

applicable. In the text below, we only focus on the health outcomes with a defined harmful effect.  

1.1 Evidence bases for health outcomes related to airport operations 
The current knowledge regarding the health consequence of exposure to significant airport-related 

stressors (i.e., aviation noise, UFP) remains incomplete and the evidence for several key areas lacks 

robustness. In general, researchers evaluate evidence using aspects like study design, strength of 

association, consistency, biological plausibility and addressing biases. Nevertheless, airport research 

presents some unique hurdles in assessing the quality and strength of evidence. Separating the effects 

of airport emissions from general background pollution proves a major challenge which weakens the 

link between exposure to airport-related stressors and health problems. In addition, airport layouts, 

emissions and weather all vary significantly, hence findings from one airport might not apply to 

others. The general approach to scoring the evidence could be adapted when evaluating evidence for 

airport-related stressors. Since randomised control trials are impractical around airports, it is better 

to focus on well-designed observational studies with strong methodologies that minimise bias and 

account for confounding factors. In addition, studies might not directly measure health outcomes but 

could assess indirect effects like sleep disruption or noise annoyance which can support a causal 
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pathway. Other important aspects to consider are consistency across studies and biological 

plausibility. Research on UFP is a relatively new field compared to aircraft noise and standard air 

pollution (e.g., PM2.5, NO2). Accordingly, there are fewer studies available, and the evidence base is 

still evolving.  

As listed below and detailed in Appendices I and II, across all outcomes where there is evidence of a 

harmful effect, the large majority is of low or very low quality (except for the standard pollutants). This 

low quality is primarily driven by the fact that most studies use a cross-sectional design, and many 

have small sample sizes which limits their power. Moreover, the smaller the effect, the more difficult 

it is to gain evidence that allows us to be certain of the effect. It is important to consider the potential 

cumulative health burden at the population level. Even if single effects of airport-related stressors on 

various health outcomes are small, the widespread exposure of large populations could translate into 

significant public health concerns. However, detecting this population-wide impact with certainty can 

be statistically challenging.  

It is crucial to recognise that all considered health outcomes have causes beyond airport operations. 

Environmental, social, lifestyle and genetic factors all play a role in morbidity and mortality. The 

relative importance of airport-related stressors in the overall disease burden will vary depending on 

the specific health outcome. For chronic diseases with a low attributable risk to airport-related 

stressors, the overall impact on population morbidity and mortality might be minimal, even with 

widespread exposure to elevated levels of these stressors. This implies that research and surveillance 

efforts should prioritize outcomes where airport-related stressor exposure is likely to have a 

significant impact at the population level (or at least at subpopulation levels, like vulnerable groups). 

However, it is important to acknowledge that even rare effects on individuals, which may be difficult 

to detect through large-scale research or surveillance programs, cannot be neglected.  

1.1.1 Aircraft noise health effects  
Aircraft noise exposure can trigger negative health outcomes via direct (e.g., sleep disturbance) and 

indirect (e.g., disruption of intended activities) pathways that trigger stress responses (see Figure 

1(a)). In turn, stress triggers cortical activation and involves the activation of the hypothalamic-

pituitary-adrenal axis and the sympathetic nervous system, leading to a release of stress hormones 

(i.e., cortisol, catecholamines) and subsequently to the induction of inflammation and oxidative stress 

(see Figure 1(b)). Stress reactions, including higher glucocorticoid and catecholamine levels, lead to 

higher blood pressure which in turn can impair the function of endothelial nitric oxide synthase and 

increase oxidative stress in the vasculature, thereby reducing vascular nitrogen oxygen bioavailability. 

All these alterations lead to endothelial dysfunction and to a super sensitivity of the vessels to stress 

hormone-induced vasoconstriction (Babisch, 2003; Ising & Braun, 2000; Münzel et al., 2021). While 

this general stress response is a physiological acute adaptation to stress, chronic exposure can lead to 

unhealthy changes in the body (i.e., pathophysiological alterations) such as the manifestation of 

cardiometabolic risk factors, such as diabetes, high plasma cholesterol levels and high blood pressure, 

and subsequently to cardiovascular disease (e.g., myocardial infarction, heart failure, stroke). 

Although the conscious experience with noise may be the primary source of stress during daytime, 

the unconscious response during nighttime sleep is thought to play a particularly important role in the 

effects of noise on health. Typical urban noise levels, including a variety of noise sources (e.g., road 

and aircraft noise, leisure noise), have been shown to disrupt sleep patterns, ranging from changes in 

sleep stages to full awakenings. Recent studies further suggest that nighttime aircraft noise can 

increase biological risk factors for various diseases. These risks include, among others, oxidative stress 
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and elevated blood pressure. Disrupted sleep itself is also linked to major chronic diseases like 

cardiovascular disease and diabetes (Münzel et al., 2014).  

 

Figure 1: Noise-stress concept and its impact on human health. (a) Noise reaction model for the direct (auditory) 
and indirect (non-auditory) effects of noise exposure. (b) Neuronal activation (arousals) induced, for example, by 
noise exposure triggers signaling via the hypothalamic-pituitary-adrenal axis and sympathetic nervous system 
(SNS). In the hypothalamic–pituitary–adrenal axis, the hypothalamus releases corticotropin-releasing hormone 
(CRH; also known as corticoliberin) into the pituitary gland, which stimulates the release of adrenocorticotropic 
hormone (ACTH) into the blood. ACTH induces the production of glucocorticoids by the adrenal cortex, and the 
activation of the SNS stimulates the production of catecholamines by the adrenal medulla. The release of 
glucocorticoids and catecholamines, in turn, leads to the activation of other neurohormonal pathways (such as 
the renin-angiotensin-aldosterone (RAAS) system) and to increased inflammation and oxidative stress, which can 
ultimately have adverse effects on cardiovascular function and molecular targets. Reprinted with permission 
from (Münzel et al., 2021).  

 

Prolonged exposure to environmental noise is one of the major environment-related causes of ill 

health in Europe. Although the levels of noise generated by transport sources are generally too low 

to cause biological damage to the ear, it is well established that, if exposure is long-term and exceeds 

certain levels, noise can lead to non-auditory health effects such as annoyance, sleep disturbance, 

negative effects on the cardiovascular and metabolic system as well as cognitive impairment in 

children as detailed in Appendix I and listed below. Current scientific literature demonstrates 

associations between long-term aircraft noise exposure and ischemic heart disease, annoyance, 

reading and oral comprehension in school children as well as sleep disturbance during the night. 

Research suggests a vicious cycle: noise disrupts sleep, which limits the body’s ability to recover from 

stress, making one more susceptible to the damaging effects of stress on the heart, circulatory system 

and other organs. Accordingly, chronic stress from noise pollution forms a major contributor to 

circulatory and cardiovascular diseases (McEwen, 2008; Münzel et al., 2014; Recio et al., 2016). 

Interestingly, as mentioned above the body’s stress response to noise can be automatic, even if you 

don’t consciously find the noise annoying (Basner et al., 2014). This means low-level noise one might 

not even notice, may still negatively influence one’s health.  

Table 2 provides an overview of the health outcomes with a reported harmful effect due to aircraft 

noise exposure and the related quality of evidence. The health outcomes without reported harmful 

effects were not included in this overview but were discussed in Appendix I. The health outcomes 
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which were prioritized for the definition of the WHO noise guidelines (WHO Regional Office for 

Europe, 2018) are given in bold (details can be found in Appendix I). While the effects are mentioned 

one by one in Table 2, it is noted that some effects are related one to another (cfr. underlying 

mechanisms) (see further in the text).  

Table 2: Overview and quality of evidence for different outcomes with a reported harmful effect of aviation noise. 

Outcome Quality of evidence of harmful effect* 

Cardiovascular and metabolic outcomes 

Arterial stiffness   Low  

Cortisol levels  Very low  

Diabetes incidence Low  

Heart rate  Very low  

Hypertension incidence  Low  

Ischemic heart disease incidence Low  

Asymptomatic heart damage  Very low  

Obesity  Very low** 

Stroke incidence  Moderate  

Sleep-related outcomes 

Physiologically measured awakenings in adults  Moderate  

Self-reported sleep quality and sleep coping behaviours   Very low  

Self-reported awakenings  Very low  

Self-reported sleep disturbance in adults (source not 

specified)  

Very low  

Self-reported sleep disturbance in adults (source specified) Moderate  

Cognitive outcomes 

Assessment of student distraction  Very low  

Impairment assessed through Standardized Achievement 

Tests 

Moderate  

Reading and oral comprehension  Moderate  

Short- and long-term (episodic) memory  Moderate  

Birth outcomes 

Congenital malformation  Very low*** 

Low birth weight  Very low*** 

Preterm birth  Very low*** 

Quality of life, mental health and well-being outcomes 

Depression prevalence mediated by annoyance  Low  

Hyperactivity  Low  

Interview measures of depression and anxiety  Low  

Medication intake to treat anxiety and depression  Very low  

Well-being  Very low  

Cancer  

Incidence of breast cancer  Low  

General health outcomes 

General physical health of children mediated by annoyance  Low  

Annoyance  Moderate  

*Health effects for which no harmful effects were demonstrated are not included in this table 

**No GRADE assessment but harmful effects reported in narrative review (van Kamp et al., 2020) 

***No GRADE assessment but harmful effects reported in narrative review (Nieuwenhuijsen et al., 

2017) 
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Cardiovascular health – While some studies suggest a connection between aircraft noise exposure 

and an increased risk of cardiovascular diseases, including hypertension, ischemic heart disease and 

stroke, the evidence is still developing. The associations observed between aircraft noise exposure 

and cardiovascular diseases need cautious interpretation. Individual responses to noise can vary 

depending on personal factors such as age, health status and noise sensitivity. Further research is 

needed to solidify the understanding of this relationship. Recent studies highlight the importance of 

nighttime noise exposure and its potentially stronger association with cardiovascular risk.  

Metabolic health – Noise exposure might also influence metabolic health through stress hormones 

released in response to noise. Such hormonal changes could potentially affect insulin and glucose 

regulation. Currently, research on the effects of aircraft noise on metabolic diseases like diabetes or 

body parameters such as body mass index (BMI) and waist circumference is scarce, making it difficult 

to draw any firm conclusions. 

Sleep-related outcomes – Studies in adults reveal that aircraft noise disrupts sleep, primarily by 

causing awakenings, as measured by physiological monitoring (i.e., objective). However, self-reported 

sleep quality (i.e., subjective), while also affected by noise, might not always align with these 

physiological measurements. The impact of aircraft noise on sleep in children remains poorly 

understood. The strength of the observed noise-induced sleep disruption depends heavily on how 

both noise exposure and sleep outcomes are assessed. Again, solely relying on average noise levels 

does not accurately predict physiologically measured and self-reported sleep outcomes. To gain a 

more accurate picture, the number of individual noise events and their maximum intensity should be 

considered too.  

Cognitive health – A growing body of research suggests that aircraft noise exposure can negatively 

impact cognitive function, with children being particularly vulnerable. Moderate quality evidence 

exists suggesting a connection between aircraft noise exposure and impaired reading comprehension 

in children. The evidence of aircraft noise exposure on cognitive function in adults is less clear. Limited 

studies suggest a possibility that existing age-related cognitive decline in the elderly might be further 

exacerbated by noise exposure.  

Birth outcomes – The current knowledge of the potential link between aircraft noise exposure and 

adverse birth outcomes remains limited. Given the long-term health consequences associated with 

adverse birth outcomes, further research is crucial to establish any definitive connections between 

these two factors.  

Quality of life, mental health and well-being – Research investigating the association between aircraft 

noise exposure and mental health outcomes remains scarce. While newer studies suggest a potential 

negative impact of aircraft noise on well-being, quality of life, and even diagnosed depression, the 

overall findings on mental health are still inconsistent and require further exploration. 

Cancer – A few studies have shown that transportation noise may also be a risk factor for the 

development of cancer but the findings for aircraft noise are inconclusive.  

General health – The limited research available suggests no effect of aircraft noise on self-reported 

general health but an indirect effect of aircraft noise on the physical well-being in children (mediated 

by annoyance, see below). 

Annoyance – Aircraft noise annoyance represents one of the most comprehensively studied and well-

validated consequences of noise exposure potentially serving as an early warning for negative health 

impacts. As such, it is frequently employed as a key metric in noise impact assessments and serves as 
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a basis for regulatory frameworks. Since increasing aircraft noise exposure levels are linked to greater 

annoyance, evidence suggests a potential link between increasing aircraft noise annoyance and 

various adverse health outcomes as detailed below. Annoyance is a complex experience with 

cognitive, emotional and behavioural aspects. This multifaceted nature and complexity suggest a 

potential link, or even a contributing factor, to various health outcomes. It is important to note that 

the relationship can be bidirectional. Existing health issues, particularly mental health problems, can 

also influence how people experience noise annoyance. Individuals with compromised coping 

mechanisms due to health problems may be more susceptible to the disruptive effects of noise, 

possibly leading to higher annoyance rates.  

Interestingly, research shows that only about a third of noise annoyance is directly related to the 

loudness of the noise itself (measured by Lden or LAeq, detail on noise metrics see Section 2.1.1.1 Choice 

of metric and Appendix I). The other two-thirds are influenced by other factors not related to the 

sound itself, called non-acoustical factors. These factors can be broadly categorized as (i) personal 

and social factors which relate to your own personality, attitudes towards noise and social situation 

and (ii) contextual and situational factors which involve the specific situation where the noise occurs 

(e.g., the time of day or feeling like you have no control over the noise sources) (Bartels et al., 2022).  

Recent studies support the theory that annoyance plays an indirect role in the relationship between 

aircraft noise exposure and (mental) health outcomes. For individuals experiencing annoyance due to 

aviation noise, there was an association with specific health problems including hypertension (Babisch 

et al., 2013; Baudin et al., 2020; Eriksson et al., 2010), the prevalence of depression and anxiety (Benz 

& Schreckenberg, 2019), mental health-related quality of life (Schreckenberg et al., 2017) and general 

physical health in children (Spilski, Rumberg, et al., 2019). However, this link was not observed for all 

health outcomes under study. For example, studies found no evidence of annoyance mediating the 

relationship between aircraft noise and cortisol levels (Baudin et al., 2020) and blood pressure 

(Carugno et al., 2018). The mediating role of annoyance is further discussed below (see Section 2.2 

Considerations when designing studies).  

Figure 2 gives an overview of the various health outcomes related to aircraft noise exposure and 

depicts the underlying mechanisms and role of noise annoyance. 

 

Figure 2: Health effects of aircraft noise exposure and the role of annoyance, from (Kranjec et al., 2019) under a 
Creative Commons Attribution 4.0 International license.   
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1.1.2 Air pollution health effects  

1.1.2.1 Ultrafine particles (UFP) 

While the research on the health impacts of UFP is accumulating (details in UFP report3 and Appendix 

II), the WHO has not yet established health advisory values for UFP exposure below which negative 

health effects are not anticipated. This means that the current epidemiological evidence while 

growing, is not yet robust enough to derive precise health-based exposure thresholds for UFP. With 

that, there are currently no air quality guidelines specifically focused on ambient UFP concentrations. 

In recognition of the potential health risks associated with UFP, the WHO has recognised UFP as an 

emerging pollutant and formulated four ‘good practice statements’ on UFP exposure (WHO, 2021):  

1) Quantify ambient UFP in terms of particle number concentration (PNC) for a size range with 

a lower limit of ≤ 10 nm and no restriction on the upper limit. 

2) Expand the common air quality monitoring strategy by integrating UFP monitoring into 

existing air quality monitoring. Include size-segregated real-time PNC measurements at 

selected air monitoring stations in addition to, and simultaneously with, other airborne 

pollutants and characteristics of PM. 

3) Distinguish between low and high PNC to guide decisions on the priorities of UFP source 

emission control. Low PNC can be considered < 1000 particles/cm3 (24-hour mean). High PNC 

can be considered > 10 000 particles/cm3 (24-hour mean) or 20 000 particles/cm3 (1-hour). 

4) Utilize emerging science and technology to advance approaches to the assessment of 

exposure to UFP for application in epidemiological studies and UFP management. 

Below we summarize the health effects of UFP exposure (detailed in Appendix II and UFP report3). 

First, to make a substantiated statement about the effects of UFP on health, it is necessary to 

consolidate the knowledge from different studies. To this end, we largely based ourselves on three 

consolidation reports: (i) the Integrated Science Assessment (ISA) on particulate matter published by 

the US Environmental Protection Agency (EPA) in 2019 (U.S. Environmental Protection Agency, 2019), 

(ii) the report ‘Risico’s van ultrafijnstof in de buitenlucht’ (Risks of ultrafine particles in the outdoor 

air) published by the Dutch Health Council (Gezondheidsraad, 2021) and (iii) the multi-year research 

program of the Dutch National Institute for Public Health and the Environment (RIVM) on the health 

risks of UFP around Schiphol airport (N. Janssen et al., 2022). To assess the strength of the connection 

between UFP exposure and various health outcomes, the reports rely on a robust methodology 

established by the US EPA. This methodology considers several key factors, including consistency, 

biological plausibility and uncertainties. Greater weight is placed on the evidence derived from long-

term exposure studies as they offer a more robust picture of the potential health consequences of 

chronic UFP exposure compared to short-term studies or experimental research, which often provide 

supportive evidence. The US EPA’s causality determinations offer a clear framework for interpreting 

the strength of evidence. This framework includes five causality determinations, namely ‘causal 

relationship’, ‘likely to be a causal relationship’, ‘suggestive of, but not sufficient to infer, a causal 

relationship’, ‘inadequate to infer the presence or absence of a causal relationship’ and ‘not likely to 

be a causal relationship’. For evaluation of the health effect of short-term UFP exposure from air 

traffic, we adopt the terminology and framework used in the RIVM report on acute health effects 

around Schiphol Airport (N. A. H. Janssen et al., 2019).  

Important to note is that epidemiological studies investigating the health effects of UFP exposure 

often face limitations in accurately and reproducibly assessing UFP exposure levels. This contributes 

to a high degree of uncertainty in these findings, which would typically result in low or very low-quality 

evidence according to the GRADE scoring system. Accurately assessing UFP exposure presents 
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significant challenges, including (i) spatial and temporal variability, (ii) lack of standardization and 

(iii) confounding factors. UFP concentrations can fluctuate considerably within short distances and 

time periods as the particles quickly condensate and coagulate to form bigger particles. Studies relying 

on a limited number of measurement points may not capture this variability and might misrepresent 

individual exposure levels (‘exposure misclassification’). Currently, there is no single, universally 

accepted definition or standardized measurement method for UFP. This inconsistency makes it 

difficult to compare findings across different studies and draw definitive conclusions. Epidemiological 

studies investigating the health effects of UFP exposure often neglect the influence of other 

pollutants that co-occur with UFP in the environment, such as black carbon and NO2. Failing to 

account for these confounding factors makes it challenging to isolate the specific effects of UFP 

exposure. Given the limitations in exposure assessment, we here prioritize ‘strength of evidence’ as 

presented in the table below, rather than the overall quality rating based on uncertainty. By focusing 

on the strength of the evidence rather than also on the quality, we can highlight the weight and 

consistency of observed associations between UFP exposure and potential health effects, while 

acknowledging the limitations in exposure assessment. Table 3 summarizes the main outcomes and 

related strength of evidence following short- and long-term exposure to UFP in total and specifically 

from air traffic.  

In general, the observed health effects for UFP mainly originating from air traffic align with established 

research on the general impacts of UFP. While the RIVM study provides valuable insights into potential 

health effects related to UFP from air traffic at Schiphol Airport, these findings cannot directly be 

extrapolated to Brussels Airport. Among others because the surrounding environments differ 

significantly, with a much higher population density near Brussels Airport compared to Schiphol 

Airport. Therefore, a dedicated study specifically examining the impact of UFP on nearby communities 

in Brussels Airport is paramount to establish a clearer understanding of the local health impacts of 

UFP from air traffic.  

Table 3: Strength of evidence of health effects related to short-term and long-term exposure to UFP in general 
and UFP specifically related to air traffic. 

Outcome  Strength of evidence 

UFP general UFP air traffic* 

Short-term  

Cardiovascular health Suggestive Indications for effects  

Metabolic health Inadequate Not assessed 

Respiratory health Suggestive Effects found 

Cognitive health Suggestive Not assessed 

Total mortality Inadequate Not assessed 

Long-term 

Cardiovascular health   Suggestive Suggestive 

Metabolic health  Inadequate Inadequate 

Respiratory health  Suggestive Inadequate 

Cognitive health  Suggestive Suggestive 

Birth outcomes  Suggestive Suggestive 

Total mortality  Suggestive Inadequate 

Cancer Inadequate Inadequate 

*Terminology and framework adopted from the RIVM report on acute health effects around Schiphol Airport 

(N. A. H. Janssen et al., 2019). 

Below, we summarize (more details can be found in Appendix II) the potential health consequences 

of exposure to UFP in general and specifically related to air traffic. While research is ongoing, some 
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effects with suggestive strength of evidence (particularly for cardiovascular health and birth 

outcomes) require further attention in airport-related health research.  

Cardiovascular health – A growing body of studies suggests a link between UFP and cardiovascular 

health problems. Studies have observed an increase in medication use for heart conditions and 

arrhythmias in populations exposed to UFP from air traffic. Additionally, short-term exposure appears 

to trigger inflammatory responses in the body, which could further contribute to cardiovascular issues. 

Future research needs to solidify this connection, particularly for long-term effects, and pinpoint the 

specific mechanisms by which UFP exposure might impact the heart and circulatory system.  

Metabolic health – The current evidence regarding UFP and metabolic health, such as diabetes, is 

inconclusive. While some studies hint at a possible connection, more research with larger and more 

diverse populations is required to confirm or refute this potential association. Additionally, it is crucial 

to isolate the effects of UFP exposure from the influence of other co-pollutants in the environment.  

Respiratory health – Long-term exposure to UFP from air traffic appears to have minimal impact on 

overall respiratory health. However, short-term exposure can exacerbate existing respiratory 

problems, particularly in individuals already suffering from respiratory conditions. Notably, children 

with pre-existing respiratory issues seem to be more susceptible to the negative effects of UFP 

exposure. Future studies should aim to differentiate between short-term and long-term effects and 

explore potential preventative measures, especially for vulnerable populations.  

Cognitive health – Current evidence is inadequate to determine a link between UFP exposure and 

adverse effects on the neurological system. A recent study suggests a potential association between 

prenatal UFP exposure and autism spectrum disorder. However, the long-term effects of UFP on the 

neurological system require further investigation with larger and more diverse populations. Studies 

specifically designed to explore this link are essential for a clearer understanding.  

Birth outcomes – While research is still developing, recent research suggests a potential association 

between long-term exposure to UFP and adverse birth outcomes, such as preterm birth and low birth 

weight. This potential link appears to be more significant for UFP from air traffic compared to UFP 

exposure from other sources (e.g., road traffic). 

Total mortality – Recent research suggests a link between long-term UFP exposure and overall 

mortality (deaths from all natural causes). Contrary, for UFP specifically from air traffic no indications 

of a connection were found, but more research in larger populations is needed.  

Cancer – Current evidence is inadequate to link UFP exposure to cancer. Both studies on general UFP 

exposure and UFP exposure from air traffic show inconsistent links to some cancers resulting in 

inconclusive findings. Further investigation within larger and more diverse populations is needed.  

While the above studies hint at a potential association between airport-related UFP exposure and 

cardiovascular health and birth outcomes, the evidence for a definitive causal relationship remains 

suggestive and requires further investigation. Future research with robust methodologies and larger 

sample sizes is crucial to solidify our understanding of these potential health risks. One critical aspect 

of robust research design is the careful control for co-pollutants, as other airborne contaminants may 

also play a significant role in these health outcomes. More specifically, we need to refine our 

understanding of the specific mechanism by which UFP might impact health and isolate the effects of 

UFP exposure from the influence of other co-pollutants (especially co-pollutants arising from other 

sources than aircraft).  
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1.1.2.2 Classic air pollutants 

Table 4 lists the short- and long-term health outcomes which were prioritized to inform the 

formulation of the updated air quality guidelines published in 2021 by WHO (more details in Appendix 

II). Note a focus on mortality since the WHO is still working on the estimated morbidity from classic 

air pollutants (Estimating the Morbidity from Air Pollution and its Economic Costs, EMAPEC).  

Table 4: Overview and quality of evidence for different health outcomes prioritized by the WHO related to short-
term and long-term exposure to the following classic air pollutants: PM10, PM2.5, NO2, O3, SO2 and CO. 

Pollutant Outcome Quality of evidence 

Short-term 

PM10 

All-cause mortality 

High  

PM2.5 High  

NO2 (24h)  High  

NO2 (1h) Moderate  

O3 High  

SO2 (24h) High  

SO2 (1h) Low 

PM10 
Cardiovascular mortality  

High  

PM2.5 High  

PM10 

Respiratory mortality 

High  

PM2.5 High  

SO2 (24h)  Moderate  

SO2 (1h) High 

PM10 
Cerebrovascular mortality 

High  

PM2.5 High  

O3 (8h or 24h) 

Emergency department visits and hospital 

admissions due to asthma  

High 

O3 (1h) Moderate 

NO2 (24h) High 

NO2 (1h) Low 

SO2 (24h) Moderate 

SO2 (1h) Moderate 

CO Emergency department visits and hospital 

admissions due to myocardial infarction 

Moderate 

Long-term  

PM10 

All-cause mortality 

High 

PM2.5 High  

NO2 Moderate  

O3 (annual) Low  

O3 (peak) Moderate  

PM10 

Respiratory mortality 

High 

PM2.5 Moderate 

NO2 Moderate  

O3 (annual) Low  

O3 (peak) Low  

PM10 
Chronic obstructive pulmonary disease 

mortality 

Moderate 

PM2.5 High 

NO2 High   

PM2.5 
Acute lower respiratory illness mortality  

High 

NO2 Moderate   

PM10 
Lung cancer mortality 

High 

PM2.5 High  
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Pollutant Outcome Quality of evidence 

PM10 
Circulatory disease mortality  

Moderate 

PM2.5 High  

PM10 
Ischemic heart disease mortality  

Moderate 

PM2.5 High  

PM10 
Stroke mortality 

Low 

PM2.5 High  

1.1.2.3 Hazardous air pollutants (HAPs) 

A significant knowledge gap exists regarding the health impacts of chronic, low-level HAP exposure 

on communities living near airports. Unfortunately, to the best of our knowledge, there are no studies 

directly investigating the impact of low-level HAPs on the health of communities near airports. This 

lack of data creates a major hurdle in definitively linking HAP exposure to specific health problems 

within these communities. Unlike other airport-related stressors, where stronger causal relationships 

can be established the current limitations make it difficult to definitively prove cause and effect for 

HAPs. Nevertheless, we can use information from other sources (not specifically related to the airport) 

to perform a preliminary assessment of the risks of HAPs. For the 18 most concerning HAPs linked to 

airport activities, most existing knowledge comes from controlled animal studies and occupational 

studies (some come from general population epidemiology but not in the neighbourhood of airports). 

Animal studies provide a controlled environment to investigate the effects of HAP exposure on animal 

models. However, extrapolating these findings directly to human health effects requires caution. In 

addition, occupational studies examine the health of workers who are exposed to higher levels of 

stressors in their workplaces (exemplar study on occupational exposure of airport personnel to 

polycyclic aromatic hydrocarbons (Cavallo et al., 2006)). While valuable, these results may not 

translate perfectly to the lower exposure levels experienced by communities near airports. 

Notwithstanding these considerations, comparing HAPs exposure levels around airports with health-

based reference values for chronic inhalation (Table 5) gives a first indication of the potential risk of 

HAPs for residents around airports.    

Table 5 highlights the potential health effects (and its corresponding health-based reference values) 

of the 18 most concerning HAPs linked to airport activities (see output WP2). The listed health effects 

are based on reviews by EPA, WHO and the Centres for Disease Control and Prevention, along with 

other reference documents used in the Flemish protocol for selecting health based reference values 

(De Brouwere et al., 2020)). When selecting and applying health-based reference values, one should 

consider both non-threshold effects (carcinogenicity) and threshold effects. For non-threshold effects, 

a health-based reference value is defined as the level corresponding to an excess risk of 1 per 10-6 (for 

lifelong continuous exposure). For substances causing both non-threshold effects (carcinogenicity) 

and threshold effects, both values should be considered (Table 5). 

Although the intrinsic hazard properties of HAPs arising from airport operations are of concern, the 

modelled exposure levels (at relevant places, in residential areas) are in general (far) below the health-

based guidelines; leading to a preliminary conclusion that exposure to HAPs around Brussels airport 

is of less concern than exposure to UFP and noise around airports (except for benzene, see discussion 

in WP 2). This preliminary conclusion is based on modelled exposure levels in relation to health-based 

guidance values (see report WP2). Nevertheless, this is a preliminary conclusion which needs to be 

further confirmed by monitoring levels of HAPs around the airport (in addition to the preliminary 

conclusion based on modelled levels of HAPs). 
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Table 5: Health-based guidance values and critical effects for hazardous air pollutants most prevalent in airport operations (miscellaneous sources)a.  

HAP  

(CAS number) 

Health guidance value (HGV) Based on (critical effect) Reference 

Acetaldehyde  

(75-07-0) 

160 µg/m3  

 

Non-cancer effects in the nervous and respiratory system: 

degeneration of olfactory epithelium  

(De Brouwere et al., 2020) for 

acetaldehyde based on ANSES 2014 

Acrolein 

(107-02-8) 

0.8 µg/m3  

 

Non-cancer effects in the respiratory system: nasal lesions (ANSES, 2013)  

Benzene  

(71-43-2) 

3 µg/m3  Non-cancer effects in the immune system: decreased 

lymphocyte count  

Flemish HGV for benzene based on 

ANSES, 2014 (VITO, 2017a) 

0.038 µg/m3  Cancer effects in the hematologic system: leukaemia  

1-3-Butadiene  

(106-99-0) 

2 µg/m3  Non-cancer effects in the reproductive system: ovarian atrophy  (IRIS EPA, 2002) 

Crotonaldehyde 

(4170-30-3)  

5 µg/m3  Non-cancer effects in the hepatic system: increased incidence of 

hepatocellular carcinomas and hepatic neoplastic nodules in 

rats 

(EU LCI, 2022) 

Ethylbenzene 

(100-41-4) 

260 µg/m3 Non-cancer effects in the developmental system and hepatic and 

urinary system: developmental toxicity and liver and kidney 

toxicity, respectively 

Flemish HGV for ethylbenzene 

(default analyse), based on (ATSDR, 

2010) 

Formaldehyde  

(50-00-0) 

100 µg/m3 (based on non-cancer 

effects but protective for cancer 

effects) 

Non-cancer effects in the gastrointestinal and urinary system: 

reduced weight gain, histopathology in rats  

(De Brouwere et al., 2020) for 

formaldehyde based on WHO 

(2010)  

Isopropyl benzene 

(98-82-8)  

1 700 µg/m3  Non-cancer effects in the endocrine and urinary system: 

increased kidney weight in female rats and adrenal weights in 

male and female rats 

(EU LCI, 2022) 

Methanol 

(67-56-1)  

2 000 µg/m3 Non-cancer effects in the developmental and nervous system: 

reduced brain weight in rat pups at 6 weeks of age 

(IRIS EPA, 2013) 

1-methyl naphthalene 

(90-12-0) 

§14 µg/m3 (based on non-cancer 

effects) 

Non-cancer effects in the respiratory system: pulmonary 

alveolar proteinosis 

Read across from 2-mehtyl 

naphthalene 

 

2-methyl naphthalene 

(91-57-6) 

§14 µg/m3 (based on non-cancer 

effects) 

Non-cancer effects in the respiratory system: pulmonary 

alveolar proteinosis 

RfD from (IRIS EPA, 2003) 
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HAP  

(CAS number) 

Health guidance value (HGV) Based on (critical effect) Reference 

m-xylene and p-xylene  

(108-38-3 and 106-42-3)  

217 µg/m3 Non-cancer effects in the nervous system: impaired motor 

coordination (decreased rotarod performance)  

Flemish HGV for xylene based on 

ATSDR, 2007, 2014 (VITO, 2017c) 

Naphthalene 

(91-20-3)  

3 µg/m3 (based on non-cancer 

effects) 

Non-cancer effects in the respiratory system: hyperplasia 

and metaplasia in respiratory and olfactory epithelium, 

respectively 

(De Brouwere et al., 2020)for 

naphthalene based on US EPA (1998) 

2014 

o-xylene  

(95-47-6)  

217 µg/m3 Non-cancer effects in the nervous system: impaired motor 

coordination (decreased rotarod performance)  

Flemish GAW for xylene based on 

ATSDR, 2007, 2014 (VITO, 2017c) 

Phenol 

(108-95-2)  

20 µg/m3 Non-cancer effects in the hematologic and hepatic system: 

red blood cell and liver effects  

Non-cancer effects in the nervous system: CNS effects 

(UBA, 2011) 

Propionaldehyde 

(123-38-6)  

8 µg/m3 Non-cancer effects in the nervous and respiratory system: 

atrophy of olfactory epithelium 

(IRIS EPA, 2008) 

Styrene  

(100-42-5)  

260 µg/m3 (based on non-cancer 

effects but protective for cancer 

effects)  

Non-cancer effects in hematologic and hepatic system: red 

blood cell and liver effects 

Non-cancer effects in the nervous system: CNS effects 

Flemish HGB for styrene based on 

WHO (2000) (VITO, 2017b) 

Toluene  

(108-88-3) 

5 000 µg/m3  Non-cancer effects in the nervous system: neurological 

effects in occupationally exposed workers  

Non-cancer effects in the urinary system: increased kidney 

weight  

Flemish HGV for toluene based on US 

EPA IRIS (2005)  

a: miscellaneous sources: if available, health-based values derived for Flanders using in-depth protocol GAW (for ambient air)) or derived using in-depth protocol for indoor 

air used; otherwise, default analysis or ad hoc selection of health-based value was used. 

*, based on the ‘lowest concentrations of interest’ (LCI) concept (Agreed EU-LCI Values (December 2022), n.d.) 
§no inhalation RfC available. Value derived from oral RfD (0,005 mg/kg.day) via route-to-route extrapolation (70 kg bodyweight and 20 m3 respiratory volume)  

HGV: health guidance value 
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2 Research approaches and considerations  

This section outlines the tools and strategies researchers use to investigate the connections between 

airport-related stressors and health outcomes. We will examine the various metrics used to quantify 

airport-related stressors, such as noise levels and UFP concentrations, and different methods to 

measure health outcomes (with a focus on health outcomes with moderate or low strength/quality of 

evidence). Further, we will discuss different approaches employed in past research and the strengths 

and weaknesses of different study designs. Moreover, novel approaches from recent research or 

highlighted by researchers during interviews will also be discussed as input for WP4. Lastly, we will 

discuss how research designs and methods can be adapted to fill the evidence gaps identified in the 

previous section. For example, we might explore methods to investigate the potential links between 

aircraft noise and neurodegenerative diseases (pioneering) or refine methodologies for studying the 

effect of aircraft noise on sleep (surveillance) or the combined effects of noise and UFP exposure on 

cardiovascular disease. By exploring these various research approaches and methods, we can (i) gain 

a deeper understanding of the potential health impacts of airport operations, (ii) identify areas for 

future research and (iii) recommend methods for surveillance (follow-up) specific for the Brussels 

Airport region.  

2.1 Paired data on exposure and health outcomes  
When conducting environmental health research or surveillance, understanding the link between 

exposure to environmental factors and the resulting health outcomes is paramount. Accordingly, it is 

crucial to collect paired data on exposure and health outcomes to link specific exposures with specific 

health effects in the same individual. Methods for exposure assessment and effect assessment are 

described in separate sections below.  

2.1.1 Assessment of exposure to airport-related stressors  
Understanding the health effects of airport-related stressors like aircraft noise and UFP requires 

reliable methods to assess exposure. However, variations in how researchers approach this 

assessment can lead to differences in the collected data and interpretation of the exposure-health 

results.  

2.1.1.1 Choice of metric 

The choice of metric is crucial when assessing exposure to airport-related stressors. This becomes 

evident when comparing chemical stressors like air pollutants and physical stressors like noise 

pollution. Assessment of chemical stressors presents a relatively straightforward approach. For air 

pollutants, the employed metric, usually expressed in the same unit (mass per volume of ambient air, 

i.e., micrograms per cubic meter, µg/m3), depends on the study design reflecting short-term exposure 

(e.g., 24 hours or even shorter) or averaged over a longer time (yearly average). It is important to note 

that UFPs are very small and lightweight. Because of this, they barely contribute to the overall mass 

concentration of PM (µg/m3). However, what UFPs lack in weight, they make up for in quantity. 

Accordingly, UFP dominates the total number of particles present in the air. That is why UFP 

concentrations are typically measured as particle number concentrations (i.e., the total number of 

particles per cubic centimetre) rather than mass concentrations. Currently, there is no universally 

accepted standard for the minimum size of particles measured as UFPs. While the WHO recommends 

a lower limit of 10 nm (WHO, 2021), studies often employ different cut-off points due to technical 
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limitations. This inconsistency might impede the assessment of UFPs near airports where emissions 

contain a substantial number of smaller particles (<20 nm range).  

Noise pollution requires a different approach. Noise from diverse sources is often presented in A-

weighed decibels (dB(A)) using metrics like Lden (day-evening-night level) and Lnight (night level (e.g., air 

traffic, road traffic, etc.). In addition, aircraft noise is characterized by a sequence of short-lived but 

very high noise peaks (i.e., bursts of intense noise) with quiet periods in between, whereas road traffic 

noise, especially on busy roads (major noise source around Brussels Airport), exhibits a quasi-

continuous noise pattern without major peaks or valleys. Because of these fundamental differences 

in noise characteristics, simply adding dB(A) levels from various sources would not accurately 

represent the overall noise experience.  

The A-weighting filter offers a standardized and consistent approach to filter out extremely low and 

high frequencies, to which human auditory perception is less sensitive. However, it might 

underestimate low-frequency sounds that penetrate buildings more easily and might disrupt sleep 

potentially leading to an underestimation of the true annoyance caused by aviation noise. On the 

other hand, C-weighting attempts to capture a wider frequency range including low-frequency noise 

in the environment. Important to note, changes in C-weighted readings do not necessarily reflect 

changes in low-frequency noise itself because C-weighing considers high frequencies as well. The A-

weighting filter, while widely used as a standardized and consistent way to measure noise levels, has 

limitations in capturing the full spectrum of noise annoyance, particularly regarding low-frequency 

sounds. The C-filter might offer a more comprehensive approach but needs cautious interpretation. 

Ultimately, the choice of weighting filter depends on the specific context and the aspects of noise 

exposure being evaluated. 

Noise metrics (calculated from raw noise time series) can be classified as (i) cumulative/time-

averaged metrics which assess the total noise impact from multiple aircraft movements over a specific 

period (e.g., a day), (ii) single-event metrics which focus on the noise generated by a single aircraft 

passing and (iii) hybrid metrics that combine elements of both cumulative and single-event metrics, 

providing a more nuanced picture of noise exposure. An overview of these different metrics is 

provided in Appendix I.  

The European Noise Directive (END) mandates strategic noise mapping using Lden to assess annoyance 

from noise exposure over 24 hours, considering a whole year, and Lnight to assess sleep disturbance 

caused by noise exposure during nighttime hours (Directive 2002/49/EC). Lden and Lnight are also the 

main indicators used in the WHO 2018 recommendations for the European region (WHO Regional 

Office for Europe, 2018). Using standardized metrics like Lden and Lnight allows for comparisons 

between noise studies and effective evaluation of noise interventions. Lden combines the following 

LAeq-indicators4: Lday (daytime noise, typically 7:00 – 19:00, LAeq,7-19h averaged over the whole year), 

Levening (evening noise, typically 19:00 – 23:00, LAeq,19-23h averaged over the whole year) and Lnight 

(nighttime noise, typically 23:00 – 7:00, LAeq,23-7h averaged over the whole year) which are 

representative for the average sound levels for that part of the day, considering the whole year. A 5 

dB(A) penalty is added for the evening period to reflect the increased annoyance during these hours. 

A 10 dB(A) penalty is added for the nighttime period to reflect the importance of sleep and the greater 

annoyance caused by noise at night. While these metrics are standardized and facilitate comparisons, 

 

4  LAeq,T is the A-weighted equivalent continuous sound level given over a specific period (T). It considers 

fluctuating noise levels by considering both the intensity and duration of the sound.  
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they might not capture all aspects of noise impact. These metrics focus on average sound pressure 

levels, potentially missing the disruptive nature of individual noise events, like overflying aircraft. For 

a more accurate picture, scientists use more sophisticated methods that consider both the intensity 

and pattern of noise from diverse sources. Appendix I provides a background on the different noise 

indicators.  

Aircraft noise can significantly impact communities living near airports. However, relating noise 

annoyance to objective metrics remains difficult as human perception differs from sound level 

meters. The penalties applied to evening and nighttime periods for Lden and Lnight, respectively, attempt 

to address this gap, but the technical way noise is measured (i.e., LAeq-based metrics) is often not easily 

understood and interpreted by affected communities. The LAeq-based metrics average noise levels 

over extended periods, failing to capture the daily variations in flight patterns and the resulting noise 

experience for residents in real life. Moreover, the metrics treat all noise events equally, regardless of 

the number of flights or their intensity. This can result in misleading comparisons between 

communities and individuals. For instance, a community with infrequent loud flights might have the 

same LAeq-value as another community with many quieter flights. This discrepancy can lead to a sense 

of distrust and feeling that the data does not reflect the reality residents experience. Lastly, the 

forecast LAeq-values produced for airports do not give communities a clear picture of what to expect 

in terms of aircraft noise exposure and the potential impact of this on their quality of life. 

A recent review by the Independent Commission of Civil Aviation Noise (ICCAN) highlights that the 

most suitable noise metric depends on the specific health outcome being studied and the underlying 

mechanism of how noise is thought to cause harm (Independent Commission on Civil Aviation Noise, 

2020). If the focus lies on cumulative chronic stress caused by overall noise levels, average sound 

pressure metrics based on LAeq, like Lden, might be used. Lden considers noise levels throughout the day, 

with penalties for evening and nighttime noise, reflecting its greater disturbance potential. 

Accordingly, Lden is a primary indicator in assessing annoyance caused by aircraft noise. On the other 

hand, Lnight focuses specifically on noise levels during nighttime hours, aiming to capture sleep 

disturbance. When the concern is focused on short-term disruptions like sleep or cognitive issues, 

studies might also utilize event-related indicators such as maximum sound level metrics (LAmax
5), the 

number-above metrics (e.g., NAT,65 – number of events exceeding 65 dB(A)) or measures of 

intermittency (Spilski, Bergström, et al., 2019). 

Different studies emphasize that LAeq-indicators (including Lnight) are inadequate for accurately 

representing the effects of nighttime aircraft noise on sleep. As discussed above, LAeq is an exposure 

indicator that focuses on average noise levels, neglecting the disruptive nature of individual noise 

events. To address this limitation, researchers have begun incorporating physiologically measured 

awakening using methods like polysomnography into their studies as effect indicators (Basner et al., 

2006, 2019), and investigated which are suitable noise metrics associated with polysomnography 

outcomes. Polysomnography is a sleep monitoring technique that objectively measures brain activity, 

muscle activity, eye movements and breathing patterns during sleep. This approach provides valuable 

data on actual awakenings experienced by participants, both those they remember and those they do 

not. By utilizing physiological measures (i.e., the probability of awakenings), researchers gain a more 

health-focused perspective on sleep disruption compared to relying solely on acoustic energy 

 

5 LAmax is the maximum A-weighed sound pressure level used to describe the peak noise level generated by an 

aircraft flyover event. It does not capture the total noise energy of an event as it only reflects a single point in 

time and does not consider the number of noise events.  
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indicators like Lnight. The researchers suggest that two key aspects of aircraft noise contribute to sleep 

disturbance:  

- Frequency of noise events: The number of aircraft noise events forms a major risk factor for 

awakenings. In these studies, the measured awakenings lasted briefly (15-45 sec) and were 

not always remembered by participants yet are related to long-term cardiovascular effects.  

- Intensity of individual noise events: The peak noise level (LAmax) and sound exposure level6 

(SEL) of each aircraft passage can be used to describe single noise events. These exposure 

metrics proved to be important in determining how long a person stays awake after being 

awakened and whether they remember the awakening later. A longer period of awake and 

the memory of being awakened can contribute to additional annoyance.  

Researchers propose an innovative approach that combines exposure and effect metrics. A recent 

study combines physiological data on awakenings, i.e., awakening indices, as effect metrics with 

information about the specific noise events that caused them (i.e., exposure metrics) (Hauptvogel et 

al., 2021). This information can be represented in a dose-response curve, along with noise 

measurements at a specific location (i.e., acoustical immission at a given location in the vicinity of the 

airport). By combining these elements, researchers can create a more powerful tool for understanding 

and protecting communities around airports from the disruptive effects of aircraft noise.  

In the above context that residents are more sensitive to specific features of aeroplane overflights 

(e.g., maximum noise level, the duration of the noise and the number of (loud) aircraft passages) 

rather than on the global noise immission, the SiRENE study introduced the intermittency ratio (IR) as 

a new exposure metric to quantify the eventfulness of noise, that is how much loud events stand out 

from the background noise levels. A high IR indicates loud events interrupting an otherwise quiet 

background, while a low IR suggests a higher baseline noise level. The study found that for Lnight levels 

up to around 50 dB(A), participants living in environments with a low IR (i.e., higher background noise) 

reported significantly lower sleep disturbance (%HSD) than participants living in environments with a 

comparable Lnight but a higher IR (Brink et al., 2019). In other words, these findings suggest that 

intermittent aviation noise, characterized by loud events interrupting a quiet background, may be 

more disruptive to sleep compared to consistent background noise at similar decibel levels. 

Additionally, the impact of aircraft noise appeared to vary based on the degree of urbanization. For a 

given Lnight level, %HSD was highest in rural areas, lower in towns and suburbs and lowest in cities, 

indicating that people living in rural environments might be more sensitive to aircraft noise compared 

to those residing in urban areas (see also Section 2.2.4 Exposure/effect modifiers).  

A German study re-analysed data from 37 000 people living near 7 airports in Switzerland and 

Germany and investigated how well aircraft annoyance and sleep disturbance could be predicted 

based on different noise metrics and airport characteristics (Haubrich et al., 2020). Traditionally, 

aircraft noise annoyance is measured by the percentage of people highly annoyed (i.e., %HA). This 

study examined if using noise metrics that consider frequency (e.g., the logarithmic number of aircraft 

noise events above a certain threshold value: ‘number above threshold’, log(NAT)) and airport-specific 

characteristics (e.g., the number of night flights) could improve predictions of %HA and sleep 

disturbance (i.e., %HSD). The study showed that using these additional noise metrics in the model 

 

6 SEL is the sound exposure level and reflects the total sound energy of a single noise event accounting for both 

intensity and duration. It represents the sound level that would be experienced if all the sound energy of the 

event were compressed into one second.  
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improved the prediction of both %HA and %HSD. For %HA prediction, the model with LAeq,24h and 

log(NAT24h,70) achieved the best fit, surpassing even the model using Lden. Also, regarding the 

prediction of HSD, the 2-predictor model with the best goodness of fit, the model with LAeq,22-6h and 

log(NAT22-6h,80) proves to be statistically superior to the best 1-predictor model (with LAeq,22-6h as the 

sole predictor). It can be summarized that for both HA and HSD, the addition of a frequency-related 

acoustic predictor with a higher maximum level threshold (log(NAT24h,70) for HA and log(NAT22-6h,80) 

for HSD) to the predictor LAeq improves the prediction quality. Among the airport characteristics, ‘fleet 

mix’ had a particularly significant interaction with noise levels. It is a concept used to account for the 

distinct levels of various aircrafts operating in an airport. A higher fleet mix ratio is indicative of an 

airport with on average noisier aeroplanes. The study showed that for airports with fewer noisy 

aircraft (i.e., low fleet mix ratio), acoustic predictors (e.g., LAeq, Lden) had a stronger influence on %HA. 

This effect weakened at airports with more noisy aircraft (i.e., high fleet mix ratio). In other words, the 

type of aeroplanes used at an airport plays a bigger role in annoyance when the overall noise level 

is lower, implying that in airports with a moderate noise level, the effect on %HA and %HSD is likely 

to be underestimated when only relying on the standard noise metrics (e.g., Lden/Lnight). In addition, 

the study showed that every additional night flight per year was linked to significant increases in the 

likelihood of sleep disturbances which highlights the disruptive effect of nighttime noise on sleep. 

Several other airport characteristics also influenced sleep disturbance. Airports undergoing major 

changes (e.g., construction) and a rising number of night flights were associated with higher sleep 

disturbance. As expected, the noise metric Lden performed better than other variations of LAeq for 

annoyance prediction. However, combining Lden with the number of noise events yielded the most 

accurate prediction. For sleep disturbance prediction, the best model combined noise levels during 

sleep hours (22-6h) with the number of noise events during these hours. This study demonstrates 

that considering both the specific characteristics of an airport and the frequency of noise events 

significantly improves the prediction of aircraft noise annoyance and sleep disturbance.  

Beyond average noise levels, a holistic approach  

In conclusion, while traditional LAeq-type metrics provide a general picture of noise exposure, they 

might miss crucial details about the character of aircraft noise that residents find disruptive. This 

includes the frequency and intensity of individual noise events. Frequency-based metrics like 

‘number above threshold’ (NAT) offer insights into the frequency of disruptive events exceeding a 

certain decibel level. However, this approach can be overly simplistic. Grouping events based on a 

single threshold discards valuable information. A loud event just below the threshold can be as 

disruptive as one slightly above it. Additionally, the chosen threshold itself can significantly influence 

the data. A high threshold might miss disruptive events altogether, while a low threshold could include 

irrelevant background noise. This skews the overall picture of noise exposure for a community. 

Moreover, supplementing LAeq-type metrics with metrics considering eventfulness, like ‘intermittency 

ratio’ (IR), can be beneficial. This ratio considers the relative energy of individual noise events 

compared to the overall noise level and provides a more nuanced understanding of how disruptive 

individual flights are, even if they don't reach a specific threshold (Brink et al., 2019).  

Ultimately, effective communication between communities and stakeholders requires clear and 

understandable noise metrics that accurately reflect the reality residents experience. Utilizing a 

combination of metrics that capture both average noise levels and the disruptive nature of 

individual noise events is crucial for a comprehensive assessment of aircraft noise impact, both given 

communication and surveillance and in setting up research studies investigating the impact on noise 

on health (e.g., potential research in the region of Brussels Airport).  
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2.1.1.2 Measured vs modelled  

Two primary approaches to assessing noise and air pollution exposure are direct measurement and 

modelling (also see output WP2). 

Measurement involves using specialized equipment to collect real-world data on noise or air pollution 

levels (e.g., sound level meters or UFP monitors, respectively) at specific locations near the airport. 

This approach provides a direct snapshot of the environmental conditions that residents experience. 

While direct measurement provides valuable ground-level data, it is not feasible to measure at every 

location within a community. This is where modelling comes in. Modelling utilizes computer 

simulations to estimate noise and air pollution levels across a broader area, offering a large-scale view 

of potential exposure patterns, including highly spatially resolution data (e.g., 100 x 100 m grids) which 

can never be reached by monitoring data; such highly spatially resolution data offer a powerful proxy 

for personal exposure at address level of individuals (instead of using data for monitoring devices 

further away from their residents). While convenient and cost-effective, modelling has limitations. 

Real-world factors like the intricate interaction of buildings with noise or the unpredictable nature of 

weather patterns can be challenging to fully capture in such simulations. It is remarked that 

monitoring and monitoring data are complementary (e.g., monitoring data are used for calibration or 

validation of models (see WP 2). 

Another limitation to consider in stressor exposure assessment is the use of address-based measures. 

Residential exposure might not always accurately reflect an individual’s actual exposure to noise and 

air pollution (i.e., exposure misclassification), particularly for daytime levels. People’s activity 

patterns play a crucial role here. Residents may be exposed to stressors while away from home due 

to, for example, work commutes or spending time in other locations. In addition, the amount of time 

spent at home varies depending on, for example, work schedules. In this regard, nighttime exposure 

to aircraft noise (Lnight) is less prone to exposure misclassification. As discussed above, sleep is crucial 

for health and most people spend more time indoors, often in their bedrooms, during nighttime hours. 

However, to accurately assess nighttime exposure, it is essential to distinguish between noise levels 

in the indoor versus outdoor environment, and within the indoor environment: differentiation 

between bedroom and noise levels in living rooms or other common areas. In addition, the degree of 

window and façade insulation, along with the location of rooms within a building relative to the noisy 

and quiet sides, can also contribute to exposure misclassification. Noise mapping typically focuses on 

noise levels at the most exposed façade when residents might spend significant time at shielded sides 

of their residence (see also Section 2.2.4 Exposure/effect modifiers). Currently, no models are capable 

to predict reliably indoor noise levels. Noise exposure is therefore mainly based on monitoring data 

(indoor or outdoor), or on modelled data (outdoor). Outdoor modelled exposure noise is therefore 

often pruned to misclassification when serving as a proxy for an individual’s actual exposure (which 

happens mainly indoors). 

To gain a more detailed understanding of individual exposure, researchers can employ personal noise 

dosimeters or air pollutant samplers. These wearable devices track an individual’s exposure to noise 

and air pollution throughout their day. This approach reveals how exposure varies based on daily 

activities and location, providing valuable insights into individual overall experiences. A significant 

drawback of personal monitoring is the cost and complexity associated with dosimeters and samplers. 

These devices can be expensive to purchase and maintain, often limiting the number of participants 

in such studies, and often putting a burden on the participants (carrying a device). Additionally, 

interpreting the collected data can be complex, requiring specialized knowledge to accurately 

translate the readings into meaningful information.  
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In conclusion, a comprehensive understanding of airport-related stressor exposure in a community 

often requires a combined approach. Direct measurement data provides a crucial foundation, 

capturing real-world conditions at key locations. In addition, modelling complements this data by 

offering insights into exposure patterns across a wider area. Finally, considering factors like activity 

patterns helps refine the understanding of how residents are truly exposed to noise and air pollution 

from airport operations. By employing this holistic approach, one can gain a more complete picture of 

the potential health impacts on communities surrounding airports. Below we provide an overview on 

exposure assessment to aircraft noise and air pollution and a more detailed discussion is provided in 

the output of WP2.  

2.1.1.2.1 Aircraft noise  

Aircraft noise is assessed through a comprehensive approach, integrating both noise monitoring and 

noise modelling techniques.  

Aircraft noise is usually recorded by specialized sound monitors that are strategically placed at key 

locations surrounding airports to record levels accurately. These monitors capture the dynamic 

variations in noise intensity, providing valuable data for assessing the volume and impact of aircraft 

noise on local communities. Following the recording phase, noise metrics are computed from the 

gathered data. These metrics serve as quantitative indicators of noise levels and help assess the extent 

of noise pollution in affected areas. Unlike other environmental parameters where a single universal 

metric might suffice, aircraft noise requires a nuanced approach. Different situations demand 

different noise metrics tailored to capture specific aspects of noise exposure accurately.  

Noise modelling is a well-established and efficient method for estimating external noise levels across 

a geographical area. Most of the latest epidemiological studies investigating the health impact of noise 

exposure rely on source-propagation noise models to estimate noise levels at specific points, typically 

building facades or at a lattice of receptor points used to generate noise maps (Vienneau et al., 2019). 

While using the exact address of each participant’s residence is considered as the gold standard, this 

approach is not always feasible. Some studies rely solely on participants’ postal code as a proxy for 

residence location and estimate noise at the centre of such an area (Evrard et al., 2015; Franssen et 

al., 2004). Another approach involves using existing noise maps and assigning noise levels based on 

the grid cell where a participant’s address falls (e.g., (Baudin et al., 2020; van Kempen et al., 2012). 

While this method offers more precise location data compared to area-level postal codes, it still lacks 

the granularity of using exact addresses. Both approaches have a risk of exposure misclassification, 

which may result in attenuated risk estimates (Vienneau et al., 2019).  

A commonly used model for the creation of noise contour maps in the EU is the Integrated Noise 

Model. These noise contour maps depict areas exposed to different noise levels, providing valuable 

insights for airport authorities and regulators. Accordingly, the European Noise Directive mandates 

strategic noise mapping using metrics like Lden and Lnight to assess noise annoyance and sleep 

disturbance, respectively. Moreover, the obtained contours could be used to select participants based 

on exposure categories. Flight patterns, aircraft types and local topography are all factored into the 

simulations. By considering these elements, models estimate how noise from aviation propagates and 

is experienced at ground level hence providing an estimation of the population potentially affected by 

various noise levels. While noise modelling offers a valuable large-scale view, it cannot replace the 

need for on-the-ground verification. This is where noise monitoring comes in. This data serves as a 

crucial validation tool, ensuring the modelled noise levels align with real-world conditions. While 

noise modelling primarily focuses on outdoor noise estimates, monitoring can provide location-

specific data, including indoor noise levels. This is particularly important in social and health research. 
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For instance, studies investigating sleep-related or cognitive health outcomes require accurate data 

on noise experience inside participants’ homes. Outdoor measurements alone might not be sufficient 

to capture this crucial information. Building materials, insulation as well as individual window opening 

habits significantly influence how much noise penetrates indoors (also see Section 2.2.4 

Exposure/effect modifiers). Residents exposed to higher outdoor noise levels might take steps to 

mitigate indoor noise, such as installing double glazing or roof insulation. Therefore, some studies 

include indoor noise measurements (for example, (Clark et al., 2010; Nassur et al., 2019; Van Kempen, 

2006)) to gain a more holistic picture of actual exposure experienced by participants. Moreover, 

focusing solely on outdoor measurements can be misleading. Individuals who are exposed to higher 

outdoor noise might install insulation and thereby experience a greater reduction in indoor noise 

compared to those with lower outdoor noise who do not install insulation. Important to note, 

measuring indoor noise to assess long-term exposure is not recommended. Indoor noise levels are 

typically lower than those outdoors, making them susceptible to interference from everyday activities 

and appliances within a home or building which can lead to inaccurate measurements that do not 

reflect actual exposure to aircraft noise over time.  

By employing a combination of noise modelling, outdoor monitoring and, when necessary, indoor 

monitoring, researchers can gain a more comprehensive understanding of the noise burden on 

communities surrounding airports. This multi-layered approach not only provides valuable data for 

informing noise mitigation strategies but also strengthens the foundation for social and health 

research investigating the potential health impacts of aviation noise.  

2.1.1.2.2 Air pollution  

Understanding the health impact of airport-related air pollution necessitates a holistic approach to 

exposure assessment, particularly for UFP due to their unique characteristics. Similar to noise 

assessment, direct measurement using specialized equipment is crucial for capturing real-world air 

quality data near airports. However, for UFP, some specific considerations come into play. While 

conventional air quality monitors routinely measure standard air pollutants like NOx, PM2.5 and O3, 

monitoring of ambient UFP levels requires specialized instruments. These measurements focus on 

measuring particle number concentration (particles per cubic centimeter) rather than the mass 

concentration (micrograms per cubic meter) because, despite their low mass, UFPs are plentiful. 

Strategically placed monitors near the airport can capture variations in UFP concentrations across the 

area. But factors like wind patterns and proximity to runways can significantly influence UFP dispersion 

as detailed in the UFP report3 and above (see Section 1.1.2.1  

Ultrafine particles (UFP)).   

Air quality modelling complements direct measurement by providing insights into broader exposure 

patterns. It also provides highly spatially resolution data (e.g., 100 x 100 m grids) which can never be 

reached by monitoring alone. This data can offer a powerful proxy for personal exposure at the 

address level of individuals, rather than relying on data from monitoring devices further away from 

their residence.  

Like noise pollution, understanding exposure goes beyond simply measuring air pollutant 

concentrations because of the influence of time-activity patterns or indoor levels (building materials 

and ventilation systems might influence indoor air pollutant concentrations). A combination of direct 

measurement, modelling and potentially even personal exposure monitoring (although very 

expensive) can provide the most robust assessment of UFP exposure in communities surrounding 

airports.  
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2.1.2 Measuring health outcomes 
Understanding the health consequences of living near airports necessitates a multifaceted approach 

to measuring the health outcomes experienced by these populations. Airport operations generate 

stressors like aircraft noise and UFP, and researchers employ a variety of methods to assess the impact 

of these stressors on human health. The primary objective in environmental health studies is often to 

establish a clear connection between environmental exposure and health outcomes. To accurately 

determine this relationship, it is paramount to have detailed, individual-specific data that ties 

particular exposures directly to health effects (i.e., paired data). Understanding the health impacts of 

airport-related stressors on nearby communities requires careful consideration of study design. In 

general, four types of environmental epidemiology studies can be used, namely longitudinal studies, 

case-control, cross-sectional or ecological studies. As summarized in Table 6Table 6, each approach 

offers unique advantages and disadvantages, and researchers must weigh these factors to select the 

most appropriate method for investigating a specific health outcome. Longitudinal studies are ideal 

for establishing causality but require considerable time and resources. Common types of longitudinal 

studies include (i) cohort studies which follow a specific group of people (i.e., cohort) who share a 

common characteristic or exposure (e.g., born in the same year, exposed to a particular substance) 

over time to observe the development of outcomes or events, (ii) panel studies are similar to cohort 

studies as the same individuals or units (e.g., households) are repeatedly observed but the group is 

not necessarily defined by a shared characteristic, (iii) trend studies observe a population as a whole 

at different points in time, rather than following specific individuals and (iv) repeated cross-sectional 

studies where data is collected from different non-overlapping groups (different samples) 

representing the population at different points in time. Most of the studies considered in this work 

package have a cross-sectional design. Unlike longitudinal studies that track individuals over time, 

cross-sectional studies provide a snapshot at a specific point but cannot definitively demonstrate 

exposure-response relationships. Unlike cross-sectional studies that provide a broad picture at a single 

point, case-control studies delve deeper, focusing on identifying factors that might have caused a 

specific outcome. Case-control studies offer an efficient approach for rare outcomes, but like cross-

sectional studies, they cannot definitively establish exposure-response functions. Unlike the above 

studies that focus on individuals, ecological studies provide population-level insights based on 

aggregated health indicators and averaged exposures. Ultimately, the best design depends on the 

specific health outcome under investigation and the research objectives.
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Table 6: Study design strengths and weaknesses.  

Study design  Strengths  Weaknesses  GRADE 

starting 

level  

Exemplar studies  Indicative population size range 

Longitudinal 

(e.g., cohort and 

panel studies)  

+ Strongest evidence for causality  

+ Tracks changes in modifying factors and 

outcomes (e.g., cortisol levels) over time 

- Time-consuming (years) 

- Large sample sizes needed to 

detect subtle effects 

- Expensive  

High  (Bozigar et al., 2024; 

Clark et al., 2013), (N. 

Janssen et al., 2022) 

Registry data: 111 000 – 1 400 000  

Clinical measurements: 140 – 1 250 

Postal surveys: >70 000  

Questionnaires interview: 700 – 1 250 

Cross-sectional  + Rapid and cost-effective  

+ Suitable for short-term outcomes (e.g., 

sleep disturbance or cognitive effects) 

- Lacks causality evidence 

(snapshot in time)  

 

Low  (Baudin et al., 2021; 

Floud et al., 2013) 

Registry data: 35 000 – 550 000 

Clinical measurements: 90 – 5 000 

Postal surveys: 2 800 – 12 000  

Questionnaires interview: 1 200 – 6 000 

Case-control  + Efficient for rare health outcomes  

 

- Susceptible to selection and 

recall bias  

- Not ideal for generic health 

outcomes  

High  (Seidler et al., 2016) Registry data: 19 000 – 140 000 cases vs 

350 000 – 850 000 controls  

Clinical measurements: 75 cases vs 75 

controls  

Ecological  + Cost-effective  

+ Avoids selection bias (no individual 

participant recruitment) 

+ High population coverage  

- Descriptive only, no 

individual-level data  

 

Very low  (Evrard et al., 2015; 

Hansell et al., 2013) 

Registry data: 12 000 – 1 900 000 
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In general, to assess health outcomes in environmental epidemiology studies, three types of data 

are often used:   

• Health registry data: Prevalence or incidence data for generic or specific health outcomes 

(e.g., hospital admissions or chronic disease rates) based on health registers from populations 

living near airports provide valuable information. For instance, researchers might access data 

from administrative health databases (i.e., registries) to investigate the prevalence of certain 

conditions in communities around airports (also see output WP3). 

• Human biomonitoring: Some health outcomes also require data collection during the study 

itself, as these factors might not be routinely tracked elsewhere. Effect monitoring in study 

participants includes measuring biomarkers, which could be (i) indicators of exposure or (ii) 

(early effect) biological indicators of a health condition. Biomarkers of exposure could include 

urinary S-phenyl mercapturic acid or black carbon load for benzene and black carbon 

exposure, respectively. To the best of our knowledge, there are currently no biomarkers of 

exposure available for noise or UFP exposure. Some biomarkers can be collected through 

minimally invasive means like saliva samples for cortisol analysis, a stress hormone, or through 

blood draws for C-reactive protein measurement, an indicator of inflammation. Changes in 

these markers can provide insight into the body’s response to environmental stressors and 

potential early signs of health problems (i.e., intermediate mechanisms), this can also be 

complemented with sleep monitors. Moreover, clinical measurements, such as blood 

pressure measurements, electrocardiography (ECG), polysomnography and spirometry, could 

serve as complementary tools in human biomonitoring studies as they provide additional 

insights into potential health effects associated with environmental exposures. For example, 

high blood pressure can be ascertained through three methods: (i) participant-reported 

diagnosis from surveys, (ii) reported use of medication to manage the condition (registry-

based) or (iii) direct measurement during the study. These measurements can be taken by 

study staff using blood pressure cuffs or with self-administered equipment. This allows 

researchers to not only identify individuals with diagnosed hypertension but also capture 

those who might be managing the condition with medication without a formal diagnosis. It is 

important to note that diagnoses can also be measured without directly involving participants. 

• Surveys: Some health outcomes are more subjective and necessitate input from the 

participants themselves. These outcomes often relate to aspects of daily life that might not 

be reflected in medical records. Many measures of quality of life, well-being or annoyance rely 

primarily on self-reported data. Fortunately, the field benefits from the existence of validated 

questionnaires that ensure consistency and reliability across studies (e.g., General Health 

Questionnaire, Pittsburgh Sleep Quality Index). Compared to physiological measures (e.g., 

polysomnography to assess sleep quality), questionnaires are generally cheaper and easier to 

implement in large studies but may not reflect actual physiological disturbances as measured 

by objective methods.   

Which type of data to use, depends on the study design and research question. By combining these 

different methods in various study designs, researchers can build a more comprehensive picture of 

the potential health consequences of living near airports. For example, sleep quality is a research area 

where self-reported measures (i.e., psychological assessment of sleep) could be collected via 

questionnaires. These questionnaires can address sleep during the previous night or over a longer 

period. Compared to physiological measures (e.g., polysomnography), questionnaires are generally 

cheaper and easier to implement in large studies. Despite their advantages, it is important to 

acknowledge that self-reported sleep quality through questionnaires may not always perfectly reflect 
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actual physiological sleep disturbances measured by objective tools like polysomnography. 

Polysomnography records brain waves, the oxygen level in blood, heart rate, breathing and eye and 

leg movements during sleep. The use of polysomnography is considered to be the most accurate 

methodology for obtaining objective physiological data that can allow for changes in sleep stages and 

awakenings to be observed. However, polysomnography is expensive and time-consuming and it is an 

invasive method that requires the attachment of multiple sensors which might be considered 

uncomfortable and potentially influence sleep patterns and hence the observation. The use of 

actimetry has previously been used in sleep studies as a proxy for sleep-wake activity (also see Section 

2.1.3 Combined exposure and health measurements). Actimetry or actigraphy is a non-invasive 

method of monitoring human rest-activity cycles. A small actigraph unit or actimetry sensor is a small 

wristwatch-like device. Although it is not as accurate as polysomnography because it measures rest-

activity patterns rather than brain activity, this method is less expensive and allows for a larger sample 

size of data to be collected. People's perceptions of their sleep quality can be influenced by numerous 

factors, such as stress, anxiety, or expectations. Therefore, researchers often recommend using a 

combination of physiological and psychological measures to gain a more comprehensive 

understanding of sleep quality in exposed populations.  

By employing a diverse set of methods, researchers can gain a more complete picture of the health 

consequences associated with airport-related stressors. Combining diagnoses, self-reported 

experiences, objective measures and standardized tools allows for robust and comparable data 

collection, ultimately strengthening our understanding of how environmental factors like aircraft 

noise and UFPs influence human health. 

The increasing use of harmonized and standardized methods across studies is a positive development. 

This trend not only facilitates comparisons but also opens the door for meta-analyses, which can 

provide stronger evidence for the health impacts of airport-related stressors.  

2.1.3 Combined exposure and health measurements 
Within the ‘Programma Innovatieve Overheidsopdrachten (PIO)’ of the Flemish Government, the 

Department of Environment financed a pilot project to develop a methodology to measure nightly 

noise exposure and its impact on sleep disturbance. The project was performed by UGent and PIH and 

the scientific report is available online (Dekoninck et al., 2023). The main focus of the protocol was 

the user-friendliness and the use of non-invasive but accurate technology. It included simultaneous 

indoor and outdoor noise monitoring to discriminate between indoor and outdoor noise (events) 

known to affect sleep quality. To detect potential arousals and awakenings, actimetry and heart rate 

were monitored on-body. At the start of a monitoring period, the subject completed a general 

questionnaire. After each monitored night (one week of data collection), a short questionnaire on 

sleep quality was completed to monitor sleep and noise perception. 

The protocol was validated in two waves, including in total 17 adolescents (12–17-year-old), selected 

from the general population without specific noise burden. For 7 nights, they installed an indoor noise 

sensor near the bed, connected to a wireless outdoor noise sensor that was attached to the bedroom 

window. On the noise monitor, indicators were calculated in a resolution of 10 seconds and 15 

minutes. These indicators are transmitted to a central data platform. The physical impact of noise on 

human sleep was assessed by ECG and accelerometry with the Bittium Faros. This 2-channel device 

was easy to install, collected a full ECG, provided motion data though the accelerometer and measured 

heart rate variability. These medical data are stored locally at the Bittium Faros and exported by the 

nurse after the retrieval of the sensor hardware. The questionnaire data included validated questions 
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on annoyance (SLO, Schriftelijk Leefomgevingsonderzoek), questions on sleep quality (Pittsburg Sleep 

Quality Index) and daily questions on sleep disturbance and nightly noise.  

An extensive set of noise indicators and physical indicators is calculated for further analysis. A 

preliminary analysis on the 9 participants in the second wave showed that devices deliver high quality 

noise data and biometry data. Noise indicators included standardized calculations (LAeq) at 10-second 

and 15-minute intervals. The main purpose of simultaneous noise monitoring indoors and outdoors is 

to be able to relate and isolate outdoor noise events to indoor disturbances. Spectral content is 

available and will allow detailed evaluation of source type, matching the deployment of the 

measurement hardware. The biological impact of environmental noise during sleep is visible in the 

ECG data and this is evaluated through the heart rate variability parameters. The biological response 

occurs 30 to 90 seconds after the noise event. A biological response to environmental noise can be 

expressed as a cardiac arousal (reaction without movement) or a combined cardiac and motility 

arousal (the subject starts moving and might awaken at full). Within the pilot study, we showed that 

a faster and stronger response can be detected through the heart rate variability (HRV) parameter 

LF/HF ratio (low frequency/high frequency) compared to the heart rate only response. This parameter 

is sensitive to both cardiac arousals and motility arousals. This indicator relates to the activation of 

the autonomous nervous system, a component of the biological stress axis. It therefore also has the 

potential to relate to the biochemical stress responses. The findings extend to the current practices 

which focus mainly on motility arousals and subjective sleep responses only. 

Within the pilot study, the young and healthy subjects were exposed to rather low noise exposure, 

since no prior selection to higher noise exposure was included. The approach through the activation 

of the autonomic nervous system proved valid in these low exposure conditions. In an elderly 

population, we expect lower HRV responses due to impaired health, with environmental noise as a 

component of the long-term deterioration of the cardiovascular health. In studies with higher noise 

burden and impaired subjects, it is expected that – due to the proven sensitivity in low exposure - the 

technical setup, the proposed post-processing and analysis will enable advanced detection of the 

biological responses to environmental noise with high accuracy.  

In conclusion, a measuring set was developed to monitor nightly indoor and outdoor noise 

simultaneously with sleep quality and arousals. This method was validated in randomly selected 

adolescents with low noise exposure. Its utmost purpose is to use this protocol in areas with elevated 

noise burden (e.g., around airports) and by doing so, collect state-of-the-art data to assess the impact 

of elevated nightly noise exposure on human health.    

2.2 Considerations when designing studies  
Understanding the health effects of airport-related stressors requires careful study design. Below is a 

breakdown of key points to consider.  

2.2.1 Population and study area  
Studies on airport health impacts typically include populations across all age categories. To maximise 

exposure contrast, studies often employ stratified sampling. This process involves dividing the 

population around the airport into subgroups (strata) based on exposure levels. One common way to 

define strata for airport health research is by using noise contours. Noise contours are maps that 

depict areas exposed to various levels of aircraft noise, typically measured in Lden. For instance, a study 

might define strata based on 5 dB(A) categories of Lden: <50, 50-54, 55-59 and ≥60 dB(A). By creating 

strata based on exposure levels, researchers ensure they include participants who are exposed to a 
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range of stressor levels (high and low). This exposure contrast strengthens the study’s ability to detect 

associations between airport-related stressors and health outcomes.  

While noise contours are a helpful tool, other factors can also influence health. In this regard, studies 

often consider additional variables called covariates when selecting participants within each stratum. 

These covariates might include, among others, age, gender and socioeconomic status. By selecting 

participants within each exposure stratum while ensuring a good distribution of important covariates, 

researchers create groups that are more comparable except for their level of exposure. This helps to 

isolate the effects of airport-related stressors (such as aircraft noise and UFP) on health outcomes and 

reduces the influence of confounding variables.  

2.2.2 The interaction between noise and air pollution effects and the issue of possible 

mutual confounding  
Understanding the health impacts of noise and air pollution separately is a complex task, and it 

becomes even more intricate when we consider their combined effects. People are exposed to both 

throughout the day, not just separately or in specific locations. For example, aircraft noise at home, 

air pollution exposure during commute and road traffic noise exposure during leisure activities all 

contribute to an individual’s overall exposure.  

For aviation, noise exposure comes from various sources, namely the engines, the aircraft frame and 

ground operations like take-off and landing. Air pollution from aviation, on the other hand, primarily 

stems from the engines themselves. A crucial aspect of disentangling the health effects of different 

stressors (e.g., noise and air pollution) is understanding the correlation between these exposures. 

Strong correlations make it difficult to isolate the impact of each factor. Conversely, weak or 

inconsistent correlations might allow for geographical separation of the exposures, facilitating the 

study of their individual health effects. The correlations between noise and air pollution vary 

enormously between studies but are generally found to be moderate (S. A. Stansfeld, 2015). Such 

correlations may not only be influenced by factors related to pollutant measurement, but they may 

also reflect the differing dispersion patterns of different stressors. For example, noise is influenced by 

intervening buildings and geographical features, while air pollution is also dependent on weather 

conditions like wind speed and direction. Furthermore, air pollution and noise exposure often show 

collinearity with other health risk factors like socioeconomic status, stress and adverse lifestyle 

factors. Co-pollutant models can be used to assess the independent and combined various airport-

related stressors on health outcomes. Regression analysis is commonly used in co-pollutant models as 

it considers all the exposure data simultaneously to estimate the association between each pollutant 

and the health outcome while accounting for the potential influence of other pollutants.  

Numerous studies reveal independent associations between aircraft noise and air pollution with 

cardiovascular health. Some studies found the effects of aircraft noise on self-reported myocardial 

infarction (Floud et al., 2013) and cardiovascular disease hospital admissions (Correia et al., 2013; 

Hansell et al., 2013). Importantly, these associations remain after accounting for air pollution levels of 

PM10 (Hansell et al., 2013), NO2 (Floud et al., 2013) and PM2.5 and ozone (Correia et al., 2013). In 

addition, no significant confounding effect of air pollution (PM2.5 and/or NO2) on the link between 

aircraft noise and hypertension was found in several studies (Evrard et al., 2015; Nguyen et al., 2023). 

Still, the bigger picture of how noise and air pollution interact to influence cardiovascular health 

remains unclear. Likewise, the RANCH project explored the combined impact of noise and air pollution 

on children’s cognitive development. While some studies within this project found connections 

between aircraft noise and cognitive functions like reading comprehension, memory and attention in 

9–11-year-old children (Clark et al., 2012), the impact of air pollution was less clear. One study showed 
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the effects of NO2 on memory span length (van Kempen et al., 2012) while the other (Clark et al., 2012) 

shows no effects of air pollution on reading comprehension, memory and attention. This suggests 

potential differences in how noise and air pollution affect the developing brain (S. Stansfeld & Clark, 

2015). Interestingly, even though both exposures might contribute to cognitive issues, their pathways 

could be distinct. In this regard, a recent experimental study in mice also suggests that studying the 

health effects separately might underestimate the true risk since noise and air pollution have apparent 

additive health effects on the cardiovascular system and brain (Kuntic et al., 2023). Noise primarily 

affects the body through psychological stress, possibly leading to high blood pressure and a 

heightened response from the nervous and hormonal systems. PM exposure via inhalation on the 

other hand primarily damages the lungs through inflammation and oxidative stress, which can 

potentially spread to other organs through the bloodstream. When combined, aircraft noise and air 

pollution (urban particulate matter) appear to cause additional damage which could significantly 

increase the risk and severity of common chronic diseases (e.g., diabetes, ischemic heart disease and 

neurodegeneration). This concerning interaction found in experimental research is further confirmed 

by a human study, suggesting this combined effect might be a real threat to public health. An initial 

study around Los Angeles International Airport found that exposure to aircraft-related UFP 

independently increased the risk of preterm birth after accounting for aircraft noise exposure (Wing 

et al., 2020). However, the researchers acknowledged that airports also attract heavy traffic, 

potentially impacting nearby communities with additional air pollution. In a follow-up study, they 

specifically investigated the role of airport-related noise and its interaction with road traffic-related 

air pollution on preterm birth risk (Wing et al., 2022). While all women in the study area were exposed 

to elevated levels of UFP from aircraft (due to proximity to the airport), the researchers found that 

the strongest associations between airport-related noise and preterm birth occurred in mothers who 

were also exposed to elevated levels of traffic-related air pollution. This suggests a synergistic effect 

– the combined impact of aircraft noise and traffic-related air pollution is greater than the sum of their 

individual effects. In other words, in this study, they found that exposure to both stressors together 

significantly increases the risk of preterm birth compared to exposure to either one alone. This 

research highlights the importance of considering the combined effects of environmental stressors, 

particularly around airports. While aircraft UFPs pose a clear risk, their presence does not negate the 

additional threat posed by traffic-related air pollution. Future studies and public health initiatives need 

to account for this potential synergy to effectively protect the health of communities living near 

airports. 

Besides different stressors (e.g., noise and UFP) from a similar source (airport), the same stressor could 

also originate from various sources. A recent study examined how people perceive annoyance from 

combined transportation noise sources (i.e., road traffic, aviation and railway noise) (Marquis-Favre 

et al., 2021). Interestingly, they found that the overall annoyance was not significantly higher than the 

annoyance caused by the single strongest noise source. This aligns with previous research on 

combined transportation noise where aircraft noise was judged to be the most annoying (Wothge et 

al., 2017). In other words, the most dominant noise source seems to be the main driver of annoyance, 

even when other noise sources are present. This finding supports the ‘strongest component model’ 

for predicting total annoyance from combined noise sources (further discussed in Section 2.2.6 

Assessment of annoyance due to multiple sources).  
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2.2.3 Identification of vulnerable groups concerning the effects of airport-related 

stressors on health 
The risk of an adverse health outcome is not equal among everyone exposed to the same level of the 

same pollutant. Each person has a unique mix of other exposures and individual characteristics, 

including stage of life or underlying health conditions, which shape their own risk or susceptibility. 

While most research on airport operations focuses on the average population’s experience, only a few 

studies have focused on so-called vulnerable groups, who are considered more susceptible to adverse 

effects of airport-related stressors and a higher-than-expected risk for developing particular diseases 

(Habre et al., 2018; S. Stansfeld & Clark, 2015; Van Kamp & Davies, 2013; Wing et al., 2020). 

Environmental health inequalities may arise not only because of exposure differentials. The health 

impacts of noise also depend on individual susceptibility and the ability to recover from such impacts. 

Vulnerability to the health effects of airport operations is a complex interplay of several factors 

including physical and mental health, life stage, lifestyle and habits, socioeconomic status and 

environmental characteristics. By acknowledging the existence of vulnerable groups and the complex 

interplay of vulnerability factors, researchers, policymakers and airport authorities can design more 

targeted solutions by developing effective noise mitigation strategies, improving air quality measures 

and engaging nearby communities. 

2.2.3.1 Physical and mental health 

Existing health conditions, both physical and mental, can influence how individuals cope with noise 

exposure and air pollution. Respiratory problems, for instance, can be exacerbated by air pollution. In 

this regard, short-term exposure to UFP related to air traffic was linked to exacerbation of existing 

airway complaints in children (N. A. H. Janssen et al., 2019) and increased systemic inflammation in 

adults with asthma (Habre et al., 2018). Additionally, a recent study indicates an increased risk for 

recurrence in patients diagnosed with acute coronary syndrome exposed to aircraft noise (Olbrich et 

al., 2023). Furthermore, people with noise sensitivity are more likely to experience negative health 

effects from noise exposure such as sleep disturbance, headaches and stress.  

2.2.3.2 Life stage 

Age plays a significant role. Children, pregnant women and the elderly are often considered vulnerable 

due to the developmental stage or changing physiology. While not necessarily more prone to 

annoyance from noise, children might be more susceptible to long-term cognitive and cardiovascular 

health problems due to both noise exposure and air pollution. Their developing bodies and lack of 

coping mechanisms make them vulnerable to the cumulative effects of these environmental stressors. 

For example, children have smaller airways and breathe two to three times faster than adults, making 

them more susceptible to respiratory issues potentially exacerbated by air pollution as specifically 

shown for UFPs in a study in schoolchildren around Schiphol airport (N. A. H. Janssen et al., 2019). 

Moreover, childhood is a critical period of cognitive development, characterized by rapid brain 

maturation and the acquisition of essential cognitive skills, including language processing, reading and 

comprehension. Disruptions to cognitive development during this sensitive period may have lasting 

consequences for academic achievement, social functioning and future career prospects. Another 

aspect to consider, children’s activities are often concentrated in local areas including their homes, 

nearby playgrounds, schools and backyards. These locations might be closer to flight paths or airport 

operations compared to workplaces frequented by adults. Adolescence, particularly puberty, is 

another crucial life stage characterized by rapid physical, hormonal and psychological changes. Similar 

to children, adolescent’s brains are still undergoing significant development. This ongoing 

neurodevelopment makes them potentially more susceptible to the disruptive effects of chronic noise 

exposure on sleep patterns, cognitive function and emotional regulation. Older adults may be at 
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increased risk for cancer-related health effects because they have had a longer time to accumulate 

DNA damage. Additionally, they might have pre-existing health conditions like cardiovascular or 

neurodegenerative diseases, which can be further aggravated by noise and air pollution. In addition, 

older people typically spend more time at home or have lived in a property exposed to noise or air 

pollution for many years. Lastly, pregnant women and newborns are also considered a particularly 

vulnerable group given the developing systems of foetuses and newborns and the long-term health 

consequences associated with adverse birth outcomes.  

2.2.3.3 Lifestyle and habits 

Factors like sleep patterns, work schedules (shift workers) and overall lifestyle choices can influence 

noise sensitivity and exposure to air pollution. For example, people who spend more time outdoors 

might have higher exposure to air pollution while shift workers may be at an increased risk of 

experiencing negative impacts from exposure to environmental noise because their sleep structure is 

already under stress. Shift workers may also need to sleep during the day when environmental noise 

levels are higher. 

2.2.3.4 Socioeconomic status 

Lower socioeconomic status (SES) might limit access to, among others, quality housing (including 

acoustic insulation and/or air purifiers) or green spaces increasing vulnerability to both noise and air 

pollution (Dreger et al., 2019). Moreover, lower-income communities may be disproportionately 

located near airports due to lower housing costs. Research shows that both individual SES and the 

average SES of their neighbourhood independently affect health (Diez Roux & Mair, 2010). In this 

regard, people of higher SES living in lower-SES neighbourhoods have more resources at their disposal, 

allowing them to mitigate the health hazards associated with their environment (Science for 

Environment Policy, 2016). For example, they might be able to invest in better insulation for their 

homes to reduce noise pollution from traffic or airports.  

2.2.3.5 Environmental characteristics 

The surrounding environment, including existing noise levels, green spaces and prevailing wind 

patterns, can significantly influence the overall impact of both noise and air pollution from airport 

operations. 

2.2.4 Exposure/effect modifiers 
From a statistical point of view, all exposure-modifying factors and other potential effect modifiers 

can be treated as interaction terms in the statistical analyses or stratified analyses. Examples of 

exposure/effect modifying factors are discussed below:  

Behavioural and dwelling characteristics  

- Room orientation, window opening habits and ventilation: People living in rooms facing away 

from the airport or who habitually keep windows closed are likely exposed to less noise. 

Statistically, these factors can be treated as interaction terms in the analysis, revealing 

whether they influence the strength of the association between exposure and health 

outcomes. For instance, the negative health effects of noise might be weaker in subgroups 

with limited airport-facing windows or closed windows. Additionally, individuals who keep 

their windows closed more frequently could be a particularly interesting group to examine in 

sensitivity analyses, exploring how their unique exposure patterns might influence the overall 

findings. For example, a study on the link between aircraft noise exposure and hypertension 

near French airports collected information on house characteristics (e.g., window opening, 
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insulation of roof and/or windows) yet this was not included in the final models as it did not 

impact the effect estimate (Evrard et al., 2017). Ventilation practices (natural or mechanical) 

can also be considered as potential modifiers, particularly for air pollution exposure.  

- Building characteristics and insulation levels: The materials used in construction can 

significantly impact noise transmission. Buildings with heavier, denser materials (e.g., brick or 

concrete) offer better insulation compared to lightweight structures (e.g., wood). Moreover, 

air gaps and leaks around windows, doors and ventilation systems can acts as pathways for 

noise entry. In addition, the type of window acting as a barrier between residents and aircraft 

noise might form a crucial aspect in understanding how noise exposure translates to health 

effects. The impact of window type (i.e., single glazing, double or triple glazing) on noise 

reduction could be assessed by including for example window type as a factor in the statistical 

analysis. For example, a prospective patient cohort study showed that aircraft noise exposure 

deteriorates the long-term outcome after acute coronary syndrome (Olbrich et al., 2023). 

Here, they found a stronger effect for patients without noise-proof windows in their homes. 

Another factor that could significantly impact noise reduction is wall and roof insulation. The 

type and thickness of insulation can significantly impact noise reduction. Insulation materials 

with fibrous or porous structures absorb sound waves, while denser materials dampen 

vibrations, reducing noise transmission. Thicker insulation layers generally offer greater sound 

attenuation.  

- Noise reduction habits: The use of earplugs during sleep is another factor that can modify the 

impact of noise exposure. Researchers should assess this habit through questionnaires and 

consider it in the analysis.  

Environmental factors  

- Building height, floor level and local topography: The height of surrounding buildings, the floor 

level of an apartment and local topographical features can influence both noise exposure and 

air pollution dispersion. Statistically, these factors can be incorporated as covariates in the 

analysis, potentially revealing distance-related gradients in health effects. For example, 

stronger effects on lower floors or closer to the airport, with air pollution potentially more 

concentrated in valleys or specific wind patterns.  

Exposure duration 

- Length of exposure (years of residence): Studies suggest that the duration of exposure to both 

noise and air pollution can modify their health impact. Statistically, this can be explored by 

stratifying the analysis, meaning they divide the study population into subgroups based on 

years of residence. The DEBATS studies exemplify this approach. Here, they limited some 

analyses to participants who had lived at their current address for at least five years and had 

not moved recently (e.g., (Baudin et al., 2021; Lefèvre et al., 2017). This strategy helps to 

control for potential influences of residential history on the observed relationship between 

aircraft noise exposure and health. For instance, it allows us to assess whether habituation to 

noise might play a role in health outcomes.  

Socioeconomic status 

- Type of housing and socioeconomic status: The type of housing (e.g., apartment, detached 

house) and socioeconomic status might be indirectly related to exposure levels and 

vulnerability. While not directly measured exposure modifiers, they can be considered 

potential effect modifiers, statistically exploring whether they influence the observed 
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relationships between environmental exposures and health outcomes. For instance, lower 

socioeconomic communities might have less access to green spaces or higher-quality 

windows, potentially increasing their vulnerability to environmental exposures.  

One crucial aspect in evaluating aircraft noise is recognising the distinction between the objective 

sound generated by aircraft (i.e., exposure metric) and the subjective experience of annoyance it may 

cause to individuals within the community (i.e., effect metric). Therefore, while objective 

measurements provide essential data, understanding the subjective perception of noise is equally vital 

for developing effective mitigation strategies and fostering community engagement. In contrast to the 

subjective nature of annoyance, sound pressure level serves as an objective measure of acoustic 

pressure. This physical parameter quantifies the intensity of sound waves and can be objectively 

measured using sound monitors. By providing an accurate representation of sound intensity, sound 

pressure level offers valuable insights into the acoustic environment and forms the basis for objective 

assessments of noise exposure. In summary, aircraft noise monitoring involves a comprehensive 

approach that integrates objective measurements with subjective perceptions to assess its impact on 

local communities accurately. By leveraging advanced monitoring technologies and understanding the 

complexities of noise perception, stakeholders can work towards minimizing the adverse effects of 

aircraft noise and promoting a healthier and more harmonious living environment. 

As discussed previously, the SiRENE study introduced urbanization and the intermittency ratio (IR) (see 

above Section 2.1.1.1 Choice of metric), a metric that captures how much individual aircraft noise 

events stand out from the background noise, as possible effect modifiers for the relation between 

aircraft noise and sleep disturbance (Brink et al., 2019). This study found that for similar Lnight levels, 

participants living in environments with a low IR (constantly noisy background) reported significantly 

lower sleep disturbance. This suggests that consistent background noise might be less disruptive than 

intermittent loud events (i.e., peaks). The impact of aircraft noise also varied based on the degree of 

urbanization. For a given Lnight level, sleep disturbance was highest in rural areas, lower in towns and 

suburbs and lowest in cities. This suggests residents in quieter rural areas might be more sensitive to 

the disruptive nature of intermittent aircraft noise compared to those living in urban areas with more 

constant ambient noise. The observed effect modifications by intermittency and urbanization seem 

to be interrelated which could be explained by noise insulation or habituation. Noise levels were 

estimated at the exterior façade of participants’ homes. Individuals residing in areas with lower IR (i.e., 

high baseline noise) or higher urbanization (potentially experiencing more ambient noise) might be 

more likely to invest in soundproofing measures for their homes. This improved insulation could 

mitigate the disruptive effects of intermittent aircraft noise on sleep. Moreover, the constant 

presence of background noise in urban environments or areas with low IR may lead to a degree of 

habituation. This habituation could make individual noise events less noticeable, reducing their impact 

on sleep compared to rural areas with quieter backgrounds. The NORAH study proposed to use 

imperviousness (i.e., the level of sealed spaces, such as buildings, in a given area) instead of the degree 

of urbanization to study possible effects of environmental exposures on children’s well-being and 

health (Spilski, Rumberg, et al., 2019). Impervious space offers a more precise measure of a residential 

environment’s quality for children’s well-being compared to broad urbanization categories (i.e., rural, 

suburban and urban). While urbanization often implies high population density, it does not necessarily 

capture the availability of green spaces (for recreation) and other factors (e.g., bioclimate, sunlight 

exposure, etc.). Like the above study, in areas with less impervious space (i.e., more natural and open 

areas), exposure to aircraft noise might be a dominant stressor due to the quieter background.  

Researchers could assess a possible exposure/effect modifier, for example use of earplugs during 

sleep, through questionnaires and consider it in the analysis. This could be done through various 
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statistical approaches. Individuals who habitually use earplugs could be excluded from the analysis to 

isolate the effect of noise on those who do not use them. Moreover, earplug use could be included as 

an interaction term to see if it modifies the relationship between measured noise exposure and health 

outcomes. For instance, the negative effects of noise on sleep might be significantly weaker for those 

who use earplugs regularly. Lastly, the study population could also be divided into subgroups based 

on earplug use (users vs. non-users- and health outcomes compared within each group. This stratified 

analysis could reveal if earplugs truly mitigate the negative health effects of noise exposure. 

Challenges in effect modification studies include power limitations and separation of the effects. 

Many studies are not specifically designed to investigate effect modification which can lead to a lack 

of statistical power, meaning studies might not be able to detect if these factors even truly modify the 

impact of exposures. In addition, a key challenge lies in disentangling the independent health effects 

of noise and air pollution as they often co-occur (see above). Statistical techniques like mediation 

analysis can be employed to attempt to separate these effects. It should be noted that random errors 

in measuring factors like noise sensitivity and annoyance can weaken the observed effect 

modification. For example, someone who is generally noise-sensitive might answer a questionnaire 

about noise annoyance slightly differently on days due to factors unrelated to noise exposure (e.g., 

feeling tired, or stressed).  

It is crucial to recognise that the impact of these factors (confounding and effect modification) can be 

influenced by several aspects of the study design itself:  

- Study type: Whether it is a cross-sectional survey, a longitudinal cohort or an intervention 

trial can affect how these factors influence the results;  

- Outcome measurement: Self-reported health outcomes can be subjective, while objective 

clinical measures like blood pressure offer a more precise assessment; 

- Timing of assessment: The order in which noise and air pollution exposure and health 

outcomes are measured can influence the observed relationships. Ideally, exposures should 

be assessed before or during the measurement of the health outcome to establish a temporal 

sequence. Moreover, considering the influence of seasonal factors on exposure levels, it is 

important to acknowledge the potential impact of study timing on the results.  

A nuanced approach, considering not just established confounders but also individual susceptibility, 

psychological aspects and work and lifestyle factors, will lead to a more comprehensive understanding 

of the impact of environmental exposures on health. Furthermore, exploring interactions with airport-

related stressors and health effects is paramount to identifying susceptible subgroups and setting 

priorities for prevention.  

2.2.5 Sensitivity analyses  
Sensitivity analyses help to assess how robust the study findings are and whether slight changes in the 

analysis methods or study population might alter the results. For example, an analysis can be 

restricted to participants who participated in all follow-up visits. This helps to ensure consistency in 

exposure assessment and reduces potential bias introduced by missing data. In addition, one could 

opt to only analyse data from participants who had lived in their dwellings for more than five years 

and did not move during the follow-up period. This allows us to investigate the hypothesis that 

prolonged exposure to an environmental stressor might lead to a greater risk of specific health 

problems. By limiting the study to long-term residents, researchers can explore habituation. For 

example, when Nassur et al. (2017) restricted their analysis to participants who lived at their address 

for at least five years, the association between noise exposure and feeling tired in the morning became 
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non-significant, while the association with short sleep duration remained significant. These findings 

suggest that people might be habituated to some aspects of noise over time.  

2.2.6 Assessment of annoyance due to multiple sources   
A recent study investigates how people perceive annoyance from multiple transportation noise 

sources like road, rail and aeroplane traffic (Marquis-Favre et al., 2021). Previously, researchers 

proposed various models to predict total annoyance from combined noise sources, but these models 

were rarely assessed using real-world data. This study aimed to address this gap by (i) analysing 

annoyance data collected from urban residents exposed to two or three transportation noise sources 

and (ii) evaluating ten existing total annoyance models. The study found that models based on 

individual noise source annoyance (i.e., perceptual models) performed better than models based on 

a single noise level index (i.e., psychosocial models). This suggests people’s annoyance is more 

intricately linked to how they perceive each noise source, rather than just a combined decibel level. 

While the strongest noise source significantly influenced the overall annoyance (i.e., dominant source 

effect), the study also revealed the importance of interactions between noise sources. The ‘strongest 

component model’ worked well for predicting average annoyance ratings while perceptual models 

with interaction terms (like mixed models) provided a more comprehensive explanation by accounting 

for how each noise source and their interactions contribute to annoyance. Furthermore, a perceptual 

linear regression model showed promise for situations with more than two noise sources, as it 

considers the contribution of each source. By highlighting the importance of perception and 

interaction effects, this study offers valuable insights for future research on combined noise sources 

and how they influence annoyance.  

2.2.7 Noise annoyance as a mediator and noise sensitivity as a moderator  
Recent DEBATS studies (Baudin et al., 2021; Kodji et al., 2023) investigated noise annoyance as a 

mediator and noise sensitivity as a moderator in the association between noise and self-reported 

health using Baron and Kenny’s recommendations (Baron & Kenny, 1986). A mediator variable (M) 

(e.g., aircraft noise annoyance) serves to clarify the nature of the relationship between the 

independent variable (X) (e.g., aircraft noise levels) and the dependent variable (Y) (e.g., self-reported 

health). In other words, mediating relationships occur when a third variable plays a key role in 

governing the relationship between the other two variables. The results from three regression models 

are compared to assess a possible mediator:  

- Model 1: Evaluate the association between mediator (M) and independent variable (X) to 

establish if X has a significant effect on M;  

- Model 2: Evaluate the association between the dependent variable (Y) on the independent 

variable (X) to assess the total effect of X on Y; 

- Model 3: Evaluate the association between the dependent variable (Y) on both the 

independent variable (X) and the mediator (M) to help determine if the effect of X on Y is 

partially or fully explained by M. 

To conclude mediation, two key criteria should be met:  

- Significant effect in Model 1: X (e.g., aircraft noise levels) must have a statistically significant 

effect on M (e.g., aircraft noise annoyance); 

- Reduced or eliminated effect in Model 3: the effect of X (e.g., aircraft noise levels) on Y (e.g., 

self-reported health) in Model 3 (direct effect) should be weaker (ideally, non-significant) 

compared to Model 2 (total effect). This suggests that M (e.g., aircraft noise annoyance) is 

part or all of the original relationship between X and Y.  
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A moderating variable changes the strength or direction of an effect between two variables X and Y. 

A moderation analysis explains how the interaction between the independent variable X (e.g., aircraft 

noise levels) and the moderator variable (W) (e.g., noise sensitivity) influences the dependent variable 

Y (e.g., self-reported health). Interaction terms are included in the regression model. Typically, the 

model includes the main effects of X and W, along with their interaction term (X*W). A significant 

interaction term (X*W) indicates that the effect of X on Y depends on the level of W. Researchers then 

need to explore how the relationship between X and Y changes at different values of W.  

It is important to ensure a sufficient sample size to reliably detect mediation or moderation effects as 

also highlighted by Baudin et al. (2021) who stated that the detection of the moderating role of 

annoyance would require approximately four times as many participants as compared to the model 

without the interaction (Baudin et al., 2021). 

2.2.8 Dose-response relationships  
Regression analysis is a statistical analysis technique used to estimate the connection between one or 

more predictors (i.e., airport-related stressors like UFP or aviation noise) and various health outcomes 

(e.g., respiratory illness rates or sleep disturbance). Regression analysis goes beyond simply identifying 

an association. It provides a measure of the strength of the relationship, allowing researchers to 

establish dose-response curves. Moreover, it can control for different acoustical and non-acoustical 

variables to isolate the specific effect of airport-related exposure on health outcomes. Linear 

regression is used for continuous health outcomes, for instance, to assess how changes in UFP levels 

from the airport relate to changes in blood pressure measurements. When the health outcome is 

binary (e.g., presence or absence of health outcome), logistic regression is used to estimate the odds 

of someone experiencing a negative health outcome (e.g., severe annoyance) based on their level of 

exposure to airport-related stressors.  

The dose-response relationship between airport-related stressors and health effects is often assumed 

to be linear: with an increase in exposure, the effect also increases. However, a dose-response curve 

can also have another form in which there is, for example, at higher exposure levels a flattening or 

decrease in health effects seen (non-linear relationships). Possible non-linear effects can also be 

modelled by adding a so-called ‘natural cubic spline’ function to a regression model. A ‘spline’ consists 

of several concentrated, usually third-degree polynomials. The more nodes, the more flexible the 

estimation of the curve. RIVM presented findings on dose-response relationships for aircraft noise 

annoyance and sleep disturbance in the Netherlands using this method (van Poll et al., 2023). 

2.2.9 Sample size and power calculations  
A crucial element of robust research design is ensuring an adequate sample size. Accordingly, sample 

size calculations, along with power analysis, play a key role in determining the strength and reliability 

of the findings of a study. Larger sample sizes allow for more precise estimations of the true effects of 

airport stressors on health outcomes. Smaller samples can lead to wider confidential intervals, making 

it difficult to determine if observed associations are statistically significant. Moreover, adequate 

sample sizes are more likely to represent the entire community around the airport (under the 

condition of recruitment strategy).  

Sample size directly impacts the study’s statistical power which refers to the probability of detecting 

a true association between exposure and health effects, if one exists. Low power increases the risk of 

missing a real effect (i.e., type II error). Sample size calculations are influenced by (i) the anticipated 

magnitude of the health effect being investigated (larger expected effects require smaller sample sizes 

to be detected with sufficient power), (ii) the desired level of significance (alpha) which is typically 
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0.05, (iii) the study design and (iv) anticipated variation in the data (higher degree of variability in the 

exposure levels and health outcomes necessitates larger sample size). Power analysis, often 

conducted alongside sample size calculations, helps researchers determine the minimum sample size 

needed to achieve a desired level of power which is typically 80% or higher. This ensures a high 

probability of detecting a true relationship between airport stressors and health if it exists.  

In practice, it is unusual that authors report explicitly what their studies were powered to detect, but 

it can be particularly important where a study reports multiple outcomes. An example is the study by 

Rojek et al. (2019) on indicators of cardiac health, which reported over 40 combinations of outcome 

and population stratum (Rojek et al., 2019). The authors reported that the study was powered to 

detect a difference in pulse wave velocity (PWV), and reported indicators related to asymptomatic 

heart damage alongside PWV. Among those indicators of asymptomatic heart damage, some had 

significant associations with the noise level, and some did not. It is possible that the study lacked the 

power to detect meaningful differences in some or all of those indicators. A study may in practice be 

powered for secondary outcomes, but it is good practice to specify a primary outcome and calculate 

the necessary sample size concerning that outcome.  

The smaller the absolute effect you wish to detect, the greater power is needed: to detect a difference 

of 30% vs 33% prevalence of an indicator requires more power than to detect a difference of 30% vs 

40% prevalence. Likewise, smaller relative effects require greater power: to detect a difference of 3 

percentage points between 30% and 33% requires greater power than to detect a difference of 3 

percentage points between 10% and 13%. Power is related to sample size, and to get more precise 

estimates or detect smaller effects, larger sample sizes are needed. Several statistical software 

packages and online calculators are available to facilitate sample size and power calculations for 

various study designs (e.g., G*Power).  

2.2.10 Bias   
Even the most well-designed studies can be susceptible to bias, possibly leading to inaccurate or 

misleading conclusions. For example, even after accounting for some factors that might influence both 

the exposure and the health outcome (e.g., age, income), there might be other unmeasured variables 

that confound the relationship between airport-related stressors and health which can lead to 

misleading results resulting in uncontrolled or residual confounding. In addition, recall bias occurs 

when participants inaccurately recall past events or exposures. In airport health research, people 

might overestimate or underestimate their noise exposure or past health problems. For example, 

people who are currently experiencing sleep problems might be more likely to recall past sleep 

disturbances even if they were not as severe which could lead to an overestimation of the association 

between noise and sleep problems. Moreover, selection bias can occur when the study population 

does not accurately reflect the entire target population of interest. In airport health studies, this might 

happen if people who are more (or less) bothered by airport-related operations, such as aviation 

noise, are more likely to participate. This can skew the results and make it difficult to generalize the 

findings to the whole community around the airport. By comparing the characteristics of participants 

with the characteristics of the non-responding inhabitants in the affected zone, researchers can assess 

if there were major differences in age or socioeconomic status (i.e., non-responder analysis). Finding 

no major discrepancies suggests a potentially representative sample among those who responded. 

Another strategy to mitigate selection bias could be to blind participants to the study's purpose. 

Keeping the specific aim of the study hidden from participant until later in the questionnaire can 

reduce the chance of altering their responses based on their own biases or expectations. This strategy 

proves particularly important when investigating noise annoyance, as participants might be more 
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likely to report annoyance if they know that it is the focus of the study. However, blinding study 

purpose can conflict with creating trust and participation (note: in Flemish environmental health 

research conducted by VITO, PIH and Sciensano, the technique of blinding has never been used).  

3 Input for Work Package 4  

Airports play a vital role in our globalized world, but their operations can come at a cost to the health 

of nearby communities. As explored in Chapter 1, exposure to aircraft noise and air pollution, including 

UFP, has been linked to a range of health problems. Next, Chapter 2 provides an overview of research 

approaches and strategies for investigating the link between these airport-related stressors and health 

outcomes. Both chapters provide valuable input to explore opportunities for future research in the 

region of Brussels Airport as will be detailed further in WP4.  
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Appendix I – Aircraft noise health effects 

1 Evidence-based health indicators for aircraft noise exposure  

The strongest base of evidence regarding exposure-response relationships between noise and health 

has been published by the World Health Organization (WHO) Regional Office for Europe in the form 

of a guidance document Environmental noise guidelines for the European region (WHO Regional 

Office for Europe, 2018). The WHO guidelines are based on systematic reviews of studies with an 

observational study design published between 2000 and August 2015. This and reviews by the UK 

Department for Environment, Food and Rural Affairs (DEFRA) were updated (specifically aircraft noise 

exposure) by the Aviation Noise Impact Management through novel Approaches (ANIMA) consortium 

with studies up to August 2018 (Benz et al., 2022) and by a rapid evidence assessment of the 

Independent Commission on Civil Aviation Noise (ICCAN) of the UK Government including studies 

published from March 2019 to April 2020 (Grollman et al., 2020). In Appendix I, we consider the quality 

of evidence relating aircraft noise to given health outcomes provided by these reviews. For some 

outcomes, there was evidence from one of the updates and the WHO reviews. For these outcomes, 

ICCAN took the conclusion of the WHO and/or Defra reviews as the starting level for the quality of 

evidence, applied the GRADE process to the additional evidence from the updated review and decided 

whether to revise the GRADE rating (i.e., ICCAN synthesis). The Defra-RIVM review (van Kamp et al., 

2020) did not conduct GRADE assessments but they included the conclusions of that review regarding 

the direction of effect. 

For the development of the environmental noise guidelines by the WHO, a selection of health 

outcomes was identified as either critical or important for developing recommendations on the health 

impacts of environmental noise (Appendix I Table 1). Cardiovascular disease, annoyance, effects on 

sleep, cognitive impairment and hearing impairment and tinnitus were rated as critical health 

outcomes. Adverse birth outcomes, quality of living, metabolic outcomes and well-being and 

subjected (self-rated) health were rated as important outcomes. The outcome measures given in bold 

were prioritized in terms of their representativeness, validity, impact of disease and disability weights 

(DWs)1 associated with the health outcome measure. These priority outcome measures were used to 

derive the guideline exposure levels. For cardiovascular disease, the incidence of ischemic heart 

disease (including angina pectoris and/or myocardial infarction) and hypertension were prioritized. 

Except for self-reports, these are objective measures for cardiovascular disease which affect a large 

proportion of the population, have important health consequences and can lead to more severe 

diseases and/or mortality. For effects on sleep, the percentage of the population highly sleep-

disturbed (%HSD) is defined as the most meaningful, policy-relevant measure of this health outcome. 

Self-reported sleep disturbances are a very common problem in the general population: they affect 

the quality of life directly and may also lead to subsequent health impediments. Effects on sleep may 

also be in the causal pathway to cardiovascular disease. This measure is not a proxy for physiological 

sleep quality parameters, but it is an important outcome in its own right. The percentage of the 

 

1 DWs are ratings that vary between 0 and 1, in which 0 indicates no disability and 1 indicates the maximum 

amount of disability. The rates are derived from large population surveys in which people are asked to rank a 

specific disease for its impact on several abilities. The DWs have been proven useful in calculating the burden of 

disease.  
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population highly annoyed (%HA) forms the most objective measure of annoyance. Large proportions 

of the population are affected by noise annoyance, even at relatively low exposure levels. Annoyance 

may be in the causal pathway to cardiovascular disease. Reading and oral comprehension were 

acknowledged as the most meaningful outcome measures as they can affect vulnerable individuals, 

namely children, and have a significant impact later in life. Permanent hearing impairment is another 

health outcome that can affect children and have a significant impact later in life.  

Appendix I Table 1: Health outcomes prioritized by the WHO as “critical” or “important” health outcomes for the 
establishment of the environment noise guidelines.  

Health outcome  Health outcome measure  

Critical health outcomes 

Cardiovascular disease (Lden) Self-reported or measured prevalence, incidence, hospital admission or 

mortality due to:  

- Ischemic heart disease (DW = 0.405) 
- Hypertension (DW = 0.117) 
- Stroke 

Effects on sleep (Lnight) - Percentage of the population highly sleep-disturbed (%HSD), self-
reported, assessed with a standardized scale (DW = 0.07) 

- Polysomnography measured outcomes (probability of additional 
awakenings)  

- Cardiac and blood pressure outcome measures during sleep  
- Motility-measured sleep outcomes in adults  
- Sleep disturbance in children  

Annoyance (Lden) - Percentage of the population highly annoyed (%HA), assessed with 
standardized scale (DW = 0.02) 

- Percentage annoyed, preferably assessed with a standardized scale  

Cognitive impairment (Lden) - Reading and oral comprehension, assessed with tests (DW = 0.006)  
- Impairment assessed with standardized tests  
- Short- and long-term memory deficit  
- Attention deficit  
- Executive function deficit (working memory capacity)  

Hearing impairment and 

tinnitus (LAeq) 

- Permanent hearing impairment, measured by audiometry (DW (for 
mild severity level (threshold at 25 dB) for childhood onset) = 0.015) 

Important health outcomes  

Adverse birth outcomes (Lden) - Preterm delivery  
- Low birth weight  
- Congenital anomalies  

Quality of life, well-being and 

mental health (Lden) 

- Self-reported health and quality of life  
- Medication intake for depression and anxiety  
- Self-reported depression, anxiety and psychological distress  
- Interviewer-assessed depressive and anxiety disorders  
- Emotional and conduct disorders in children  
- Children’s hyperactivity  
- Other mental health outcomes 

Metabolic outcomes (Lden) Prevalence, incidence, hospital admission or mortality due to:  

- Type 2 diabetes  
- Obesity  
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1.1 Cardiovascular and metabolic outcomes 
Noise is an important risk factor for chronic diseases. Noise exposure activates stress reactions in the 

body, possibly leading to increases in blood pressure, a changing heart rate and a release of stress 

hormones. In addition, the cardiovascular and metabolic effects related to noise exposure may also 

be a consequence of a reduction in sleep quality, caused by noise exposure during the night, among 

other additional or interrelated mechanisms. These chronic effects can lead to premature mortality.  

Appendix I Table 2 summarizes the quality of evidence for the cardiovascular and metabolic effects of 

aircraft noise exposure.  

Appendix I Table 2: Summary of quality of evidence for cardiovascular and metabolic outcomes, from (Grollman 
et al., 2020). 

Outcome Quality of evidence – direction of effect  

WHO review (2018) Defra-RIVM 

review (2020) 

ICCAN review 

(2020) 

ICCAN synthesis 

(2020) 

Arterial stiffness    Low quality – 

harmful effect 

 

Blood pressure    Very low quality – 

no effect 

 

Blood pressure in children Very low quality – 

no effect 

   

Cortisol levels    Very low quality – 

harmful effect 

 

Diabetes incidence  Low quality – no 

effect  

No GRADE - 

harmful effect 

Low quality – 

harmful effect 

Low quality – 

harmful effect 

Diabetes prevalence  Very low quality – 

no effect  

   

Heart rate    Very low quality – 

harmful effect 

 

Hypertension incidence  Low quality – no 

effect  

No GRADE – 

harmful effect  

 Low quality – 

harmful effect 

Hypertension prevalence  Low quality – no 

effect 

   

Incidence of central 

obesity  

 No GRADE – 

harmful effect  

  

Ischemic heart disease 

incidence 

Very low quality – 

harmful effect 

No GRADE – 

harmful effect 

Low quality – 

harmful effect  

Low quality – 

harmful effect 

Ischemic heart disease 

mortality  

Low quality – no 

effect  

   

Ischemic heart disease 

prevalence  

Very low quality – 

no effect  

   

Asymptomatic heart 

damage  

  Very low quality – 

harmful effect 

 

Obesity (change in BMI)  Low quality – no 

effect 

   

Obesity (change in waist 

circumference)  

Moderate quality – 

harmful effect  

   

Obesity (incidence of 

overweight) 

 No GRADE – 

harmful effect  

  

Obesity (weight gain)   No GRADE – 

harmful effect 
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Outcome Quality of evidence – direction of effect 

WHO review 

(2018) 

Defra-RIVM 

review (2020) 

ICCAN review 

(2020) 

ICCAN synthesis 

(2020) 

Self-reported diagnosis 

of arrythmia  

  Very low quality – 

no effect  

 

Self-reported diagnosis 

of diabetes  

  Very low quality – 

no effect  

 

Self-reported diagnosis 

of heart disease  

  Very low quality – 

no effect  

 

Self-reported diagnosis 

of hypertension  

  Very low quality – 

no effect  

 

Stroke incidence  Very low quality – 

harmful effect  

 Moderate quality – 

harmful effect  

Moderate quality – 

harmful effect 

Stroke mortality  Moderate quality – 

no effect  

No GRADE – 

harmful effect  

 Moderate quality – 

no effect 

Stroke prevalence  Very low quality – 

no effect  

   

1.1.1 Cardiovascular outcomes  
The main cardiovascular health effects discussed in the WHO environmental noise guidelines were 

hypertension, ischemic heart disease and stroke (Kempen et al., 2018). New studies show that aircraft 

noise exposure may increase the risk of hypertension, especially during the nighttime. Researchers 

highlight that the evidence concerning aircraft noise and heart disease needs cautious interpretation 

and further research. The studies investigated either the prevalence or the incidence of diseases 

associated with aircraft noise exposure. Prevalence describes the occurrence of a disease in a higher 

aviation noise-exposed population relative to the occurrence of the disease in a less exposed 

population. The aviation noise-induced incidence of a disease, however, refers to the occurrence of 

new cases of this disease in a highly exposed population compared to new cases in an unexposed or 

less exposed population.  

Hypertension is an important medical condition, which is also a significant risk factor for other 

cardiovascular diseases and is the leading cause of cardiovascular mortality. The association between 

noise exposure and hypertension has been explained by the physiological stress response that may 

be triggered by noise exposure, resulting in activation of the sympathetic and neuroendocrine 

systems, which in turn leads to increased levels of stress hormones, which is itself associated with 

higher heart rate and blood pressure (also see Figure 2, main text). The initial WHO review (Kempen 

et al., 2018) concluded that there was low quality evidence supporting an association between aircraft 

noise and the incidence of hypertension mostly due to a high risk of bias, in large part attributable to 

selection bias or determination of hypertension status through self-reporting only. The Defra-RIVM 

(van Kamp et al., 2020) and ANIMA review (Benz et al., 2022) added evidence from two cohort studies 

showing a harmful effect of aviation noise, with evident importance of exposure during the night 

(Saucy et al., 2021; Schmidt et al., 2021), and one case-control study showing no effect (Zeeb et al., 

2017). The ICCAN update concludes that given the finding of an effect in those two cohort studies, the 

evidence may point toward a harmful effect and that given the inconsistency, the quality of the 

evidence remains low. A recent review also confirmed this strength and quality of evidence 

(Sivakumaran, Ritonja, Waseem, AlShenaibar, et al., 2022b). Studies with additional methodological 

improvements (e.g., longitudinal design) would be needed to further reduce inconsistencies and 
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improve the quality. Two recent cohort studies further strengthen the link between aircraft noise 

exposure and hypertension incidence (C. S. Kim et al., 2022; Kourieh et al., 2022) whereas no 

association with aircraft noise and hypertension (stable across several sensitivity analyses) was 

observed among post-menopausal women (Nguyen et al., 2023). The latter study did observe elevated 

risk among certain subpopulations such as those who lived in areas with fewer other sources of 

ambient noise.   

From the reviewed studies, the WHO observed that the increased risk for ischemic heart disease (IHD, 

also known as coronary artery disease) was statistically associated with increased exposure to aviation 

noise. It was observed that aircraft noise was associated with the prevalence, incidence and mortality 

caused by IHD. However, only the association with the incidence of IHD was found to be small but 

statistically significant. The review authors conclude that the evidence of this finding is considered 

very low (most studies were of ecological or cross-sectional design). In addition, the ANIMA update 

states that the relationship between aircraft noise exposure and risk of myocardial infarction or 

mortality from IHD needs cautious interpretation and that further research is required on this theme. 

The heart diseases are all in all multi-factorial determined and the impact of aircraft noise is relatively 

small. However, it becomes relevant given that in a population even health effects of small size sum 

up to a considerable number of people suffering from severe health problems. The Defra-RIVM review 

concluded there was a small harmful effect but did not assess the quality of evidence. The meta-

analysis by (Vienneau et al., 2019) also concluded there was evidence of a non-significant harmful 

effect. Given the increased size of the evidence base and consistency of the results, on the one hand, 

but also the high risk of bias in contributing studies on the other hand, ICCAN concluded that there is 

low quality evidence of a small harmful effect of aircraft noise on the incidence of IHD. A recent 

pooled study of nine Scandinavian cohorts indicated an association between aircraft noise and 

ischemic heart disease, particularly when angina pectoris cases were excluded, but without a clear 

exposure-response relation (Pyko et al., 2023). 

Aircraft noise exposure was identified to be associated with an increase in both the prevalence and 

incidence of stroke. None of these associations observed in ecological and cross-sectional studies 

were statistically significant. Moreover, no association between air traffic noise and mortality due to 

stroke were defined in the initial WHO review (Kempen et al., 2018). The review authors rated the 

related quality of evidence very low. The lack of statistical significance could be related to the small 

number of people who are exposed to the highest levels of aviation noise. The ANIMA review (Benz 

et al., 2022) included four publications on cerebrovascular disease including different types of stroke. 

Overall, they found no conclusive evidence concerning an association between aircraft noise exposure 

and stroke as also confirmed by an RIVM scoping review of new evidence (van Kamp et al., 2020). A 

meta-analysis on aircraft noise and the risk of stroke found a small (1.3%), marginally significant 

increased risk of stroke per 10 dB increase in aircraft noise exposure (pooled RR=1.013, 95% CI 0.998 

to 1.028) (Weihofen et al., 2019). ICCAN performed a GRADE assessment on this meta-analysis and 

concluded that there is moderate quality evidence of a small harmful effect of aircraft noise on the 

incidence of stroke (Grollman et al., 2020). For stroke mortality, they consider the findings of the WHO 

to stand and conclude there is moderate quality evidence of no effect on stroke mortality. A recent 

pooled study of nine Scandinavian cohorts reported that only moderate exposure to aircraft noise was 

positively associated with stroke incidence (40-50 dB(A) vs. little or no exposure) and that there was 

no evidence of an increased risk among those with high exposure (Roswall et al., 2021).  

Recently, a study compared residents of Krakow, Poland in areas exposed to high and low aircraft 

noise and investigated a range of cardiovascular outcomes, namely blood pressure, arterial stiffness 

and a range of echocardiographic indicators selected for association with asymptomatic organ damage 
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(Rojek et al., 2019). ICCAN performed a GRADE assessment on this study and concluded that there is 

low quality evidence of a harmful effect of aircraft noise on arterial stiffness. Given mixed results within 

the study, they concluded very low quality evidence of the harmful effect of aircraft noise on 

asymptomatic heart damage. In addition, the natural relationship between pulse wave velocity (PWV) 

and age, previously skewed by aircraft noise exposure, was restored (Wojciechowska et al., 2022). 

Several studies assessed the effect of aircraft noise on heart rate. Due to conflicting results within and 

across studies and differences in population, the evidence for a harmful effect was of very low quality. 

A recent review confirmed the strength and quality of evidence of this finding (Sivakumaran, Ritonja, 

Waseem, AlShenaibar, et al., 2022b). The ICCAN concluded very low quality for the harmful effect of 

aircraft noise on cortisol levels as it was based on only one cross-sectional study with mixed results 

(Baudin et al., 2019). A recent review confirmed that air traffic noise exposure may have little to no 

effect on cortisol levels and the quality of evidence is very low (Sivakumaran, Ritonja, Waseem, 

AlShenaiber, et al., 2022). 

Recent studies (mainly in experimental animals) have investigated the potential link between aircraft 

noise exposure and endothelial function (Bayo Jimenez et al., 2023; Kvandová et al., 2023; Münzel et 

al., 2023). This is important because the endothelium forms a thin lining inside our blood vessels and 

heart that plays a crucial role in vascular health. Endothelial cells release substances that control blood 

flow and pressure and prevent blood clots. When the endothelium malfunctions (i.e., endothelial 

dysfunction), it cannot function properly, potentially leading to diseases like stroke and heart attacks. 

Conditions like hypertension, diabetes and smoking can contribute to this dysfunction. Endothelial 

dysfunction is often an early sign of atherosclerosis, a chronic condition where the artery walls thicken 

and stiffen, reducing blood flow and increasing the risk of heart attack and stroke.  

Even though cardiovascular risk estimates for aircraft noise are found to be much lower than the ones 

found for known individual lifestyle risk factors for the development of cardiovascular diseases, 

individual lifestyle risk factors can be influenced by individual behaviour, and therefore, are not 

comparable. Also, protection from health consequences of traffic noise exposure is a governmental 

and management task and an individual does not have a direct influence over it.  

As there are still uncertainties in scientific evidence, the precautionary principle is recommended. 

Decisions can be made based on the best available data and future studies should also focus on 

vulnerable groups, effect modifiers, sensitive hours of the day, coping mechanisms, differences 

between noise sources, possible confounding with air pollution and differences between objective 

(noise level) and subjective (noise perception) exposure.  

Though the evidence supporting the association between aircraft noise exposure and cardiovascular 

health outcomes is substantial, there is still heterogeneity among studies in estimating the effect size. 

There are many reasons for heterogeneity among epidemiological studies due to different study 

designs, differences in exposure of observed populations and differences in exposure, confounder and 

outcome assessment. Especially unfavourable for the evaluation of the evidence of noise effects 

exposure is the use of different noise metrics, as the quantification of the noise exposure requires a 

common unit. The question, regarding which noise indicator is the most relevant in describing the 

relationship between aircraft noise exposure and health effects, is a recurring theme.  

Aircraft noise exposure may increase the risk of cardiovascular diseases, although the evidence 

available may currently be contested. Subjective and objective factors may influence individual 

responses to aviation noise. It is through further research that a better understanding of the 

relationship between noise exposure and cardiovascular disease risk and mortality may be revealed. 
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New studies add information on the importance of nighttime exposure to noise, and the number 

and the level of individual noise events, therefore they should be considered in more detail. 

1.1.2 Metabolic outcomes  
Besides cardiovascular disease, diabetes also has a great public health significance as it is one of the 

largest public health challenges today. Potential mechanisms behind the effect of noise on diabetes 

include reduced insulin levels and sensitivity due to increased levels of cortisol and disturbance of 

sleep, as well as changed levels of appetite-regulating hormones due to sleep disturbance.  

For the incidence of diabetes, the WHO review (Kempen et al., 2018) concluded there was low quality 

evidence of no effect of aviation noise. The Defra-RIVM review (van Kamp et al., 2020) did not assess 

the quality of evidence but reported there was inconsistent evidence between high quality studies, 

with two cohort studies respectively indicating a harmful effect and no effect. Vienneau et al. (2019) 

conducted a meta-analysis that included the studies from the WHO and Defra-RIVM reviews and 

concluded there was evidence of a harmful effect (a fairly large effect too, with a pooled RR=1.20, but 

a wide 95% CI of 0.88 to 1.63) but that this was not statistically significant (Vienneau et al., 2019). 

ICCAN performed their GRADE assessment on the meta-analysis, considering that it was the most 

thorough treatment of the evidence available. As the contributing studies had high-quality designs 

(being all cohorts or case-control studies) the evidence started at high quality but was downgraded 

for inconsistency and lack of precision. They conclude that there is low quality evidence of a harmful 

effect of aircraft noise on the incidence of diabetes (Grollman et al., 2020). A recent study in 

Switzerland on the effects of long-term transportation noise on mortality and diabetes type 2 only 

found evidence for a significant association with railway and road traffic noise but not aircraft noise 

(Vienneau et al., 2022). 

The initial WHO review (Kempen et al., 2018) suggested a possible link to obesity. In recent years, 

three studies investigated this connection further. Two studies on obesity/overweight yielded mixed 

results but due to inconsistencies across the studies and a lack of precision in the results, the overall 

quality of evidence is considered to be low. A very recent study in two nationwide cohorts of female 

nurses in the United Stated, showed an association between higher aircraft noise exposure and higher 

body mass index (BMI; used as proxy for obesity), adding evidence to the aviation noise-obesity-

disease pathway (Bozigar et al., 2024). 

The potential impact of aircraft noise on metabolic health, particularly diabetes type 2, is a growing 

area of research. However, current evidence is still inconclusive. Therefore, no firm conclusions can 

be drawn from the current evidence. More research is needed on the topic of metabolic diseases.  

1.2 Sleep-related outcomes 
Sleep serves to facilitate vital functions in our body. Noise fragments sleep, reduces sleep continuity 

and reduces the total amount of sleep time, which can have impacts on alertness, performance at 

work and quality of life. Sleep restriction causes, among other things, changes in glucose metabolism 

and appetite regulation, impaired memory consolidation and dysfunction in blood vessels. Long-term 

sleep disturbance can lead to cardiovascular health issues.  

 

Appendix I Table 3 summarizes the quality of evidence of sleep-related outcomes by aircraft noise 

exposure.  
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Appendix I Table 3: Summary of quality of evidence for sleep-related outcomes, from (Grollman et al., 2020).  

Outcome Quality of evidence – direction of effect  

WHO review 

(2018) 

Defra-RIVM 

review (2020) 

ICCAN review 

(2020) 

ICCAN synthesis 

(2020) 

Physiologically measured 

awakenings in adults  

Moderate quality 

– harmful effect  

 Low quality – 

harmful effect 

Moderate quality 

– harmful effect 

Self-reported sleep quality    Very low quality 

– harmful effect 

 

Self-reported sleep coping 

behaviours  

  Very low quality 

– harmful effect 

 

Self-reported awakenings    Low quality – 

harmful effect 

 

Self-reported sleep disorder   Very low quality 

– no effect  

 

Self-reported sleep 

disturbance in adults (source 

not specified) 

Very low quality – 

harmful effect  

   

Self-reported sleep 

disturbance in adults (source 

specified) 

Moderate quality 

– harmful effect  

No GRADE – 

harmful effect  

Low quality – 

harmful effect 

Moderate quality 

– harmful effect  

 

For self-reported sleep disturbance in adults where noise was specified in the survey instrument, the 

WHO review (Basner & McGuire, 2018) showed that there was moderate evidence of a harmful effect 

of aviation noise. The Defra-RIVM review (van Kamp et al., 2020) found additional studies on self-

reported sleep disturbance; the authors did not report whether or not noise was specified in the 

survey instrument. The authors described the results as “not consistent, primarily due to 

methodological differences between the studies, nevertheless pointing in the same direction”, which 

we consider to be consistent enough with the findings of the WHO review. The ICCAN review found 

two further papers reporting on this outcome (Brink et al., 2019; Rocha et al., 2019), both of which 

were cross-sectional and one of which had a moderate risk of bias. Both papers found a harmful effect. 

The ICCAN review concluded that the quality of evidence remains moderate for the harmful effect of 

aircraft noise on self-reported sleep disturbance in adults where noise was specified in the survey. A 

recent review paper on environmental noise and its effects on sleep confirmed the strength and 

quality of the evidence (Smith et al., 2022). Interestingly, the authors indicate that populations 

exposed to higher levels of aircraft noise might be more susceptible to sleep disturbance than 

previously reported.  

For cortical awakenings measured by polysomnography (physiologically measured awakening), the 

WHO review concluded there was moderate quality evidence of a harmful effect. Polysomnography 

involves multiple monitors attached to the body to measure brain, eye, muscle and other signals. It is 

the state of the art for objective measures of sleep but is expensive, logistically difficult to implement 

and relatively invasive. The study by Basner et al. (2019) involved using a less invasive single monitor 

of heart activity and movement that participants could apply themselves (Basner et al., 2019). Since 

the authors report that the agreement between this method and polysomnography was near perfect, 

the ICCAN authors found it appropriate to consider this evidence together as “physiologically 

measured awakenings”. The study by Basner et al. (2019) was a small cross-sectional study that on its 

own could only offer low quality evidence. Nonetheless, the ICCAN review concluded that given the 

strong result consistent with the finding of the WHO review, it would be appropriate to maintain the 
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finding of moderate quality evidence of a harmful effect of aircraft noise on physiologically measured 

awakenings. 

ICCAN reported a harmful effect on self-reported sleep quality (Basner et al., 2019; Rocha et al., 2019; 

Smith et al., 2020) and self-reported sleep coping behaviours (Rocha et al., 2019) but concluded that 

the evidence was of very low quality. The conclusion was based on cross-sectional studies with some 

inconsistencies. The evidence of a harmful effect on self-reported awakenings was estimated to be of 

low quality but was only based on one cross-sectional study (Smith et al., 2020). Moreover, they 

reported no effect of aircraft noise on self-reported sleep disorder, but the quality of evidence was of 

very low quality as it was based on one cross-sectional study (Rocha et al., 2019) with moderate risk 

of bias. Important to note that the studies included for this assessment are all pilot studies and are 

not powered to elucidate precise associations or effects, hence the results are only indicative.  

Physiological measurements reveal sleep disturbances due to aircraft noise exposure, mainly 

represented by awakenings. Self-reported measures of sleep outcomes are affected by aircraft noise 

exposure, too, but do not necessarily reflect physiologically measured sleep outcomes. The 

magnitude of the effect of aircraft noise exposure on sleep is influenced both by the assessment of 

exposure variables and sleep outcomes. Average sound pressure levels are insufficient predictors of 

both physiologically measured and self-reported sleep outcomes. The number of noise events and 

maximum levels should be considered, too. 

Whether a noise event can cause an awakening does not only depend on its acoustic properties (e.g., 

loudness, duration, speed of volume increase) but also on situational and personal factors (Bartels et 

al., 2022). Situational factors include (i) the time asleep: as sleep progresses, the body’s natural sleep 

drive weakens, making one more susceptible to waking from noise, especially in early mornings, (ii) 

the sleep stage: deep sleep stages are less likely to be disrupted by noise than lighter sleep stages and 

(iii) the background noise: aircraft noise is more likely to wake you up if it stands out significantly from 

the surrounding background noise. Personal factors such as age can influence sleep. As we age, sleep 

patterns change. Deep sleep decreases, making older adults potentially more susceptible to waking 

from aircraft noise, although research on this is limited. Children, conversely, are less likely to be 

woken up compared to adults by the same noise level. According to current research, gender does not 

seem to significantly influence how likely you are to wake up from aircraft noise, nor does it appear 

to affect how much sleep disturbance people report. In addition, people who are more noise sensitive 

to noise in general might be more bothered by aircraft noise and experience more sleep disturbance 

from it. However, more research is needed to understand the exact link between noise sensitivity and 

physiological sleep measurements.  

Whilst the effects of aircraft noise on sleep in adults are well studied, with impacts including reduced 

sleep duration, decreased self-reported quality, changes in sleep architecture with decreased 

proportions of deep sleep and increased sleep fragmentation, the impacts of such noise on infants 

remain poorly understood. A recent study investigated the relationship between nocturnal 

transportation noise (i.e., road, rail and airplane noise) and actimetry-derived habitual sleep behaviour 

across the first year of life (Blume et al., 2022). Overall, the researchers found no significant link 

between nighttime noise and infant sleep across the first year. However, an interesting interaction 

emerged; infants with siblings showed no sleep disruption from noise while infants without siblings 

did experience shorter sleep durations with higher noise levels. Possibly infants might have a natural 

protection against external disturbances like noise during their first year or those living in quieter areas 

(without siblings) might be more sensitive to noise disruptions.  
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1.3 Cognitive outcomes  
Noise exposure has been considered in the research associated with impairment to cognitive function. 

Children have the propensity to be especially vulnerable as their cognitive functions are less 

automatized and, thus, more prone to disruption in comparison to adults (Klatte et al., 2013). Noise 

in classrooms affect children in many ways, including lowering their motivation, reducing speech 

intelligibility, listening comprehension and concentration, producing annoyance and disturbance and 

increasing restlessness. As a result, children exposed to noise at school may experience poorer reading 

ability, memory and performance. Cognitive impairment could also be linked to noise exposure at 

home during night-time hours, which can cause low mood, fatigue and impaired task performance the 

next day. Noise at home may also be linked to hyperactivity and inattention problems, which can cause 

lower academic performance. In addition, the elderly could be considered as susceptible population 

group, as a decline in cognitive functions is already considered to be a normal consequence of aging 

(Glisky, 2007). A decrease in cognitive function in elderly, in addition to the expected decrease from 

aging, is assumed to be associated with environmental noise exposure through noise annoyance (Lee 

et al., 2016). 

Appendix I Table 4 summarizes the quality of evidence for cognitive outcomes by aircraft noise 

exposure. 

Appendix I Table 4: Summary of quality of evidence for cognitive outcomes, from (Grollman et al., 2020). 

Outcome Quality of evidence – direction of effect  

WHO review 

(2018) 

Defra-Arup 

review (2020) 

ICCAN 

review 

(2020) 

ICCAN synthesis 

(2020) 

Assessment of student 

distraction  

 Very low quality 

– harmful effect  

  

Attention  Low quality – no 

effect  

   

Executive function deficit 

(working memory capacity)  

Very low quality – 

no effect  

   

Impairment assessed through 

SATs 

Moderate quality – 

harmful effect  

   

Reading and oral 

comprehension  

Moderate quality – 

harmful effect  

Very low quality 

– harmful effect  

 Moderate quality – 

harmful effect  

Short- and long-term 

(episodic) memory  

Moderate quality – 

harmful effect  

   

 

All studies identified through the WHO review (Clark & Paunovic, 2018) had child populations and 

most focused on aircraft noise exposure. In order to define the association between children’s 

cognitive abilities and aircraft noise exposure, a range of cognitive domains was evaluated. The WHO 

review concluded that there was moderate quality evidence of a harmful effect of aircraft noise on 

reading and oral comprehension. The Defra-Arup review (Clark et al., 2020) included four studies and 

concluded there was very low quality evidence of a harmful effect. The authors of the latter wrote that 

they had made their assessment based on a smaller number of studies some of which had 

methodological weaknesses leading to downgrading and recommended that the findings of the WHO 

review stand. The ICCAN review considers therefore that the WHO finding stands and that there is 

moderate quality evidence of a harmful effect of aircraft noise on reading and oral comprehension. 

The effect of aircraft noise on reading comprehension, which serves a good marker for children’s 
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general cognitive ability, and which influences subsequent attainment and life chances, is confirmed 

as well established in a recent meta-analysis (Clark et al., 2021).  

In conclusions, several reviews (Clark et al., 2021; Clark & Paunovic, 2018; Dohmen et al., 2022) show 

that there are indications that aircraft noise exposure could cause cognitive impairment in children. 

These indications appeared for some cognitive domains stronger (e.g., reading comprehension) than 

for others. Sound insulation of schools proved to be an effective intervention method in some studies 

(Hygge et al., 2002; Sharp et al., 2014). Additionally, some studies indicated that exposure to 

environmental noise (e.g., road traffic noise) might not only affect children’s cognition but also 

cognitive functioning in elderly (Tzivian, Dlugaj, Winkler, Hennig, et al., 2016; Tzivian, Dlugaj, Winkler, 

Weinmayr, et al., 2016; Tzivian et al., 2015). 

1.4 Hearing impairment and tinnitus 
The evidence on aircraft noise exposure and hearing impairment and related effects is a few decades 

old and does not specifically explore impacts on people outside of occupational settings. Hearing 

impairment is mainly associated with exposure to environmental noise in case of very loud or 

persistent listening to music and other leisure activities like fireworks, sports events etc. There is no 

convincing evidence that aircraft noise would cause hearing impairment in the general public. Further 

research may increase knowledge of the relationship between aircraft noise exposure and hearing, 

although there is a suggestion that it is unlikely to be an important factor in hearing impairment 

amongst the adult population. However, more research is needed to verify the possible impact on 

children. Extensive efforts to reduce aircraft noise exposure to prevent annoyance and sleep 

disturbance should further reduce the probability of risks of hearing impairment.  

1.5 Birth and pregnancy outcomes  
The WHO review observed indications for the association between aircraft noise exposure and 

adverse birth outcomes such as preterm birth, low birth weight and congenital abnormalities, but the 

evidence supporting these findings was assessed as of very low quality (Nieuwenhuijsen et al., 2017). 

Further investigation of the association is needed. The ANIMA or ICCAN update did not identify any 

new study investigating the association between aircraft noise and adverse birth outcomes. 

A recent study around Los Angeles International Airport investigated the role of airport-related noise 

and its interaction with traffic-related air pollution on preterm birth risk (Wing et al., 2022). While all 

women in the study area were exposed to high levels of UFP from aircraft (due to proximity to the 

airport), the researchers found that the strongest associations between airport-related noise and 

preterm birth occurred in mothers who were also exposed to high levels of traffic-related air pollution 

suggesting a synergistic effect of aircraft noise and traffic-related air pollution. 

Appendix I Table 5 summarizes the quality of evidence for adverse birth outcomes by aircraft noise 

exposure. 
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Appendix I Table 5: Summary of quality of evidence for birth outcomes, from (Grollman et al., 2020).  

Outcome Quality of evidence – direction of effect  

WHO review (2018) Defra-Arup 

review 

(2020) 

ICCAN 

review 

(2020) 

ICCAN 

synthesis 

(2020) 

Congenital 

malformation   

Very low quality – no overall effect stated 

in GRADE assessment, but harmful effects 

reported in narrative review  

   

Low birth weight  Very low quality – no overall effect stated 

in GRADE assessment, but harmful effects 

reported in narrative review 

   

Preterm birth  Very low quality – no overall effect stated 

in GRADE assessment, but harmful effects 

reported in narrative review 

   

 

Potential mechanisms are maternal sleep disturbance and stress, which may increase heart rate and 

stress hormone levels, and elevated blood pressure. High maternal cortisol levels may reduce foetal 

growth and gestational hypertension is associated with small-for-gestational age. From 20 weeks of 

gestation, the foetus can produce an independent stress response to external stimuli, which may 

further restrict growth.  

Knowledge of the potential relationship between aircraft noise and adverse birth outcomes is 

deficient. Understanding any connections between the two factors requires further research due to 

the importance of the long-term morbidity that they can cause. 

A recent review investigated the potential link between noise exposure during pregnancy and stress-

related obstetric complications, such as pre-eclampsia, gestational diabetes and gestational 

hypertension (Sivakumaran, Ritonja, Waseem, AlShenaibar, et al., 2022a). Out of 11 000 studies 

reviewed, only six met the inclusion criteria and reported on relevant obstetric outcomes. Only one 

study examined aircraft noise (Thacher et al., 2021), whereas the others focused on road traffic noise. 

This study found increased odds of gestational diabetes mellitus among those exposed to ≥ 50 dB of 

aircraft noise. Nevertheless, the quality of evidence was considered low. This review highlights the 

gap in knowledge regarding the impact of noise on pregnancy outcomes and warrants further research 

on this topic.   

1.6 Quality of life, mental health and well-being outcomes  
The WHO review included seven studies and the Defra-Arup review included four studies on self-

reported quality of life (QoL) or health. Both reviews concluded there was very low quality evidence 

of no effect of aircraft noise on self-reported QoL or health. The ICCAN review concludes that there 

was no new evidence on this outcome so that conclusion stands. A recent DEBATS study investigated 

noise annoyance as a mediator and noise sensitivity as a moderator in the association between noise 

and self-reported health (Kodji et al., 2023). The study suggests that the adverse effect of aircraft noise 

on self-reported health status could be mediated by noise annoyance. Moreover, noise sensitivity 

might moderate the health effects of noise, with a stronger association observed in men who reported 

to high noise sensitivity. The authors acknowledge the need for further research using causal 

interference methods to identify the causal effects of noise exposure, mediators and moderators.  
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The WHO review included one study and concluded there was very low quality evidence of a harmful 

effect of aircraft noise on interview measures of depression and anxiety. The Defra-Arup review 

included two studies and concluded that this should be upgraded to low quality evidence considering 

new data from cohort studies. The ICCAN review concluded that there is no new evidence so the 

conclusion of low quality evidence of a harmful effect of aircraft noise on interview measures of 

depression and anxiety stands. 

Regarding evidence for psychological health in children, the WHO review concludes that there was 

low quality evidence for a harmful effect for hyperactivity and low quality evidence for no effect for 

conduct and emotional disorders. A recent meta-analysis agrees with these conclusions in terms of 

strength of the evidence (Clark et al., 2021). While some studies show an increase in psychological 

symptoms in children, these effects tend to be of a small magnitude and do not reflect a shift to 

psychological illness per se. However, there are still concerns for population health due to (i) 

widespread exposure may cause a large portion of the population to experience increased symptoms, 

(ii) cumulative effects on children which might have more serious consequences later in life and (iii) 

the recurring nature of mental health issues (Clark et al., 2007). 

The ICCAN review concluded that there was very low quality evidence of no effect for a link between 

aircraft noise and well-being of children, self-reported diagnosis of chronic headaches/migraine, 

children’s medication intake and children’s physical diseases. ICCAN reported no effect on depression 

prevalence but a harmful effect on depression mediated by annoyance, both based on low quality 

evidence.  

Appendix I Table 6 summarizes the quality of evidence for mental health and well-being effects linked 

to aircraft noise exposure. 

Appendix I Table 6: Summary of quality of evidence for quality of life, mental health and well-being outcomes, 
from (Grollman et al., 2020). 

Outcome Quality of evidence – direction of effect  

WHO review 

(2018) 

Defra-Arup 

review (2020) 

ICCAN review 

(2020) 

ICCAN 

synthesis 

(2020) 

Wellbeing of children      Very low quality 

– no effect  

 

Depression prevalence    Low quality – no 

effect  

 

Depression prevalence 

mediated by annoyance  

  Low quality – 

harmful effect 

 

Emotional and conduct 

disorders in children  

Low quality – no 

effect  

   

Hyperactivity  Low quality – 

harmful effect  

   

Interview measures of 

depression and anxiety  

Very low quality – 

harmful effect  

Low quality – 

harmful effect  

 Low quality – 

harmful effect  

Medication intake to treat 

anxiety and depression  

Very low quality – 

harmful effect 

   

Self-reported QoL or 

health  

Very low quality – 

no effect  

Very low quality – 

no effect  

 Very low quality 

– no effect  

Well-being   Very low quality – 

harmful effect  
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Outcome Quality of evidence – direction of effect 

WHO review (2018) Defra-Arup 

review (2020) 

ICCAN review 

(2020) 

ICCAN 

synthesis 

(2020) 

Self-reported diagnosis of 

chronic 

headaches/migraine 

  Very low quality 

– no effect  

 

Children’s medication 

intake  

  Very low quality 

– no effect  

 

Children’s physical 

diseases  

  Very low quality 

– no effect 

 

 

The authors of the reviews emphasize the difficulty in drawing conclusions from the studies for several 

reasons: the small number of studies, the differing study designs and the wide variation of methods 

for both noise measures and outcome measurements. All these aspects hamper the comparability. 

They also state that studies do not consider confounding factors such as history of mental well-being, 

and other factors. The small number of studies does not allow the derivation of exposure-response 

relationships and risk estimates. The variation in outcome measures limits the comparison of results 

and especially measures to assess health-related quality of life. Moreover, psychological symptoms 

must be differentiated from those detecting manifest disorders, as they do not necessarily lead to the 

development of severe disorders. In this regard, previous reviews have concluded that environmental 

noise predicts annoyance, as well as psychological symptoms, but not clinically definable psychiatric 

disorder, suggesting that noise exposure might be associated with milder conditions, such as those 

measured by symptom scales (Guski et al., 2017; S. Stansfeld & Clark, 2011). For example, it has 

previously been hypothesized that aircraft noise might not cause hyperactivity per se but that it may 

make an existing tendency towards hyperactivity worse or more obvious. This argument may also 

apply to other psychological health outcomes. Furthermore, the exact pathway through which noise 

affects mental health needs further exploration as the effects may not be direct. Noise annoyance 

itself can trigger stress responses, potentially leading to long-term negative impacts on mental well-

being. Moreover, noise exposure might act as an additional stressor, interacting with other 

environmental and psychosocial stressors (e.g., childhood poverty) to influence mental health (Evans 

& De France, 2022). The possibility of further confounding by air quality remains as this has also been 

shown to be associated with children’s cognition and mental health (Forns et al., 2017; S. A. Stansfeld, 

2015).  

There is a shortage of studies exploring aircraft noise and mental health. The available evidence is 

relatively weak and further research would improve understanding of exposure-response 

relationships and risk estimates. 

1.7 Cancer  
It is hypothesized that noise may affect carcinogenesis through sleep disruption which leads to 

suppression of melatonin secretion. Melatonin is a hormone regulating circadian rhythm and offering 

protection against free radicals and cell damage. It is also known to have various anti-carcinogenic 

properties, such as promoting DNA repair and inducing antioxidant defence (K. Kim et al., 2013; Liu et 

al., 2013; Viswanathan & Schernhammer, 2009). Additionally, chronic exposure to aircraft noise can 

activate the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, leading to 

elevated cortisol levels (i.e., glucocorticoid involved in immune suppression), cell death (i.e., 
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apoptosis) and the formation of new blood vessels (i.e., angiogenesis); all factors that potentially can 

promote tumour development (Armaiz-Pena et al., 2013; Volden & Conzen, 2013).  

Appendix I Table 7 summarizes the quality of evidence of cancer linked to aircraft noise exposure. 

Appendix I Table 7: Summary of quality of evidence for cancer, from (Grollman et al., 2020). 

Outcome Quality of evidence – direction of effect  

WHO review 

(2018) 

Defra-Arup review 

(2020) 

ICCAN review 

(2020) 

ICCAN synthesis 

(2020) 

Incidence of breast 

cancer     

 Low quality – harmful 

effect 

  

 

The Defra-Arup review (Clark et al., 2020) concluded a harmful effect of aircraft noise on the incidence 

of breast cancer but the evidence was of low quality. This was based on a case-control study in 

Germany that did not find associations between road or railway noise and breast cancer, but a weak 

positive association was noted for aircraft noise (Hegewald et al., 2017). Two recent pooled studies 

on Nordic cohorts found no association between long-term aircraft noise exposure and the incidence 

of breast cancer (Thacher et al., 2023) and colon cancer (Roswall et al., 2023).  

1.8 General health outcomes 
The ICCAN review reported that there was no effect of aircraft noise on self-reported general health 

and self-reported diagnosis of stomach ulcer, both based on very low quality. In addition, they found 

no direct effect of aircraft noise on general physical health of children. However, they found significant 

indirect effects of aircraft noise on physical well-being in children, mediated through annoyance based 

on low quality evidence.  

Appendix I Table 8 summarizes the quality of evidence for general health outcomes linked to aircraft 

noise exposure. 

Appendix I Table 8: Summary of quality of evidence for general health outcomes, from (Grollman et al., 2020). 

Outcome Quality of evidence – direction of effect  

WHO review 

(2018) 

Defra-Arup 

review (2020) 

ICCAN review 

(2020) 

ICCAN 

synthesis 

(2020) 

Self-reported general health    Very low quality – 

no effect  

 

Self-reported diagnosis of 

stomach ulcer  

  Very low quality – 

no effect 

 

General physical health of children    Low quality – no 

effect  

 

General physical health of children 

mediated by annoyance  

  Low quality – 

harmful effect 
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1.9 Annoyance  
Aircraft noise annoyance is a complex issue that affects people in different ways. It involves a 

combination of how the noise disrupts one's daily life (behavioural), how it makes one feel (emotional) 

and how one thinks about it (cognitive). The behavioural aspect includes actions one takes to minimize 

the noise (e.g., closing windows), the emotional aspect involves feelings like anger and frustration 

towards the noise source and the cognitive aspect refers to the feeling of helplessness or lack of 

control over the situation. Interestingly, research shows that only about a third of noise annoyance is 

directly related to how loud the noise actually is (measured by Lden or LAeq). The other two-thirds are 

influenced by other factors not related to the sound itself, called non-acoustical factors (Bartels et al., 

2022).  

1.9.1 Non-acoustical factors  
These non-acoustical factors can be broadly categorized into two groups of personal and social factors 

or contextual and situational factors as discussed below.  

1.9.1.1 Personal and social factors 

Attitudes, concerns and expectations belong to the most important non-acoustic factors influencing 

annoyance. If one believes airports are important to the local economy, they are likely less bothered 

by the noise. On the contrary, fears of health problems from noise or fear of plane crashes increase 

annoyance. These fears and negative attitudes can contribute even more to aircraft noise annoyance 

than de average indicators of noise level (e.g., Lden or LAeq). Moreover, annoyance is higher in 

individuals who expect noise to get worse in the future and in individuals who value a quiet and 

healthy environment over economic issues when it comes to airport-related decisions. In addition, 

noise sensitivity is considered as a stable personality trait which can make some people more sensitive 

to noise in general and hence make them more annoyed by aircraft noise. Noise sensitivity seems to 

be linked to a personality trait where people are more prone to negative emotions like anger, anxiety 

or tension. Interestingly, noise sensitivity is one of the biggest factors influencing how annoyed people 

get by aircraft noise, even more so than the attitudes discussed above. Additionally, the ability to cope 

and coping strategies of an individual are important non-acoustic factors that determine the way of 

living with noise exposure. Beyond these individual coping abilities, how people perceive control over 

the noise situation is also influenced by their trust in the airport. Residents are more likely to feel 

empowered and less annoyed if they trust the airport to be (i) proactive in minimizing unnecessary 

noise and (ii) open and honest in communication. Fairness also plays a crucial role. When residents 

feel the airport is treating them fairly and addressing their concerns seriously, it can significantly 

reduce annoyance.  

A recent study shed light on several factors influencing how noise affects people. Closed windows, 

especially high-quality ones, not only block noise but also give residents a sense of control over their 

noise environment (i.e., subjective coping tool for noise). As discussed above, this feeling of control 

can reduce annoyance even when windows are open, and some noise enters. In addition, people who 

are more concerned about the environment are significantly more likely to report annoyance from 

aviation noise, even after accounting for other factors. This suggests a heightened awareness and 

sensitivity to noise as a potential environmental hazard (Preisendörfer et al., 2022). Another study 

showed that, unlike studies in adults, the acoustical aspects of noise exposure (e.g., number of aircraft 

overflights and maximum sound pressure levels) did not significantly influence short-term annoyance 

in children. Other non-acoustical factors, such as attitudes toward air traffic (e.g., aircraft are 

dangerous, fear of plane crashes, aircraft are useful) and noise sensitivity, were more impactful (Quehl 

et al., 2021).  
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1.9.1.2 Contextual and situational factors 

These involve the specification situation where the noise occurs, like the time of day or feeling like 

you have no control over the noise sources. Moreover, the degree of urbanisation and background 

noise exposure is expected to influence annoyance. Studies suggest that people in rural areas tend to 

be bothered by aircraft noise the most, followed by suburban, urban, commercial and industrial areas. 

People in rural areas generally expect a peaceful environment with minimal noise. On the other hand, 

urban residents are already accustomed to a higher level of background noise, so aircraft noise may 

not be as disruptive. Studies have shown that access to greenery and recreational areas can reduce 

annoyance from traffic and train noise. However, the relationship with air traffic noise is more 

complex. While green spaces can be a positive coping strategy for those affected by aircraft noise, 

some research suggests that having greenery around might increase annoyance from aeroplanes 

because it is perceived as more disruptive in quiet, residential areas. Additionally, people living in 

greener areas might have a higher expectation of peace and quiet, making aircraft noise seem even 

more intrusive. Moreover, having access to a quiet side or room inside a house can be a helpful coping 

mechanism. Aircraft noise can become more annoying when it suddenly changes (e.g., increased 

aircraft noise due to the opening of a new runway or an unexpected quiet period during the COVID-

19 pandemic). Also, people seem to be bothered more by noise during certain times of the day (i.e., 

evening and night) and when it interferes with their activities (e.g., during leisure time in weekends). 

These activity patterns explain why people can have different levels of annoyance with the same 

amount of noise exposure.    

1.9.2 Mediation through annoyance  
New studies support an indirect role of annoyance in the relationship between aircraft noise exposure 

and health outcomes. That is, for people who experienced annoyance due to aviation noise, there was 

an effect on the health outcome. Some of these outcomes expected to be influenced by annoyance 

were hypertension (Babisch et al., 2013; Baudin et al., 2020; Eriksson et al., 2010), prevalence of 

depression (Benz & Schreckenberg, 2019), mental health-related quality of life (Schreckenberg et al., 

2017) and general physical health of children (Spilski et al., 2019). There was no role of annoyance in 

mediating the relationship between aircraft noise and cortisol levels (Baudin et al., 2019) or blood 

pressure (Carugno et al., 2018). 

A few studies showed a link between mental health and well-being-related measures and noise 

annoyance. Baudin et al. (2018) found a higher risk for psychological distress for people being 

extremely annoyed by noise in comparison to a lower risk for people being less annoyed (Baudin et 

al., 2018). The researchers found in another study an association between aircraft noise annoyance 

and the use of anxiolytics (medication for anxiety disorders), implying a mediating role of annoyance 

for the link of aircraft noise exposure to mental health outcomes (Baudin et al., 2021). Moreover, a 

recent meta-analysis found that those experiencing high levels of noise-induced annoyance (from all 

noise sources) had a 1.23 times higher risk for depression. Moreover, they indicated an approximately 

55% higher risk of anxiety and an almost 119% higher risk of mental health problems in highly noise-

annoyed people (Gong et al., 2022).  

As shown earlier, aircraft noise did not have a direct effect on mental health-related quality of life 

(Schreckenberg et al., 2017) and diagnoses of depression (Benz & Schreckenberg, 2019), but in both 

studies, an indirect effect via annoyance was found. The results suggest that aircraft noise exposure 

decreases mental health-related quality of life and predicts the development of depression one year 

later via noise annoyance. Both studies further indicate that there is a reciprocal association, i.e., that 

diagnoses of depression and poorer mental health-related quality of life also contributed to higher 
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ratings of annoyance a year later. This indicates that vulnerability due to physiological and/or 

psychological health issues may limit resources to cope with noise which can contribute to higher 

annoyance.  

Due to different methods to assess noise annoyance as well as different health outcomes and 

measures, it is difficult to draw consistent conclusions. However, evidence indicates that annoyance 

contributes to adverse mental health outcomes. 

1.9.3 Measuring annoyance 
While a wealth of evidence connects self-reported annoyance to aircraft noise exposure, it is crucial 

to recognize the subjective nature of the response. Because annoyance is an individual experience, it 

cannot be directly measured with the same objectivity as noise levels themselves. The most common 

way to assess annoyance from noise pollution is a standardized one-question survey recommended 

by the International Commission of Biological Effects of Noise (ICBEN) (Fields et al., 2001) to assess 

airport residents’ long-term annoyance: “Thinking about the last 12 months or so, how much did 

aircraft noise as a whole bother, disturb or annoy you?”. Typically, and in line with the ICBEN 

recommendations, annoyance ratings have been given on 5-point verbal scales and 11-point 

numerical scales. By dichotomising the answers in values of high (1) and not high (0) annoyance, the 

percentage of respondents highly annoyed related to computed average noise levels provides 

exposure-response curves that inform noise policy. However, the established exposure-response 

relationships often vary significantly between studies. Researchers have explored other factors 

beyond noise levels that might influence annoyance but have not yet been able to create a reliable 

mathematical model to predict annoyance largely because of non-acoustical factors as described 

above. While this method offers consistency across studies, it has limitations. It does not account for 

what moment during the day the annoyance is experienced (morning vs. night). Moreover, people 

tend to remember recent or very early experiences more vividly, which can skew their responses over 

a 12-month time frame (i.e., recall bias). Also, the term “annoyance” can encompass various feelings 

like loudness, fear, anger or depression. A single ICBEN question might not capture these nuances. 

Future research could improve annoyance assessment by adding more specific questions alongside 

the ICBEN scale to better capture the multifaceted nature of annoyance caused by aviation noise.  
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1.10 Health risk associated with aircraft noise exposure  
The European Environment Agency (EEA) and WHO assessed the health risk associated with aircraft 

noise exposure the health outcomes that have been demonstrated a reasonable causal relationship 

between noise exposure and adverse health effects as shown in Appendix I Table 9.  

Appendix I Table 9: Relationships between noise and health effects used by EEA and WHO. The relative risk (RR) 
and odds ratio (OR) is shown with the 95% confidence interval. If defined the established dose-response function 
is also provided. 

Health outcome 

measure  

Population  Quantitative risk for 

adverse health // impact 

function  

Quality of evidence 

(GRADE) 

Reference 

Cardiovascular disease   

Incidence of 

ischemic heart 

disease  

Whole 

population  

RR=1.09 (1.04; 1.15) per 10 

dB(A) increase in Lden 

Very low (downgraded 

for risk of bias, upgraded 

for dose-response)  

(Kempen et 

al., 2018) 

Incidence of 

hypertension  

Whole 

population  

RR=1.00 (0.77; 1.30) per 10 

dB(A) increase in Lden 

Low (downgraded for risk 

of bias and because only 

one study is available 

(Kempen et 

al., 2018) 

Effects on sleep   

%HSD (highly 

sleep disturbed)  

Whole 

population  

OR=1.94 (1.61; 2.33) per 10 

dB(A) increase in Lnight // 

%HSD1=(16.7885 - 0.9293 * 

Lnight + 0.0198 * Lnight
2)/100 

Moderate (downgraded 

for study limitations, 

inconsistency; upgraded 

for dose-response, 

magnitude of effect)  

(Basner & 

McGuire, 

2018) 

 

Cognitive impairment  

Reading and oral 

comprehension  

Children  1-2-month delay per 5 dB(A) 

increase in Lden // 1/(1 + exp( 

- (ln(0.1/0.9) + (ln(1.38)/10 × 

(Lden - 50)))) if Lden ≥ 50 dB and 

0.1  

if Lden < 50 dB 

Moderate (downgraded 

for inconsistency)  

(Clark et al., 

2006; 

Kempen et 

al., 2018) 

 

Annoyance  

%HA (highly 

annoyed) 

Whole 

population  

OR=4.78 (2.27; 10.05) per 10 

dB(A) increase in Lden // 

%HA=(-50.9693 + 1.0168 * 

Lden + 0.0072 * Lden
2)/100 

Moderate (downgraded 

for inconsistency) 

(Guski et al., 

2017) 

1Based on self-reports on survey questions that explicitly refer to aviation noise, related to aircraft sound levels Lnight 
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2 Metrics used to assess aircraft noise exposure  

Understanding how aircraft noise is measured is crucial for assessing its impact on communities. 

Therefore, it is important to explore the basic principles of acoustics and how sound is measured and 

represented. Sound and noise are not the same. Sound is a term from physics and refers generally 

and neutrally to noises emitted by a cause (i.e., source). These sounds are propagated in the air by 

pressure and density fluctuations (vibrations). These fluctuations can be determined using the sound 

pressure level (SPL) which characterizes the amplitude or peak level of the sound wave. Higher SPL 

indicates a stronger sound pressure, often perceived as a louder noise. SPL is measured in units called 

decibels (dB). Noise generally refers to undesired sound that is perceived as an annoyance, impairs 

well-being and, depending on the loudness and duration, can even make people ill. Unlike sound, 

noise is not objectively measurable but purely subjective. This means that every person perceives 

sounds differently.  

Not all sound frequencies are perceived equally by the human ear. We are generally more sensitive to 

sounds in the middle-frequency range (roughly 2 to 5 kHz) than those at very low or very high 

frequencies. To account for this variation in human hearing perception, sound levels are often 

measured using the A-weighted scale, denoted as dB(A). This scale essentially filters out the extremely 

low and high frequencies that we hear less intensely. However, it might underestimate low-frequency 

sounds that penetrate buildings more easily and might disrupt sleep potentially leading to an 

underestimation of the true annoyance caused by aviation noise. On the other hand, C-weighting 

attempts to capture a wider frequency range including low-frequency noise in the environment. 

Important to note, changes in C-weighted readings do not necessarily reflect changes in low-frequency 

noise itself because C-weighing considers high frequencies as well. The A-weighting filter, while widely 

used as a standardized and consistent way to measure noise levels, has limitations in capturing the 

full spectrum of noise annoyance, particularly regarding low-frequency sounds. The C-filter might offer 

a more comprehensive approach, but needs cautious interpretation. Ultimately, the choice of 

weighting filter depends on the specific context and the aspects of noise exposure being evaluated. 

Unlike a linear scale, decibels are logarithmic. This means a small increase in dB signifies a relatively 

significant change in sound intensity. For instance, 10 dB is perceived as 10 times louder than 0 dB, 

and 20 dB is a 100-fold increase in intensity compared to 0 dB. This logarithmic scale reflects how our 

ears perceive loudness – small changes at low volumes are more noticeable than at high volumes. 

While SPL captures the peak sound pressure level, it does not consider the duration of the noise event. 

Sound exposure level (SEL) addresses this by factoring in both the maximum sound level and the 

duration for which the sound pressure exceeds a specific threshold. This provides a more 

comprehensive picture of the total noise energy an aircraft event generates. SEL proves particularly 

useful for comparing noise exposure from aircraft flyovers of varying lengths.  

Noise metrics are essentially calculations that translate the effects of noise into understandable values 

and can be classified as (i) single-event metrics which focus on the noise generated by a single aircraft, 

(ii) cumulative/time-averaged metrics which assess the total noise impact from multiple aircraft 

movements over a specific period (e.g., a day) and (iii) hybrid metrics that combine elements of both 

cumulative and single-event metrics, providing a more nuanced picture of noise exposure. An 

overview of these different metrics is provided below. 
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2.1 Single noise event metrics   
LAmax is the maximum A-weighed sound pressure level reached during a measurement period (i.e., a 

single snapshot of noise such as a single flyover), measured in decibels (dB) with an A-weighting to 

reflect human hearing sensitivity. LAmax or LA0 corresponds to the maximum noise level and LAmin or LA100 

corresponds to the minimum noise level. Likewise, the indicators LA5 and LA90 correspond to the noise 

levels reached or exceeded during 5% and 90% of the measuring time, respectively. The indices LA1 

and LA5 are often used to represent transient and intermittent levels (e.g., aircraft noise). Conversely, 

the indices LA90 and LA99 characterize the quietest moments of the measurement period and are 

representative of the background noise.   

During the time of an aircraft flyover (16 seconds in the example below Appendix I Figure 1), the noise 

level starts at background noise levels, rises to the peak level (LAmax = 76.4 dB(A)) as the plane passes 

overhead and returns to the background level again. Background or ambient noise encompasses all 

the everyday sounds in an environment except the specific source of interest (in this case, aircraft 

overflights). This can include chirping birds, wind blows or passing cards. To distinguish aircraft noise 

from this background, a threshold level needs to be set which serves as a cut-off point to differentiate 

between ongoing ambient noise and the specific noise event of, for example, an aircraft passing 

overhead.  

 

Appendix I Figure 1: Example of different flyover sound measures, from (Understanding Aviation Noise, n.d.). 

However, LAmax has limitations:  

1) Limited information: LAmax only reflects a single point in time (i.e., instantaneous intensity), 
not the entire noise event as it does not provide information about cumulative noise exposure 
(sound energy of the event). Imagine two aircraft events with the same LAmax (peak of 80.3 
dB(A) in the example below Appendix I Figure 2). Event 1, a heavy aircraft, might last longer 
and be perceived as more annoying than Event 2, a light aircraft that passes quickly. LAmax does 
not reflect this.  

 

Appendix I Figure 2: Limitations of LAmax, from (Understanding Aviation Noise, n.d.). 

 



22 

 

2) Frequency does not matter: LAmax does not consider the number of noise events. If you 
measure LAmax for an hour and only one aircraft flies over at 80.3 dB(A), that is the recorded 
LAmax. But what if there were eight aircraft overflights at 80.3 dB(A) in that hour? LAmax remains 
the same even though people would likely be more annoyed by the higher number of events.  

 

 

Appendix I Figure 3: LAmax ignores number of events, from (Understanding Aviation Noise, n.d.). 

 

LAmax serves a useful starting point, but for a better understanding of aircraft noise exposure, we need 

additional information. More specifically, information concerning the sound energy level reflecting 

the cumulative exposure since LAmax does not capture the total noise energy of an event. While two 

events might have the same peak level, the one that lasts longer delivers more noise energy and might 

be perceived as more disruptive. 

Sound Exposure Level (SEL) solves the first problem of LAmax (i.e., limited information). It reflects the 

total sound energy of an entire noise event, from the moment it rises above a set threshold (67dB(A) 

in the example below, Appendix I Figure 4) to when it falls back below (a total of 19 seconds in the 

example). Imagine compressing the entire event’s sound energy into a single second. This makes SEL 

valuable because it allows to compare aircraft noise events of very different durations. SEL essentially 

normalizes the duration to one second, enabling a fair comparison. However, it is important to 

remember that SEL does not capture the peak intensity (i.e., instantaneous intensity) despite being 

expressed in dB(A).  

 

Appendix I Figure 4: SEL captures total sound energy for fair comparison, from (Understanding Aviation Noise, 
n.d.). 

The SEL indicator complements the LAmax indicator to compare aircraft noise events. Since SEL is 

normalized to one second, its value will always be higher than LAmax for events lasting longer than one 

second (SEL is 106 dB(A) compared to LAmax of 98.8 dB(A) in the example). The black line in Appendix 

I Figure 4 represents the same total sound energy as the blue area (the 19-second event). In essence, 

SEL captures the entire event’s ‘noise punch’ as if delivered in one second.  

An overview of different single noise event metrics is given below in Appendix I Table 10. 



23 

 

Appendix I Table 10: Single noise event metrics, from (Love, 2023). 
Metric  Definition  Presence in EU legislation and 

policy  

Use  

%HA Percentage of the population highly 

annoyed by noise, assessed using a 

standardized scale. A self-reported 

metric which is a function of Lden 

WHO environmental noise 

guidelines for the European 

Region. Evoked for EU regulation 

to measure health outcome 

An objective measure of the 

health outcome of noise 

disturbance 

%HSD Percentage of the population highly 

sleep disturbed by noise, assessed 

using a standardized scale. A self-

reported metric which is a function of 

Lnight 

WHO environmental noise 

guidelines for the European 

Region. Evoked for EU regulation 

regarding sleep disturbance 

Policy-relevant measure of the 

health outcome of noise on sleep 

and subsequent sleep and health 

impacts 

LAmax The A-weighted Maximum Sound 

Level from an aircraft event. A 

meaningful metric when given a 

response time 

Only when used with a timeframe  Used for health research, 

correlations found to be linked 

with sleep disturbance and other 

effects of aircraft noise 

SEL  Sound Exposure Level, an indicator 

which shows the total amount of time 

noise exceeds a given threshold  

Used as part of other metrics  Used alongside LAmax to directly 

compare individual aircraft noise 

events of different durations 

PNdB Perceived Noise Decibel, considers a 

singular aircraft noise event by 

comparing sound pressure level, 

including tonality, with perceived 

noise  

/ Forms EPNdB 

EPNdB Effective Perceived Noise Decibel, is a 

measure of noise of individual aircraft 

flyover. Represents the integrated 

noisiness over a ten-second period  

Used in the provision of different 

aircraft noise certifications  

Reflects perception of aircraft 

noise, useful for compensation 

schemes 

2.2 Time-averaged metrics  
Equivalent Sound Level (LAeq) is the indicator that is good for solving both problems of LAmax (i.e., 

limited information and frequency does not matter). LAmax only captures the peak noise, not the entire 

event. LAeq, on the other hand, considers the total sound energy throughout a specific timeframe. 

Think of it like the average ‘dose’ of noise delivered over that period, not just the highest point. The 

yellow are in the example below (Appendix I Figure 5) represents this total sound energy of the time-

varying noise (blue area) during the same period (19 seconds in example).   

 

Appendix I Figure 5: LAeq captures both duration and energy, from (Understanding Aviation Noise, n.d.). 

LAeq is not a simple average of noise intensity during a period of time. It is an amount of noise energy 

and focuses on the total sound energy. LAeq can be measured over various durations: one second, an 

hour, a day or even a year. ‘L’ stands for ‘Level’, ‘A’ indicates A-weighting for human hearing sensititivy 

and the subscript specifies the time frame. The sound energy in one minute is castly different from 

that in an hour or a year. Therefore, the specific time period is always needed in the subscript. LAeq_1h, 

for example, considers the sound energy of each event within an hour and the total number of events 
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during that period. This provides a comprehensive picture of the noise exposure experiences over that 

one-hour timeframe.  

Imagine we set up a sonometer to accurately measure airport noise for a one-hour period:  

- Scenario 1: A single aircraft flies overhead during the hour. The sonometer wil show: LAmax = 
80.3 dB(A) (i.e., peak noise level of aircraft passing), LAeq_event = 71.5 dB(A) (i.e., average sound 
energy of that single event) and LAeq_1h = 57.5 dB(A). LAeq_1h reflects the total noise exposure 
over the entire hour, considering both the single event’s energy and the long periods of quiet 
between flights. As there was only one short event, the overal noise level (i.e., LAeq_1h) is 
significantly lower than the peak (LAmax).  

- Scenario 2: Eight identical aircrafts fly over during the hour. LAmax remains 80.3 dB(A) because 
all aircrafts have the same peak noise level. LAeq_event stays at 71.5 dB(A) as the average energy 
per event remains the same. LAeq_1h increases to 65.5 dB(A) as with more aircrafts, the overall 
noise exposure increases even though the peak level and individual event energy remain 
constant.  

- Scenario 3: Seven identical aircrafts and one different aircraft with a lower peak noise level 
(70 dB(A)) fly over during the hour. The highest peak level (LAmax) remains at 80.3 dB(A). 
LAeq_event now has two values, LAeq_event1-7 = 71.5 dB(A) for the identical aircrafts and LAeq_event8 = 
70 dB(A) for the different aircraft. The overall noise exposure is now slightly lower than the 
scenario 2 due to the quieter aircraft, LAeq_1h is around 65.4 dB(A).  

- Scenario 4: Imagine 40 identical aircrafts fly over. The peak level does not change, LAmax = 80.3 
dB(A). The average energy per event remains constant, LAeq_event = 71.5 dB(A). With so many 
events, the overall noise exposure is significantly higher, approaching the peak level of eacht 
event, LAeq_1h reaches 71.5 dB(A).  
 

 

Appendix I Figure 6: LAeq reveals the impact of multiple noise events, from (Understanding Aviation Noise, n.d.). 

 

LAeq_1h is a valuable indicator because it considers both the number of noise events (i.e., frequency) 

and the sound energy of each event (i.e., intensity). This provides a more comprehensive picture of 

how aircraft noise affects an environment over time.  

An overview of different metrics based on time-averaged/cumulative noise is given below in Appendix 

I Table 11.  
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Appendix I Table 11: Metrics based on time-averaged/cumulative noise, specifically LAeq-based metrics, from 
(Love, 2023).  

Metric  Definition  Weighing Presence in EU legislation and 

policy  

Use  

Leq,T Equivalent Continuous Sound Level, 

represents the sound pressure level that 

would be produced by a constant noise 

level with the same amount of noise 

energy, during the same period. It is 

measured in dB and usually measured 

over a 24-hour period (i.e., Leq,24h)  

/ Metric requires a time frame 

for it to become meaningful, 

forms the basis of all Leq-

derivates 

Forms the basis for 

other metrics 

when given a time 

frame 

LAeq,T A-weighted Equivalent Continuous 

Sound Level, given over a specific time. 

It is more reliable than Leq as it accounts 

for differences in how people hear noise 

Using A-

weighted 

curve 

Metric is used flexibly to reflect 

annoyance across different 

periods of the time (e.g., day, 

week or year). Noise sensitive 

periods, such as the night 

period, can be easily analysed 

Used for modelling 

noise around an 

airport 

LAeq,16h A-weighted Equivalent Continuous 

Sound level over a 16-hour period, 

when determining an average summer 

day between June 16th and September 

16th (07h-23h) 

Using A-

weighted 

curve 

/ Used for modelling 

noise around an 

airport 

LAeq,8h A-weighted Equivalent Continuous 

Sound level over an 8-hour period, 

when determining an average summer 

night between June 16th and September 

16th (23h-7h) 

Using A-

weighted 

curve 

/ Used for modelling 

noise around an 

airport 

LAeq,6.5h A-weighted Equivalent Continuous 

Sound level between 23h30 and 6h 

Using A-

weighted 

curve 

/ Used for modelling 

noise around an 

airport  

Lnight  Nighttime LAeq (8h, typically 23h-7h) 

measured on an annual basis to give a 

measure of the annual night noise 

impact 

Using A-

weighted 

curve 

European standard to express 

noise level over the night 

period (EC Directive 

2002/49/EC) 

Important metric 

for sleep 

disturbances from 

aircraft noise  

Lday  Daytime LAeq (12h, typically 7h-19h), 

measured on an annual basis to give a 

measure of the annual day noise impact 

Using A-

weighted 

curve 

European standard to express 

noise level over the day period 

(EC Directive 2002/49/EC) 

Some evidence for 

a link with health 

effects  

Levening  Evening time LAeq (4h, typically 19h-

23h), measured on an annual basis to 

give a measure of the annual evening 

noise impact 

Using A-

weighted 

curve 

European standard to express 

noise level over the evening 

period (EC Directive 

2002/49/EC) 

/  

Ldn Accounts for noise over the 24h day and 

night period, noise between 22h-7h is 

weighted by a 10 dB penalty before 

averaging  

Using A-

weighted 

curve 

Used by the European 

Environment Agency  

Metric for the EEA 

for noise threshold 

for health and 

wellbeing 

Lden Annual A-weighted Equivalent 

Continuous Sound Level combining 

Lday, Lnight, Levening, then weighted by 

a 5 dB penalty for the evening period 

and 10 dB for the night period, to give a 

single measure for annual noise impact 

Using A-

weighted 

curve 

European standard (EC 

Directive 2002/49/EC) used in 

noise contour mapping and 

noise impact assessments  

European 

standard for noise 

contour maps and 

impact 

assessments 

 



26 

 

2.3 Health impact noise metrics 
Metrics focused on the health impacts of aircraft noise can be classified as single event metrics, 

cumulative/time-averaged noise metrics or a hybrid of both and are given in Appendix I Table 12. 

Appendix I Table 12: Health impact noise metrics, from (Love, 2023). 
Metric  Definition  Presence in EU legislation and 

policy  

Use  

%HA (time-

averaged) 

Percentage of the population 

highly annoyed by noise, assessed 

using a standardized scale. A self-

reported metric which is a function 

of Lden 

WHO environmental noise 

guidelines for the European 

Region. Evoked for EU 

regulation to measure health 

outcome 

An objective measure of the 

health outcome of noise 

disturbance 

%HSD (time-

averaged) 

Percentage of the population 

highly sleep disturbed by noise, 

assessed using a standardized 

scale. A self-reported metric which 

is a function of Lnight 

WHO environmental noise 

guidelines for the European 

Region. Evoked for EU 

regulation regarding sleep 

disturbance 

Policy-relevant measure of 

the health outcome of noise 

on sleep and subsequent 

sleep and health impacts 

Nx (hybrid) Number of events that lead to 

noise levels being higher than x dB 

(e.g., N70, N65 or N60) This metric 

also needs a time frame.  

WHO environmental noise 

guidelines for the European 

Region 

Used occasionally in noise 

contour mapping and 

community compensation 

schemes  

N50A70 

Population 

indicator 

(hybrid) 

Number of people exposed to more 

than 50 events per day, above 70 

dB 

Noted in European Aviation 

Environmental Report (2022)  

Highlights vulnerable 

populations to aircraft noise 

disturbance around the 

airport 
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Appendix II – Air pollution health effects 

1 Evidence-based health indicators for air pollution exposure 

related to airport activities  

Air pollution poses a major threat to human health and the environment. This report focuses on three 

key categories of air pollutants near airports:  

- Standard air pollutants: well-established threats like PM2.5 and NO2 are closely monitored and 
regulated due to their known health risks. However, airport operations contribute little to 
ambient standard air pollution levels.  

- Emerging pollutants: UFPs, a growing area of concern, are very small particles that may 
penetrate deep into the lungs, posing potential health risks. Airport operations contribute 
significantly to ambient UFP levels.  

- Hazardous air pollutants (HAPs): although not directly linked to core airport operations, 
minimal amounts of HAPs may be present from aviation fuels and maintenance. These 
pollutants can cause serious health problems and require careful monitoring and mitigation 
strategies.  

1.1 Ultrafine particles (UFP) as emerging air pollutants  
The body of evidence regarding the burden of proof of health effects caused by UFP is growing and 

discussed in detail in the UFP report. To make a substantiated statement about the effects of UFP on 

health, it is necessary to consolidate the knowledge from different studies. To this end, we largely 

based ourselves on three consolidation reports: (I) the Integrated Science Assessment (ISA) on 

particulate matter published by the US Environmental Protection Agency (EPA) in 2019 (U.S. 

Environmental Protection Agency, 2019), (ii) the report ‘Risico’s van ultrafijnstof in de buitenlucht’ 

(Risks of ultrafine particles in the outdoor air) published by the Dutch Health Council in 2021 

(Gezondheidsraad, 2021) and (iii) the multi-year research program of the Dutch National Institute for 

Public Health and the Environment (RIVM) on the health risks of UFP around Schiphol airport (N. 

Janssen et al., 2022). To assess the burden of proof, the reports are based on the methodology used 

by the EPA which involves weighing the scientific evidence from experimental and epidemiological 

studies based on consistency (do multiple studies show similar results?), biological plausibility and 

uncertainties (such as chance of bias, exposure assessment, adjustment for confounders, etc.). The 

strength of the evidence from long-term studies weighs the most in the assessment; conclusions from 

short-term studies or experimental studies are often considered as supportive. The strength of 

evidence for a causal relationship between chronic UFP exposure and adverse health effects is 

according to the EPA’s ISA. The five causality determinations include ‘causal relationship’, ‘likely to be 

causal relationship’, ‘suggestive of, but not sufficient to infer, a causal relationship’, ‘inadequate to 

infer the presence or absence of a causal relationship’ and ‘not likely to be a causal relationship’. For 

the assessment of the acute UFP effects, the wording from the RIVM report on the short-term health 

effects of UFP around Schiphol Airport is used (N. A. H. Janssen et al., 2019).  

 

Important to note is that epidemiological studies investigating the health effects of UFP exposure 

often face limitations in accurately assessing exposure levels. This contributes to a high degree of 

uncertainty in these findings, which would typically result in low or very low quality evidence according 
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to the GRADE scoring system. There are two key challenges in UFP exposure assessment: (i) UFP 

concentrations can vary significantly within a short distance. For example, in studies of short-term 

effects, the exposure to UFP is often characterized based on only one or two central measurement 

points which might not capture this variability and accurately represent individual exposure levels, 

and (ii) there is no single, universally accepted definition or standardized measurement method for 

UFP. This inconsistency can make it difficult to compare findings across different studies. Furthermore, 

epidemiological studies often neglect the influence of other pollutants that co-occur with UFP, such 

as black carbon or NO2. Without accounting for these co-pollutants, it becomes difficult to isolate the 

specific effects of UFP exposure. Given these limitations, this section emphasizes the “strength of 

evidence” as presented in the tables below, rather than the overall quality rating based on uncertainty. 

By focusing on the strength of the evidence rather than on the quality, we can highlight the weight 

and consistency of observed associations between UFP exposure and potential health effects, while 

acknowledging the limitations in exposure assessment.  

Cardiovascular health – Studies suggest a link between UFP from aviation and cardiovascular health 

problems. A recent long-term cohort study (N. Janssen et al., 2022) conducted near Schiphol airport 

identified a probable association between chronic exposure to UFP from air traffic and increased use 

of medication (incidence) for heart disease, as well as mortality due to cardiac arrhythmias. No 

association was found with medication use for hypertension and mortality from cardiovascular 

disease (primary endpoint) and ischemic heart disease, stroke and cerebrovascular disease (secondary 

endpoints). In addition, they found a clear association with several measures examined in the Health 

Monitor (Gezondheidsmonitor, GGD), namely with heart attack and (medication use for) 

hypertension. In addition, there was a possible association with medication use for heart disease 

(prevalence) and stroke. Supporting these findings, short-term exposure studies conducted around 

Schiphol (Lammers et al., 2020) and Los Angeles Airport (Habre et al., 2018) demonstrated that UFP 

exposure can lead to prolongation of the QTc interval (an indicator of altered electrical activity in the 

heart) and increased acute systemic inflammation, respectively. These observed biological responses 

align with established cardiovascular concerns associated with UFP exposure. Furthermore, studies 

investigating ambient UFP (not solely from air traffic) have revealed associations with elevated risk of 

mortality from ischemic heart disease (Ostro et al., 2015) and increased risk of hypertension, heart 

failure and myocardial infarction (Bai et al., 2018). 

Metabolic health – Currently, there is inadequate evidence for a potential link between long-term 

exposure to aviation-related UFP and metabolic disorders, such as diabetes. The study of long-term 

exposure around Schiphol Airport found no association between UFP exposure and medication use for 

diabetes or mortality from the disease. Within the population of Health Monitor participants, there 

was instead a clear relationship, both for self-reported diabetes and medication use for diabetes (N. 

Janssen et al., 2022). There is also a lack of unequivocal results on the effects of UFP in general on the 

metabolic system. Recent studies suggest a possible connection between higher UFP exposure and 

increased diabetes risk (Bai et al., 2018; Sørensen et al., 2022) or markers of insulin resistance (Zhang 

et al., 2021). Another study found a link between UFP and childhood overweight and obesity in school 

children (De Bont et al., 2019). It’s important to note that only one of these studies accounted for a 

possible effect of other important components of air pollution (Bai et al., 2018). Furthermore, research 

on short-term UFP exposure and metabolic health effects is currently lacking.  

Respiratory health – No indications of long-term health effects of UFP from aviation on the respiratory 

system were found. The recent study examining long-term exposure to UFP from air traffic near 

Schiphol Airport (N. Janssen et al., 2022) found no association with respiratory mortality, medication 

use for respiratory disease or self-reported respiratory problems in children and adults. This suggests 
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that chronic exposure to aviation-related UFP might not significantly impact overall respiratory health. 

In contrast, short-term exposure to UFP around Schiphol Airport may exacerbate existing airway 

complaints and increase medication use for these conditions (N. A. H. Janssen et al., 2019). Another 

study of short-term exposure to UFP around Los Angeles Airport found an association between UFP 

road traffic and decreased lung function and UFP air traffic and increased systemic inflammation in 

adults with asthma, which could further impact respiratory health (Habre et al., 2018). Although the 

evidence for long-term effects remains inconclusive, short-term exposure appears to be a potential 

trigger for respiratory issues, particularly for those already experiencing respiratory problems. 

Likewise, studies investigating total UFP exposure (not specifically from aviation) indicate that children 

with pre-existing respiratory conditions might be more susceptible to the negative effects of short-

term UFP exposure as reflected by increased inflammatory markers in their airways and potentially 

lower lung function (Da Costa E Oliveira et al., 2019; Li et al., 2019).  

Cognitive health – Current evidence suggests a link between UFP exposure and adverse effects on the 

neurological system. The long-term study by Janssen et al. (2022) also investigated the effects of UFP 

exposure near Schiphol Airport on the neurological system (N. Janssen et al., 2022). This research 

found no clear link between long-term UFP exposure from aviation and increased mortality from 

neurological disorders (Parkinson, Alzheimer or dementia) and increased medication use for 

Parkinson’s disease. The results regarding dementia were more complex as medication use for 

dementia showed a potential association with UFP exposure. However, the study observed an 

unexpected inverse association with mortality from dementia. If UFP exposure truly increased 

dementia risk, one would expect higher mortality rates as well. This inconsistency requires further 

investigation to clarify the relationship. Moreover, the Schiphol study also found no link between UFP 

exposure and perceived health and severe psychological stress or the use of antidepressiva. A recent 

study identified a positive association between prenatal UFP air traffic exposure (measured as PM0.1 

mass concentration) and autism spectrum disorder diagnosis in children residing in California (Carter 

et al., 2023). Notably, the link remained after accounting for total UFP and PM2.5 but weakened when 

adjusted for noise exposure. This suggests that airport noise during pregnancy might be a contributing 

factor alongside UFP. While research on UFP from air traffic and its effects on the neurological system 

is progressing, studies investigating the link between UFP exposure to UFP in general (all sources) and 

neurodegenerative disorders are currently lacking (for long-term UFP exposure) or inconclusive (for 

short-term UFP exposure). 

Birth outcomes – While research is still developing, recent research suggests a potential association 

between long-term exposure to UFP and certain birth outcomes. This association appears to be 

particularly relevant for UFP originating from air traffic emissions. The long-term study around 

Schiphol Airport (N. Janssen et al., 2022) found a possible link with negative birth outcomes such as 

preterm birth and small for gestational age. They also report a probable link with congenital 

anomalies, and no link with low birth weight and the Apgar-score. While these associations were not 

statistically significant in the main analyses, some sensitivity analyses yielded positive results. In 

contrast, a study by Wing et al. (2020) examining the impact of UFP exposure near Los Angeles 

International Airport reported a statistically significant association with preterm birth, even after 

accounting for the influence of other pollutants like NO2 and noise (Wing et al., 2020). Interestingly, 

UFP levels around Los Angeles were significantly higher compared to Schiphol Airport. However, when 

adjusted for this difference in concentration, the estimated effects on birth outcomes appeared to be 

similar in both locations. Several additional studies have explored the connection between general 

UFP exposure, not solely from air traffic, and birth outcomes. These studies present mixed results. A 

study in Toronto identified a potential link between prenatal UFP exposure and specific congenital 
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heart defects (Lavigne et al., 2020). Additionally, research conducted in California reported 

associations between UFP exposure and increased risk of lower birth weight and preterm birth (O. 

Laurent et al., 2014, 2016a, 2016b). It's important to note that the association with preterm birth was 

only statistically significant in specific subgroups within these California studies. A recent study found 

a potential link between prenatal UFP exposure and preterm birth, but it did not account for the 

influence of other co-pollutants. Furthermore, another California study investigating the association 

between UFP exposure and preterm birth in different ethnic groups yielded inconclusive results 

(Riddell et al., 2022). 

Total mortality – There are currently no indications to link long-term UFP exposure from air traffic 

with overall mortality (deaths from all natural causes). The long-term study around Schiphol Airport 

found no clear association between UFP exposure related to air traffic and total mortality (N. Janssen 

et al., 2022). Inconsistent evidence is present for the current research on general UFP exposure. An 

earlier cohort study in California reported no link between overall UFP exposure and total mortality 

(Ostro et al., 2015). However, it did identify a potential association with deaths specifically from 

ischemic heart disease. It is important to note that this analysis did not control for the influence of co-

pollutants. Two more recent studies offer contrasting findings. A large US national study found a 

positive association between UFP exposure and both total mortality and cancer mortality (Pond et al., 

2022). The association with mortality from cardiopulmonary disease was less consistent in this study. 

A Dutch study reported positive associations with UFP exposure linked to natural mortality and 

specifically, mortality from lung cancer (Bouma et al., 2023). The latter two studies hold particular 

significance because they found that the associations between UFP exposure and mortality remained 

statistically significant even after adjusting for other pollutants like PM2.5 and NO2 which strengthens 

the overall evidence base and suggest a link between UFP (in general) and total mortality.  

Cancer – The long-term effects of UFP exposure from air traffic on cancer risk are still being explored, 

but there is currently inadequate evidence for a connection between both. The multi-year research 

program around Schiphol Airport did not find conclusive evidence (N. Janssen et al., 2022), but a new 

study sheds some light on this complex issue. A recent study by Wu et al. (2021) investigated the link 

between UFP air traffic exposure and cancer in different ethnic groups residing near Los Angeles 

International Airport (Wu et al., 2021). Intriguingly, they found a positive association with malignant 

brain cancer, but only in the subgroup of African Americans. This subgroup was also exposed to the 

highest levels of UFP. Notably, the study did not observe a link with meningioma, another type of brain 

tumour. It is important to note that this study involved a very small sample size (n=38), demanding 

further investigation with larger populations. A previous study explored the connection between 

exposure to total UFP (primarily from road traffic) and cancer and found a significant association with 

brain tumours (Weichenthal et al., 2020). Other studies did not find consistent links with lung or breast 

cancer. However, associations have been observed with prostate cancer and childhood cancers, 

although these findings may be coincidental and require further exploration.  
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1.2 Standard air pollutants  
Here, we consider the quality of evidence relating standard air pollution exposure to health outcomes 

which were prioritized to inform the formulation of the updated air quality guidelines published in 

2021 by the WHO (WHO, 2021). Organizations such as the EPA and the WHO provide extensive and 

comprehensive information on these effects. Although airport emissions might differ from other 

sources in terms of pollutant mix, chemical composition or particle size (especially for PM), the health 

effects of each pollutant remain the same. In other words, assuming identical pollutants (with no 

variations in characteristics), the same mass of a pollutant emitted from an airport will have the same 

health consequences as the same amount released from another source (or another airport). 

Given the difficulty in achieving “high” quality evidence on the GRADE scale for environmental 

exposures (especially for noise), WHO used in its 2018 noise recommendations evidence of moderate 

quality as the basis for setting “strong” recommendations, which “can be adopted as policy in most 

situations” (WHO Regional Office for Europe, 2018). Below we give an overview of the health 

outcomes with a harmful effect and their quality of evidence (GRADE scoring) for aviation noise and 

air pollution.  

The following health outcomes were prioritized to inform the formulation of the updated air quality 

guidelines published in 2021 by the WHO (WHO, 2021):  

- All-cause (non-accidental) mortality; 
- Cause-specific mortality, as per the International Statistical Classification of Disease and 

Related Health Problems, 10th edition (ICD-10): cardiovascular (ICD-10 codes I00-I99), lung 
cancer (ICD-10 codes C30-C39) and respiratory (ICD-10 codes J00-J99);  

- Emergency room visits and hospital admissions related to asthma (ICD-10 code J45);  
- Emergency room visits and hospital admissions related to IHD (ICD-10 codes I20-I25; 

ultimately restricted to myocardial infarction (ICD-10 codes I21-I22).  
 

Appendix II Table 1: Summary of quality of evidence for health outcomes related to air pollution exposure. 

Pollutant Outcome Quality of evidence REF 

Short-term 

 All-cause mortality  

PM10  High  (Orellano et al., 2020) 

PM2.5  High  (Orellano et al., 2020) 

NO2 (24h)   High  (Orellano et al., 2020) 

NO2 (1h)  Moderate  (Orellano et al., 2020) 

O3  High  (Orellano et al., 2020) 

SO2 (24h)  High  (Orellano et al., 2021) 

SO2 (1h)  Low (Orellano et al., 2021) 

 Cardiovascular mortality  

PM10  High  (Orellano et al., 2020) 

PM2.5  High  (Orellano et al., 2020) 

 Respiratory mortality  

PM10  High  (Orellano et al., 2020) 

PM2.5  High  (Orellano et al., 2020) 

SO2 (24h)   Moderate  (Orellano et al., 2021) 

SO2 (1h)  High (Orellano et al., 2021) 

 Cerebrovascular mortality  

PM10  High  (Orellano et al., 2020) 

PM2.5  High  (Orellano et al., 2020) 
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Pollutant Outcome Quality of evidence REF 

 Emergency department visits and hospital admissions due to asthma  

O3 (8h or 24h)  High (Zheng et al., 2021) 

O3 (1h)  Moderate (Zheng et al., 2021) 

NO2 (24h)  High (Zheng et al., 2021) 

NO2 (1h)  Low (Zheng et al., 2021) 

SO2 (24h)  Moderate (Zheng et al., 2021) 

SO2 (1h)  Moderate (Zheng et al., 2021) 

 Emergency department visits and hospital admissions due to myocardial infarction 

CO  Moderate (Lee et al., 2020) 

Long-term 

 All-cause mortality  

PM10  High (Chen & Hoek, 2020) 

PM2.5  High  (Chen & Hoek, 2020) 

NO2  Moderate  (Huangfu & Atkinson, 2020) 

O3 (annual)  Low  (Huangfu & Atkinson, 2020) 

O3 (peak)  Moderate  (Huangfu & Atkinson, 2020) 

 Respiratory disease mortality  

PM10  High (Chen & Hoek, 2020) 

PM2.5  Moderate (Chen & Hoek, 2020) 

NO2  Moderate  (Huangfu & Atkinson, 2020) 

O3 (annual)  Low  (Huangfu & Atkinson, 2020) 

O3 (peak)  Low  (Huangfu & Atkinson, 2020) 

 COPD mortality  

PM10  Moderate (Chen & Hoek, 2020) 

PM2.5  High (Chen & Hoek, 2020) 

NO2  High   (Huangfu & Atkinson, 2020) 

 Acute lower respiratory illness mortality  

PM2.5  High (Chen & Hoek, 2020) 

NO2  Moderate   (Huangfu & Atkinson, 2020) 

 Lung cancer mortality 

PM10  High (Chen & Hoek, 2020) 

PM2.5  High  (Chen & Hoek, 2020) 

 Circulatory disease mortality  

PM10  Moderate (Chen & Hoek, 2020) 

PM2.5  High  (Chen & Hoek, 2020) 

 Ischemic heart disease mortality  

PM10  Moderate (Chen & Hoek, 2020) 

PM2.5  High  (Chen & Hoek, 2020) 

 Stroke mortality  

PM10  Low (Chen & Hoek, 2020) 

PM2.5  High  (Chen & Hoek, 2020) 

IHD: ischemic heart disease, COPD: chronic obstructive pulmonary disease, ALRI: acute lower 

respiratory illness, EDV: emergency department visit, HA: hospital admission 

1.2.1 Cardiovascular outcomes 
CO – Even brief exposures to CO can disrupt one’s heart rate due to reduced oxygen in the blood 

(Warburton et al., 2019). For people with underlying heart disease, exposures can worsen symptoms 

and trigger irregular heartbeat, which increases the risk of cardiac-related death. The long-term 

effects of CO exposure on cardiovascular health are less clear. While some studies have investigated 

links between CO and heart attacks or strokes, more research is needed to draw definitive conclusions.  

NO2 – Studies suggest that exposure to NO2 can affect cardiovascular health, both in the short-term 

and long-term. Short-term exposure may worsen existing heart problems, potentially increasing the 
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risk of heart attacks and death from cardiac-related complications. Long-term exposure may 

contribute to the development of heart disease, which in turn could increase the risk of heart attacks 

and cardiac-related death.  

O3 – Evidence suggests that both short- and long-term exposure to O3 may be linked to cardiovascular 

problems, although the evidence is not always consistent. Some studies have found associations 

between short-term O3 exposure and impaired heart function, changes in heart rate variability, 

inflammation and oxidative stress. In addition, some evidence suggests a connection between long-

term ozone exposure and increased blood pressure, hypertension and cardiovascular mortality. 

However, there is currently limited evidence for a direct link between ozone exposure and specific 

cardiovascular events such as heart disease, heart attack, heart failure or stroke.  

 PM10 – Coarse PM exposure can affect cardiovascular health, both in the short- and long-term. High 

levels of coarse PM for several days can slightly raise blood pressure in healthy people. For those with 

underlying cardiovascular disease, it can worsen symptoms like chest pain or shortness of breath, 

increase the risk of blood clots or heart attacks and even lead to death in the days following higher 

PM10 exposure. Long-term exposure over several years may contribute to a higher risk of developing 

heart disease, stroke and pulmonary embolism.  

PM2.5 – Exposure to fine PM is strongly linked to increased risk of cardiovascular and cerebrovascular 

problems, both in the short- and long-term. People with existing heart disease or high blood pressure 

are more susceptible to heart attacks, strokes and even deaths in the days following exposure to 

higher PM2.5 levels. Even health individuals can experience temporary increases in blood pressure and 

heart rate variability after short-term exposure to elevated fine PM levels. Chronic exposure to even 

moderate levels of PM2.5 can significantly increase the risk for developing heart disease and 

hypertension. This may lead to more heart attacks, strokes and cardiac-related deaths. People with 

underlying heart conditions are especially vulnerable to the harmful effects of PM2.5. 

SO2 – The link between short-term SO2 exposure and cardiovascular problems remains unclear. While 

some studies suggest a possibility of worsened heart disease, heart failure, heart attack risk and 

cardiac death following exposure, the evidence is inconclusive and other factors might be 

contributing. More research is needed to confirm these observations following short-term SO2 

exposure. Similarly, the long-term effects of SO2 exposure on cardiovascular health are inconclusive. 

Some studies suggest a potential link to an increased risk of heart disease, heart attack, stroke and 

cardiac death. However, the evidence has been inconsistent and further evidence is crucial to 

understand any potential long-term impacts.  

 
Appendix II Table 2: Cardiovascular health outcomes resulting from air pollution exposure, from (Johnson et al., 
2020). 

Cardiovascular health outcomes 

Pollutant   Short-term exposure  Long-term exposure 

CO Likely causal Inadequate evidence  

NO2 Suggestive evidence  Suggestive evidence 

O3 Suggestive evidence  Suggestive evidence  

PM2.5 Causal  Causal  

SO2 Inadequate evidence  Inadequate evidence 
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1.2.2 Metabolic outcomes 
NO2 – Limited research exists on short-term NO2 exposure and metabolism. However, studies suggest 

a potential link between long-term exposure and increased risk of metabolic problems, such as insulin 

resistance and type 2 diabetes.  

O3 – Studies suggest a possible link between short-term ozone exposure and changes in metabolism, 

such as increased blood sugar and insulin levels. The evidence for long-term ozone exposure is less 

conclusive and suggests a link with diabetes-related deaths.  

PM10 – Studies suggest that long-term PM10 exposure may be linked to an increased risk of developing 

metabolic disorders, such as type 2 diabetes. Exposure over several years might result in higher 

chances of experiencing issues like elevated blood glucose levels and insulin resistance.  

PM2.5 – Evidence suggests a potential link between exposure to fine PM and an increased risk of 

metabolic problems, both in the short- and long-term. People with existing diabetes or metabolic 

conditions may experience worsened symptoms and require hospitalization following days with 

higher PM2.5 levels. In addition, short-term exposure may lead to increased blood sugar and insulin 

levels even in healthy individuals. Long-term exposure to moderate levels of PM2.5 over several years 

may result in a higher risk of developing metabolic syndrome and type 2 diabetes which can lead to 

higher rates of deaths related to metabolism and diabetes.  

 
Appendix II Table 3: Metabolic health outcomes resulting from air pollution exposure, from (Johnson et al., 2020). 

Metabolic health outcomes 

Pollutant   Short-term exposure  Long-term exposure 

NO2 Inadequate evidence  Suggestive evidence 

O3 Likely causal Suggestive evidence 

PM10 NA Suggestive evidence 

PM2.5 Suggestive evidence  Suggestive evidence  

1.2.3 Respiratory outcomes 
CO – Evidence suggests that short-term CO exposure may lead to respiratory effects. Exposure may 

worsen symptoms of asthma and COPD in affected populations. Exposure may have small impacts on 

lung function in the general population. Current evidence is inadequate for long-term CO exposure 

effects on respiratory functioning. Only a few studies examined CO’s impact on allergy and asthma 

development and severity and alternative explanations were not ruled out when some impact on lung 

functioning was observed.  

NO2 – NO2 exposure can harm the respiratory system, with both short-term and long-term effects. 

Short-term NO2 exposure worsens asthma symptoms and can trigger attacks. Exposure may also 

contribute to respiratory symptoms and increase susceptibility to infections in healthy individuals. 

Exposure may worsen symptoms for people with allergies or COPD. In addition, short-term exposure 

increases the risk of death from respiratory problems for those with existing conditions. On the other 

hand, long-term NO2 exposure likely increases the risk of developing asthma and may contribute to 

chronic respiratory problems.  

O3 – There is strong evidence that short-term exposure to O3 can trigger respiratory problems. Multiple 

studies show a decline in lung function, even in healthy young adults, after short-term ozone exposure. 

In addition, short-term exposure can make people more susceptible to respiratory infections and 

worsen symptoms for those with existing conditions like asthma, COPD and allergies. This can lead to 
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increased hospitalization and even death, especially for those with underlying respiratory problems. 

Long-term O3 exposure forms also a concern for respiratory health, although the evidence is 

developing. Long-term exposure may be linked to the development of asthma in children and a 

worsening of symptoms in both children and adults with existing asthma. It might also increase 

susceptibility to respiratory infections and the development of allergies and COPD. While some studies 

suggest a link between long-term exposure and respiratory deaths, the evidence is currently 

inconsistent.  

PM10 – While large coarse PM particles mostly get trapped in the upper airways (nose and throat), 

some can reach your lungs. This can cause irritation and lead to respiratory problems, especially for 

people with asthma. In this regard, short-term PM exposure to high levels of coarse PM has been 

linked to more asthma attacks. The evidence is less conclusive on whether coarse PM exacerbates 

COPD symptoms directly. However, it may increase susceptibility to respiratory infections. This can be 

particularly dangerous for people with existing respiratory illnesses, who may be more likely to 

experience breathing difficulties or even death on days with high PM10 levels. While some studies 

suggest a possible link between long-term PM10 exposure and respiratory problems, the evidence is 

currently inadequate to be conclusive. Exposure over several years has been suggested to lead to 

reduced lung function, asthma development, and susceptibility to respiratory infections among 

children. However, other factors could also contribute to these health problems. 

PM2.5 – While the 2009 and 2019 ISAs conclude that PM2.5 likely causes respiratory effects, many 

experts agree that the evidence is compelling and points towards a causal relationship between PM2.5 

exposure and respiratory outcomes, both in the short- and long-term. Fine PM can irritate the lungs 

and worsen existing respiratory problems. During days of higher PM2.5 levels people with asthma are 

more likely to experience attacks and people with COPD or allergies may have worsened symptoms. 

Those with underlying respiratory illnesses are at higher risk of breathing difficulties or even death.  

Long-term effects from moderate PM2.5 exposure over years include increased risk of respiratory 

infections and higher rates of respiratory-related death. Moreover, long-term exposure to moderate 

levels of fine PM can increase children’s risk of developing asthma or hinder their lung development.  

SO2 – Short-term exposure to SO2 is known to harm the respiratory system. The strongest evidence is 

for asthma exacerbation. Short-term exposure can also decrease lung function in people with 

underlying respiratory problems, potentially increasing their risk of death from respiratory issues. 

Long-term SO2 exposure may also contribute to respiratory problems, although the evidence is still 

developing. Long-term exposure might be linked to the development of asthma in children, worsen 

asthma severity in all ages and increased susceptibility to allergies, respiratory infection and even 

respiratory-related death.  

Appendix II Table 4: Respiratory health outcomes resulting from air pollution exposure, from (Johnson et al., 
2020). 

Respiratory health outcomes 

Pollutant   Short-term exposure  Long-term exposure 

CO Suggestive evidence  Inadequate evidence  

NO2 Causal  Likely causal 

O3 Causal  Likely causal  

PM10 Suggestive evidence  Inadequate evidence 

PM2.5 Causal   Causal  

SO2 Causal  Suggestive evidence 
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1.2.4 Cognitive outcomes 
CO – Studies suggest that short-term CO exposure may trigger inflammation in the brain, potentially 

leading to an increase in depression symptoms. Moreover, there is evidence suggesting a link between 

long-term CO exposure and an increased risk of developing Parkinson’s disease and dementia.  

NO2 – While the link between short-term NO2 exposure and nervous system effects remain unclear, 

some studies suggest a potential connection. A few studies have linked short-term exposure to brain 

inflammation, which might be associated with depression symptoms. On the other hand, there is 

growing evidence for long-term NO2 exposure impacting the nervous system. Some evidence suggests 

a potential association between prenatal NO2 exposure and an increased risk of autism spectrum 

disorder in children. Longer-term NO2 exposure might in turn be linked to dementia, Parkinson’s 

disease and cognitive decline.   

O3 – Evidence suggests potential impacts of both short- and long-term ozone exposure on the nervous 

system. Some evidence suggests a possible link between short-term exposure and increased 

depressive symptoms. Stronger evidence exists for the potential effects of long-term O3 exposure on 

cognitive function. However, the evidence is still limited regarding the link to depression, 

neurodegenerative diseases (e.g., Alzheimer’s) or autism spectrum disorder.  

PM10 – The impact of short-term PM10 exposure on the central nervous system remains unclear due 

to inadequate evidence. While a single study suggests that exposure may trigger a stress response and 

increase stress-related chemicals in the brain, more research is required to confirm this finding. 

Concerning long-term PM10 exposure, studies suggest a possible connection with increased rates of 

anxiety, depression and cognitive decline in adults.  

PM2.5 – Long-term exposure to fine PM likely causes nervous system problems, particularly in older 

adults. Studies suggest a possible link between long-term PM2.5 exposure and higher rates of dementia 

and cognitive decline among elderly. There is also some evidence suggesting short-term PM2.5 

exposure may affect the nervous system. People with Parkinson’s disease may experience worsened 

symptoms on days with higher PM2.5 levels. Moreover, short-term PM2.5 exposure might trigger a 

stress response, leading to elevated cortisol levels in some individuals. 

SO2 – The potential effects of SO2 exposure on the nervous system are unclear. While a few studies 

suggest a possible link between SO2 exposure and depression symptoms, the evidence is very limited. 

More research is needed to determine if a connection exists. 

Appendix II Table 5: Cognitive health outcomes resulting from air pollution exposure, from (Johnson et al., 2020). 

Cognitive health outcomes 

Pollutant   Short-term exposure  Long-term exposure 

CO Suggestive evidence Suggestive evidence 

NO2 Inadequate evidence  Suggestive evidence 

O3 Suggestive evidence  Suggestive evidence 

PM10 Inadequate evidence Suggestive evidence 

PM2.5 Suggestive evidence Likely causal  

SO2 Inadequate evidence  Inadequate evidence 
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1.2.5 Birth and reproductive outcomes  
CO – Evidence suggests that long-term exposure to CO may lead to lead to effects on pregnancy and 

birth outcomes. This potential risk includes: (i) increased chances of low birth weight and premature 

birth, (ii) higher risk of stillbirth and heart defects in newborns and (iii) greater likelihood of infant 

mortality. Prenatal exposure to CO during pregnancy might also be linked to development of autism 

spectrum disorder as well as increased risk of gestational diabetes.  

NO2 – Some evidence suggests that NO2 exposure during early pregnancy might slightly increase the 

risk of gestational diabetes. The link between long-term NO2 exposure and fertility or reproduction is 

unclear. While some limited studies suggest a possible impact on sperm count and quality due to 

inflammation and oxidative stress, the findings are inconclusive, and more research is needed.  

O3 – Some studies suggest that gestational exposure to ozone during the first and second trimesters 

of pregnancy might be linked to lower birth weight and preterm birth. However, other factors could 

be contributing to these outcomes and further research is necessary to confirm a direct link with O3 

exposure. Moreover, limited evidence suggests a possible connection between long-term ozone 

exposure and sperm quality. Likewise, other factors might also be at play.  

PM10 – Studies suggest that coarse PM exposure during pregnancy may be linked to birth outcomes. 

There is evidence suggesting an association between PM10 exposure and increased risk of preterm 

birth and lower birth weight. However, other factors might also contribute to these outcomes. There 

is limited and inconclusive evidence for effects on preeclampsia and some birth defects. A few studies 

suggest a possible link between PM10 exposure and infant death from respiratory problems, but 

further investigation is necessary. Currently, there is not enough evidence to determine a clear link 

between PM10 exposure and effects on reproduction and fertility. While some hypothesize a possible 

connection to infertility, endometriosis and reduced birth rates, only a few studies have investigated 

these outcomes.  

PM2.5 – Gestational exposure to PM2.5 is a growing concern for pregnant people as it may be linked to 

various birth complications. Studies suggest an association between long-term fine PM exposure and 

(i) increased rates of preeclampsia and gestational diabetes, (ii) lower birth weight and preterm birth, 

(iii) some birth defects and (iv) higher occurrences of foetal death, stillbirth and infant death. While 

some limited studies suggest potential effects of PM2.5 exposure on sperm, eggs, ovulation and erectile 

dysfunction, more research is needed to conform a clear link with fertility problems.  

SO2 – The link between SO2 exposure and pregnancy and birth outcomes remains unclear. Some 

studies suggest a possible association with an increased risk of preterm birth, but major uncertainties 

remain. Limited evidence exists for potential impacts on birth weight, gestational diabetes, pregnancy 

loss, birth defects and infant death. However, these findings are inconsistent and other factors might 

be contributing demanding for further research. Similarly, the potential effects of SO2 exposure on 

reproduction and fertility are inconclusive. A few studies hint at a possible connection with sperm 

quality and reduced conception rates. However, major uncertainties remain, and more research is 

crucial to understand these potential links.  
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Appendix II Table 6: Birth and reproductive health outcomes resulting from air pollution exposure, from (Johnson 
et al., 2020). 

 Birth outcomes Reproductive health outcomes 

Pollutant   Long-term exposure 

CO Suggestive evidence NA 

NO2 Suggestive evidence Inadequate evidence  

O3 Suggestive evidence Suggestive evidence  

PM10 Suggestive evidence  Inadequate evidence  

PM2.5 Likely causal Suggestive evidence 

SO2 Inadequate evidence Inadequate evidence  

1.2.6 Cancer and general health outcomes 
NO2 – Evidence suggests a possible link between long-term NO2 exposure and lung cancer. Other 

cancers (i.e., brain, breast, cervical, prostate, bladder and leukaemia) may also be associated with 

exposure, but the evidence is very limited at this time.  

O3 – The link between long-term ozone exposure and cancer risk remains unclear. While some studies 

suggest ozone exposure can cause DNA damage, a known risk factor for cancer, more research is 

required to understand the long-term consequences to human health. In addition, a few studies have 

explored a possible connection with lung cancer, but the populations studied were not representative 

of the general population, limiting their applicability. Currently, there is no evidence suggesting an 

association between long-term O3 exposure and other types of cancer.  

PM10 – Some studies have shown higher rates of lung cancer in areas with higher levels of PM10. 

Limited evidence from two studies suggests a possible association between higher PM10 exposure and 

breast and liver cancers. Some animal studies show that PM10 exposure may alter brain gene 

expression and potentially lead to brain tumour formation, but further investigation is needed to 

confirm this in humans.  

PM2.5 – Studies suggest a possible link between long-term exposure to PM2.5 and an increased risk of 

lung cancer. Populations exposed to moderate levels of PM2.5 over several years have higher rates of 

lung cancer and lung cancer-related deaths. The evidence for other cancers is limited. While research 

suggests PM2.5 might decrease survival rates for some existing cancers, more investigation is needed 

to confirm this.  

SO2 – The link between SO2 exposure and cancer risk remains unclear. While a few studies suggest a 

possible connection to lung cancer and an increased risk of death among people with existing bladder 

cancer, the overall evidence is inconsistent. More research is needed to address these inconsistencies.  

Appendix II Table 7: Cancer outcomes resulting from air pollution exposure, from (Johnson et al., 2020). 

Cancer  

Pollutant   Long-term exposure 

NO2 Suggestive evidence 

O3 Inadequate evidence  

PM10 Suggestive evidence 

PM2.5 Likely causal 

SO2 Inadequate evidence 

 



13 

 

1.3 Hazardous air pollutants (HAP) 
Table 5 (main text) highlights the potential health effects of HAPs. The listed health effects are based 

on reviews by EPA, WHO and the Centres for Disease Control and Prevention (CDC), along with other 

systematic reviews of ambient HAP exposures. The current understanding of health risks from airport-

related HAP exposure comes primarily from controlled animal studies and occupational studies. 

Formaldehyde has the largest evidence base. Extensive research, including epidemiological studies 

have been conducted on its health effects. However, a major knowledge gap remains as we did not 

find significant studies examining the health impacts of chronic, low-level HAP exposure on 

communities living near airports. This lack of data makes it difficult to definitively link HAP exposure 

to specific health problems and to inform causal judgements as were described for the other air 

pollutants.  

The Environmental Protection Agency (EPA) and World Health Organization (WHO) classify hazardous 

air pollutants (HAPs) based on the strength of scientific evidence linking them to cancer. In some cases, 

the WHO has a stricter classification than the EPA. Among HAPs, formaldehyde is the most concerning 

for cancer risk. Chronic exposure to outdoor formaldehyde is linked to over half of nationwide cancer 

cases attributed to outdoor HAPs (A. Laurent & Hauschild, 2014; Scheffe et al., 2016). Acetaldehyde, 

benzene, naphthalene, and 1,3-butadiene are also significant cancer risks. While evidence for 

crotonaldehyde, isopropyl benzene, 1-methylnaphthalene and 2-methylnaphthalene causing cancer 

is limited, they remain a serious health concern. While carcinogenicity is a major concern, it is 

important to understand the various adverse effects HAPs can have on different organ systems. These 

effects (e.g., respiratory problems, cardiovascular issues) can significantly impact quality of life and 

contribute to a variety of health problems, even if the evidence for cancer is less conclusive. 

1.3.1 Acetaldehyde  
Acetaldehyde is mainly used as in intermediate in the synthesis of other chemicals. It is ubiquitous in 

the environment and may be produced in the body from the breakdown of alcohol (i.e., ethanol). 

Acute health effects of acetaldehyde include irritation of the eyes, skin and respiratory tract which can 

cause symptoms like burning, redness and difficulty breathing. Chronic exposure to acetaldehyde, 

often through heavy alcohol consumption, can lead to health problems like those seen in alcoholism. 

While evidence from human studies is limited, acetaldehyde is classified as a probable human 

carcinogen by the EPA and WHO (US EPA, n.d.). This classification is primarily based on animal studies 

showing nasal tumours in rats and laryngeal tumours in hamsters. The RfC for acetaldehyde is 0.009 

milligrams per cubic meter and is based on the degeneration of olfactory epithelium in rats. In 

addition, acetaldehyde associated with the consumption of alcoholic beverages was evaluated by the 

WHO IARC as carcinogenic to humans based on sufficient epidemiological evidence showing that 

humans who are deficient in the oxidation of acetaldehyde to acetate have a substantially increased 

risk for the development of alcohol-related cancers, in particular cancers of the oesophagus and the 

upper aerodigestive tract.  

1.3.2 Acrolein  
Acrolein is primarily used as an intermediate in the synthesis of acrylic acid and as a biocide. It may 

be formed from the breakdown of certain pollutants in outdoor air or the burning of organic matter 

including tobacco, or fuels such as gasoline or oil. It is toxic to humans following inhalation, and oral 

or dermal exposures. Acute (short-term) inhalation exposure may result in upper respiratory tract 

irritation and congestion. No information is available on its reproductive, developmental, or 

carcinogenic effects in humans, and the existing animal cancer data are considered inadequate by the 

EPA to decide that acrolein is carcinogenic to humans. The WHO on the other hand classifies acrolein 
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as a probable human carcinogen (IARC, 2021). The rationale for this evaluation is based on (i) 

sufficient evidence of cancer in experimental animals (increased incidence of either malignant 

neoplasms or of an appropriate combination of benign and malignant neoplasms in two species) and 

(ii) strong mechanistic evidence as acrolein exhibits multiple key characteristics of carcinogens (e.g., 

genotoxic, alters DNA repair, immunosuppressive, etc.) (Marques et al., 2021).  

1.3.3 Benzene  
Benzene is a chemical found in the air from various sources like coal and oil burning, gas stations and 

car exhaust. Acute inhalation exposure of humans to benzene can irritate the eyes, skin and 

respiratory system. At high concentrations, it can also cause dizziness, drowsiness, headaches and 

even unconsciousness. Chronic exposure to benzene, particularly in occupational settings, has been 

linked to various blood disorders. This includes a decrease in red blood cell count and a serious 

condition called aplastic anaemia, which affects bone marrow function. Reproductive effects have 

been reported for women exposed by inhalation to high levels, and adverse effects on the developing 

foetus have been observed in animal tests. Increased incidence of leukaemia has been observed in 

humans occupationally exposed to benzene. EPA and WHO have classified benzene as a known human 

carcinogen for all routes of exposure. The RfC for benzene is 0.03 milligrams per cubic meter based 

on haematological effects in humans.  

1.3.4 1,3-Butadiene 
1,3-Butadiene is a gas used in the production of various products like rubber, plastics and resins. It is 

primarily released into our environment through car exhaust and tobacco smoke. Although 1,3-

butadiene breaks down quickly in the atmosphere, it is usually found in ambient air at low levels in 

urban and suburban areas. Both the US EPA and WHO classify 1,3-butadiene as a human carcinogen 

based on the combined weight of evidence from various studies (IARC, 2008; US EPA, n.d.). Evidence 

supporting this classification includes:  

- Occupational studies of US workers exposed to 1,3-butadiene (inhalation of either the 
monomer or polymer) show an increased risk of cancers affecting the blood and lymphatic 
system (i.e., lymphohematopoietic cancers). Notably, there’s a clear dose-response 
relationship for leukaemia in workers exposed to the polymer form;  

- Animal studies on mice and rats exposed to 1,3-butadiene by inhalation provide convincing 
evidence that it causes tumours at various sites in their bodies. Animal studies indicate that 
1,3-butadiene can cause various reproductive and developmental problems in mice. No 
human data is currently available for these effects. Based on the most sensitive effect 
observed, namely ovarian atrophy in female mice, a safe chronic exposure level (RfC) of 0.002 
milligrams per cubic meter was calculated to minimize non-cancer health risks. In addition, 
animal studies suggest females might be more susceptible to cancer from 1,3-butadiene 
exposure. However, data is limited to draw definitive conclusions about sensitive 
subpopulations within the human population;  

- Numerous studies demonstrate that both animals and humans metabolize 1,3-butadiene into 
chemicals that damage genetic material. These genotoxic metabolites, including 
monoepoxide, diepoxide and epoxydiol, are strongly believed to be responsible for the 
carcinogenic effects of 1,3-butadiene, although the exact mechanisms remain under 
investigation.  

Short-term effects of inhalation of 1,3-butadiene in humans include irritation of the eyes and 

respiratory system while long-term effects include an increased risk of heart disease and leukaemia.  
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1.3.5 Crotonaldehyde  
Crotonaldehyde or 2-butenal is a reactive aldehyde with a high production volume which is widely 

used for synthesizing chemical agents used in various industries (e.g., pharmaceuticals, rubber, 

chemicals, food, etc.). In addition, crotonaldehyde is also found in tobacco smoke and overheated 

cooking oils. Crotonaldehyde is classified as possibly carcinogenic to humans by the EPA and WHO 

based on strong mechanistic evidence. Research using human primary cell lines and various 

experimental systems indicates that crotonaldehyde exhibits several key characteristics of 

carcinogens. These include (i) an electrophilic nature by which it can readily react with cellular 

components, (ii) genotoxicity, (iii) induction of oxidative stress and (iv) promotion of chronic 

inflammation. While concerning, evidence from animal experiments on carcinogenicity is limited. 

Moreover, there is currently no data on whether crotonaldehyde directly causes cancer in humans 

(Marques et al., 2021). Accordingly, there is no health advisory value or reference value available but 

an indicative threshold value (based on ‘lowest concentration of interest’) of 5 µg/m3 is set forward 

(Agreed EU-LCI Values (December 2022), n.d.).   

1.3.6 Ethylbenzene 
Ethylbenzene is mainly used in the manufacture of styrene. Acute (short-term) exposure to 

ethylbenzene in humans results in respiratory effects, such as throat irritation and chest constriction, 

irritation of the eyes, and neurological effects such as dizziness. Chronic (long-term) exposure to 

ethylbenzene by inhalation in humans has shown conflicting results regarding its effects on the 

blood. Animal studies have reported effects on the blood, liver, and kidneys from chronic inhalation 

exposure to ethylbenzene. Limited information is available on the carcinogenic effects of 

ethylbenzene in humans. In a study by the National Toxicology Program (NTP), exposure to 

ethylbenzene by inhalation resulted in an increased incidence of kidney and testicular tumours in rats, 

and lung and liver tumours in mice. EPA has classified ethylbenzene as not classifiable as to human 

carcinogenicity. WHO on the contrary classified it as a possible human carcinogen as it induces 

tumours in rats and mice, but neither the relevance of these tumours to humans nor their mechanism 

of induction is clear (Henderson et al., 2007).  

1.3.7 Formaldehyde  
Formaldehyde is a widely used chemical, primarily found in resins for wood products and as a building 

block for other chemicals. Exposure to formaldehyde may occur by breathing contaminated indoor 

air, tobacco smoke or ambient urban air. Both acute and chronic inhalation exposure to formaldehyde 

can irritate the respiratory system, eyes, nose and throat. When chronically inhaled, formaldehyde 

can cause inflammation, oxidative stress and genotoxicity possible leading to cancer. While evidence 

is limited, human studies have shown cancers in the nose and throat, but there is also evidence for 

leukaemia and possibly lung cancer. In addition, animal studies have reported an increased incidence 

of nasal squamous cell cancer following exposure to formaldehyde through inhalation (IARC, 2004, 

2006). While the EPA considers formaldehyde as a probable human carcinogen, the National Academy 

of Sciences has agreed with the WHO and formally concluded that inhaled formaldehyde is a known 

human carcinogen (National Academies of Sciences, Engineering, and Medicine, 2014). 

1.3.8 Isopropyl benzene  
Isopropyl benzene (or cumene) is a colourless liquid with low water solubility which is used as an 

intermediate to produce phenol, acetone and in smaller amounts as a solvent or additive in aviation 

fuels. Acute inhalation exposure to isopropyl benzene may cause headaches, dizziness, drowsiness, 

lack of coordination and unconsciousness (in high doses). Isopropyl benzene irritates the skin and eyes 

and acts as a central nervous system depressant. There is limited data on the long-term effects of 
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isopropyl benzene exposure in humans. Animal studies suggest potential damage to the liver, kidneys 

and adrenal glands. The impact of isopropyl benzene on human cancer is unclear. It is concluded by 

the EPA that the carcinogenic potential of isopropyl benzene cannot be determined because no 

adequate data, such as well-conducted long-term animal studies or reliable human epidemiological 

studies, are available for any assessment (IARC, 2013). On the other hand, the WHO concludes there 

is sufficient evidence in experimental animals for the carcinogenicity of isopropyl benzene and 

evaluates that it is possibly carcinogenic to humans.  

1.3.9 Methanol  
Methanol is released to the environment during industrial uses and naturally from volcanic gases, 

vegetation, and microbes. Exposure may occur from ambient air and during the use of solvents. Acute 

(short-term) or chronic (long-term) exposure of humans to methanol by inhalation or ingestion may 

result in blurred vision, headache, dizziness, and nausea. No information is available on the 

reproductive, developmental, or carcinogenic effects of methanol in humans. Birth defects have been 

observed in the offspring of rats and mice exposed to methanol by inhalation. EPA has not assessed 

methanol with respect to carcinogenicity under the IRIS program and it has been assigned a low 

priority by the WHO IARC Monographs program 2020-2024 (IARC, 2019b). 

1.3.10 Naphthalene  
Exposure to naphthalene, 1-methylnaphthalene, or 2-methylnaphthalene happens mostly from 

breathing air contaminated from the burning of wood, tobacco or fossil fuels, industrial discharges, or 

moth repellents. High levels of naphthalene can damage red blood cells, potentially leading to 

anaemia. Naphthalene is a chemical used in various products; it is a white solid that evaporates easily. 

It is found in mothballs and is produced during burning of coal, tobacco and wood. Exposure to 

naphthalene can occur through inhalation, ingestion or skin contact. Short-term effects include 

haemolytic anaemia, liver and nervous system damage. Cataracts have also been reported in workers 

with high exposure by inhalation and ingestion to naphthalene. In addition, chronic exposure of 

workers and rodents to naphthalene has been reported to cause cataracts and damage to the retina. 

Infants born to mothers who used mothballs during pregnancy may develop haemolytic anaemia. 

While there is currently not enough evidence to definitively link naphthalene exposure to cancer in 

humans, the data is inconclusive. Due to this uncertainty, the EPA and WHO classify naphthalene as a 

possible human carcinogen. The RfC of 0.003 milligrams per cubic meter for naphthalene was based 

on nasal effects in mice while the RfD for naphthalene of 0.02 milligrams per kilogram body weight 

per day based on decreased body weight in male rats. 

1-Methylnaphthalene and 2-methylnaphthalene are naphthalene-related compounds. 1-

Methylnaphthalene is a clear liquid and 2-methylnaphthalene is a solid. They are used to make dyes, 

resins and vitamin K (2-methylnapthalene). No data are available on the potential toxicity in exposed 

humans via the oral route. However, animal studies suggest that the lungs are a primary target for 

harm after long-term oral exposure to 2-methyl naphthalene and chronic dermal exposure to 

methylnaphthalene mixtures. These studies observed pulmonary alveolar proteinosis, characterized 

by a buildup of protein and fatty material in the pulmonary alveoli. Since a similar lung condition of 

unknown aetiology exists in humans, it is anticipated that humans exposed to 2-methyl naphthalene 

may also develop pulmonary alveolar proteinosis. Symptoms include shortness of breath and cough, 

but not necessarily breathing problems. The effects of chronic inhalation of 1-methylnapthalene or 2-

methylnaphthalene have not been studies in humans or animals. To date, the available data are 

inadequate to determine if 1-methylnapthalene or 2-methylnaphthalene causes cancer in humans. 

One animal study showed an increased number of lung tumours in male mice exposed through diet, 
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but the relevance to humans and the reasons for this increase are unclear. No other animal studies 

have been conducted. Results from short-term genotoxicity tests provide no supporting evidence for 

the carcinogenicity of 1-methylnapthalene or 2-methylnaphthalene. As such, the available evidence 

of 1-methylnapthalene or 2-methylnaphthalene is limited and insufficient to determine that 1-

methylnapthalene or 2-methylnaphthalene is carcinogenic to humans. The RfD of 0.004 milligram per 

kilogram per day is based on pulmonary alveolar proteinosis in mice exposed to 2-methylnaphthalene 

in the diet for 81 weeks.  

1.3.11 Xylenes  
Commercial or mixed xylene (m-xylene, p-xylene, o-xylene) usually contains about 40-65% m-xylene 

and up to 20% each of o-xylene and p-xylene and ethylbenzene. Xylenes are released into the 

atmosphere as fugitive emissions from industrial sources, from auto exhaust and through 

volatilization from their use as solvents. Acute (short-term) inhalation exposure to mixed xylenes in 

humans results in irritation of the eyes, nose, and throat, gastrointestinal effects, eye irritation, and 

neurological effects. Chronic (long-term) inhalation exposure of humans to mixed xylenes results 

primarily in central nervous system (CNS) effects, such as headache, dizziness, fatigue, tremors, and 

incoordination. In addition, respiratory, cardiovascular and kidney effects have also been 

reported. EPA and WHO both classify mixed xylenes as not classifiable as to human carcinogenicity 

(IARC, 1999b). 

1.3.12 Phenol  
Exposure to phenol may occur from the use of some medicinal products (including throat lozenges 

and ointments). Phenol is highly irritating to the skin, eyes and mucous membranes in humans after 

acute (short-term) inhalation or dermal exposures. Phenol is considered to be quite toxic to humans 

via oral exposure. Anorexia, progressive weight loss, diarrhoea, vertigo, salivation, a dark coloration 

of the urine, and blood and liver effects have been reported in chronically (long-term) exposed 

humans. Animal studies have reported reduced foetal body weights, growth retardation and abnormal 

development in the offspring of animals exposed to phenol by the oral route. EPA and WHO both have 

classified phenol not classifiable as human carcinogenic (IARC, 1999a).  

1.3.13 Propionaldehyde  
Propionaldehyde is used in the manufacture of plastics, in the synthesis of rubber chemicals, and as 

a disinfectant and preservative. Limited information is available on the health effects of 

propionaldehyde. No information is available on the acute (short-term), chronic (long-term), 

reproductive, developmental or carcinogenic effects of propionaldehyde in humans. Animal studies 

have reported that exposure to high levels of propionaldehyde, via inhalation, results in anaesthesia 

and liver damage, and intraperitoneal exposure results in increased blood pressure. EPA and WHO 

have not classified propionaldehyde for carcinogenicity.  

1.3.14 Styrene  
Styrene is primarily used in the production of polystyrene plastics and resins. Acute (short-term) 

exposure to styrene in humans results in mucous membrane and eye irritation, and gastrointestinal 

effects. Chronic (long-term) exposure to styrene in humans results in (i) effects on the central nervous 

system (CNS), such as headache, fatigue, weakness and depression, (ii) CSN dysfunction, (iii) hearing 

loss and (iv) peripheral neuropathy. Human studies are inconclusive on the reproductive and 

developmental effects of styrene; several studies did not report an increase in developmental effects 

in women who worked in the plastics industry, while an increased frequency of spontaneous abortions 

and decreased frequency of births were reported in another study. Several epidemiologic studies 
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suggest there may be an association between styrene exposure and an increased risk of leukaemia 

and lymphoma. However, the evidence is inconclusive due to confounding factors. EPA has not given 

a formal carcinogen classification to styrene. The WHO (IARC) classifies styrene as probably 

carcinogenic to humans. This is based on (i) limited evidence in humans where positive associations 

have been observed between exposure to styrene and lymphohematopoietic malignancies and (ii) 

sufficient evidence in experimental animals (IARC, 2019a).  

1.3.15 Toluene  
Toluene is added to gasoline, used to produce benzene, and used as a solvent. Exposure to toluene 

may occur from breathing ambient or indoor air affected by such sources. The central nervous system 

(CNS) is the primary target organ for toluene toxicity in both humans and animals for acute (short-

term) and chronic (long-term) exposures. CNS dysfunction and narcosis have been frequently 

observed in humans acutely exposed to elevated airborne levels of toluene; symptoms include fatigue, 

sleepiness, headaches and nausea. CNS depression has been reported to occur in chronic abusers 

exposed to high levels of toluene. Chronic inhalation exposure of humans to toluene also causes 

irritation of the upper respiratory tract and eyes, sore throat, dizziness and headache. Human studies 

have reported developmental effects, such as CNS dysfunction, attention deficits, and minor 

craniofacial and limb anomalies, in the children of pregnant women exposed to high levels of toluene 

or mixed solvents by inhalation. EPA and WHO have concluded that that there is inadequate 

information to assess the carcinogenic potential of toluene. 
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Aims and objectives of Work Package 2 

The primary objective of this work package is to offer a concise description of existing models and 

measurement campaigns for stressors that have been identified in the literature review concerning 

risk-outcome pairs and their strength of evidence in Work Package (WP) 1. Additionally, it aims to 

conduct a gap analysis to identify knowledge gaps in modelling and measuring stressors around 

airports. 

For stressors that are already addressed around the Brussels Airport with state-of-the-art modelling 

and monitoring networks, our focus will primarily be on existing work specific to Brussels Airport. For 

these stressors, only a succinct overview of relevant studies at other airports will be provided when 

necessary. Conversely, for stressors with identified modelling and measurement gaps at Brussels 

Airport, we will also offer a brief review of studies conducted at other airports. This approach will 

serve as a source of inspiration for replicating or adapting studies at the Brussels Airport. 

This analysis encompasses the four categories of stressors outlined in the first work package: noise, 

standard air pollutants (NO2, PM10, PM2.5, BC, Pb, benzo(a)pyrene), emerging pollutants (ultrafine 

particles ‘UFP’) and Hazardous Air Pollutants (HAPs) (i.e., relevant substances of very high concern cfr. 

Flemish and Dutch framework, and substances classified as hazardous under the Clean Air Act by the 

U.S. Environmental Protection Agency (EPA).  

The subsequent sections will present the findings per stressor, distinguishing between existing 

modelling and measurement efforts and conducting a gap analysis for each specific stressor. We will 

conclude with a summary of the most significant knowledge gaps identified, providing a foundational 

basis for planning future studies. 
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1 Noise  

1.1 Existing modelling 

1.1.1 Brussels airport 
Modelling the noise pollution from airplanes has been the subject of several official reports. The 

European Union (EU) Environmental Noise Directive1 (Directive 2002/49/EC) has mandated member 

states to model noise around airports since 2002, utilizing strategic noise mapping that includes the 

indicators Lden and Lnight. The noise maps are constructed post ante, utilizing detailed information on 

flight movements and the aircraft fleet of the last year. Annually, contours are calculated on behalf of 

Brussels Airport Company (BAC) and reported to the competent authorities2. The reported maps 

include: 

• Lden noise contours of 55, 60, 65, 70 and 75 A-weighted decibels (dB(A)) to represent the sound 
exposure over a 24-hour period. To obtain these maps, the mean noise level over an average 
24-hour period in the year is calculated. There is no further distinction between days with low 
and high noise pollution for this statistic.  

• Lday noise contours of 55, 60, 65, 70 and 75 dB(A) for depicting daytime noise exposure, with 
the day period defined from 7:00 to 19:00. To obtain these maps, the mean noise level over 
an average day period in the year is calculated. There is no further distinction between days 
with low and high noise pollution for this statistic. 

• Levening noise contours of 50, 55, 60, 65, 70 and 75 dB(A) for illustrating evening noise exposure, 
with the evening period defined from 19:00 to 23:00. To obtain these maps, the mean noise 
level over an average evening period in the year is calculated. There is no further distinction 
between days with low and high noise pollution for this statistic.  

• Lnight noise contours of 45, 50, 55, 60, 65 and 70 dB(A) for a depiction of nighttime noise, with 
the night defined from 23:00 to 7:00. To obtain these maps, the mean noise level over an 
average night period in the year is calculated. There is no further distinction between days 
with low and high noise pollution for this statistic.  

• Frequency contours3 for 70 dB(A) and 60 dB(A). These frequency contours report the regions 
in which the noise level thresholds are exceeded during a fixed number of times during an 
average day of the year. In detail, the following contours are composed: 

o Frequency contours for 70 dB(A) during the day period (07:00 to 23:00) with 
frequencies of 5x, 10x, 20x, 50x and 100x.  

o Frequency contours for 70 dB(A) during the night period (23:00 to 07:00) with 
frequencies of 1x, 5x, 10x, 20x and 50x. 

o Frequency contours for 60 dB(A) during the day period (07:00 to 23:00) with 
frequencies of 50x, 100x, 150x and 200x. 

 

1  This regulation has also been incorporated into the VLAREM regulations since 2005, specifying the 

computational method to be used for noise contour calculation. 

2 The Lden, Lday, Levening and Lnight contours are publicly only provided with a 5dB resolution, but in recent years 

they have been constructed as will with a 1dB interval. Only polygon information is available, but these datasets 

can easily be converted in GeoTIFF maps.  

3 While there is no legal obligation under VLAREM to include these maps, they are required by the current permit 

of BAC. 
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o Frequency contours for 60 dB(A) during the night period (23:00 to 07:00) with 
frequencies of 10x, 15x, 20x and 30x  

Between 1996 and 2014, the Acoustics and Thermal Physics laboratory of KU Leuven calculated these 

contours. From 2015 to 2020, the WAVES research group at Ghent University took over this task. 

Starting from 2021, the calculations have been performed by To70.  

The Lden and Lnight contours of the strategic noise mapping are also utilized to estimate the annual 

number of Highly Annoyed (HA) and Highly Sleep Disturbed (HSD) individuals related to airplane noise. 

This calculation is based on the dose-response curves provided in VLAREM (Flemish Regulations on 

Environmental Permitting), which are, in turn, based on a synthesis of various noise nuisance studies 

around several European and American airports (EU, 2002). However, it is important to note that this 

relationship does not align with the most recent dose-response curve provided by the WHO in 2018 

(WHO, 2018), which is also the one stipulated in the recent amendment to the EU guidelines (EU, 

2020). 

Apart from the annual strategic maps, within the framework of the Environmental Impact Assessment 

EIA, in Dutch: milieueffectenrapport or MER, additional maps for 2019 have been composed by To70. 

The following parameters have been considered: 

• Lden noise contours of 45, 50, 55, 60, 65, 70 and 75 dB(A) to represent the sound exposure over 
a 24-hour period 

• Lnight noise contours of 40, 45, 50, 55, 60, 65 and 70 dB(A) for a depiction of nighttime noise  

• Frequency contours for 70 dB(A) and 60 dB(A): 
o Frequency contours for 70 dB(A) during the day period (07:00 to 23:00) with 

frequencies of 5x, 10x, 20x, 50x and 100x. 
o Frequency contours for 70 dB(A) during the evening period (19:00 to 23:00) with 

frequencies of 1x, 5x, 10x, 20x and 50x. 
o Frequency contours for 70 dB(A) during the night period (23:00 to 07:00) with 

frequencies of 1x, 5x, 10x, 20x and 50x. 
o Frequency contours for 60 dB(A) during the day period (07:00 to 23:00) with 

frequencies of 50x, 100x, 150x and 200x. 
o Frequency contours for 60 dB(A) during the evening period (19:00 to 23:00) with 

frequencies of 1x, 5x, 10x, 20x and 50x. 
o Frequency contours for 60 dB(A) during the night period (23:00 to 07:00) with 

frequencies of 10x, 15x, 20x and 30x  
 

The methodology of the MER study aligns with the one applied for the strategic noise maps over the 

last two years (2021 and 2022). However, in the health impact computation within the MER, the WHO 

impact functions from 2018 have been utilized. Since these impact functions employ a lower cut-off 

value, the lowest noise impact displayed on the noise maps for the MER also utilizes a lower cut-off 

value for Lden and Lnight (45dB for Lden and 40dB for Lnight, in contrast to 55 and 45 dB respectively for 

Lden and Lnight in the strategic maps). The domain of the noise maps is also determined by this lowest 

contour, and the spatial extent is thus slightly different for the maps composed within the scope of 

the MER and within the scope of the annual assessment. The spatial extent for both maps is visualized 

in Figure 1. 
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Figure 1: Domain of the noise model in the MER (left) and the 2019 annual strategic maps The dark black region 
indicates all locations where both Lden and Lnight are above the lower threshold considered in the maps, whereas 
the grey region indicates all locations where only Lden is above the threshold. Note that in strategic mapping, 
higher thresholds have been considered, resulting in a domain much smaller than that of the maps in the MER.  
 

In the most recent maps (MER + 2021 and 2022), the maps have been composed in accordance with 

the VLAREM environmental legislation, which mandates the use of ECAC Doc. 29, 3rd edition (2005) 

or a later edition. More in detail, the noise contours have been calculated using the Echo noise 

calculation model, developed by AerLabs. Echo is designed according to the specifications of ECAC 

Doc. 29, 4th edition (2016) and the software thus meets the conditions outlined in VLAREM and the 

European Environmental Noise Directive 2002/49/EC. The model chain applied is therefore a state-of-

the-art model chain.  

The model begins by calculating the noise impact of each individual aircraft, considering several flight 

parameters (such as flight path, type of aircraft and engine, estimated load, etc). The outcomes from 

all individual flights are subsequently combined to obtain frequency contours and long-term averages. 

The resulting noise maps for the standard indicators (Lden and Lnight) have been validated through 

measurements taken in the vicinity of Brussels Airport (To70, 2023). However, it should be noted that 

validations have not specifically concentrated on statistics that might delve into the underlying input 

parameters of the noise modelling. For instance, it would be interesting to conduct additional 

validation campaigns focusing on moments with overflights of specific aircraft or engine types or take-

off weights, specific wind conditions or specific hours of the day (To70, 2024). 

Because the methodology starts from individual flights, it is theoretically possible to also generate 

additional peak noise statistics focusing on various times of the day or shorter time intervals, should 

research suggest a stronger causal connection of these indicators with health impacts than the current 

statistics. However, it should be emphasized that the uncertainty associated with individual flight 

tracks is quite substantial, and the high-quality end product is achieved due to the statistical principle 

of large numbers (To70, 2024). Therefore, one should always prioritize statistics that average multiple 

moments in time, rather than concentrating on the noise from individual events (e.g., a single landing 

or departing plane). As a result, time series at the scale of seconds, minutes or even hours should 

currently not be considered. This also implies that the model results cannot readily be used to 

compute dynamic exposure with a high temporal resolution. 

Within the MER, also the noise impact of other sources related to the airport has been modelled, 

including off-road machinery, engine testing, taxiing of aircraft and road transport. It should finally be 

noted that all noise maps provide results solely for outdoor noise. Indoor noise has not been modelled, 
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and the effect of building insulation has not been considered. Therefore, the noise maps cannot be 

used to calculate indoor noise levels in the houses in the vicinity of the airport. 

1.1.2 Other airports 
Due to the existence of European legislation, noise maps are composed for all major airports in the 

European Union. Since the legislation stipulates the methods that should be employed, specifically 

the Common Noise Assessment Methods in Europe (CNOSSOS-EU) methodology, all the maps are 

modelled using a common methodology. Therefore, we will not provide more details on the noise 

maps for other airports, as a detailed study of these does not offer us new knowledge that could be 

applied to Brussels Airport. 

1.2 Existing monitoring at Brussels Airport 
Several measurement stations from the official noise monitoring network of the Flanders Environment 

Agency (in Dutch: Vlaamse Milieumaatschappij or VMM) and Brussels Environment are situated 

around the Brussels Airport. In total, there are 10 permanent stations in Flanders 

(https://www.omgeving.vlaanderen.be/nl/geluidsmeetnet-cijfers-en-rapporten) and 13 stations in 

Brussels (https://leefmilieu.brussels/burgers/onze-acties/projecten-en-resultaten/geluidsmeetnet). 

Given the extensive network in proximity to the airport and considering that the stations are placed 

both in locations with high and low noise exposure, we conclude that the measurement network 

around the airport is a state-of-the-art system, which is in line with the requirements of the EU 

Environmental Noise Directive (Directive 2002/49/EC). 

Large monitoring campaigns focusing on dynamic or indoor exposure are currently lacking. To our 

knowledge, there has been only a single preparatory study focusing on indoor noise levels, conducted 

within the scope of a PIO project of the Flemish Government. The study primarily focused on 

determining a protocol, which has been tested using a limited sample of 17 adolescents (Dekoninck 

et al., 2023a). This study is described in detail in WP1. 

1.3 Knowledge gaps related to noise 
In general, it can be concluded that a state-of-the-art model chain has already been established for 

assessing noise due to landing and departing airplanes at Brussels Airport. Furthermore, there is an 

extensive measurement network, with multiple sampling points located in the vicinity of the airport. 

However, there are still some remaining knowledge gaps, most of which are related to the monitoring 

of dynamic exposure. The following points have been identified: 

• Most exposure studies have currently focused on a static impact, either using ambient modelled 
levels or measurements at people's home addresses. Consequently, there is limited information 
on the dynamic exposure of residents around airports, which would account for both indoor and 
outdoor noise levels at their home addresses and at work/school. Preparatory studies have 
focused on establishing a protocol (Dekoninck et al., 2023) and a list of devices (Van Elsen & De 
Fonseca, 2020) suitable for these dynamic measurements. The protocol has been evaluated with 
a small group of test subjects (17 adolescents), but a large-scale study has not yet been conducted. 
It is important to note that standard dose-response curves for significant annoyance and sleep 
disturbance cannot be applied in conjunction with dynamic noise exposure results, as these curves 
have been developed using ambient noise levels and implicitly contain the effects of dynamic 
exposure levels. Therefore, the collection of dynamic noise levels should be accompanied by a 
determination of health effects. 
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• The model chain could be further validated through detailed validation campaigns focusing on 
specific input parameters. For instance, it would be beneficial to conduct additional validation 
campaigns concentrating on moments with overflights of particular aircraft or engine types, take-
off weights, specific wind conditions or particular hours of the day.  

• The uncertainty in the modelled noise levels is currently significant when focusing on a sub-hourly 
time resolution. Since the model chain benefits from averaging over multiple flights and hours, 
reducing this uncertainty on a sub-hourly basis within the model chain itself is challenging. 
However, if the model results are combined with measurements for the specific time step—a 
process commonly referred to as data assimilation—the hourly profiles of the noise model output 
could be improved. Such a model chain combining noise modelling with measurement will be 
especially important if a focus on higher temporal resolution is desired, for example, when the 
focus on peak noise impacts becomes more important. Note that in WP 1, a higher focus on peak 
noise has been identified as one of the important open research questions. 

2 Standard air pollutants  

Within this chapter, we refer to standard air pollutants as nitrogen dioxide (NO2), particulate matter 

with an aerodynamic diameter of 10 micrometres or less (PM10), particulate matter with an 

aerodynamic diameter of 2.5 micrometres or less (PM2.5), black carbon (BC), lead (Pb) and 

benzo[a]pyrene (BaP). Some other pollutants, such as ozone (O3), sulphur dioxide (SO2) and ammonia 

(NH3), also fall under this category, but there are no significant increases in their concentrations 

around airports, and thus they are not discussed. 

2.1 Existing modelling 

2.1.1 Brussels airport 
Air concentration maps for 2019 for the surroundings of Brussels Airport Zaventem have been 

generated as part of the environmental assessment study (MER) associated with the new permit for 

Brussels Airport (Antea Group, 2023). Within this study, a state-of-the-art model chain was employed. 

This model chain integrates an emission model specifically developed for Brussels Airport, 

incorporating detailed activity data on flights and taxiing combined with emission factors for various 

air pollutants based on the EMEP/EEA guidebook (EEA, 2023). The emissions calculated are then used 

as input for a Gaussian dispersion model, ATMO-Street, which has undergone extensive validation in 

numerous contexts within Flanders and other European countries (Hooyberghs et al., 2022). Note that 

this model meets the benchmark set by the EU Commission's FAIRMODE Model Quality Objective, 

which means that it can be used in policy support. The model domain encompasses a region extending 

from 15 to 20 km around the airport (see Figure 2), with the most significant expansion towards the 

north-east, attributable to the prevailing south-western winds. Further details on the emission and 

dispersion modelling processes are included in the reports annexed to the MER (Hooyberghs et al., 

2023; Pauwels et al., 2023). 
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Figure 2: Domain of the air quality model in the MER. Source: MER report (Antea Group, 2023).  

 

Within the MER, annual mean air pollutant maps for total nitrogen dioxide (NO2), particulate matter 

(PM2.5 and PM10) and black carbon4 (BC) concentrations have been created, along with exceedance 

maps for daily mean PM10 and hourly mean NO2 concentrations. Additionally, the study examined the 

impact of the airport system, encompassing5 road traffic, flights and off-road activities, with specific 

maps highlighting the impact attributed solely to the airport. Note that all the annual statistics have 

been generated starting using a model with an a priori hourly time resolution. Consequently, one 

could also consider hourly time series or other statistics that start from hourly data. As with the noise 

modelling, the uncertainty on the maps increases if the time resolution is increased, therefore the 

uncertainty on hourly maps is much larger than the uncertainty on annual mean maps. The underlying 

reason for this is very similar to that of noise modelling, as the model chain greatly benefits from 

averaging over multiple flights of a similar engine and airplane type. Indeed, emissions might vary 

strongly from flight to flight, even if the exact same engine and airplane type are used. However, by 

averaging over a large number of flights, the mean statistics incorporated into the emission factors 

should be retrieved. 

 

4 Note that in the MER the maps for EC (elemental carbon) have been modelled, but this pollutant is closely 

linked to black carbon (BC).  

5 Road traffic here refers to the impact of the airport on all road traffic in the study domain, including traffic to 

and from the airport and the industrial areas around the airport. It also includes all traffic movements in the 

domain that are not related to the airport (e.g., long-distance traffic, traffic movements within the domain but 

not related to the airport). It is very important to consider the total traffic load, as in the absence of the airport, 

there would be significantly more other traffic on the roads in the vicinity of the airport (e.g., the Brussels Ring), 

which would occupy the freed space on the already congested roads. For this reason, the airport's impact on the 

total traffic in the domain of the MER is limited to a few roads (e.g., A102).  
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In the MER, model results were merged with population data to estimate population exposure. 

However, a direct translation to health impact was not performed, though it can be readily calculated 

using the standard methodology that relies on the most recent concentration-response functions 

provided by the World Health Organization (WHO). This approach aligns with the Environmental 

Health Impact Simulation (E-HIS) tool used by the Department of Health but utilizes updated 

concentration-response functions. Utilizing this methodology, the annual increase in the number of 

deaths in the domain of the MER attributable to NO2 exposure related to emissions from the airport 

is estimated to be lower than 5, and the annual increase in the number of deaths attributable to 

particulate matter (PM2.5) exposure is estimated to be lower than 1. According to life expectancy 

curves from the EHIS tool, this translates to an increase in the number of years of life lost with 

approximately 65 and 15 for NO2 and PM exposure, respectively6. It is crucial to note that these figures 

are significantly smaller than the total health impact within the MER domain from exposure to overall 

pollution caused by emissions from all sectors, both inside and outside the domain. Specifically, there 

are approximately 300 deaths annually related to NO2 exposure and approximately 950 deaths 

attributable to PM2.5 exposure within the domain, leading to over 4,600 and 14,200 years of life lost, 

respectively. Hence, the impact of the airport (on health outcomes related to standard air pollutants) 

can be described as limited. A comprehensive application of the EHIS tool could also estimate 

morbidity effects, but given the limited impact observed on premature deaths, the impact on 

morbidity, especially for PM, is expected to be limited. 

A notable omission in the model chain used in the MER is the consideration of the impact of secondary 

pollution. Currently, only the impact of primary pollution has been considered, which contains the 

ground-level impact due to direct emissions of particulate matter (PM) and nitrogen dioxide. However, 

the impact of secondary PM, which is formed by chemical reactions of other pollutants (mainly NOx, 

NH3 and SOx), has not been addressed. The formation of this secondary pollution occurs on a 

continental scale because the chemical reactions require time, during which the pollutants are 

dispersed over hundreds to thousands of kilometres. On this continental scale, additional pollution 

associated with the Landing and Takeoff (LTO) emissions at Brussels Airport will thus also result in 

additional attributable mortality. Given that this blanket of secondary pollution spreads over a large 

geographic scale, affecting millions of inhabitants, the absolute numbers of these effects could be 

larger than those due to primary emissions. It is, however, crucial to emphasize the non-local impact 

of secondary pollution. While all mortality attributable to primary pollution occurs within the 

immediate vicinity of the airport (at most 5 km away), the impact of secondary pollution unfolds on a 

continental scale (Lefebvre, 2018a). This raises the question of whether the study of secondary 

pollution's impact is relevant within the current analysis, which primarily concentrates on the 

immediate vicinity of the airport. Note, finally, that the Department of Environment is currently 

investigating the feasibility of a tool to model the impact of secondary pollution related to industrial 

and other localized sources in Flanders. However, this methodology is not yet ready for use in general 

cases. Consequently, the health impact of secondary pollution (PM2.5) related to airport activities 

cannot be quantified, though is expected to be rather small on a local scale (the immediate vicinity of 

the airport). 

Within the Stargate H2020 project, the model chain has moreover been utilized in a source 

contribution mode. In this mode, emissions from various airport-related sectors contributing to total 

 

6 It is further important to note that these figures cannot be directly summed due to the lack of correction for 

overlap between particulate matter and NO2 in the dose-response functions. 
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pollution—including landing, take-off, taxi operations, Auxiliary Power Units (APU), Ground Power 

Units (GPU), ground heating installations and off-road emissions from non-aviation vehicles—are 

sequentially input into the model chain. This approach allows for the determination of each sector's 

contribution with a spatial breakdown. The results of this additional model chain will be detailed in a 

forthcoming report of the Stargate H2020 project, which is currently in preparation. 

Finally, there are no maps available for other standard air pollutants in the vicinity of the airport, 

typically because the emissions are estimated to be minimal (e.g., for lead, which, as detailed in the 

MER, is not present in jet fuel (Antea Group, 2023)) or due to the absence of emission factors in the 

official EMEP/EEA guidebooks applied in the model chain (e.g., for Benzo[a]pyrene (BaP)). Note that 

the emissions of BaP for the sector aviation are also not estimated in the official Flemish emission 

inventory compiled by VMM and that BaP emissions and concentrations at airports have been the 

subject of only a few studies (Riley et al., 2021a). For instance, in 2005, a measurement campaign at 

Los Angeles International Airport (LAX) compared BaP levels at the blast fence and at a background 

location (Zhu et al., 2011). It was observed that BaP levels were higher at the background location 

than at the airport itself, which suggests that airport-related emissions might not be the predominant 

source of BaP in nearby areas.  

2.1.2 Other airports 
Air quality modelling has been conducted at several airports around the world to study the health 

effects related to airport emissions using distinct types of modelling techniques. These can be broadly 

categorized in order of increasing spatial resolution in chemical transport models (CTM), Gaussian 

dispersion models (such as Eulerian and Lagrangian models) and computational fluid dynamics (CFD) 

models. In the next paragraphs, we discuss the distinct options in more detail. In the appendix (see 

section 6), we also provide an overview of notable studies, but many other studies have been 

unpublished (Janicke, 2023a). 

2.1.2.1 Chemical transport models 

Chemical Transport Models (CTMs) are grid-based models, meaning that emissions are aggregated 

within a grid cell and concentrations are only calculated as an average of that grid cell (Holmes & 

Morawska, 2006; Woody et al., 2016). Moreover, aircraft LTO emissions are instantaneously diluted 

into the ground-level grid cell containing the airport. Studies demonstrated that this leads to an 

overestimation of pollutant concentrations and therefore CTMs have been modified to include 

emissions at various height levels (Lawal et al., 2022; Woody et al., 2016). An advantage of CTMs is 

the possibility to incorporate detailed aerosol dynamics and this was found to introduce a substantial 

increase of 12-40% in the modelled PM2.5 concentration when the formation of secondary organic 

aerosols from the oxidation of semi-volatile and intermediate volatility organic compounds emitted 

from aircraft was included (Woody et al., 2016). On the other hand, they are less suitable to model 

pollutant concentrations in a local environment, where concentrations and pollutant dynamics are 

highly influenced by local changes to the wind field and emissions. An often-used CTM to model the 

dispersion of emissions related to airport activities (including LTO and non-LTO activities) is the 

Community Multiscale Air Quality (CMAQ) model with a grid cell size down to 4 x 4 km² (Arunachalam 

et al., 2011; Lawal et al., 2022; Woody et al., 2016). 

2.1.2.2 Gaussian dispersion models 

If results at scales finer than the CTM grid are desired, e.g., if the focus is on the exposure of the 

population in the immediate vicinity of airports, Gaussian dispersion or CFD models should be used. 

Gaussian dispersion models are based on a Gaussian distribution of the plume in vertical and 

horizontal directions under steady-state conditions. There are two types of Gaussian dispersion 
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models: Eulerian and Lagrangian (Lefebvre, 2018b). An Eulerian model describes the concentration of 

pollutants within a fixed spatial frame of reference. This approach treats the plume as static during a 

single time step, simplifying the analysis. In contrast, Lagrangian models describe the dispersion of 

pollutants by tracking the movement of fluid parcels or particles as they move with the wind, allowing 

the plume to evolve dynamically during a single time step. Eulerian models are generally preferred for 

larger-scale, steady-state scenarios due to their relative simplicity and lower computational demands. 

Conversely, Lagrangian models are better suited for smaller scales or scenarios where the flow field is 

highly irregular, e.g., in locations with rapidly changing wind fields such as mountainous areas or 

locations where the wind field is modified by the buildings, and the temporal dynamics of dispersion 

are critical (De Visscher, 2013). Specifically, for modelling around airports, the choice between 

Eulerian or Lagrangian models depends on the desired time scale and spatial extent (De Visscher, 

2013; Janicke, 2023a). To model concentrations on airport premises, a Lagrangian model is usually 

more appropriate, although it requires detailed meteorological data to produce reliable results. 

Additionally, for studies requiring time resolutions of seconds, a Lagrangian model might be 

preferable, though simulating an entire year can be challenging. If the interest is only in concentrations 

around the airport and a somewhat longer timescale (half hours or longer), an Eulerian model might 

be more suitable due to shorter simulation times (Janicke, 2023a).  

Examples of Eulerian models include VITO’s IFDM model described above, US EPA’s regulatory model 

AERMOD (Cimorelli et al., 2005) and ADMS-Airport (CERC, 2020). These models regard each step of 

the LTO cycle, which is included in the model as line sources at different heights in IFDM, as volume 

sources in AERMOD or as a combination of source types in ADMS.  

An overview of existing research that uses AERMOD can be found in Pandey et al. (2023). Validation 

of AERMOD has been performed for Pb (Carr et al., 2011) and SO2 (Pandey et al., 2023), both pollutants 

that mainly stem from the burning of aircraft fuel. Carr et al. (2011) performed measurements at the 

ends of the runway and at two residential locations 100 and 175 m from the runway. They showed 

that the 24-hour mean difference between model and measurements was about 40% in winter and 

20% in summer. The absolute fractional bias was between 0.29 (winter) and 0.07 (summer), indicating 

that the model overpredicted the Pb concentration. An overestimation was remarkable in the early 

evening, because at that time the stable boundary layer was not yet fully developed and the 

meteorological model that is implemented in AERMOD (named AERNET) underestimated the mixing 

height during this transition period. Pandey et al (2023) focused on the influence of including specific 

plume dynamics for aircraft engine exhaust on modelled ground-level SO2 concentrations. The 

outcome of AERMOD without and with adjusted plume dynamics was compared with measurements 

at two locations both 1.5 km downwind of a runway. The model without adjusted plume dynamics 

overestimated measured concentrations at low wind speeds, while including plume rise made 

modelled concentrations insensitive to wind speed. This is consistent with the expectation: at lower 

wind speed, buoyant plume rise will be greater and, as a result, ground concentrations will be lower. 

On the other hand, when wind speed increases, the plume is brought to the ground and the 

concentration increases to a maximum after which it decreases. Traffic sources do not have buoyant 

plumes and exhibit the opposite behaviour, namely a decrease in concentration at ground level with 

increasing wind speed. This difference has already been used to quantify the contribution of aircraft 

to NOx concentrations at and around London Heathrow (Carslaw et al., 2006).  

The ADMS-Airport model has a detailed representation of an aircraft's emissions for each LTO phase: 

take-off and landing as a series of line sources, climb-out and approach as volume sources and taxi as 

line and surface sources. The series of line sources are associated with the various engines of an 

aircraft and involve constant acceleration. In addition, effects of buoyancy and momentum of the jet 
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engines are defined. A sensitivity study showed that the buoyancy suppression at the end of the take-

off roll did not appear to be very significant, but the enhanced plume rise resulting from modelling 

the exhausts converging within a few wingspans of the jet exit was more significant. A comparison of 

ADMS-Airport with NOx measurements 200 m from the start of the roll on the runway showed an 

overall good agreement of the concentration pattern, but an overestimation at low wind speeds 

(Carruthers et al., 2007). 

A well-established Lagrangian model is the LASPORT model, which is a specific development of the 

LASAT Lagrangian model (Janicke & Janicke, 2009). This model has been utilized for studies at various 

airports across Europe, including Frankfurt (Lorentz et al., 2019), Zurich (ZurichAirport, 2013a) and 

Madrid Barajas (Janicke, 2023a). For many airports, the results have either not been publicly disclosed 

or not been published in English (Janicke, 2023a). Another study investigated a Lagrangian particle 

model to study the impact of meteorological conditions on the air quality near an airport (Pecorari et 

al., 2016). 

To conclude, Eularian and Lagrangian models are effective for average annual concentrations analyses 

and function well under moderate to high wind conditions, particularly in stable or neutral 

atmospheric boundary layers. Moreover, they can account for a wide array of atmospheric 

phenomena including the dispersion of various compounds and effects of plume rise. On the other 

hand, they do not provide accurate results for low wind conditions in complex environments. 

2.1.2.3 CFD models 

CFD models overcome the issues of Gaussian dispersion models by directly simulating the influence 

of complex topography, obstructions and recirculation due to buildings and transient meteorological 

or emission variability, however at a much higher computational cost (Holmes & Morawska, 2006; 

Sarrat et al., 2017). This high computational cost makes it up to now not possible to simulate an entire 

year, rather one day or specific meteorological conditions can be studied in detail. For example, Sarrat 

et al. (2017) simulated NOx concentrations for one day at an airport by coupling the CFD model IESTA, 

simulating the aircraft trajectories and engines emissions, and a mesoscale model, simulating the 

atmospheric dispersion at 10 m horizontal resolution. With this modelling chain, detailed 

concentration maps could be obtained at the airport (e.g., at terminals) allowing to detect high 

concentration areas. Another study looked at a mock airport to study the impact of the wind 

environment around airport buildings and the impact of atmospheric stability on NOx dispersion 

(Ghedhaïfi et al., 2022). Again, areas with high concentrations were identified and this information is 

valuable to unveil major sources. This was also the topic of a study on the air quality at Copenhagen 

Airport with an emphasis on the apron in relation to the working environment (Ellermann et al., 2012). 

To this end, the authors used the CFD model MISKAM (5 x 5 m resolution) coupled with a local scale 

model to obtain the background. They provided a validation with NOx and PM2.5 measurements near 

a gate. The model overestimated both pollutants, however it was less pronounced for PM2.5 since its 

background concentration was higher than for NOx. The plausible causes were too high emissions by 

the emission inventory and an incorrect representation of the initial dispersion of emissions.  

In sum, using CFD models is beneficial when highly detailed concentration gradients close to the 

sources are required, such as when assessing the health of passengers or workers. For exposure 

studies focusing on larger domains (e.g., residential areas near the airport), the benefits of using CFD 

models are often outweighed by the negatives. These include increased uncertainty if input 

parameters are not well-known, plus significantly slower simulation times. 
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2.1.2.4 Summary 

As an overall conclusion, we note that various model chains have been used to study the 

concentrations of standard pollutants in the neighborhoods of airports. These models vary in their 

setup details and the specific aspects they can account for. However, no single model can cover all 

aspects, as models incorporating more details often operate too slowly to study a large area 

effectively. 

When comparing the model chain used at Zaventem with those employed at other locations to study 

population exposure in the vicinity of airports, it is clear that the model chain utilized at Zaventem is 

state-of-the-art and aligns with the model chains used at other airports. 

2.2 Existing measurements 

Several measurement stations from the official telemetric system of VMM and Brussels Environment 

are situated within the area considered in the air quality modelling chain of the Environmental Impact 

Report (MER), see Figure 3. The station closest to the airport is located in Steenokkerzeel (SZ05), 

situated at the sewage treatment plant in the Sterckxstraat. This station is positioned in alignment 

with runway 07L/25R, downwind of the source under prevailing wind directions. At this location, the 

concentrations of nitrogen oxides (both NO and NO2), black carbon (BC) and particulate matter (PM2.5 

and PM10) are continuously monitored7. A comprehensive list and parameters for the other stations 

can be obtained through the IRCELINE (www.irceline.be), VMM 

(https://www.vmm.be/data/evaluatie-luchtkwaliteit) or Brussels Environment 

(https://luchtkwaliteit.brussels/) websites. Given the extensive network in proximity to the airport 

and considering the Steenokkerzeel station is very close to the main runway, we conclude that the 

measurement network around the airport is a state-of-the-art system, which is in line with the 

requirements of the EU Ambient Air Quality Directive (Directive 2008/50/EC, and Commission 

Implementing Decision of 12 December 2011 laying down rules for Directives 2004/107/EC and 

2008/50/EC).  

It is, finally, important to note that these measurements capture the total concentration, 

encompassing contributions from the airport, other significant nearby sources (e.g., road traffic) and 

the regional background concentration. Differentiating between these contributions is only possible 

when the results are integrated into a model chain. 

 

7 Note that this station is active since January 14th, 2021, and that is replaces the station SZ01, which was located 

on the terrain of the airport, also in alignment with the runway 07L/25R.  

http://www.irceline.be/
https://www.vmm.be/data/evaluatie-luchtkwaliteit
https://luchtkwaliteit.brussels/
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Figure 3: Telemetric measurement stations in the vicinity of Brussels Airport (source: www.irceline.be). Note that 
the location in Steenokkerzeel still refers to the old location of station SZ01, and not the new station SZ05. The 
exact location of the new station is described in the text.  

2.3 Knowledge gaps related to standard air pollutants 
Considering the comprehensive modelling chain and the extensive measurement network deployed 

around the Brussels airport, alongside the negligible concentrations attributed to the airport's 

emissions of standard air pollutants, we conclude that further enhancements in both modelling and 

measurement techniques are unlikely to significantly improve our understanding of the health impacts 

associated with standard air pollutants from the airport. Nevertheless, some knowledge gaps have 

been identified: 

• The current model chain has exclusively been applied to the year 2019, resulting in detailed maps 
only for that year. Consequently, it is not feasible to deduce exposure over multiple years, which 
could be a necessary input for conducting a detailed epidemiological study, especially for chronic 
diseases, which are related to long term exposure. However, given that all input data is available, 
it is theoretically feasible to produce air quality maps for additional years. 

• The omission of secondary particulate matter in the standard model chain. It is important to note 
that the health impact of this secondary pollution usually does not manifest near the airport but 
at the continental scale. Consequently, it falls outside the scope of the current study. 

 

Finally, notwithstanding that standard air pollutants arising form airport sources are likely to 

contribute only to a limited extend to exposure and health risks, it is advised to take them into account 

as co-exposures when investigating e.g., the associations between UFP and health.  

 

  

http://www.irceline.be/


18 

 

3 Ultrafine particles (UFPs) 

Airports represent a significant source of air pollutants, especially aerosols and ultrafine particles 

(UFPs) (Artous et al., 2024a). UFPs are a subset of particles with an aerodynamic diameter less than or 

equal to 0.1 μm (100 nm) (WHO, 2021). In terms of mass, they represent a small fraction of airport-

emitted aerosols; however, they represent most emissions when expressed as particle numbers8 

(Artous et al 2024). 

A formal standard for ultrafine particles is currently lacking. Due to technical constraints, 

measurements incorporate a lower limit on the particle diameter. Although the WHO has set forward 

a good practice (lower limit of 10 nm (WHO, 2021)), presently, there is no universally adopted 

standard for this lower limit, leading to variability in the lower limit used across different studies. 

Because particles with finer diameters are especially abundant in emissions related to airplanes 

(Austin et al., 2021a; Owen et al., 2022a; Stacey, 2019a), the varying lower cut-off value becomes 

particularly significant when studying UFPs around airports. Consequently, great care is required when 

comparing the results of different studies. 

In its proposal for a new ambient air quality directive, the European Commission aims to address this 

inconsistency. A provisional political agreement was reached on the revised Ambient Air Quality 

Directive between the European Parliament and the Council on February 20, 2024 (EU, 2024). The 

proposed directive defines, in line with the good practice of the WHO, 'ultrafine particles' (UFP) as 

“particles with a diameter of less than or equal to 100 nm, where UFP are measured as the particle 

number concentrations per cubic centimetre (cm³) for a size range with a lower limit of 10 nm with 

no restriction on the upper limit”. Upon the enactment of the updated directive, this guideline will 

establish a European standard for the lower cut-off diameter of UFPs. 

3.1 Existing modelling 

3.1.1 Brussels airport 

3.1.1.1 ATMO-Street model chain 

The concentrations of UFP related to air traffic emissions are mapped using a model chain that has 

been developed by VITO on behalf of VMM (for 2016) (Lefebvre et al., 2019a) and later refined within 

the European research project Stargate. The model chain has also been used in the MER to model the 

annual mean UFP concentrations in 2019 related to air traffic (covering the full LTO cycle) (Antea 

Group, 2023; Hooyberghs et al., 2023).  

The model used is the ATMO-Street model chain, which is also employed to model standard air 

pollutants in the MER. The model chain begins with detailed activity data on flights and taxiing. For 

each flight movement, the fuel use is determined using the EMEP/EEA guidebook. In a second step, 

this fuel use is converted into particle emissions, using emission factors per unit of fuel used. These 

particle emissions are then put into a Gaussian dispersion model to determine the pollutant 

concentrations at all locations within the specified domain. The model provides concentrations at an 

hourly resolution for the designated domain (see Figure 2), which are typically processed to obtain 

annual mean pollution maps. More details on the model chain are provided in the reports of the 

 

8 Note that, because particles with diameters smaller than 100 nm dominate particle numbers, in practice, UFPs 

are typically measured without an upper limit on the size of the mass. 
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studies mentioned above (Hooyberghs et al., 2023; Lefebvre et al., 2019a). As for the standard air 

pollutants, the model chain has also been utilized in a source contribution mode, thereby providing 

information on the dominant polluting sectors. The results of this source contribution exercise are, 

however, unpublished at the moment.  

3.1.1.2 Modelling uncertainty for long-term averages 

Modelling of UFPs, however, comes with significant uncertainty. Within the report underlying the 

modelling used in the MER, a dedicated section on the uncertainty of UFP modelling has been added 

(Hooyberghs et al., 2023). The following paragraph reflects the content of this discussion in the MER 

report. 

The main uncertainty related to the modelled UFP concentrations is caused by the uncertainty on the 

aircraft emissions. These emissions are calculated by combining the amount of fuel used by the 

airplanes with a ratio that specifies the particles emissions per unit of fuel used. However, the 

uncertainty on the latter factor is very high. Typically, the literature shows factors encompassing 

several orders of magnitude, ranging from 1015 to more than 1016 particles per kilogram of fuel used. 

Within the framework of the European research project Stargate9, a detailed validation was also 

conducted using UFP measurements from 2018 and 2019. The results of this validation demonstrate 

that the measurements can only be explained if emission factors at the upper end of the range from 

the literature are used. There are several underlying causes for the great uncertainty in UFP emissions. 

Firstly, there is no standard lower limit concerning the particle size to be included. Consequently, 

different studies and measurement campaigns use different definitions for this minimum particle size. 

Since UFP emissions from aviation are dominated by a very large number of very small particles, this 

has a significant effect on the uncertainty of the emissions and concentrations (Shirmohammadi et al., 

2017; Stacey, 2019a). 

Another cause concerns the processes that occur after the particles are emitted into the atmosphere 

(Austin et al., 2021a; Owen et al., 2022a)10. Most of these processes occur in the first seconds to 

minutes after the warm emission jet leaves the exhaust of the airplane. During the cooling of the jet, 

various physical processes occur (condensation, nucleation, coagulation, etc.), which significantly alter 

both the number of particles and the particle size distribution. The exact nature of these reactions is 

not fully known, but it is already evident that their specifics depend on many external circumstances, 

such as meteorological conditions including relative humidity and wind speed. To describe these 

effects, a distinction between "engine non-volatile particles" (the emitted particles) and "volatile 

particles" (the particles generated by processes in the atmosphere) is made. On the other hand, 

dispersion modelling with the ATMO-Street model uses a time resolution of one hour, and thus the 

physical processes during the cooling of the jet are not included in the dispersion modelling. It is 

therefore implicitly assumed that the emissions used in the modelling are the sum of the "non-

volatile" and "volatile" particles, but this is not always in accordance with the emission factors 

provided in the literature. It is therefore not surprising that the validation produces better results 

when emission factors at the upper end of the range from the literature are used. 

 

9 https://www.greendealstargate.eu/, financed within the scope of the EU Green Deal project. 

10 This section is only a brief introduction to the topic. For a more detailed review, we refer to the references 

provided in the text, and the references therein. 

https://www.greendealstargate.eu/
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Finally11, within the current model chain, the emission factor that describes the number of particles 

emitted per unit of fuel use is kept constant for all phases of the Landing and Take-Off (LTO) cycle. 

However, this assumption has been shown to be overly simplistic by recent findings. Studies have 

observed a significant difference in the number of particles emitted during landing and taxiing 

compared to take-off (Janicke, 2023b). During take-off, fuel combustion is much more complete 

because the engine operates at full power, resulting in relatively fewer particles being emitted. In 

contrast, during taxiing and landing, the engine operates at a lower thrust setting, leading to less 

complete combustion. Therefore, particle emissions tend to be higher during these phases, and the 

diameter of the particles tends to be smaller. 

In summary, we conclude that the emissions and concentrations for UFP can only be determined 

approximately and that the absolute concentrations can only be considered accurate to the order of 

magnitude. On the other hand, despite the many uncertainties, the current model chain does capture 

the spatial gradient of the UFP concentrations around the airport, as demonstrated by a validation 

using measurements from 2016 (Lefebvre et al., 2019a), on the one hand, and 2018 and 2019, on the 

other hand (Ysebaert et al., 2024). Therefore, the model chain can be used to accurately calculate the 

spatial gradients of long-term population exposure around Zaventem Airport. Within the Stargate 

project, VITO is also planning to further validate the model chain for UFPs, using measurement 

campaigns from 2022. This validation campaign will specifically focus on exploring the differences 

between the various phases of the LTO cycle. By combining the model results with the measurements, 

better estimates for the emission factors of UFPs around Brussels Airport will be developed, which will 

also lead to an improved concentration map. 

3.1.1.3 Modelling uncertainty for short-term averages 

The uncertainty in the model results becomes even larger when focusing on short-term averages. 

Given the hourly temporal resolution of the model chain, only results averaged over hourly or longer 

time scales can be used.  

For both the 2016 measurement campaign and the 2018 and 2019 campaign (Lefebvre et al., 2019a; 

Ysebaert et al., 2024), the results at brief time scales have also been validated. At a daily resolution, a 

decent agreement between measured and modelled results can be observed. However, the 

correlation between the measurements and the model results diminishes greatly if sub-daily results 

are considered. Therefore, the model chain can currently only be effectively used at temporal 

resolutions starting from daily means.  

The underlying reason for this is very similar to that of noise modelling. Due to the way in which 

emissions are modelled, the model chain greatly benefits from averaging over multiple flights of a 

similar engine and airplane type. Indeed, emissions might vary strongly from flight to flight, even if the 

exact same engine and airplane type are used. This variation could be due to several reasons, amongst 

other different settings of the motor or flaps, in-flight corrections to the flight path or meteorological 

conditions that lead to a different formation process of volatile particles. However, by averaging over 

a large number of flights, the mean statistics incorporated into the fuel use factors and the emissions 

factors should be retrieved. In this way, the modelling greatly benefits from the law of large numbers, 

but of course, a significantly longer time scale is required to achieve reliable results. 

 

11 This paragraph is based on the results of the Aviator project, https://aviatorproject.eu/, and benefited from 

personal communication with Ulf Janicke. Note that many of the outcomes of the project are confidential and 

are therefore not publicly available.  

https://aviatorproject.eu/
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3.1.2 Other airports 
The same modelling techniques used for standard air pollutants are applied to map UFP 

concentrations near airports. We thus refer to the corresponding sector for a general description of 

the type of models that are being applied around airports. The appendix (see section 6) provides an 

overview of some studies dealing with modelling of UFP at several airports. Note that most of the 

studies focusing on UFP are using Gaussian dispersion modelling (either a Gaussian or a Lagrangian 

model) or a CFD model. Given the complexities of the chemical reactions in the engine exhaust jet, 

and the limited spatial extent with elevated UFP concentrations, running a CTM for UFP emissions 

related to air transport emissions is difficult. 

The main difference between modelling UFP and other air pollutants lies in the emission factors for 

UFP, which are more uncertain compared to those for standard air pollutants, as explained above for 

the model chain at Brussels Airport. As a result, the concentrations of UFP also come with larger 

uncertainties. In comparison with the modelling performed at Brussels Airport, studies have used the 

emission factors for UFP (with a lower diameter of 7 nm) derived from a field study performed under 

real-world conditions at Brisbane Airport (Brisbane, Australia) for each phase of the LTO, except for 

climbing and approaching aircrafts (Mazaheri et al., 2009). 

In general, background concentrations are not available for UFP, as rural or urban background 

monitoring locations are often missing. A method used in the literature to determine the background 

concentration of UFP uses UFP measurements when the wind blows from a direction opposite to the 

direction where the airport is located (Keuken et al., 2015a; Voogt et al., 2023). This background is 

then subtracted from UFP concentrations measured with winds coming from the airport. Another 

difficulty comes from the uncertainty related to UFP emissions from road traffic, which must be 

included if the roads are within the model domain. However, official databases such as COPERT or 

HBEFA only contain emission factors for non-volatile UFP, while it is known that most UFP is volatile 

as already highlighted in this document (Keuken et al., 2015a; Lefebvre et al., 2019b). Lefebvre et al. 

(2019) therefore rescaled road traffic emissions from an official database (HBEFA) based on 

measurements, to take the volatile fraction into account. Voogt et al. (2023) in turn used NOx as a 

proxy for UFP from road traffic, assuming a linear relationship between NOx concentration 

contributions from traffic and UFP contributions from traffic. This concentration is also subtracted 

from the measured UFP concentration to obtain the UFP concentration due to airport activities only. 

Many of the studies focusing on modelling of UFP concentrations around airports thus identify the 

same knowledge gaps that have been identified in modelling UFP concentrations at Brussels airport 

(uncertainty in emission estimates, difficulties in modelling peaks in time series with a high temporal 

resolution), and that have been identified in studies focusing on monitoring of UFPs at airports 

(difficulties in estimating the chemical reactions in the exhaust plume, larger need for characterization 

of particle sizes). 

3.1.3 Summary 
In sum, we conclude that ultrafine particles have been modelled at various airports using mostly 

Gaussian dispersion models. However, all these model chains come with a large uncertainty, which is 

much greater than for standard air pollutants. Typically, an uncertainty factor of ten on the total 

concentrations is not uncommon. Therefore, data assimilation with measurements might be used to 

reduce the uncertainties in the absolute concentrations. 
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The model deployed at Brussels Airport is a new a state-of-the-art model chain, which is in line with 

the techniques used at other airports. The model chain has been applied for 2019 and can be used to 

assess concentrations on a daily or longer time resolution. 

3.2 Existing measurement campaigns 

3.2.1 UFP monitoring near Brussels airport 
UFP monitoring near Brussels airport is conducted by the VMM at one site in Steenokkerzeel. 

Additionally, several measurement campaigns have been conducted in this area over the last decade. 

3.2.1.1 Continuous UFP monitoring site of VMM 

Currently, there is only one permanent continuous measurement station measuring the UFP 

concentrations in the vicinity of the airport, located at Steenokkerzeel. The AQM station SZ05 (Figure 

4) from VMM is equipped with instrumentation for UFP monitoring (SMPS 3938, water-based CPC, 10-

800 nm particles, 5-min scans). The UFP measurements were started on 17/06/2022 and are running 

continuously.  

 

Figure 4: Location and photo of SZ05 AQM station from VMM. 

3.2.1.2 Temporary UFP monitoring campaigns  

Over the last decade, VITO has been commissioned to conduct several monitoring campaigns for UFP 

in the Brussels Airport region (Figure 5). The duration of the campaigns was two to three months, 

sometimes split in a winter and summer part.  
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Figure 5: Overview of monitoring sites from temporary monitoring campaigns. 

 

In the 2015 campaign, four monitoring stations were located on a transect aligned with a busy runway 

(25R/07L) at varying distances from the runways (Figure 6). Three of the measurement locations are 

characterized as urban background stations, whereas one location is a rural station. The monitoring 

was done during a two-month period, i.e., October and November 2015. At the time of this campaign, 

standard air pollutants were monitored at a nearby AQM station from VMM (SZ02). 

 

 

                                    

Figure 6: Overview of monitoring sites from the 2015 monitoring campaign. 

 

  

EE01, 5 km from Brussels Airport 

MC03, 250 m from airport 

SZ02, 500 m from airport 

SZ04, 750 m from airport 
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UFP measurements were made with scanning mobility particle sizers (SMPS) at a 5-min time 

resolution. Particle number concentrations (PNC) were calculated for 7 size classes: 

• 10 – 20 nm 

• 20 – 30 nm 

• 30 – 50 nm 

• 50 – 70 nm 

• 70 – 100 nm 

• 100 – 200 nm 

• 200 – 294 nm. 

A full text report (2016/MRG/R/0493) is available in a report in Dutch (Peters et al., 2016).  

For the 2018-2019 campaign, total PNC were measured with water and butanol-based condensation 

particle counters (CPCs) at a 10-sec time resolution. The measurements were made at 8 sites with 

different distance and orientation to the airport (Figure 7). Two sites were monitored continuously, 

three sites were first included in the monitoring network near 25R and shifted to the 25L network 

after some time. The monitoring was split up into a summer and winter campaign. The results of this 

study are available in a Dutch report (Peters et al., 2019). 

 

Figure 7: Overview of the monitoring locations from the 2018-2019 study.  

 

The monitoring campaign of 2022 was performed within the Stargate project of the EU Green Deal 

(https://www.greendealstargate.eu/). UFP monitoring (total PNC) was performed at four different 

sites near the airport (Figure 7) over a two-month period. Additionally, dedicated measurements at 

specific sites were done with portable monitors (P-Trak and minidisk) for a shorter period (hours). In 

this study, a short exploratory campaign with mobile measurements was conducted. Results are 

indicative. Mobile measurements refer to air quality measurements that are made while moving 

around, e.g., on foot, by bike, car or other. One of the reasons why mobile measurements are made 

in air quality research is to obtain a better image of the spatial distribution of pollutants compared to 

fixed monitoring from a limited number of sites. However, the interpretation of mobile measurements 

is not straightforward, especially not for highly dynamic environments and pollutants (such as UFP at 

the airport region). Mobile measurements of UFP were made from a bicycle while travelling an 8 km 

track at a speed of ca. 10 km/h. The same route was repeated in sequential runs (3, two bicycles) on 

https://www.greendealstargate.eu/
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28/06/2022 8:40 until 10:50 and repeated once more on 29/08/2022 13h. A report of the campaign 

of 2022 is provided in a deliverable of the Stargate project but is not publicly available yet. 

3.2.2 UFP monitoring at other airports 
There is already a significant body of research studies focusing on the UFP concentrations around 

airports. A systematic literature review of recent research on the impacts of commercial airport 

emissions on air quality in close proximity to airports was conducted by Riley et al. (Riley et al., 

2021b).We have used this review paper as starting point and additional literature was found using 

reference database searches in PubMed, Web of Science and Google Scholar for the period 2018-

2024. The focus of this systematic review was impacts of commercial airports dominated by jet aircraft 

activity; thus, studies that focused on ground service equipment or piston engine activity were 

excluded. 

The analysis of existing research is described below and subdivided into the following sections: spatial 

extent, size distribution, chemical characterization, operating modes, fleet, correlation to other 

pollutants, outdoor and indoor relationship and gaps. 

3.2.2.1 Spatial extent and role of geography 

As a significant source of UFP, aircraft engine emissions can cause increases in ground-level particle 

number concentrations (PNC) over large areas downwind of airports (Chung et al., 2023; Gerling & 

Weber, 2023; Hudda et al., 2020; Lammers et al., 2020; Lopes et al., 2019; Riley et al., 2021c; Seidler 

et al., 2024; Stacey, 2019b; Stacey et al., 2020, 2021a, 2023a). The spatial extent and magnitude of 

the impact from UFP varies depending on factors including wind direction and speed (Lopes et al., 

2019a), runway use pattern, flight activity and fleet mixes. This can encompass large populations in 

cities where airports are located close to the urban residential area where the PNC was found to be 

elevated 7 km downwind of Schiphol Airport Amsterdam (Keuken et al., 2015b) and Berlin Airport 

(Gerling & Weber, 2023), about 17 km from Logan International Airport Boston (Chung et al., 2023), 

until 1.2 km from Lisbon airport (Lopes et al., 2019a), until at least 3 km downwind of Mohammad Ali 

International Airport. Elevated UFP concentrations up to 300,000 particles/cm3, with the same lower 

particle diameter of 10 nm, could be measured up to 2.7 kilometres away from Stuttgart Airport 

(Samad et al., 2022). 

Trebs et al. found an UFP concentration that was 5 to 10 times higher when air masses from the Findel 

Airport in Luxembourg arrived at the measurement site, compared to situations when air from forest 

or urban background sectors had the highest contribution (Trebs et al., 2023). In addition to the 

increase in concentration described above, Trebs et al. (2023) found that UFP (nucleation and Aitken 

mode particles) were reduced substantially during the day near Findel Airport Luxemburg, although 

flight movements were highest during that time. An effect that the authors attribute to temporal 

dynamics of the mixing layer. Findel is located at a slightly elevated flat plateau, which is exposed to 

efficient near-surface turbulence, reducing daytime pollutant and UFP concentrations. Therefore, it is 

concluded that the airport siting and geographical surroundings could influence UFP spatial 

distribution substantially. 

3.2.2.2 Size 

Jet engine tests revealed that the finest particles, less than 30 nm in diameter, are associated with low 

thrust settings. Larger particles, in the range 30–90 nm, are associated with thrust settings from 35% 

and higher. In practice, this means that the smallest particles are associated with the airplane modes 

during which the engine is running at a lower engine mode, resulting in less complete fuel combustion. 

Consequently, the smallest particles are observed during landing and taxiing, whereas the larger 
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particles are emitted during take-off. NC follows a similar trend in thrust settings. A number of studies 

have shown that engine design (and fuel burned, in an alternative fuel experiment) is critical to the 

concentrations and sizes of particles created (Stacey, 2019b). Largest PNC emissions are thus also 

associated with landing and taxiing.  

In ambient setting, i.e., in an external environment, aircraft emissions are dominated by extremely 

fine particles, 10–20 nm in size (Keuken et al., 2015b; Lammers et al., 2020; Samad et al., 2022; Stacey, 

2019c). This contrasts with rural and urban background locations at tens of kilometres from airports, 

where particles are typically significantly larger (with peaks between 60 and 100nm). The airport-

related particle size distribution (PSD) profile is also different to traditional road traffic, which has peak 

PSD from 30 to 50 nm. Note that the similar behaviour has been observed by VMM when comparing 

the measurements at Steenokkerzeel with those at an urban background location in Borgerhout12. 

New particle formation (NPF, sub-10 nm) was studied nearby Paphos airport Cyprus using a newly 

developed DMA-train (Brilke et al., 2020). The airport was found to be a large emission source for 

nucleation mode particles. Size distribution of airport emission plumes showed a mean mode 

diameter of 12.6 nm which is in conformity with the studies described above. Strong particle dynamics 

on relatively short timescales were revealed in the sub-10 nm size range, and early growth events 

were characterized. The clear appearance of a new mode followed by growth of the particles below 

10 nm was found to be interrupted abruptly by changes in the meteorological conditions. 

Yin et al (2023) studied the particle size distribution from take-off and landing and found that aircraft 

landing had the greatest effect on the 6–17 nm particle size range, with an increase in PNC of about 

3.27 times. Aircraft take-offs had the largest effect on the 29–57 nm particle size range, increasing the 

PNC by a factor of about 35.4. 

3.2.2.3 Chemical characterization 

The vast majority of non-volatile particles from aircraft exists as carbon particles, soot or organic 

carbon. At low thrust settings, organic carbon particles are more common. Speciation of the exhaust 

components has not quantitatively succeeded in identifying key tracers unique to aircraft activity 

(Stacey, 2019c). The majority of the total particle numbers comprises of volatile and semi-volatile 

particles, condensing and nucleating as the engine exhausts cool and mix exposing the general public 

downwind of the airport (Stacey et al., 2023a). Ungeheuer et al. (2021) studied the identification and 

source attribution of organic compounds in UFPs near Frankfurt International Airport. The analysis of 

the individual pattern of ester molecules and the comparison to jet oil standards revealed the 

presence of two different oil base stocks that emerge in the UFPs. Jetoil vapours reach gas-phase 

supersaturation in cooling emission plumes leading to rapid nucleation and formation of UFPs in the 

range of ~10–20 nm (Ungeheuer et al., 2022). 

Chemical analyses of collected particles and online monitoring techniques (mass concentration by the 

β-ray in-situ detection method, heavy metal elements by X-ray fluorescence and atmospheric water-

soluble ion online analyser for detecting water-soluble ions, mainly OC and EC) were used to study the 

chemical composition of particles at Tianjin Binhai International Airport China (Yin et al 2023). The 

concentrations of Si, OC, Ca, Al, Fe, Ca2+, EC and Mg2+ were considered as prominent species in airport 

emissions. Additionally, metallic elements including K, Zn, Ti, Mn and Cu can also be considered as 

tracers in characterizing particulate emissions from civil airports. 

 

12 See https://www.vmm.be/lucht/fijn-stof/concentratie-ultrafijn-stof,  

https://www.vmm.be/lucht/fijn-stof/concentratie-ultrafijn-stof
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Elementary analyses of sampled particles at two French airports showed that the chemical 

composition was linked to the particle size and offered some clues to make a link between metallic 

tracer elements and the sources of emission. Thus, the elementary analyses showed that the 

nanometric fraction of the aircraft emissions was mainly due to combustion with a majority presence 

of carbon/oxygen. The metallic elements that can be used as emission tracers occurred mainly at the 

micrometric scale. The elements identified as potential tracers of aircraft emissions were titanium, 

zinc and possibly bromine (Artous et al., 2024b). 

3.2.2.4 Sensors 

For UFP, some studies are conducted using the Partector 2 sensor for PNC and PSD measurements. 

For example, at Zurich Airport, the Partector 2 was used to assess the UFP concentrations at different 

sites. Other measurement campaigns with the Partector 2 were conducted in Zurich and Germany 

(Asbach et al., 2024; Edebeli et al., 2023).  

3.2.2.5 Fleet 

Measurements during larger aircraft departing from the runway recorded higher measurements of 

nucleation particles and NOx compared to smaller aircraft but emissions of BC, UVPM and NO2 appear 

to be more dependent upon the age of the engine design, rather than the size of the aircraft (Stacey 

et al., 2021b, 2023b). Measurements from individual aircraft show that, although larger aircraft emit 

significantly more particles per second, the total particle number emission rates per passenger carried 

are lower compared to smaller aircraft. 

3.2.2.6 Correlation other pollutants 

Correlation of UFP nucleation particles with NOx and BC was found during the study at Heathrow 

airport (Stacey et al 2021). PNC coincided with the periods of highest noise co-exposures at Logan 

airport Boston (Hudda et al., 2020). Noise and UFP correlations around Gatwick airport were moderate 

to low suggesting, but the correlations were affected by meteorological factors, which need to be 

considered in studies of short-term associations between aircraft noise and health (Tremper et al., 

2022). 

3.2.2.7 Source apportionment 

The ability to distinguish between aircraft and other sources of UFPs (e.g., traffic), was studied by 

Austin et al. (2021) using a mobile measurement platform (Austin et al., 2021b). They showed that 

roadway traffic consisted of relatively larger UFP sizes and high BC concentrations, while UFP from 

aircraft sources consisted of relatively smaller UFP sizes and lower BC concentrations. These 

differences can help distinguish between the spatial impact of roadway traffic and aircraft UFP 

emissions using a combination of mobile monitoring and standard statistical methods. 

Characterization of PNC, the median particle size (dmn50), and the metallic composition of medium-

haul area and engine aerosols at two French airports revealed that on the one hand, aircraft engine 

emissions led to the highest emissions (linked to the engine speed) of UFPs, up to 107 p/cm3, and a 

median particle size of less than 20 nm. On the other hand, the engines of the various vehicles used 

on the apron have their own specific emissions (linked to the generation and fuel used), but overall, 

these emissions are lower (104–106 p/cm3), with a higher dmn50 from 20 to 100 nm (Artous et al., 

2024b). 

Seidler et al (2024) investigated UFPs in close proximity to an airport to disentangle their impact on 

local air quality from other urban sources. The study analysed the spatial and temporal variations of 

UFPs and wind data for two residential areas adjacent to Munich Airport for the period of 1 year. UFP 
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concentration roses were derived showing an increase in PNC and a shift of the modal maximum 

towards smaller mobility diameters became evident for wind directions, including those approaching 

from the airport. A significant seasonal and diurnal variability of UFPs and wind became evident. The 

influencing factors were likely other urban local UFP sources, an increased surface roughness due to 

green vegetation and the atmospheric boundary layer development. 

3.2.2.8 Gaps 

Several knowledge gaps have been identified concerning the monitoring of UFP around airports: 

• Indoor infiltration: Quantify the impact of housing stock characteristics (age, architectural style, 
and degree of sound insulation) on infiltration. Studying a greater range of behaviours that impact 
infiltration and indoor air quality (e.g., air conditioner use, in-home filtration and ceiling fans) 
could help to identify practices that reduce indoor exposures. Measure additional pollutants 
indoors (e.g., NO2 and BC) to determine whether other pollutants infiltrate to the same extent as 
PNC (Hudda et al 2020). 

• Source contribution: More research is needed linking particle size distributions to specific airport 
activities (i.e., take-off and landing), but also including taxi (Riley et al., 2021b; Stacey, 2019d). 

• Spatial extent of the plumes: While particle size distribution changes with increasing distance from 
the airport, transformational behaviour of particles as they are transported downwind of the 
exhaust needs further study (Riley et al., 2021b; Stacey, 2019d). Due to limitations of stationary 
measurements, Samad et al (2022) recommends that mobile platform measurements be made to 
better understand the spatial distribution of aircraft plumes (Samad et al., 2022). This is also 
confirmed by the work from Austin et al. (Austin et al., 2021b). 

• Chemical characterization: Studies of the chemical composition of particles may shed light on the 
relative contributions from landings, take-offs, idling and taxiing at this scale and may also provide 
insights into mitigating these impacts (Hudda et al 2020).  

• Chemical reactions in the exhaust plume: The emissions and evolution of volatile particles (vPM) 
in the aircraft exhaust plume should be better estimated (Owen et al., 2022b). vPM condense and 
agglomerate in the exhaust plume or at a later stage in the ambient atmosphere and, due to their 
evolution in the aircraft exhaust plume, are more difficult to quantify, measure and assess. 
However, together with nvPM, vPM contributes to total measured ambient concentrations of 
particulate matter (the ambient measurements do not usually distinguish between them) which 
are compared with current local air quality health guidelines. 

• Long-term measurement campaigns: Long-term studies should be conducted to capture variation 
in ambient concentrations (years and seasons) (Riley et al 2021). Droge et al. demonstrated that 
a large commercial airport (Frankfurt) has the potential to lead to a high PNC even in a distant 
residential area (7 km) (Dröge et al., 2024). Due to the high PNCs, the diameter of the most 
abundant particles and strong concentration fluctuations, long-term measurements are essential 
for a realistic exposure analysis. 

• Include all meteorological situations: Exposure monitoring campaigns should be designed to 
include adequate coverage of the times of day (and times of high flight activity) with specific 
meteorological conditions of concern, especially wind direction (Hudda et al 2020). 

3.3 Knowledge gaps related to UFP 
During the literature review, several knowledge gaps and options to improve our knowledge regarding 

the UFP pollution around airports and Brussels Airport specifically have been identified.  

3.3.1 Gap analysis for UFP emissions and concentrations around airports 
Further research is needed to accurately estimate total emissions and particle size distributions of 

specific airport activities such as take-offs, landings and taxiing. Currently, these emissions are only 
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roughly estimated, associated with the complex chemical processes occurring in the engine exhaust 

jet, which result in a considerable proportion of volatile particles. The evolution of these volatile 

particles in aircraft exhaust plumes is poorly understood, yet it is crucial for assessing the overall UFP 

concentrations. Moreover, the behaviour of both volatile and non-volatile particles as they travel 

downwind from the airport remains a vital area of study. Monitoring the chemical composition of 

particles could enhance our understanding of all these complex processes. Additionally, not much is 

known about the impact of future aviation fuels, including sustainable aviation fuels (SAFs). This 

limitation has been highlighted during the Aviator project, emphasizing the need for comprehensive 

research into the environmental impacts and emission characteristics of alternative aviation fuels 

(Aviator Project, 2023; Janicke, 2023b).  

In all cases, long-term studies are essential to capture the variability in ambient concentrations across 

different seasons and years, offering a more realistic assessment of exposure. 

3.3.2 Gap analysis for UFP pollution around Brussels Airport 
Specifically for the pollution around Brussels airport, knowledge gaps are mainly related to the need 

for additional permanent measurement stations and improvements in modelling, particularly for 

short-term model results. More in detail, the following insights have been compiled: 

• Currently, there is only one permanent continuous measurement station measuring the UFP 
concentrations in the vicinity of the airport, located at Steenokkerzeel. During the measurement 
campaigns described above, which focused on time scales of several months, significant spatial 
variation in the concentrations has been observed, both on short and longer time scales. 
Therefore, monitoring of UFP concentrations around the airport would greatly benefit from the 
addition of extra continuous measurement stations, preferably in multiple wind directions from 
the airport. This approach would enable a better understanding of the spatial pattern of the 
pollution and facilitate a clearer distinction between the contributions of the airport and other 
sources (for example, by comparing the results from downwind and upwind locations). Moreover, 
there is currently no rural background station measuring UFP concentrations in Belgium. The 
addition of such a station would be beneficial to establish an absolute baseline for rural 
background UFP values.  

• Only a very limited number of dynamic pollution measurements have been conducted. To get a 
better indication of personal exposure, and especially to understand the difference between 
dynamic and static exposure on a population level, additional dynamic measurements should be 
conducted. This is especially important for UFP, given the large spatial gradients observed in the 
vicinity of the airport. Note that there are currently already trustworthy "low-cost mobile devices" 
devices on the market, but that the cost, while low in comparison with the cost of stationary more 
accurate instruments, is still quite high, at several thousands of euros per device13. 

• The current model chain can only be used at the time scale of daily means or longer averages. 
Moreover, the uncertainties increase as the temporal resolution increases, hence even the daily 
results come with substantial uncertainty. Due to the significant variation in the emissions of non-
volatile particles from flight to flight, along with the great variation in the formation of volatile 
particles, it is nearly impossible to accurately estimate the emissions of individual flights, and thus 
also the concentrations at shorter time scales. A way forward might be to combine the model 
chain with measurements in a so-called data assimilation step. Note that, for such a process to 

 

13 Roughly speaking, a low-cost mobile device costs around EUR 10,000, while a stationary, more accurate 

instrument costs about four times more. These estimates do not include the personnel costs to operate the 

devices. 
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work effectively, at least several measurement locations should monitor the UFP concentration at 
the temporal resolution desired in the model chain. Preferably, these measurement stations are 
located such that they are spread around the airport in all wind directions, ensuring that always a 
downwind sensor can model the background concentration with only minor impact from the 
airport. 

• The current model chain has exclusively been applied to the year 2019, resulting in detailed maps 
with a resolution of tens of meters only for that year. Within the scope of the Stargate project, 
also maps for 2022 will be composed, but other years are currently not considered. Consequently, 
it is not feasible to deduce exposure over multiple years, which could be a necessary input for 
conducting a detailed epidemiological study. However, given that all input data is available, it is 
theoretically feasible to produce UFP concentration maps for additional years (before 2019) . 
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4 Hazardous air pollutants (HAPs) 

In recent studies, concerns have emerged regarding certain chemical substances potentially 

hazardous to human health. The Netherlands has compiled a list of these substances, known as "Zeer 

Zorgwekkende Stoffen" (ZZS), and a similar list is being composed in Flanders (Department of 

Environment and Department of Health; the latter focusing on ZZS with human relevance). Given the 

extensive nature of these lists (the Flemish list includes over 2,400 substances), an initial step involves 

overlaying the Flemish list with one identifying substance found in aircraft emissions to the air. To 

ensure comprehensiveness, this comparison extends to substances classified as hazardous under the 

Clean Air Act by the U.S. Environmental Protection Agency (EPA) (this resulted in a few additional 

compounds) 

In a subsequent phase, the focus narrows to pollutants from this refined list to determine their 

incorporation into air quality modelling. By comparing modelling results with health-based guidance 

values (referred to as "Gezondheidskundige advieswaarde, GAW"), the number of substances 

requiring further analysis is reduced. This streamlined list undergoes additional scrutiny through a 

literature review, examining whether these substances have been analysed through modelling or 

measurements at international airports. The culmination of this process is the formulation of a set of 

recommendations concerning Hazardous Air Pollutants (HAPs). 

4.1 Determination of HAPs 
As detailed in the EMEP/EEA Inventory Guidebook on aircraft air pollutant emissions (EEA, 2023), only 

a limited number of studies have focused on the chemical specification of exhaust gases from aircraft 

turbines. Specifically, for the Landing and Take-Off (LTO) phase, the U.S. Environmental Protection 

Agency (EPA) has documented a profile of Volatile Organic Compounds (VOCs) emitted by aircraft 

equipped with turbofan, turbojet and turboprop engines (Knighton et al., 2009; US EPA, 2009). In total, 

the EPA study has identified over 75 substances, drawing on a combination of specification studies by 

Spicer (Spicer et al., 1994) in the 1980s and 1990s and the more recent Aircraft Particle Emissions 

eXperiment (APEX) initiated by NASA and supported by a wide range of governmental institutes in the 

U.S (Lobo et al., 2007; Onasch et al., 2006; Wey, 2004; Wey & Anderson, 2006). The complete list of 

these substances and their mass fraction relative to the total hydrocarbon emissions are provided in 

the EMEP/EEA Guidebook. It is important to note that these specifications were established under 

specific conditions with low thrust settings (below 30% thrust), chosen because at higher thrust ratios, 

engine combustion efficiency increases, reducing hydrocarbon emissions to very low or undetectable 

levels. Given that hydrocarbon emissions are predominantly from low thrust phases of the LTO cycle, 

changes in emission profiles at higher thrust settings are expected to have minimal impact on net 

HAPs loading. Nevertheless, there is a significant degree of uncertainty associated with the net 

emissions, and they should be interpreted with caution. When analyzing the results, emphasis should 

be placed on the emissions' order of magnitude rather than on precise values, due to the potential 

variability in emission profiles across different operational conditions. Moreover, this study focuses 

exclusively on current jet fuels, leaving a gap in knowledge regarding potential future fuels, such as 

Sustainable Aviation Fuels (SAFs). Aircraft emissions included in above mentioned sources capture 

emissions from exhaust engines and thus do not capture emissions from jet fuels that can be 

jettisoned from aircraft for safety reasons. Data on quantities for these processes are not available. 

Such discharges are made at a high altitude, away from areas of populations and the majority of the 

fuel will be vaporized (Concawe, 2009).  
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We have performed a cross-referencing of the list of chemical substances observed in jet engine 

plumes with the list of Zeer Zorgwekkende Stoffen (ZZS) (De Brouwere et al., 2023), which is being 

compiled on behalf of the Department of Health in Flanders. Through this process, we identified nine 

substances that appear on both lists: 

• 1,3-butadiene 

• 1-methyl naphthalene 

• 2-methylnaphthalene 

• Acetaldehyde / ethanal 

• Benzene 

• Crotonaldehyde 

• Formaldehyde  

• Isopropyl benzene / cumene 

• Naphthalene 
 

Note that, in comparison with earlier compilations within the scope of the MER (Milieu Effect Rapport) 

for Brussels Airport and studies for Schiphol Airport, two additional substances, cumene and ethanal, 

have been added. Aside from these additions, the list remains consistent with those previously 

utilized. 

To mitigate the impact of using a specific list of Hazardous Air Pollutants (HAPs), we also conducted 

an overlap analysis between the list of substances detected in the emission jet and the list of 

substances designated as hazardous under the US EPA Clean Air Act. This approach led to the 

identification of an additional 9 substances: 

• Acrolein 

• Ethylbenzene 

• Methanol 

• m-xylene and p- xylene 

• o-xylene 

• phenol 

• propionaldehyde 

• styrene 

• toluene 
 

Consequently, a total of 18 substances have been recognized as present in the exhaust plumes of jet 

airplanes and marked as potentially hazardous to human health. In the subsequent section of this 

chapter, we will first determine which of these substances are already incorporated into air quality 

model chains and whether the remaining substances can be integrated into the existing models with 

minor adjustments. By comparing these model outputs (modelled concentrations at locations with 

relevance for residential exposure) with health-based guidance values (for chronic inhalation 

exposure) we can perform a first, indicative health risk assessment and narrow down the list of 

substances for further consideration. 
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4.2 Existing modelling 

4.2.1 Brussels airport 
Air concentration maps for the vicinity of Zaventem Airport are derived within the environmental 

assessment study (MER) related to the new permit for Brussels Airport (Antea Group, 2023). Within 

the air pollution discipline, the emissions and concentrations of benzene and naphthalene were 

modelled using the ATMO-Street model chain, whereas the other HAPs have not been considered. 

The selection of these pollutants was influenced by the list of HAPs identified in the requirements for 

the environmental impact report and their chemical stability. Given that the model chain operates 

with a time resolution of an hour, it was decided to include only those substances that are chemically 

stable over this period. 

However, it is feasible to account for all the HAPs within the model chain by assuming they remain 

chemically inert over an hourly timescale. Should this assumption not hold, the model would 

overestimate the concentrations, since it operates under the premise that the chemicals do not 

undergo any reactions, contrary to what may occur in reality. It is also important to note that, in 

theory, the ATMO-Street model chain could be adapted to consider a substance's limited lifespan by 

incorporating exponential decay over time into the model. Nonetheless, such modifications would 

necessitate substantial model development, and the resulting concentrations would only be lower. 

We therefore neglect the chemical interactions for the moment, and hence provide a worst-case 

estimate for the concentrations of all HAPs. 

Since the emissions of all HAPs are quantified relative to the total emissions, and since, in the context 

of this analysis chemical reactions are not considered, the concentrations of all HAPs can be 

straightforwardly calculated by rescaling the concentration maps for a specific HAP. In this instance, 

we use the air pollutant map for naphthalene from the MER as a base. For any given HAP, we adjust 

the map according to the ratio of the HAP's emission fraction to that of naphthalene's emission 

fraction. Concentrations are then determined at two key locations: one where the highest 

concentrations are recorded (on the airport near the apron, affecting only airport facility workers and 

not the general public), and another at the residential location experiencing the highest 

concentrations (in Steenokkerzeel along the extension of runway 07L/25R). The concentrations at 

both sites for all HAPs identified previously are listed in  Table 1. 

Besides concentration data, the table also includes health-based guidance values e for the substances 

for chronic exposure (inhalation). Whenever possible, the health advisory value 

(Gezondheidsadvieswaarde, GAW) utilized in Flanders has been applied. In instances where GAWs 

were not available, the gaps were filled with official values from the United States (US EPA Integrated 

Risk Information System), Germany (UBA Indoor Air Limit Values), the European level (EU CLI) and 

France (ANSES) (more details on selection process: see WP 1 report). A comparison of health-based 

guidance values with the maximum exposure and concentration levels reveals that for nearly all HAPs, 

the concentrations are significantly lower—more than an order of magnitude—than the health-based 

guidance values. Consequently, it is highly unlikely that individuals living in proximity to the airport 

will experience adverse health effects from these substances. The sole exception is benzene, where 

the maximum value on the tarmac exceeds the GAW, and the maximum exposure reaches 80% of the 

GAW. However, it is important to note that for benzene, the GAW is substantially lower than the limit 

value for air pollution stated in the Ambient Air Quality Directive (AAQD) (5 µg/m³) and its proposed 

revision (3.4 µg/m³) (EU, 2024). 
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It is critical to acknowledge the uncertainties inherent in this analysis. While there is some uncertainty 

associated with emission and dispersion modelling, the greatest uncertainty lies in the estimation of 

emission factors, as detailed previously. Despite these uncertainties, given the significant disparity 

between the health-based guidance values and maximum exposure for most substances, it is unlikely 

that the overall conclusion—that negative health impacts from the airport due to these substances 

are very improbable—will change. The exception is benzene, where the narrow gap between 

maximum exposure and health limit values means that uncertainties regarding emission factors could 

potentially alter the final conclusions. Corroborating the modelling results with additional data, such 

as those obtained from an in-situ measurement campaign, would be beneficial to reduce the 

uncertainties in the model chain. 

4.2.2 Other airports 
Although many studies have focused on determining the total VOC and hydrocarbon emissions and 

concentrations in the vicinity of airports, few have explored the modelling of individual HAPs (Vennam 

et al., 2015). An exception is a study on the T.F. Green Airport (PVD), a medium-sized airport in 

Providence, Rhode Island, USA. They focused on formaldehyde, acetaldehyde, acrolein, 1,3-

butadiene, benzene, toluene, xylene and naphthalene. To estimate the emissions of the HAPs, the 

study used a methodology similar to that employed for Brussels Airport, with minor differences 

(approximately 1%) in the actual emission factors for individual HAPs. The modelled emissions were 

then integrated into a chemical transport model (CMAQ) with a coarse resolution of 4x4 km, 

incorporating estimates of general background concentrations. The concentrations attributable to the 

airport were minor, with less than 15% of total concentrations linked to airport emissions for most 

HAPs, except for acrolein, which accounted for 19-28% of the total in the grid cell comprising the 

airport. Notably, the observed concentrations were significantly lower than those at Brussels Airport. 

The study also included a brief validation exercise, concluding that there is substantial uncertainty in 

the model results. This uncertainty is attributed to the model's coarse resolution and the sparse 

distribution of measurement stations near the airport. It was observed that both acrolein and 

formaldehyde showed the largest underestimation, similarly at measurement locations close to and 

further from the airport, suggesting that the underestimation is likely related to the background 

concentration (arising from other sources). 
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Table 1: Modelled concentrations for the HAPs identified in the current document. The table provides the maximal concentration in the domain, the maximal exposure (by 
overlaying the concentration map with the population map) and the health advisory value. 

Substance CAS Maximal annual mean 

concentration (μg/m3) 

Maximal annual mean 

exposure (μg/m3) 

Health-based guidance value 

(chronic exposure)* (μg/m3) 

1,3-butadiene 106-99-0 0.374 0.031 2 

1-methyl naphthalene 90-12-0 0.055 0.005 14 

2-methyl naphthalene 91-57-6 0.046 0.004 14 

acetaldehyde 75-07-0 0.948 0.079 160 

acrolein 107-02-8 0.543 0.045 0.8 

benzene 71-43-2 0.373 0.031 0.038 

crotonaldehyde 4170-30-3 0.229 0.019 5 

ethylbenzene 100-41-4 0.039 0.003 260 

formaldehyde 50-00-0 2.730 0.228 100 

isopropyl benzene 98-82-8 0.001 0.000 400 

methanol 67-56-1 0.400 0.033 2000 

m-xylene and p- xylene 108-38-3 / 

106-42-3 

0.063 0.005 217 

naphthalene 91-20-3 0.120 0.010 3 

o-xylene 95-47-6 0.037 0.003 217 

phenol 108-95-2 0.161 0.013 20 

propionaldehyde 123-38-6 0.161 0.013 8 

styrene 100-42-5 0.069 0.006 260 

toluene 108-88-3 0.142 0.012 5000 

*Source of health-based guidance value: see Table 5 in WP 1.  



36 

 

4.3 Measurement campaigns at other airports 
To our knowledge, no detailed measurement campaigns specifically targeting the HAPs discussed in 

the previous sections have been conducted around Brussels Airport. However, several studies have 

been conducted to measure both general hydrocarbons and specific HAPs near other airports. 

Comparisons between these studies are challenging, as they often employ slightly different 

assumptions and target various substances. Generally, the concentrations of most substances around 

airports align with those measured at nearby urban background locations, suggesting that the airport's 

contribution to local pollution levels is not significant. 

In the following paragraphs, we provide an overview of measurement campaigns that targeted total 

hydrocarbons and campaigns that measured specific HAPs. We specifically focus on studies that 

measured concentrations outside the actual airport grounds-, as this is the primary concern of the 

current document. 

4.3.1 Overview of campaigns 

• A measurement campaign was conducted around the military airfield of Leeuwarden during 
Operation Frisian Flag, focusing on the concentrations of various substances (Tromp & Esveld, 
2024). The conclusions from this campaign indicate that no discernible influence of air traffic could 
be detected on the concentrations of organic substances such as mineral oil (oil mist), volatile 
organic compounds (VOCs), BTEX (benzene, toluene, ethylbenzene and xylene), other aromatic 
components, polycyclic aromatic hydrocarbons (16-EPA-PAH) and carbonyl compounds. The 
concentration levels of all these substances are low and comparable to regional background 
values in the Netherlands. 

• The concentration of polycyclic aromatic hydrocarbons (PAHs) bound to PM was studied around 
the runways at Barajas International Airport (Madrid, Spain) (Rodríguez-Maroto et al., 2024). The 
highest concentration of PM measured was 31 μg m− 3, while the concentration of total PAH was 
3 ng m− 3, both comparable to those recorded in a semi-urban area of Madrid. The PAHs showed 
a similar profile to the particle size distribution, with a maximum in the 0.27–0.54 μm size range, 
being preferentially found in the submicron size fractions (84%) and UFP (15–20%). The ratio 
PAH(m)/PM(m) was more than twice as high in the colder months. The greater PAH 
concentrations in the cold campaign corresponded to compounds with higher molecular weight. 
This could be due to the additional contribution of other external sources, such as thermal and 
related combustion processes. 

• Other measurement campaigns focused on hydrocarbon concentration at LAX. Westerdahl et al. 
(Westerdahl et al., 2008) observed particle-phase polycyclic aromatic hydrocarbon (PM-PAH) 
concentrations two orders of magnitude higher at downwind locations compared to upwind 
locations, although aircraft-dominated areas showed lower PM-PAH than vehicular traffic areas. 
PM-PAH values observed at the site 500 m downwind of landings were only slightly elevated above 
the coastal background.  

• Benzene and toluene have been measured around an Italian airport in Rome (Ciampino Airport) 
to assess the long-term spatial variability of these pollutants (Stafoggia et al., 2016). They reported 
that the presence of the airport was not associated with an increased presence of benzene or 
toluene. 

• In a buffer of 1000 m around Mehrabad International Airport (Tehran) the annual median benzene 
and total BTEX concentrations were compared with the rest of the city-wide sites (Amini et al., 
2017). The annual mean benzene and total BTEX concentrations at these 10 sites were 7.8 mg/m3 
and 57.3 mg/m3, respectively, while they were 7.9 mg/m3 and 58.7 mg/m3 at the city-wide sites, 
suggesting that airports do not affect BTEX concentrations within 1 km.  
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• Comparable results were found by Jung et al. (Jung et al., 2011) using passive samplers to 
determine the average concentrations of benzene, toluene, ethylbenzene, m-, p- and o-xylene 
concentrations at the airport runways, respectively 0.84, 3.21, 0.30, 0.99 and 0.34 μg/m3. 
However, the average neighbourhood concentrations were not significantly different to those 
measured at the airport runways and were higher than the out-of-neighbourhood location. 

• VOCs measurements were also performed at Beijing airport (Yang et al., 2018). In this study, 53 
VOCs were detected at the airport, including 28 alkanes, 9 alkenes, 15 aromatics and acetylene. 
The average VOC concentration in the airport was 65.51–95.84 μg/m3. The most abundant species 
in the airport was toluene (7.03–16.65 μg/m3), followed by benzene, ethane, isopentane, ethane, 
acetylene and n-butane. 

4.4 Measurement methods 
As highlighted in the previous sections, substantiating the modelling of the HAPs with measurements 

is essential to validate the modelling results and further assess the impact of these pollutants around 

airports. The Appendix of this report (see Section 6) provides an overview of the sampling techniques 

available for the HAPs identified previously. The general conclusion is that, for most of the HAPs of 

interest, measurement methods are available. For some compounds, it might be challenging to find a 

measurement method with appropriate sampling volume to assess concentrations at or below health-

based guidance values. 

4.5 Knowledge gaps regarding HAPs 
The following knowledge gaps have been identified during the literature review and gap analysis: 

• There is a need for additional experiments on the chemical specification of plumes from jet 
engines. The existing results are derived from studies conducted in the 1990s and the early 2000s, 
and all the results are originating from a relatively limited number of studies. 

• There is a need for measurement campaigns to validate the modelling results and reduce the 
uncertainties related to the emission factors. The emphasis should be on benzene, as this is the 
substance for which population exposure is closest to the health-based guidance values but 
conducting measurements for the other HAPs identified previously could also be beneficial. It is, 
however, important to acknowledge that such measurements will capture total concentrations, 
which combine the contribution of the airport with background levels attributable to various 
sources. Distinguishing between these contributions poses significant challenges, particularly 
when the airport's impact is as minimal as modelling predictions suggest. Moreover, it might be 
challenging to find a measurement method with appropriate sampling volume to assess levels 
below or around health-based guidance value, with acrolein, benzene and methanol as most 
critical substances. 

• The air pollutant model chains utilized at Brussels Airport (i.e., ATMO-Street) currently do not 
account for a substance's limited lifespan. However, this could be achieved by incorporating 
exponential decay over time into the model. Given that the concentrations of the most unstable 
HAPs are well below the health impact limit values, it is observed that this modification is probably 
not crucial when calculating the health impact of the airport.  

• Not much is known about the impact of future aviation fuels, including sustainable aviation fuels 
(SAFs). This limitation has been highlighted during the Aviator project, emphasizing the need for 
comprehensive research into the environmental impacts and emission characteristics of 
alternative aviation fuels (Aviator Project, 2023). The exploration of SAFs is crucial for the aviation 
industry's transition towards more sustainable operations, yet the specific emission profiles and 
environmental implications of these fuels remain under-examined.  
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5 Items that might be relevant for WP4 

The following items should be considered when compiling a research plan: 

• Model limitations 
o For many environmental stressors, modelling data is only available specific periods. 

▪ Standard air pollutants: only 2019 
▪ UFP: 2015 (partially), 2018 (partially), 2019 and 2022 
▪ ZZS: only annual mean for 2019 
▪ Noise: all recent years (but at the moment only the parameters mentioned in the 

section on noise modelling) 
o Modelling data is only available for outdoor situations. No indoor levels have been studied 

for any of the stressors.  
o All knowledge is based on current-day operations. There are large research gaps related 

to future fuels and technologies.  

• Model uncertainty for long-term modelling 
o Limited for noise and standard pollutants 
o Large uncertainty for HAPs, as no validation has occurred, and the modelling is based on 

a few specific emission measurement campaigns. Measurements needed to back-up the 
modelling (but it might be difficult to distinguish between contribution of airport and 
other sources). Focus depends on the perspective (from health: benzene) 

o Model results for UFP come with a significant uncertainty, due to uncertainty in the 
emission factors and the knowledge gaps regarding the complex chemical processes 
associated with engine exhaust jets (see discussion in the specific section). Data 
assimilation might improve the results, but multiple permanent monitoring locations 
required  

• Model uncertainty for short-term modelling 
o Modelling with a high time resolution comes with a large uncertainty (for all stressors). 

Data assimilation might improve the results (especially for UFP), but some uncertainty will 
remain when sub-daily results are considered. See detailed discussions in the relevant 
sections.  

• Static monitoring data is available for some longer periods, but this is spatially disaggregated data 
(only snapshots at specific locations) 

o Standard pollutants:  
▪ Continuous monitoring during all recent years (but only at standard monitoring 

stations) 
o UFP:  

▪ Continuous monitoring at VMM station Steenokkerzeel since 17/06/2022 
▪ Campaigns at various locations in 2015, 2018/2019 and 2022 

o Noise 
▪ Continuous monitoring at standard locations 

• Dynamic monitoring data is currently lacking for all stressors (apart from a small prototype study 
for noise exposure) 

• Regarding the spatial scale, the modelling results indicate that 
o The influence of the airport on standard air pollutants is limited to an area with a radius 

of 7km. Determined based on a contribution > 0.6 ug/m3 (3% of GAW) for NO2, which is 
the most important pollutant. The plume is mostly in the direction of Kampenhout (NE of 
airport) but is rather spatially isotropic.  

o The influence of the airport of noise spans a very wide area, ranging from Ternat to 
Aarschot (WE) and from Muizen to Hoeilaart (NS) (see figures in text). The contours are 
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highly anisotropic, and therefore any spatial division of the study domain should not solely 
be based on the distance to the airport, but also on the actual noise levels. 

o It is difficult to estimate the spatial extent for UFP, as no limit values exist, but in a domain 
with a radius of 7km around the airport the concentrations fall below 10.000 part/cm3 
(annual mean).  
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6 Appendix: overview of modelling studies for air pollution 

Table 2: Overview of important studies using air quality modelling to assess the pollutant concentrations near 
airports. 

Authors Pollutants Location Model type Model 

Carruthers et al. (2007) NOx Heathrow (UK) Eulerian ADMS 

Mazaheri et al. (2009) UFP, PM2.5, NOx Brisbane airport (AU) Eulerian AERMOD 

Carr et al. (2011) Pb Santa Monica Airport 

(US) 

Eulerian AERMOD 

Arunachalam et al. (2011) PM2.5 3 airports (US) CTM CMAQ 

Ellermann et al. (2012) NOx, SO2, PM2.5, 

BC, PH, VOC 

Copenhagen (DK) CTM MISKAM 

Keuken et al. (2015) PNC, BC Schiphol Airport (NL) Eulerian SRM3 

Pecorari et al. (2016) NOx, HC, CO Marco Polo Airport (IT) Eulerian SPRAY5 

Woody et al. (2016) SOA, VOC 99 airports in US CTM CMAQ 

Sarrat et al. (2017) NOx, SO2, VOC, 

CO, CO2 

Regional airport (FR) CFD IESTA 

Kuzu (2018) NOx, CO, HC Atatürk International 

Airport (TR) 

Eulerian AERMOD 

Lorentz et al. (2019) UFP Frankfurt (DE) Lagrangian LASPORT 

Bo et al. (2019) NOx, CO, HC, 

VOC, SO2, PM10, 

PM2.5, BC 

217 airports in China CFD CAMx 

Lefebvre et al. (2019) UFP Brussels Airport (BE) Eulerian IFDM 

Makridis et al. (2019) NOx, CO, HC, 

VOC, SO2, PM10, 

PM2.5, BC 

Chania Airport (GR) Eulerian AERMOD 

Ghedhaïfi et al. (2022) NOx Mock airport 

representative of 

medium size airports 

(ICAO) 

CFD CEDRE 

Lawal et al. (2022) O3, UFP, PM2.5, 

NO2 

Atlanta 

Hartsfield−Jackson 

Airport (US) 

CTM CMAQ 

Bajgai et al. (2023) NOx, CO, HC, 

VOC, SO2, PM10, 

PM2.5, BC 

Tribhuvan International 

Airport (NP) 

Eulerian + 

CTM 

AERMOD + 

WRF 

Pandey et al. (2023) SO2 Los Angeles 

International Airport 

(US) 

Eulerian AERMOD 

Voogt et al. (2023) UFP Schiphol Airport (NL) Eulerian STACKS+ 

Zurich Airport (yearly 

reporting) 

NO2, PM, UFP Zurich Airport (CH) Lagrangian LASPORT 
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7 Appendix: Measurement techniques for HAPs 

In general, three types of sampling techniques exist. Online sampling is performed when a 

measurement instrument directly samples the air and produces (semi-)directly concentrations of 

interest. Offline sampling is performed with a sorbent tube (or whole air canister) to sample the air, 

followed by an analysis afterwards in the laboratory. The sample is either active with a sampling pump 

or passive where compounds are collected through molecular diffusion. All three techniques are 

applicable to the HAPs listed in Table 1. Whole air sampling using canisters is left out of the scope as 

it is not suitable for long term air sampling. 

7.1 Online Sampling 
Online sampling can be divided into component-specific and non-specific methods. The first type of 

technique contains Total VOC analysers or sensor boxes. Concentrations obtained are totals and do 

not give compound-specific information. The advantage of these techniques is foremost that they 

result in time-resolved concentration profiles. More compound-specific information can be obtained 

by using mini-gas chromatographs (GCs) (Vallecillos et al., 2024) . An online (mini)-GC completes a 

measurement in a relative brief time (e.g., 6 minutes). The use of a chromatographic column enables 

compound-specific measurements, on the condition of a relatively clear sample matrix. As the actual 

detector is a non-specific instrument (typically Flame ionization detector or photoionization detector), 

interferences from unknown compounds are possible. 

A gas mass spectrometer is capable of making compound-specific measurements (except for some 

isomers). Possible instruments that have been used to measure ambient air are PTR-MS, SIFT-MS and 

ion mobility spectroscopy. Possible instruments that have been used to measure ambient air are PTR-

MS (Blake et al., 2009), SIFT-MS (Smith & Spanel, 2005) and ion mobility spectroscopy (Pozzi et al., 

2006). 

Online sampling is normally adequate for all compounds that are present in the gas-phase (up to the 

smallest PAHs). Heavier compounds that are solid at ambient room temperature, or adsorb to PM, 

cannot be measured using online sample techniques. Typically, TVOC FID analysers only measure ppm 

levels. Low ppb levels should be measured easily with online gas mass spectrometers or mini-GCs.  

7.2 Offline sampling of adsorbents (passive or active) 
Available measurement techniques for the HAPs from Table 1 are discussed alphabetically for each 

class of compounds. 

7.2.1 Aldehydes 
Many measurement techniques are available (Salthammer, 2023). One of the most used techniques 

uses DNPH (2,4-Dinitrophenylhydrazine) to derivatize the sampled aldehydes to form a stable complex 

that is analysed by liquid chromatography. Both active and passive sampling are possible. For active 

sampling, Sep-Pack DNPH-Silica cartridges (Waters Corp., Milford, MA, USA) are one of the most used 

cartridges. Detection limits between 0.12 µg/m³ (formaldehyde) and 0.7 µg/m³ (acrolein) with a 

sample volume of 1 litre are reported (García et al., 2022). A possible brand of passive samplers is 

Radiello (Ninyà et al., 2022). The samplers are exposed between 7 days and two weeks, depending on 

the expected concentration. The detection limits reported in this paper range from 6 µg/m³ 

(formaldehyde) to 19 µg/m³ (propionaldehyde) while the manufacturer’s application note species a 

detection limit ≤ 0.3 µg/m³ for these compounds. Acrolein is known to be unstable, even as a DNPH 
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derivative (Destaillats et al., 2002). Therefore, more specific methods for the determination of acrolein 

are developed using either thermal desorption (Schieweck et al., 2021) or derivatisation by PFBHA 

(Cahill, 2014). 

7.2.2 1,3-Butadiene 
As 1,3-butadiene is a very volatile organic substance, methods applicable for regular VOCs do not 

necessarily apply to 1,3-butadiene. Activated charcoal is not optimal for sampling due to a lack of 

sample stability (Sakurai et al., 2013). Either a stabilizer is used, or sorbents such as Carbopack X or 

Carboxen 1000 that are suitable for thermal desorption (Urupina et al., 2022; Vallecillos et al., 2018). 

Both active and passive sampling can be applied using thermal desorption cartridges. A commercially 

available passive sampler for 1,3-butadiene (Radiello 141) species has (?) a limit of quantification of 

0.01 µg/m³ with a 7-day sample period. However, it was concluded that 7-day passive sampling is not 

reliable due to the high rate of back diffusion (Urupina et al., 2022). 24-hour sampling on multi-sorbent 

thermal desorption tubes should lead to reliable results (Gallego et al., 2018). 

7.2.3 Methanol 
Methanol is not the most convenient compound to measure in ambient air, certainly at the 

concentrations listed in Table 1Several techniques exist (Solomon et al., 2005). Chemisorption with 

nitrogen dioxide in a glass bottle gives a detection limit of 1.2 µg/m³ (Nguyen et al., 2001), 

alternatively, a sample train consisting of impingers and Anasorb 747 sorbent cartridges was used 

(Peterson et al., 1995) with a detection limit of 4 mg/m³. In Germany, a method was developed using 

thermal desorption for sampling emission test chambers (Pech et al., 2013) with an estimated 

detection limit of 15 µg/m³ but with a problematic influence of humidity. A validated workplace 

method (NIOSH 2000) was further improved (Muna et al., 2015) to obtain a limit of detection of 20 

mg/m³. Up to date, there is no standardised sorbent method available for measuring methanol in 

ambient air at low µg/m³ concentration levels. Online gas mass spectrometers might be an option, 

but for now research focus is on method development (Kajos et al., 2015) or breath research (Spanel 

et al., 2015). 

7.2.4 Phenol 
When more phenolic compounds need to be measured then only phenol itself, high-volume sampling 

on glass fibre filters backed with XAD resins is the more appropriate method (Delhomme et al., 2010). 

In this paper, a sampling period of 4 hours was used to obtain detection limits between 20 pg/m³ - 40 

pg/m³. If phenol is the only compound of interest, passive sampling is a possibility using thermal 

desorption cartridges filled with Tenax TA (Sturaro et al., 2010). With a weekly sampling period, the 

measurement range was 1.7–17.5 µg/m³.  

7.2.5 Total VOC 
A wide range of sorbent tubes is available for active sampling of VOCs. One recent paper (Urupina et 

al., 2023) used thermal desorption tubes with low flow sampling pumps (4 mL/min). With a sampling 

time up to 1 month, a theoretic limit of quantification of 0.0069 µg/m³ for benzene is possible, low 

enough to assess a health advisory value of 0.038 µg/m³. However, for long term monitoring of the 

hazardous air pollutants specified, passive sampling is more often applied. Either samplers for solvent 

desorption or for thermal desorption are used. Solvent based samplers (f.i Radiello) are typically 

deployed for two weeks (Cocheo et al., 2009) with a reported detection limit of 0.05 µg/m³ for 

benzene. Thermally desorbed passive samplers are deployed for one to two weeks. Benzene detection 

limits of 0.05 µg/m³ (1-week sampling) to 0.01 µg/m³ (2-week sampling) are found in literature (Mason 

et al., 2011; Vallecillos et al., 2019).  
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7.2.6 PAH 
If only naphthalene is of interest, canister sampling according to EPA-TO15 or regular activated 

charcoal passive sampling is possible. If other PAHs (typically EPA 16 priority PAH) are to be measured, 

high volume sampling on polyurethane (PUF) foam is routinely used (Fortune et al., 2010). In this 

paper, sampling time was 8 - 10 hours with reporting limits from 0.01 to 0.03 µg/m³. However, 

naphthalene might be underestimated due to the lack of adsorption efficiency of PUF for gas phase 

compounds. PUF Passive samplers (PUF-PAS) are being developed for measuring symptomatic 

vitreous opacities in ambient air (Bohlin-Nizzetto et al., 2014) but for now 2 ring PAHs, such as 

naphthalene, are hard to sample due to their volatility. Last years, thermal desorption methods have 

been optimised for sampling PAHs in air (Jia et al., 2023). Reported sampling times start from 1 hour 

up to 168 hours (1 week) with a typical detection limit for naphthalene of about 1 ng/m³.  
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Aims and objectives of Work Package 3 

As explained in work package (WP) 1, airport operations create a dual environmental burden, namely 

air and noise pollution, which have an impact on the health of surrounding communities. Numerous 

studies have linked these stressors to numerous health conditions, including respiratory and 

cardiovascular diseases, as well as sleep disturbance and stress. A summary of existent risk-outcome 

pairs and their strength of evidence in the current literature was already described in WP1. The overall 

objective of the current chapter is to explore the possibility to quantify the impact of the 

environmental burden of the airport on the health of the population living in communities nearby 

Brussels Airport. This would require the use of data on the exposure to environmental stressors (see 

report WP2), as well as data on the health status of the population exposed to these stressors. More 

specifically, this chapter focuses on the assessment of health effect associated with air pollution and 

noise derived by the airport, which would specifically require health, disease and mortality data for 

the population living in the proximity of the airport. 

Considering that health data is recurrently collected in Belgium (even if with different objectives), 

these outcomes can be (partially) investigated by looking into available data sources. Secondary data 

analysis represents a considerable advantage in terms of the use of resources and time, as it does not 

require the collection of new data (contrary to primary data collection). The possible analysis to be 

conducted using secondary data is highly dependent on the quality and availability of the data. Often 

these data sources are not “ready-to-use" as they are only publicly available at an aggregated level 

and with a considerable time delay. Nevertheless, using existing data sources is a meaningful resource 

for answering our research objectives. 

Within WP3, the aim is to reuse available health data to assess the burden attributable to Brussels 

Airport (Zaventem). Overall, it is desirable to achieve a continuous monitoring of this burden 

throughout time. Many methodological options are possible which depend on the type of data sources 

used. We will start giving an overview of these, complemented by their evaluation or continue with 

the descriptions of the methodological options and their outputs. 

The following sections address the following objectives: 

1. Provide a summary of relevant exhibiting data sources containing data on health to estimate 

the impact of Zaventem airport on health; 

2. Evaluate their appropriateness for continuous monitoring and surveillance of the past and 

future impact of the airport on health, taking into consideration the outcomes identified in 

WP1; 

3. Propose different methodological options to estimate the impact of Zaventem airport on 

health using existing health data sources. 
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1 Overview of available health data sources  

A variety of data sources are available in the Belgian context. These differ in terms of type of data 

collection and aims, e.g., registry versus surveys, and spatial and time representation, e.g., overall 

Belgian territory versus Flemish region. The selection of the data sources should consider its 

exhaustiveness in terms of spatial coverage and be sensitive/specific enough to estimate the outcome 

of interest. To answer the above-mentioned research questions, different data sources will be 

selected considering the information presented on the health status of the people living in the 

proximity of the airport.  

In the following chapter, the possible use of different data sources is described. Strengths and 

limitations in answering the research questions are discussed. A particular focus is given to: 

1. Spatial coverage of data source: is the data collected representing the whole Belgian 

population or only a sample? 

2. Time span of the data source: is the data collected repeatedly over time? If yes, is it a registry 

or a recurrent collection of data? How often? 

3. Geographical resolution included in the data source: what is the smallest geographical unit 

for which the data is available for continuous monitoring (e.g., province, municipality, 

statistical sector, individual level)? 

4. Information regarding relevant health effects related to airport environmental stressors 

(mainly noise and ultrafine particles [UFP]) – see Section 2 Evaluation of health data sources.  

1.1 National Mortality Register  
Belgium has a complete and longstanding cause-of-death database that integrates all death 

certificates in the whole Belgian territory since 1987. The latter are based on the World Health 

Organization (WHO) International Form of Medical Certificate of Cause of Death and are filled in by a 

certifying physician that specifies the underlying or external cause of death, possibly complemented 

with immediate, intermediate and associated causes of death. The completed death certificates are 

collected by the municipal offices and sent to the regional health authorities which encode the 

information listed on the death certificates into ICD-10 codes starting from 1998 (before 1998 ICD-9 

codes were used). The resulting datasets from these agencies are compiled by Statistics Belgium 

(Statbel), the national institute of statistics, which is thus responsible for managing the national cause 

of death database. Completeness of demographic data in the national causes of death database is 

very high with information on age, sex and place of residence. 

The exhaustiveness in terms of spatial coverage of the national mortality registry is very high as it 

collects data for every death that occurs within the Belgian territory. Information on the place of 

residence is also available, which could be used to identify the people who are living in the proximity 

of the airport. In terms of health outcomes, only mortality estimates are available including the cause 

of death, but no information on other aspects of the health status, e.g., comorbidities, risk factors. It 

is possible to have the data regarding causes of death at a small geographical resolution (i.e., statistical 

sector).  

1.2 Intermutualistic Agency  
The Intermutualistic Agency (IMA) database contains exhaustive and detailed information on the 

reimbursed healthcare of over 99% of the total population since 2002. IMA is a joint venture of the 

seven national health insurances that collects and manages all data on healthcare expenditures. It 



5 

 

contains three datasets linked to each other: population data (with a limited amount of demographic 

and socio-economic information), healthcare expenditure data and pharmanet data (detailed 

information on all prescriptions for reimbursed drugs dispensed in public pharmacies). Data on 

healthcare expenditure comprises reimbursed total healthcare for every payment modality (i.e., 

directly paid by the health insurance, patients out-of-pocket and supplements). These expenditures 

include ambulatory care (over-the-counter pharmaceuticals excluded), hospital care and reimbursed 

medicines purchased through pharmacies. Available information on hospital care only includes 

variable costs that depend on the type of treatment. Although healthcare consumption is registered 

in detail, diagnostic information is not available. A proxy for diagnostic information on a number of 

chronic health conditions is available in the IMA dataset. These are cardiovascular diseases, 

thrombosis, chronic obstructive pulmonary disease (COPD), asthma, diabetes, pancreatic 

insufficiency, psoriasis, Parkinson’s, epilepsy, HIV, chronic hepatitis B and C, multiple sclerosis, 

Alzheimer’s, renal insufficiency and thyroidism. 

For research purposes, the IMA created the permanent sample (Échantillon permanent(e) steekproef, 

EPS), i.e., a sample of 1/40 of the IMA data, with an oversampling of 1/20 of the population older than 

65 years. A legal framework regulates the modalities for using the EPS to study and monitor healthcare 

consumption and expenditure in Belgium. 

The exhaustiveness in terms of spatial coverage of the IMA dataset is very high as it collects data for 

every person who has a compulsory health insurance. This is only applicable to the whole IMA dataset, 

not the EPS. The national registry number could be used to identify the people who live in the 

proximity of the airport. In terms of health outcomes, only a specific set of chronic diseases can be 

identified through the IMA dataset (see above). This is because only diseases with a specific care 

trajectory (inpatient care, outpatient care and medications) can be identified through healthcare 

reimbursements. The rest of the information available is limited and does not include other aspects 

of the health status, e.g., comorbidities and risk factors. 

1.3 Belgian Cancer Registry  
The Belgian Cancer Registry (BCR) is a population-based registry regularly reporting on cancer patterns 

and trends in incidence and cancer survival from 2004 onwards. It is nationally representative and 

exhaustive, collecting data from oncological care programs and pathology laboratories (Belgian Cancer 

Registry, 2020). The recording of data (topography and morphology) is done using the International 

Classification of Diseases for Oncology third edition (ICD-O-3), which is combined into an ICD-10 

classification (International Classification of Diseases tenth edition). BCR is the most appropriate 

source for estimating the incidence and prevalence of different cancer types, due to its completeness 

of cancer cases for the whole of Belgium. This also represents the only data source where information 

on the cancer type is available. 

The exhaustiveness in terms of spatial coverage of BCR is very high as it collects data for almost every 

cancer diagnosis within the Belgian territory. The national registry number could be used to identify 

the people who live in the proximity of the airport. In terms of health outcomes, these are clearly 

linked to the occurrence and mortality of cancer. Other aspects of the health status, e.g., 

comorbidities, risk factors, are not included. 

1.4 Hospital Discharge Data 
The Hospital Discharge Data (HDD) represents the collection of the records for all hospital stays 

(general hospitals) in the Minimum Clinical Data (MCD). The information in the MCD includes relevant 
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clinical data (e.g., primary and secondary diagnosis) and demographic characteristics of patients. 

Records are mainly collected as tools for the measurement of hospital needs for public financing, and 

evaluation of the effectiveness and quality of hospital care. Primary and secondary diagnoses are 

mapped using the ICD-10 code classification. 

The exhaustiveness in terms of spatial coverage of HDD is very high as it collects data for every 

hospitalization within the Belgian territory. The national registry number could be used to identify the 

people who live in the proximity of the airport and were hospitalized, summarized by statistical sector. 

In terms of health outcomes, hospitalization due to specific diseases can be interpreted as prevalent 

cases. This is the case for a handful of diseases, i.e., cardiovascular diseases. Other aspects of the 

health status, e.g., comorbidities, risk factors, are not included. 

1.5 Belgian Health Interview Survey 
The Belgian Health Interview Survey (BHIS) is a national, cross-sectional household survey conducted 

by Sciensano collecting information on the health status, lifestyle and medical consumption of a 

representative sample of the general Belgian population. Information is also collected on a wide range 

of sociodemographic background characteristics. Participants are selected from the national 

population register through a multistage stratified sampling procedure including a geographical 

stratification, households and individuals (Demarest et al., 2013). To date, a BHIS has been organized 

in 1997, 2001, 2004, 2008, 2013 and 2018. At the time of writing, the BHIS 2023 is being conducted. 

Each BHIS has a basic sample of 10,000 persons made representative of the total population using 

weighting factors. These are equal to the inverse of the sampling probability, based on the (known) 

size of each province-age-household size stratum. Interviews were performed using a face-to-face 

paper and pencil interview supplemented with a self-administered questionnaire covering more 

sensitive topics (Demarest et al., 2013). The data collected includes self-reported information on 

health status and health behaviour and determinants. Socio-demographic information such as age, 

gender, household educational level and income level is available in the data set. 

The exhaustiveness in terms of spatial coverage of BHIS is quite limited, as it is a survey that concerns 

only a limited sample of people living in Belgium. This means that there is a low probability that a 

sufficient number of participants to the BHIS lives in the proximity of the airport. In terms of health 

outcomes, BHIS is a very exhaustive data source as it would allow to identify people suffering from 

many different diseases and their exposure to risk factors, including environmental stressors, noise 

and air pollution annoyance.  

1.6 Intego 
The Intego network is a sentinel registration network for general practices in Flanders. It includes 

anonymised diagnoses, laboratory results and drug prescriptions from around 55 general practitioners 

(GPs) (Bartholomeeusen et al., 2005; Intego, n.d.). The network is coordinated by the Academic Centre 

for General Practice at KU Leuven and covers approximately 2% of the Flemish population. Intego uses 

International Classification of Primary Care (ICPC) codes for registering diseases. 

The exhaustiveness in terms of spatial coverage of Intego is limited, as not all the GPs are included in 

this dataset. This means that there are regional differences in the coverage rate. In the year 2023, the 

Intego database contained data of approximately 500,000 patients, hence representing on average 

7% of the territory in Flanders. However, there are substantial geographical differences. As an 

example, we considered 11 municipalities in the proximity of Brussels airport (see further,  



7 

 

 

Figure 1 & Figure 2). The total coverage in these 11 municipalities is 3.6%. Data per municipality is 

given in Table 1. 

Table 1: Coverage of Intego in 11 municipalities in the proximity of Brussels airport. 

Municipality YCG 2023 Citizens Coverage (%) 

Grimbergen 80 39838 0,20% 

Vilvoorde 109 47385 0,23% 

Machelen 25 16554 0,15% 

Zaventem 603 36670 1,64% 

Kraainem 44 13906 0,32% 

Wezembeek-Oppem 117 14735 0,79% 

Steenokkerzeel 107 12673 0,84% 

Kortenberg 1970 21156 9,31% 

Kampenhout 92 12523 0,73% 

Haacht 334 15513 2,15% 

Rotselaar 4118 17675 23,30% 

Definitions: Yearly contact group (YCG) = number of patients that had at least 1 contact with their general 

practitioner (GP) in 2023; Citizens = number of citizens living in the municipality on January 1st, 2024 (Source: 

BelStat); Coverage = YCG/Citizens 

In terms of health outcomes, Intego is a very exhaustive data source as it would allow to identify people suffering 

from many different diseases and their exposure to risk factors, including confounders such as smoking status, 

body mass index (BMI), etc. 

1.7 Belgian Diabetes Registry 
The Belgian Diabetes Registry represents a national network of physicians, researchers and their 

teams, all collaborating in scientific research on diabetes since 1989. The primary task of the Belgian 

diabetes registry is to collect data from all types of diabetes presenting before age 40 in Belgium with 

the ultimate goal of improving treatment and finding a cure and effective prevention of the disease. 

The data source includes information on the diseases from the patients and their relatives, mainly 

regarding the occurrence of diabetes, its causes and markers, the current treatment and the potential 

experimental therapies. 

Data is collected throughout the overall Belgian territory, which makes it exhaustive in terms of spatial 

coverage. The information is collected at an individual level, which in theory makes it possible to 

aggregate the data to the smallest geographical level, i.e., statistical sector. In terms of outcomes, 

these are limited to diabetes and more specifically diabetes that appeared before the age of 40. 

1.8 Kind & Gezin and O.N.E. 
Kind & Gezin, an independent organisation within the agency ‘Opgroeien’ of the Flemish government, 

offers services and assistance to Flemish-speaking families in Flanders and Brussels. The French-

speaking sister organisation is O.N.E., l’ Office de la Naissance et de l’Enfance founded and collecting 

data since 2002. The mission of these organisations is to actively contribute to the well-being of young 

children and their families through preventive family support. This includes medical screening and 
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follow-up of babies and toddlers at different time points with standardized registration of growth, 

nutritional status, vaccination, hearing test, eye test, etc. Additionally, a large set of socio-

demographic data is registered. The perinatal screening visits reach a large majority of newborns; the 

coverage rate is above 95%. The database is available for scientific research after the application of an 

authorization request. Data in principle are available at the individual level, but aggregation might be 

included in the authorisation.  

1.9 SPE and CEpiP Perinatal health 
Within Belgium, there are two organizations that collect data on perinatal health starting from the 

birth and mortality registry. The Studiecentrum voor Perinatale Epidemiologie (SPE) collects and 

summarizes information for the Flemish region. The Centre d’épidémiologie périnatale (CEpiP) does 

the same for the Walloon and Brussels regions since 2008. Each year, each organization releases a 

report with information on the new births, including sociodemographic and medical information 

about the mothers, indicators related to the pregnancy, the delivery and the birth. The 

complementarity of the two institutes allows to have a broader picture regarding perinatal health for 

the overall Belgian territory. For each birth and stillbirth, a statistical bulletin is completed which is 

then collected by the two organizations and used for their analysis. In theory, the data could be 

aggregated at different geographical levels. Considering the specificity of the topic, the data source 

represents a valuable reference of information for outcomes related to neonatal health. 

1.10 SLO and Gemeente-stadsmonitor 
Considering that annoyance is an important outcome of airport noise, it is also relevant to describe 

data on annoyance. Since 2001, the Flemish Department of Environment has performed standardized 

surveys on the experience of nuisance through validated questionnaires. This survey is the ‘Schriftelijk 

Leefomgevinsonderzoek’ (SLO) and is a tool to assess the quality of the environment in Flanders with 

the aim of supporting and evaluating environmental policy programs. Up to now, 5 SLO’s have been 

performed, i.e., in 2001 (SLO0), 2004 (SLO1), 2008 (SLO2), 2013 (SLO3), 2018 (SLO4); the next SLO is 

currently being performed. Each survey includes a representative sample of the Flemish population of 

about 5.000 participants with an age range from 16 to 61+ years. The survey includes demographic 

data, descriptive data on the living environment, and data on annoyance from odour, light and noise. 

With respect to noise, information is obtained on annoyance in general, by sources of noise, nightly 

awakenings, and personal noise sensitivity (Department Omgeving, 2018). The exhaustiveness in 

terms of the spatial coverage of SLO is quite limited, as it is a survey that concerns only a limited 

sample of people living in Flanders. This means that there is a low probability that a sufficient number 

of participants to the SLO living in the proximity of the airport. However, it is a valuable data source 

concerning specific endpoints on annoyance and therefore of interest as an inspiration to perform a 

targeted study in the neighbourhood of the airport (use of validated questions) and a valuable 

background reference to use as a control group for such a targeted study around the airport. 

The ‘Gemeente-Stadsmonitor Vlaanderen’ is an environmental scanner that maps the broad 

environment of every Flemish municipality or city. The monitor contains more than 400 environmental 

and subjective health indicators; a set of around 100 indicators is collected through a three-yearly 

citizen survey. Data are available per community on a public platform (https://gemeente-

stadsmonitor.vlaanderen.be/) and can be used for strategic purposes. In the context of the airport, 

there is a limited number of indicators of well-being and nuisance. The advantage is that the monitor 

is available for the whole territory of Flanders. The disadvantage is that indicators are rather global, 

and the finest geographical level is the community.     

https://gemeente-stadsmonitor.vlaanderen.be/
https://gemeente-stadsmonitor.vlaanderen.be/
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Table 2 summarizes the information of each data source with a focus on their spatial 

representativeness, whether the data source is recurrent and the available information. Almost all the 

data sources are registries or administrative datasets which continuously collect information about 

the overall Belgian population. Two exceptions are the BHIS which happens every 5 years and the SLO 

which happens every 3-5 years. In terms of representativeness of the population of interest (living 

close to the airport), BHIS, Intego and SLO are data sources that cannot be considered fully 

representative of that area. In the case of Intego, there have been examples of the expansion of the 

network to achieve higher representativeness of a specific area, more specifically in a study 

investigating the effect on the health of per-and polyfluoroalkyl substances (PFAS) in the 5 km zone 

around 3M (communities of Zwijndrecht, Beveren and Antwerp).  

The outcomes collected by the ensemble of data sources are very variable. Most likely more than one 

source can be used to cover the outcomes of interest (see Table 3).
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Table 2: Summary of relevant data sources 

Name Description Recurrent 

dataset 

Representativeness of the 

target population 

Available outcomes 

National 

Mortality 

Registry 

Cause-of-death database 

that integrates all death 

certificates in the whole 

Belgian territory 

Yes, registry 

providing yearly 

statistics 

Yes, whole Belgian population - Cause of death: day/month of death 

- Age, sex and place of residence 

Intermutualistic 

agency (IMA)  

Information on the 

reimbursed healthcare of 

over 99% of people living 

in Belgium 

Yes, 

administrative 

dataset providing 

yearly statistics 

Yes, whole Belgian population - Direct healthcare expenditure and medication consumption 

(possibility to identify certain diseases) 

- Age, sex, reimbursement status and place of residence 

Belgian Cancer 

Registry (BCR)  

National registry on 

cancer patterns and 

trends in incidence and 

cancer survival 

Yes, registry 

providing yearly 

statistics 

Yes, whole Belgian population - Cancer incidence, survival (by type) 

- Age, sex and place of residence 

Hospital 

Discharge Data 

(HDD)  

Collection of the records 

for all hospital stays 

(general hospitals) in the 

minimum clinical data 

(MCD).  

Yes, 

administrative 

dataset providing 

yearly statistics 

Yes, whole Belgian population - Number and length of hospitalization by cause 

- Age, sex and place of residence 

Belgian health 

interview survey 

(BHIS) 

National, cross-sectional 

household survey 

collecting information on 

the health status, lifestyle 

and medical 

consumption 

No, survey 

conducted every 

five years 

Yes, sample at national level – 

representative for Flanders 

- Self-reported occurrence of diseases, and lifestyle (including 

annoyance) 

- Many different socioeconomic variables  

Intego  Registration network for 

general practices in 

Flanders 

Yes, registry 

providing yearly 

statistics 

No, sample of the Flemish and 

Brussels region – not 

representative 

- Diagnoses, laboratory results and drug prescriptions 

- Age, sex and place of residence 

Belgian Diabetes 

Register 

Recording diagnoses 

from diabetic patients 

Yes, registry 

providing yearly 

statistics 

Yes, whole Belgian population - Diabetes diagnosis and tests 

- Age, sex and place of residence 
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Name Description Recurrent 

dataset 

Representativeness of the 

target population 

Available outcomes 

Kind & Gezin and 

O.N.E. 

Recording data on young 

children and their 

families by providing 

services in the field of 

prevention 

Yes, registry 

providing yearly 

statistics 

Yes, whole Flemish-speaking 

population (including Brussels 

region) via K&G plus French-

speaking population (Brussels 

region) via O.N.E.  

- Death at birth, eye test, hearing test, cot death, gestational 

age, breast or bottle feeding with parameters for duration 

of breastfeeding, biometrics (weight, height, head 

circumference), vaccination, child health, postpartum 

depression, referrals 

SPE and CEPIP 

perinatal health   

Recording data on 

obstetric and maternal 

health 

Yes, registry 

providing yearly 

statistics 

Yes, whole Belgian population - Maternal data (parity, sociodemographic and clinical 

information of the mother, date of birth, height and weight), 

pregnancy (onset of pregnancy, complications during 

pregnancy, duration), delivery (position of child, induction, 

epidural analgesia, date, time and manner of delivery), and 

child (gestational age, weight, length, head circumference, 

complications) 

Schriftelijk 

Leefomgevings- 

onderzoek (SLO) 

Flemish, cross-sectional 

household survey 

collecting information on 

nuisance 

No, every 3-5 

years 

Yes, representative sample for 

Flanders 

- Noise annoyance (general + specific, e.g., air traffic, car 

traffic, train traffic, …), nightly annoyance, awakenings, 

subjective sensitivity 

Gemeente- en 

stadsmonitor 

Flemish platform with 

indicators per community  

Diverse set of 

indicators 

Yes, all Flemish communities - Annoyance and satisfaction about the living environment, 

happiness, subjective health indicators. 
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2 Evaluation of health data sources 

The data sources selected based on their spatial coverage, geographical resolution and repetition over 

time are presented in Table 3 together with the outcomes of interest for the projects, derived from 

the work undertaken in WP1. Table 3 identifies which outcomes are available in each data source. 

In general, cancers and birth outcomes are the ones for which the selection of the data source was 

straightforward. Outcomes like cardiovascular health or respiratory health can be identified using the 

medication consumption of the patients and/or their hospitalization for these causes. Some question 

marks are placed in the table for which IMA could be used for identifying the related outcomes but 

the sensitivity of the use of medication for the identification of these outcomes has not been validated 

(i.e., sleep disturbance and depression). A clear gap in data is visible regarding sleep-related outcomes, 

cognitive health and annoyance. These could be collected for this project (see WP4). 
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Table 3: Presence of selected outcomes in data sources of interest 

Outcome Stressor 

Level of 

evidence - 

UFP 

Level of 

evidence - 

noise 

Data sources 

National 

Mortality 

Registry 

IMA BCR HDD 

Belgian 

Diabetes 

Registry 

Kind en 

Gezin 

Neonatal 

registries 
Intego BHIS 

Cardiovascular 

health  
UFP Suggestive   x  x    x x 

Arterial stiffness    UFP/noise  Low          

Cortisol levels   UFP/noise  Very low          

Heart rate   UFP/noise  Very low        x  

Hypertension 

incidence   
UFP/noise  

Low 
 ?      x  

Ischemic heart 

disease incidence  
UFP/noise  

Low 
   x (prevalence)    x  

Asymptomatic heart 

damage   
UFP/noise  

Very low 
       x  

Stroke incidence UFP/noise  Moderate    x (prevalence)    x  

Mortality UFP/noise   x         

Metabolic health  UFP Inadequate      x     

Diabetes UFP/Noise  Low  x   x   x x 

Obesity   UFP/Noise  Very low     ?   x x 

Sleep-related 

outcomes 
Noise  

 
 ?        
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Outcome Stressor 

Level of 

evidence - 

UFP 

Level of 

evidence - 

noise 

Data sources 

National 

Mortality 

Registry 

IMA BCR HDD 

Belgian 

Diabetes 

Registry 

Kind en 

Gezin 

Neonatal 

registries 
Intego BHIS 

Physiologically 

measured awakenings 

in adults   

Noise  

Moderate 

         

Self-reported sleep 

quality and sleep 

coping behaviours    

Noise  

Very low 

         

Self-reported 

awakenings   
Noise  

Very low 
         

Self-reported sleep 

disturbance in adults  
Noise  

Very low / 

moderate 
         

Respiratory health  UFP Suggestive 
 

 
x 

(Asthma) 
 

x 

(hospitalization) 
   x x 

Cognitive health  UFP Suggestive           

Assessment of 

student distraction   
Noise  

Very low 
         

Impairment assessed 

through SATs  
Noise  

Moderate 
         

Reading and oral 

comprehension   
Noise  

Moderate 
         

Short- and long-term 

(episodic) memory   
Noise  

Moderate 
         

Birth outcomes   UFP Suggestive       x x   
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Outcome Stressor 

Level of 

evidence - 

UFP 

Level of 

evidence - 

noise 

Data sources 

National 

Mortality 

Registry 

IMA BCR HDD 

Belgian 

Diabetes 

Registry 

Kind en 

Gezin 

Neonatal 

registries 
Intego BHIS 

Congenital 

malformation   
Noise  

Very low 
     x x   

Low birth weight   Noise  Very low      x x   

Preterm birth   Noise  Very low      x x   

Cancer  UFP Inadequate   x x       

Incidence of breast 

cancer   
Noise  

Low 
  x     x x 

Annoyance Noise            

Depression Noise  Low  ?       x 

Hyperactivity   Noise  Low         x 

Well-being   Noise  Very low         x 

Total mortality   UFP Suggestive  x         

UFP: Ultrafine particles, IMA: intermutualistic agency, BCR: Belgian Cancer Registry, HDD: hospital discharge data 
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Another important aspect to consider when working with data at a small geographical level is the 

accessibility to the data. It is worth noticing that for almost all data sources it is possible to access 

individual level data via specific data requests. Nevertheless, this is in contrast with the general aim of 

continuous monitoring and surveillance that needs continuously updated data. That is why we 

propose to use data at the statistical sector which is small enough for the purposes of this study. 

Nevertheless, this still represents a considerable amount of detail that is not freely accessible to the 

public for data privacy reasons. Organizations often provide access to their data via either structural 

cooperative agreements or ad-hoc applications. The data use in the latter case is tied to the specific 

objectives presented in the application and access is granted for a limited amount of time (which 

conflicts with the need for continuous monitoring of the burden). 

In terms of structural agreements, the Flemish Department of Health has a structural cooperative 

agreement with the BCR, Intego, SPE and the mortality registries. Sciensano has an agreement for 

access to the EPS, but this is considered not sufficiently representative.  
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3 Analytical methods  

The main part of the proposed analysis concerns the monitoring and surveillance of the effects on 

health for the population living in proximity to Zaventem airport. This requires a repeated and 

sustained overtime assessment of the health of the population living in the proximity of the airport 

(see Section 3.1 Monitoring and surveillance using existing health data). Additionally, the subsequent 

part of the planned analysis puts forward different options to explore relevant research objectives in 

the context of the health effects of airport-related stressors. These should be considered as ad-hoc 

projects that have a more in-depth analysis, a shorter life span and a precise objective (see Section 

4.2). 

3.1 Monitoring and surveillance using existing health data 
Up-to-date information on the health status of the population is key to the monitoring and 

surveillance of the population's health to highlight the need of public health policies. This evidence is 

important for decision-making processes to make relevant decisions and set appropriate priorities, 

policymakers need to be informed about the extent of health problems in the population, the groups 

that are particularly at risk, and the health trends over time. The disease burden of a population can 

be described by a variety of indicators. Indeed, population health is a multifactorial phenomenon with 

many facets and different ways to measure it.  

3.1.1 Incidence/prevalence data 
Typical indicators of population health are life expectancy, cause-specific mortality rates, numbers of 

new and existing cases of specific diseases (i.e., incidence and prevalence, respectively) or self-

perceived health.  

Calculating Standardized Incidence Ratios (SIR) of Standardized Mortality Ratios (SMR) for specific 

geographical areas allows to compare different areas while considering the population characteristics 

(age and sex distribution). In order to follow up on the impact of the environmental burden around 

the airport, a geographical analysis of SIRs/SMRs at one cross-sectional point in time will allow to 

assess the health impact of the environmental burden at a specific moment. Additionally, by repeating 

the analysis over time, longitudinal data will allow to follow up possible impact of 

deterioration/reduction of the environmental burden and evaluate economic trends and/or policy 

measures that influence the local situation around the airport. A geographical analysis can be 

performed at various levels. First, it is possible to define one ‘impact zone,’ based on environmental 

data for noise and UFP, and to compare SIRs/SMRs in this zone with a control group, i.e., the rest of 

Flanders/Brussels. Further, within the ‘impact zone’, a geographical gradient can be studied, hence 

allowing to assess health outcomes in relation to the source of UFP/noise, which can be defined as a 

type of dose-response analysis. The geographical gradient for studying environmental impacts should 

ideally be defined based on the levels of the stressors. For UFP, the mapping can be structured as 

concentric circles or ellipses, such as 1 km, 3 km, 5 km, etc., because the concentration gradients 

primarily extend outward in concentric circles, with a bulge towards the northeast due to prevailing 

wind directions. Conversely, for noise, which typically displays more anisotropic patterns, the gradient 

can be defined using geographically specific areas, such as groups of statistical sectors. The decision 

on the zones will also depend on the availability of the health data in the registries (smallest available 

geographical level) and on the incidence/prevalence of the health endpoint (power of the analysis). 

Alternatively, both for UFP and noise, an option could be to compare quartiles of exposure where Q1 

serves as a reference (see (Wing et al., 2020)).   
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As an example, Figure 1 presents noise and UFP maps for the area around Zaventem airport. Based on 

these exposure patterns, a selection of communities and statistical sectors can be made. Again, as an 

example, Figure 2 shows a possible selection of 11 municipalities around Zaventem airport with a 

display of the statistical sectors (n=332). The final selection should be made by a team of experts and 

will be a compromise between the desire to select the most detailed geographical pattern on the one 

hand, and the availability of the specific data sources that are selected, on the other hand. 

(a) 

 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

 

 

 

 
 
Figure 1: Examples of air traffic noise map (a) and UFP map (b) for the area around Zaventem airport. 

(a) Lnight – 2019 from 40 dB(A) to 70 dB(A). The dashed lines are the 45 dB(A) contour (outer contour), and the next 
contour is the 50 dB(A). The first full line contour is 55 dB(A) Lden, which is important for Vlarem II; 

(b) Yearly average of UFP concentrations in the research area of the VITO/VMM study  

Online geraadpleegd op 15/05/2024: https://merregister.omgeving.vlaanderen.be/dossier/PR3448) - Ref: 
4723913060_mer_brussels_airport_deel_2_effectenanalyse_en_beoordeling.pdf 

https://merregister.omgeving.vlaanderen.be/dossier/PR3448
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The use of SIRs or SMRs from health registries as a tool to follow up on local environmental hotspots 

has several precedents, for example, analysing cancer mortality data concerning asbestos, cancer 

incidence in relation to PFAS contamination in the area around 3M, or regarding the metal 

contamination around a gold smelter in Antwerp. The advantage of this technique is that it provides 

simple data on mortality or disease incidence that is understandable for a layman’s public and that 

areas can be compared straightforwardly. Even though it is considered a rather robust technique, the 

association with environmental pollution is indirect and is based on an appropriate selection of the 

study area. Further, it does not allow to control for population characteristics such as socio-economic 

status or lifestyle factors such as smoking, overweight, etc. 

Additionally, or as an alternative, to SIRs/SMRs, data from health registries could be used to apply 

more complex statistical models for disease mapping. Examples of such complex models that are 

frequently used in small area statistics are Bayesian hierarchical models such as Leroux or BYM2. These 

analyses are more data- and resource-intensive but are more accurate as they consider data of 

neighbouring geographical units, and hence introduce a form of smoothing. Further, the models have 

the advantage that – on condition that the data are available – diverse types of data from different 

data sources can be included in the same model. Hence, it is possible to adjust for population 

characteristics (e.g., from Statbel data). Further, if geographical differences are observed, it is also 

possible to include environmental data in the model to study whether these environmental data can 

explain the observed differences. As such, the link between environment and health is studied in a 

more direct way. The presentation of the data can be made user-friendly, e.g., by calculating relative 

risks. Using these paired data has an added value in comparison to the calculation of SIRs/SMRs that 

are calculated for predefined zones within a specific exposure range. These techniques are applied in 

cancer cluster analysis by CDC (CDC, 2024).  

Figure 2: Example of study area around airport Zaventem, based on environmental data. 

https://www.zorg-en-gezondheid.be/cijfers/asbestgerelateerde-ziektes-in-vlaanderen#:~:text=Belgi%C3%AB%20was%20in%20de%20vorige,asbestgerelateerde%20ziektes%20in%20Vlaanderen%20op.
https://www.vlaanderen.be/pfas-vervuiling/pfas-aanpak-regio-zwijndrecht/pfas-en-kanker
https://www.vlaanderen.be/pfas-vervuiling/pfas-aanpak-regio-zwijndrecht/pfas-en-kanker
https://zorg-en-gezondheid.be/sites/default/files/2024-02/Rapport_depZorg_kankerincidenties_stationsbuurt_Antwerpen_20240222_0.pdf
https://zorg-en-gezondheid.be/sites/default/files/2024-02/Rapport_depZorg_kankerincidenties_stationsbuurt_Antwerpen_20240222_0.pdf
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3.1.2 Disability-Adjusted Life Years 
The above-mentioned indicators highlight only one facet of public health, i.e., either mortality or 

morbidity. Within the available health indicators, Disability-Adjusted Life Year (DALY) encompasses 

more than just the presence/absence of specific diseases and conditions, by providing a 

comprehensive and comparable quantification of the physical and psychosocial health impact of 

diseases, injuries and risk factors (Devleesschauwer et al., 2014). Driven by the Global Burden of 

Disease (GBD) projects initiated in the early 1990s (Murray et al., 1996), the DALY has become the key 

measure for quantifying the burden of disease. DALYs measure the health gap from a life lived in 

perfect health and quantify this health gap as the number of potentially healthy life years lost due to 

morbidity, disability and mortality. A disease burden of 100 DALYs per 1000 people-year would thus 

imply a loss of 100 healthy life years per 1000 people per year. Diseases or risk factors accounting for 

more DALYs thus have a higher population health impact. DALYs may be calculated for different 

(sub)populations (e.g., geographical areas), allowing for a more detailed perspective on population 

health. DALYs are composed of standard expected years of life lost due to premature mortality (YLLs) 

and years lived with disability (YLDs): 

𝐷𝐴𝐿𝑌 = 𝑌𝐿𝐿 + 𝑌𝐿𝐷 

The YLL component reflects the impact of fatal health outcomes. For each considered cause, YLLs are 

obtained by multiplying the age-specific number of deaths with the standard expected residual life 

expectancy at the age of death: 

𝑌𝐿𝐿 =∑𝑀𝑖 ∗ 𝑅𝐿𝐸𝑖

𝑎

𝑖=1

 

where 𝑖 = 1,… , 𝑎 is one of the considered age groups, 𝑀𝑖 the age-specific number of deaths due to 

the outcome, and 𝑅𝐿𝐸𝑖  the age-specific residual life expectancy. 

The YLD component reflects the impact of non-fatal health outcomes. A prevalence approach can be 

applied to estimate YLDs for specific diseases: 

𝑌𝐿𝐷 = 𝑝 ∗ 𝐷𝑊 

where 𝑝 is the prevalence of the outcome and 𝐷𝑊 the associated disability weight. 

Considering the objectives of this working package, DALY could be calculated using secondary data 

sources to quantify the disease burden of people living in the proximity of the airport. The mortality 

component of DALY makes use of the national cause of death dataset which is exhaustive in terms of 

spatial coverage and causes of death. For the morbidity component instead, there is no single 

comprehensive data source on the prevalence of non-fatal health outcomes in Belgium, meaning that 

each outcome needs to be addressed in an ad-hoc way, following the recommendations in the 

previous chapters. The estimation of DALY should be part of a sustainable system for monitoring the 

health status of the population living in the proximity of the airport. At the moment, DALY were 

computed related to aircraft noise for the Zaventem region as a snapshot in time (for the years 2019 

and 2032) (Department Zorg, n.d.). These can be systematically updated making us of the methods 

used in the E-HIS tool for aircraft noise (Department Zorg, n.d.). In addition, the results of the Belgian 

Burden of Disease study (De Pauw, Robby et al., n.d.) could be used for the regular update of the DALY 

estimates, by which trends in population health can be monitored over time. 
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3.1.3 Suggestion for the selection of outcomes and sources 
The evaluation of the data sources described in this proposal could be used to prioritize risk-outcome 

pairs to be included in a continuous monitoring of the burden of Zaventem airport (see Table 4). In 

addition, a number of possible expansions of this objective could be potentially investigated using 

secondary data. For instance, the investigation of the associations between airport related 

environmental exposure (noise and UFP) and health outcomes in the airport regions is an important 

addition to the current literature as these associations have been described around airports in other 

countries, but not yet investigated in Zaventem airport region. Since every setting is different 

(exposure, exposure modifiers, population characteristics) it is recommended to investigate this 

specific for Zaventem airport region (instead of extrapolation/applying D-R functions from other 

airports to Zaventem region). 

Table 4: Suggestion for selection of health outcomes and data sources 
Health outcome Disease Available data source that meets the requirements (1) 

Cardiovascular health Blood pressure  Intego (2)  

Hypertension  IMA/Farmanet: use of hypertensive medication (3) 

Stroke incidence  Hospital discharge data  

Stroke mortality  Mortality registry 

Metabolic health  Diabetes Intego (2) 

Obesity Intego (2) 

Respiratory health Asthma IMA/Farmanet 

Sleep  Sleep disturbance  IMA/Farmanet: use of sleep medication (3) 

Pregnancy  Congenital anomalies at birth  Perinatal registry 

Low birth weight    Perinatal registry 

Preterm birth    Perinatal registry 

Well-being  Depression  IMA/Farmanet: use of anti-depressants (3) 

Cancer Several types of cancers Belgian Cancer Registry 

Mortality All-cause mortality Mortality registry 

IMA: intermutualistic agency; (1) sufficiently representative for the area around the airport, data collected 

repeatedly over time, availability of the data at a small geographical level; (2) not yet representative for the area 

around the airport but there is the possibility to have an oversample if requested; (3) to be checked as to date 

there is no validation on the specificity of these medications for the condition of interest. 

In addition to the above-described criteria for the selection of the sources, research efforts should 

prioritize outcomes where airport-related stressor exposure is likely to have a significant impact (see 

WP1). 
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3.2 Possible expansions of objectives using existing health data 
In addition to the necessity of continuously assessing the health burden associated with the airport, 

many different research questions could be answered using the existing health data sources described 

above. Here we present a few examples of possible expansions towards different objectives. These 

are divided considering their data needs. 

3.2.1 Data coupling at individual level 
As previously mentioned, individual level data is usually made accessible by the data owners following 

ad-hoc data requests with specific research questions. These requests entail usually lengthy 

procedures and limited access to data, which is why they are not considered suitable for continuous 

and sustained overtime monitoring. 

As reported in WP1, the association between airport-related stressors and health is often confounded 

by several factors that are not always considered when deriving associations. Air pollution and noise 

exposure often show collinearity with other health risk factors like socioeconomic status, stress and 

adverse lifestyle factors. Causal inference methods have been suggested over the years as reliable to 

account for possible confounders that might affect the relationship between the risk factor and the 

outcome (Hernán & Robins, 2006). In particular, the g–computation approach (a model-based direct 

standardization) can manage continuous risk factors and predict the causal impact of these on the 

population burden of disease, using cross-sectional data. In particular, environmental data could be 

coupled with health data at individual level to create a data set that would include the risk factor of 

interest (i.e. aircraft pollution and noise) and the outcome of interest (e.g. cardiovascular and 

respiratory diseases), together with any identifiable confounder (e.g. lifestyle factors) (Palazzo et al., 

2019). G-computation would be implemented through the use of the counterfactual framework, 

which posits the existence of unobserved outcomes corresponding to theoretical unobserved 

exposures in addition to the observed data that are collected. We estimated the marginal mean of Y 

(disease outcome) that would be observed if A (exposure to risk factor) were set to a = 1 when 

exposed, a = 0 when unexposed. To obtain this expectation, we perform two mathematical 

operations. The first is a traditional regression model [E(Y|A, W), where W is a set of confounders], 

which allows us to predict counterfactual outcomes for each observation under each exposure 

regimen, by plugging a = 1 and then subsequently a = 0 into the regression fit to obtain a predicted 

outcome under these two settings. When considering a dichotomous exposure setting, the 

counterfactual outcomes correspond to Y1 for exposed and Y0 for unexposed. The coefficients from 

each model are then used to predict the values of Y1 and Y0 for each observation, leaving their 

covariates at the observed values but intervening on the value of a as described above. The value of 

Y0 is equal to the predicted value of Y when setting the risk factor at a = 0 and, therefore, observations 

with the same value of W have the same value for Y0 regardless of their observed risk factor exposure, 

A. This equality also holds for Y1 when observations share values of W. The causal difference is then 

the difference of the above-described predictions E(Y1 − Y0). This represents the number of deaths, 

cases and/or burden that can be causally attributable to the risk factor. Setting the risk factor exposure 

to various levels can be used to compile continuous risk-outcome associations. The currently available 

estimates on the association of health outcomes and environmental exposures (so-called dose-

response functions) are computed using data from airports that are different from the one of Brussels 

Zaventem. As previously stated within WP1, noise might be influenced by intervening buildings and 

geographical features, while air pollution might be dependent on weather conditions like wind speed 

and direction which are specific to the area where the airport is located. This will sum up to the 

influence of other key factors, like the socio-economic status of the population in the vicinity of the 

airport and/or the chemical characterization of the pollution (e.g., PM/UFP represents a mix of many 
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chemical substances which will depend on the fuel, engine, etc). Additionally, investigation into the 

combined effects of aircraft noise and UFP exposure on human health needs further research and 

would provide valuable insights for developing effective mitigation strategies around airports. 

Health data sources and individual environmental data at home address could be linked at individual 

level. The health data source should include as much as possible comorbidities and risk factors that 

could be considered confounders. The Intego database could be an option. The fact that it is not fully 

covering the area around Brussels Airport, is less relevant to investigate causal relationships in the 

risk-outcome pairs. The most critical issue is that the exposure range has to be broad enough to study 

dose-response associations. 

3.2.2 Collecting new data 
Considering that available secondary data does not cover all the outcomes of interest, we would need 

to set up specific data collections (e.g., questionnaires, saliva samples, blood samples, blood pressure, 

etc). We identified specific data gaps in terms of outcomes: wellbeing, annoyance, sleep disturbance 

(subjective endpoints). See WP4 for more details. 

3.2.3 Health impact assessment 
Health impact assessment (HIA) can be used to evaluate policies aiming to reduce the burden of 

airport pollution from two different perspectives: ex-ante and ex-post evaluation. In the first case, HIA 

is considered as a tool to foresee how realistic and potentially achievable levels of exposure to a risk 

factor may affect population health. This makes HIA a useful prospective tool for elaborating the 

potential effect of policies, plans or interventions and supporting evidence-based decision-making. 

Where the methods above described give a measure of the total attribution of the burden to a specific 

risk factor, HIA aims to estimate the avoidable burden, meaning the expected reduction of exposure 

if a policy context is in place. An example of its application in the context of population weight 

reduction can be found in (Pelgrims et al., 2024). Similarly, to what has been discussed above, g-

computation could be used to predict the effect of policy scenarios on the burden attributable to 

aircraft pollution. Counterfactual levels of aircraft pollution will be created to mimic the effect of the 

intervention on the exposure to the risk factor. These different counterfactuals are then included in 

the g-computation formula. 

In the context of an ex-post evaluation, researchers can undertake a so-called “adaptation evaluation” 

(GLISA, n.d.). This is particularly tailored for policies and programs specifically focused on climate 

change adaptation. It entitles that when an intervention is implemented, a process of continuous 

collection of information will determine if measures are effective. To ensure the effective and 

sustainable implementation of regional or local authority’s measures over time, it is important to 

evaluate the progress of planned activities and to check actual outcomes against their initial 

objectives. This evaluation will help determine whether an adaptation of the policies is needed to 

reflect the expectations. Adaptation evaluation considers that the policy or program’s impact, 

measurable indicators and goals may fluctuate over time as localized impacts unfold. Active and 

continued engagement of stakeholders is required because all stakeholders playing a role and having 

responsibility for implementation need to be part of the monitoring and evaluation process (Climate-

ADAPT, 2023). 
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Aims and objectives of Work Package 4 

Brussels Airport plays an important role in the region’s economy and connectivity. However, concerns 

exist regarding the environmental impact of the airport’s operations on the health of residents living 

in its vicinity. While research around airports in other countries clearly demonstrates the negative 

effects of airport proximity on annoyance, sleep quality and overall health, a similar investigation 

specific to Brussels Airport and its surrounding neighbourhoods has not yet been performed. The 

current knowledge relies primarily on theoretical impact assessments (Environmental Impact 

Assessment (EIA, in Dutch: milieueffectenrapport or MER) and the E-HIS study for air traffic noise1). 

However, relying on theoretical calculations and extrapolations from studies conducted at other 

airports has limitations. Airport operations, local air quality patterns and population demographics 

can vary significantly, making direct comparisons between airports challenging.   

To address this knowledge gap, this work package (WP) proposes a comprehensive approach for 

health surveillance and research tailored to Brussels Airport. It leverages the findings from three 

interrelated WPs to support evidence-informed decision-making. WP1 critically reviews existing 

literature to identify well-established health outcomes associated with environmental stressors 

typically found around airports, such as noise pollution and air quality (mainly ultrafine particles 

(UFP)). WP2 delves into the practicalities of measuring and modelling these environmental stressors 

around Brussels Airport. WP3 explores the potential of existing health registries to conduct health 

surveillance around the airport. By integrating the knowledge gained from each of these WPs, the 

project aims to propose a framework for health surveillance and research tailored specifically to the 

region around Brussels Airport. Important to note is that selection of the specific exposure-outcome 

pair to investigate and the study approach fall outside the scope of this project. However, this 

comprehensive approach aims to provide (i) a picture of the current health situation for residents 

living near the airport and (ii) possibilities for a surveillance program to monitor the health situation 

in light of the effectiveness of measures outlined in the permit conditions of Brussels Airport. By 

identifying potential health concerns and engaging with relevant stakeholders, plans can be developed 

or strengthened to address these concerns and ensure the long-term well-being of the community.  

  

 

1E-HIS geluid luchtverkeer rapport_finaal v24 april 2024.pdf (zorg-en-gezondheid.be) 

https://www.zorg-en-gezondheid.be/sites/default/files/2024-05/E-HIS%20geluid%20luchtverkeer%20rapport_finaal%20v24%20april%202024.pdf
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1 Considerations regarding set-up of airport-related health 

research  

Airports play an important role in our globalized world, but their operations can come at a cost to the 

health of nearby communities. Exposure to aircraft noise and air pollution, including UFP, has been 

linked to a range of health problems (see report WP1), raising concerns about the well-being of 

residents living in the vicinity of airports. Each health outcome might require a different approach for 

investigation, depending on the research question or policy goal. This WP first explores opportunities 

for surveillance by gaining insight into site-specific health risks in the region of Brussels Airport – 

considering that well-known effects reported around other airports might not directly pertain to the 

region surrounding Brussels Airport due to differences in the airport settings, population 

demographics and other factors. Results from the surveillance programs could inform future research 

directions which could involve dedicated studies on specific health concerns identified as priorities 

through surveillance. Such detailed studies can delve deeper into the mechanisms linking airport-

related stressors (i.e., aircraft noise and UFP) to health problems observed in the Brussels Airport 

region. Findings from surveillance and specific research can ultimately inspire policy changes to 

enhance the protection of public health in the region. 

Some pollutant-outcome pairs, such as aircraft noise and sleep disruption or UFP and cardiovascular 

effects, are well-established and could serve as a good starting point for surveillance purposes around 

the national airport. On the other hand, there are also pollutant-outcome pairs with limited or low 

quality evidence, such as the associations between UFPs and birth outcomes, where further 

investigation is needed. These pairs may have been less studied due to various reasons, including the 

complexity of the health outcome, challenges in accurately measuring exposure or the relatively 

recent emergence of the pollutant as a concern. Investigating these pairs could help fill evidence gaps 

and provide a more comprehensive understanding of the health impacts of airport-related stressors. 

The choice between focusing on well-established or less-studied pollutant-outcome pairs depend on 

the specific research question or policy goal.  An overview of relevant pollutant-outcome pairs and a 

rationale to prioritize these pairs are discussed below and presented in Table 1.  

1.1 Selection of health outcomes  
Communities residing near airports face a dual environmental burden: noise and air pollution 

exposure (mainly UFP). Scientific literature has linked these airport-related stressors to negative 

health outcomes, but the strength of evidence varies for the different health endpoints. Additionally, 

while some underlying mechanisms are understood, further research is needed for most endpoints. 

Surveillance is primarily used to monitor the local situation and track health status in relation to 

environmental stressors for health endpoints with strong evidence from the literature. For example, 

surveillance of aircraft noise might involve tracking noise levels and self-reported health issues like 

sleep disturbances or annoyance in a representative sample of residents. Surveillance programs 

typically use larger sample sizes and less invasive, cost-effective methods (e.g., questionnaires) to 

provide a general picture of population health trends. This allows for (i) assessing the severity of the 

health impact in the local situation, (ii) detecting vulnerable subgroups (e.g., geographically or 

demographically) and (iii) tracking changes in response to policy measures or environmental burden. 

Research studies, on the other hand, aim to improve scientific knowledge to delve deeper into specific 

cause-and-effect relationships (i.e., exposure-response functions (ERFs)). This can be done by 
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including relevant health endpoints with less robust evidence or by identifying mechanistic pathways 

in the dose-response chain to strengthen causal evidence. Examples include clinical sleep studies with 

detailed information on sleep patterns, cardiovascular outcomes and neurological parameters; or 

mechanistic studies linking biological stress parameters (e.g., cortisol) and cardiovascular parameters 

(e.g., heart rate variability) to sleep disturbance or subjective stress experience. These studies are 

typically more expensive, time-consuming and conducted on smaller sample sizes. They allow to 

monitor the local situation to some extent but as the subgroups are smaller, limiting their usefulness 

for broad policy support. However, their strength lies in providing a better understanding of the 

biological pathways linking environmental stressor exposure to health problems, thereby contributing 

to the scientific evidence base.    

1.2 Prioritizing research efforts 
It is important to note that there is no single answer as to which of these outcomes is “most important” 

and for which to seek higher quality evidence of the effect of airport-related stressors, as different 

outcomes may require distinct research approaches depending on the research question or policy 

goal. This section explores several approaches for prioritizing research efforts. First, stressors with 

high levels of exposure in airport communities should be prioritized, hence our focus on aircraft noise 

and UFP. Next, prioritization of pollutant-health outcome pairs could be based on (i) the severity of 

the health outcome, (ii) the strength and quality of the causal relationship and/or (iii) the number of 

people affected. These criteria could be combined into summary measures of population health, such 

as the Disability-Adjusted Life Year (DALY). As such, the Belgian national burden of disease study 

provides a platform to quantify and prioritize the burden of airport-related stressors (Pauwels et al., 

2023). Other possible priority-setting approaches include prioritizing health outcomes that 

disproportionately affect vulnerable populations like children, pregnant women or those with existing 

health conditions and/or including public opinion and concerns in the prioritization process. Also, 

important to note is that the research on specific health effects of airport-related stressors (i.e., 

aircraft noise, UFP, hazardous air pollutants (HAPs)) is still developing, and clear exposure-response 

relationships (from reports, or meta-reviews meeting Grading of Recommendations Assessment, 

Development and Evaluation (GRADE) criteria) are not yet readily available for all health outcomes. 

Additionally, many health outcomes have complex, multifactorial causes, making it difficult to isolate 

the specific contribution of an airport-related stressor from other environmental or lifestyle factors.  

The feasibility of assessing both the health outcome and environmental stressors is crucial for effective 

studies. First, it is important to consider the feasibility and cost of accurately assessing stressor levels 

around the airport (e.g., air quality monitors, noise level meters or adequate modelling approaches). 

Second, the cost-effectiveness of health outcome assessment should also be considered. For 

surveillance purposes, requiring a much larger number of participants than a dedicated research 

project, one could choose health outcomes that are relatively easy and cost-effective to assess (e.g., 

self-reported sleep disturbance surveys; low-cost monitors) (also see output WP3).  

1.2.1 Prioritizing based on impact 
If one would focus on the severity of the health outcome and number of people affected, one could 

include pollutant-health outcome pairs with a well-established contribution of airport operations to 

ambient levels of the pollutant and a high burden of disease. Airport operations are considered 

primary contributors to ambient levels of noise and UFP whereas their contribution to standard air 

pollutants (e.g., PM2.5, O3 and NO2) or hazardous air pollutants (e.g., benzene, naphthalene) appears 

relatively modest or undefined, respectively.  
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Evidence links aircraft noise to sleep disruption, a major risk factor for various chronic illnesses (e.g., 

cardiovascular disease, diabetes), mental health issues and reduced quality of life. While research on 

UFPs from aircraft is limited, early indications suggest they might adversely affect the cardiovascular 

system, potentially increasing cardiovascular disease medication use and mortality (possible link 

between UFP exposure and deaths due to arrhythmia, see Appendix II). The severity of these potential 

health outcomes is amplified by cardiovascular disease being a leading cause of death globally.   

1.2.2 Prioritizing based on the strength and quality of the evidence 
The strength and quality of the causal relationship could also serve as an important aspect for the 

selection of specific health outcomes to consider in a research or surveillance programme. Note that 

the strength of evidence relates to the certainty of the study findings as it reflects the degree of 

confidence in the conclusions drawn from the research whereas the quality of evidence of a study 

refers to how well the study was designed, conducted and analyzed often scored by the GRADE scoring 

system. While high quality evidence on the GRADE scale for environmental exposures is difficult to 

achieve, the WHO recommends using evidence of moderate quality as the basis for setting “strong” 

recommendations, which “can be adopted as policy in most situations”. Therefore, it is reasonable to 

consider outcomes with a defined harmful effect for which there is already moderate quality evidence 

as a priority for setting up health surveillance or research around Brussels Airport.  

1.2.3 Prioritizing new research areas 
On the other hand, under-researched areas could also serve as a priority for new research. There is 

currently no evidence on the effects of aircraft noise on dementia and other neurodegenerative 

diseases which forms a significant concern considering their high prevalence among older populations. 

Likewise, diseases like diabetes and hypertension, which are major contributors to population 

morbidity, currently only have low or very low-quality evidence linking them to aircraft noise exposure. 

In addition, current evidence (very low quality) suggests the potential impact of airport-related 

stressors (i.e., aircraft noise or UFP) on birth outcomes (such as low birth weight or prematurity) might 

be relatively minor compared to other exposures (as is also true for many cardiovascular and 

metabolic outcomes). However, the long-term health consequences associated with adverse birth 

outcomes (i.e., Developmental Origins of Health and Disease) warrant further investigation in this 

area.  

1.2.4 Prioritizing mechanisms and early indicators  
While studying health outcomes like chronic illnesses and acute disruptions in relation to 

environmental pressure is crucial, understanding the intermediate mechanisms through which 

airport-related stressors trigger these negative health outcomes offers valuable insights. Some 

intermediate mechanisms through which airport-related stressors might trigger adverse health 

outcomes include, among others, the release of stress hormones (like cortisol) and inflammation, 

impaired sleep and circadian rhythm disruption or increased vulnerability and reduced resilience. 

Examining effect biomarkers, measurable biological indicators reflecting the body’s stress response, 

can help understand these underlying mechanisms. One important biomarker of effect is cortisol 

which is a hormone regulated by the endocrine system and that plays a vital role in the body’s stress 

response. A study by (Baudin et al., 2019) is an exemplary study investigating the potential link 

between aircraft noise exposure and cortisol levels and rhythms, exploring how noise disrupts the 

hormonal balance. Other potential mechanisms by which airport-related stressors could lead to ill-

health include inflammation and oxidative stress. In this regard, some associations were found 

between short-term UFP exposure near the airport and markers of inflammation in a small group of 

healthy adults (Habre et al., 2018). Non-invasive markers are important for population studies in 
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vulnerable populations, such as urinary markers for airway inflammation in children (Nauwelaerts et 

al., 2023).  

Obtaining higher-quality evidence on the relationship between airport-related stressors and (early) 

effect biomarkers may be more informative, or at least complementary, than focusing solely on 

downstream disease outcomes. This is because they act as early markers of an effect before the onset 

of diseases and consequently are often more prevalent. Moreover, early effect biomarkers are 

reversible and therefore are interesting tools to demonstrate the impact of policy measures.  

Sleep disturbance, linked to aircraft noise exposure and annoyance, is a well-established example of 

a risk factor for various diseases. Additionally, it has a role in physiological stress reactions and is a 

quality-of-life issue (Bartels et al., 2022; Benz et al., 2022). Sleep disturbance and aircraft noise 

annoyance also highly correlate with each other and are believed to contribute to an increased risk of 

cardiovascular disease (Eriksson et al., 2018; Van den Berg et al., 2014). While the causal relationship 

between annoyance and sleep disturbance remains unclear, i.e., whether aircraft noise annoyance 

leads to more sleep problems or whether difficulty sleeping makes people more annoyed by noise. 

The possibility of a reciprocal relationship exists. Annoyance could worsen sleep, cause tiredness and 

reduce one’s resources, which in turn could heighten annoyance with noise. On the other hand, if one 

feels annoyed by aircraft noise this could disturb one’s sleep more easily. Exploring such intermediate 

mechanisms and their impact on various health outcomes can provide a more comprehensive 

understanding of how airport-related stressors affect health.  

1.2.5 Prioritizing based on vulnerability and community concerns 
Beyond traditional approaches, several other factors can be considered when prioritizing health 

outcomes from airport-related stressors, namely vulnerability and equity and/or public input and 

concerns. One could prioritize health outcomes that disproportionately affect children as their 

developing bodies are more susceptible to the negative health effects of these stressors. Moreover, 

through stakeholder engagement, one can know what topics are most salient for the affected 

communities.  

Considering the socioeconomic status (SES) of residents is crucial, as lower-income communities are 

often disproportionately located near airports due to factors like zoning and land prices. This often 

means they experience higher levels of noise pollution, air pollution and traffic congestion compared 

to wealthier neighbourhoods. Even with similar exposure, residents with lower SES might be more 

vulnerable to health risks. They may have less access to quality healthcare, healthy food options and 

green spaces, which can mitigate the negative effects of environmental stressors. SES is intertwined 

with other social determinants of health, such as education, employment opportunities and access to 

healthy lifestyles. These factors can all influence how individuals respond to environmental stressors 

like those related to airport operations (i.e., aircraft noise and UFP).  

1.2.6 Strategic data collection: balancing efficiency and depth  
Understanding the health impact of airport-related stressors requires a strategic approach to data 

collection. Leveraging existing datasets (i.e., secondary data) from government agencies, public health 

departments or previous research studies is cost-effective as it saves time and resources compared to 

collecting entirely new data (i.e., primary data). However, data on endpoints of interest (e.g., sleep 

disturbance, stress biomarkers, etc.) are not readily available or are not collected at a granular level 

suitable for the study. This is where a targeted collection of primary data comes into play as it allows 

for collection of data concerning, for example, noise annoyance levels, sleep quality or biomarkers of 

stress directly from the residents. However, collecting primary data is more expensive and time-
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consuming than utilizing existing secondary data and may increase the participant burden potentially 

affecting response rates. In general, secondary data provides context, historical trends and readily 

available data. On the other hand, primary data offers deeper insights into residents’ experiences and 

health status.  

1.3 Possible exposure-health outcome pairs to investigate around Brussels 

Airport 
Table 1 summarizes important exposure-health outcome pairs associated with airport operations and 

their potential impact in surrounding communities. The table also includes considerations for 

prioritization research and surveillance efforts based on factors such as the strength of existing 

evidence, public health significance and the feasibility of objective measurement.  



Table 1: Evidence-based surveillance and research options  
Pollutant – 

outcome pair  
Measure   Considerations for prioritization   

Noise –  

effects on sleep   

Physiologically measured awakenings in adults  

- Moderate quality evidence of a harmful effect 

- Public health significance given link of sleep disturbance to range of adverse outcomes 

- Direct and objective measure of sleep disruption 

Self-reported awakenings in adults  

- Low quality evidence of a harmful effect 

- Subjective experience collected via surveys or questionnaires  

- Practical and cost-effective (suitable for large-scale studies)   

Self-reported sleep disturbance in adults 

(source specified) 

- Moderate quality evidence of a harmful effect 

- Subjective experience collected via surveys or questionnaires  

- Practical and cost-effective (suitable for large-scale studies)   

Sleep disturbance and/or awakenings in 

children  

- Very limited number of studies  

- Vulnerability of children (long-term impact on development and academic performance) 

Noise –  

cardiovascular effects   

Ischemic heart disease  

- Low quality evidence of a small harmful effect for IHD incidence  

- Public health significance: leading cause of mortality  

- Plausible biological mechanism (increased stress hormone levels and disrupted endothelial function) 

- Established association (dose-response function) 

- Distinct clinical endpoint with well-defined diagnostic criteria 

- Objective measure for CVD (except for self-reports) 

Hypertension  

- Low quality evidence of a harmful effect for hypertension incidence 

- Prevalent and significant public health issue contributing to various CVD  

- Plausible biological mechanism (increased sympathetic nervous system activity and elevated blood 

pressure) 

- Feasibility of research (common, smaller sample size and shorter follow-up period) 

- Objective measure for CVD (except for self-reports) 

- Additional and recent evidence for the influence nighttime exposure 

Stroke 

- Moderate quality evidence of (i) a small harmful effect for stroke incidence and (ii) no effect for stroke 

mortality 

- High disease burden, leading cause of disability and mortality  

- Distinct clinical endpoint with well-defined diagnostic criteria  

- Objective measure for CVD (except for self-reports) 

Arterial stiffness  

- Low quality evidence of a harmful effect 

- Early indicator of cardiovascular risk  

- Intervention possibilities (modifiable risk factor) 

- Non-invasive measurements (e.g., pulse wave velocity) 

- Limited evidence available 
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Pollutant – 

outcome pair  
Measure   Considerations for prioritization   

Noise –  

annoyance  
Annoyance  

- High prevalence of annoyance  

- Daily impact on quality of life 

- Potential as a modifiable risk factor for adverse health outcomes (e.g., CVD, mental health disorders 

and impaired cognitive function)  

- Community engagement and advocacy  

Noise –  

cognitive impairment  

Reading and oral comprehension, assessed 

with standardized tests in children 

- Moderate quality evidence of a harmful effect   

- Vulnerability of children (critical period of cognitive development and academic achievement) 

Noise –  

adverse birth and pregnancy 

outcomes  

Preterm delivery 

- High prevalence of preterm birth and significant contributor to infant morbidity and mortality 

- Vulnerability of pregnant women and their unborn infants  

- Limited low quality evidence available but growing insights from new research (also on combined 

exposure with air pollution) 

Gestational diabetes  

 

 

- Common and serious public health concern  

- Vulnerability of pregnant women and their unborn infants 

- Limited evidence available 

Noise –  

quality of life, well-being and 

mental health  

Interview measures of depression and anxiety  

- Low quality evidence of a harmful effect 

- Amongst most prevalent mental health disorders  

- Vulnerability of individuals with pre-existing mental health conditions, children and elderly  

- Comprehensive assessment via interview measures 

- Limited evidence available 

Depression mediated by annoyance   

- Low quality evidence of a harmful effect  

- Leading cause of disability  

- Limited evidence available 

Noise –  

metabolic outcomes  

Diabetes 

- Low quality evidence of a harmful effect 

- Growing number of studies   

- Growing prevalence  

- Comorbidity with CVD 

- Diagnosis via standardized criteria and diagnostic tests 

Obesity    

- Low quality evidence of a harmful effect 

- Limited number of studies  

- Growing prevalence  

- Comorbidity with CVD and metabolic syndrome 

- Feasible measurement (BMI, waist circumference, body fat percentage, etc.)  
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Pollutant – 

outcome pair  
Measure   Considerations for prioritization   

UFP (long-term) –  

cardiovascular effects 

Increased use of cardiovascular medication 

- Prevalence of CVD 

- UFP as emerging pollutant  

- Probable association found in long-term study around Schiphol  

Mortality from cardiovascular disease 

(specifically observed for cardiac arrhythmias)  

- Severity of cardiovascular mortality (CVD leading cause of death) 

- Probable association found in long-term study around Schiphol  

UFP (short-term) –  

intermediate mechanisms  
Systemic inflammation  

- Linked to chronic diseases  

- Marker of increased risk of adverse health outcomes  

- Probable association found in short-term study around LAX  

UFP (short-term) –  

respiratory effects  

Exacerbation and medication use for 

respiratory complaints in children   

- Vulnerability of children (developing respiratory systems, higher respiratory rates and increased 

susceptibility)  

- Public health significance of respiratory diseases  

- Possible long-term health implications for respiratory health and lung function in adulthood  

- Probable association found in short-term study around Schiphol  

Decreased lung function (vulnerable subgroup: 

asthma) 

- Probable association found in short-term study around LAX  

UFP (long-term) –  

birth outcomes  

Preterm birth  

- Vulnerability of pregnant women and unborn infants  

- Public health burden of preterm birth and long-term health implications  

- Probable association found in studies around Schiphol and LAX (also correction co-pollutants) 

Small for gestational age 

- Vulnerability of pregnant women and unborn infants  

- Public health burden of small for gestational age and long-term health implications  

- Probable association found in short-term study around Schiphol  

Congenital anomalies  

- Vulnerability of pregnant women and unborn infants  

- Public health burden of congenital anomalies and long-term health implications  

- Probable association found in short-term study around Schiphol  

 



2 Proposals for health research studies around Brussels Airport 

This report outlines various research proposals to assess the potential health impacts of Brussels 

Airport on surrounding communities. The proposed research plans draw on existing international 

research and insights from preceding WPs, aiming to inform methodologies and target specific 

environmental stressor and health outcome pairs. Within this project, we do not make one distinct 

choice but rather give various options. The choice of research approach (to be selected in a later 

phase, ideally via stakeholder consultation) will depend on the specific research question or policy 

need, as determined through prioritization (discussed above in Section 1.2 Prioritizing research 

efforts).  

2.1 Optimizing research strategies: balancing complexity and feasibility 
Generally, a tiered approach can be taken as shown by the subsections below which have a varying 

complexity in data gathering, analysis and resource (financial, time, expertise) requirements. Study 

design complexity directly affects the feasible sample size, with less complex studies typically allowing 

for larger study populations and more intricate designs necessitating smaller, targeted samples due 

to factors like participant recruitment and data collection intensity. For example, ecological studies 

offer population-level insight by analyzing existing (i.e., secondary) aggregated health data (e.g., 

hospital admissions) from areas with different levels of airport-related noise/pollution levels to 

identify potential associations between environmental stressors and health outcomes. Due to their 

reliance on readily available data, they allow larger sample sizes, yet ecological studies are less 

complex as they can only establish correlations, no individual-level causal relationships. In contrast, 

longitudinal cohort studies have a higher complexity and follow residents over a defined period to 

monitor health changes in relation to environmental exposures hereby building a stronger 

understanding of ERFs. Longitudinal cohort studies provide valuable insights into cause-and-effect 

relationships but require a substantial investment in terms of time, resources and participant 

recruitment. Consequently, sample sizes are typically smaller compared to other study designs. Cross-

sectional studies are in between both and involve collection of paired data on health and exposure at 

a single point in time within a specific population but are not able to establish cause-and-effect 

relationships.  

One could also consider citizen science projects as an approach (also see Section 2.5 Citizen science 

projects) where the public is engaged in data collection and environmental health research. 

Complexity can vary depending on the project’s design, ranging from collecting basic noise level data 

using smartphone apps to self-reported health surveys. Citizen science can serve as a valuable tool for 

gathering large amounts of preliminary data or providing insights into community experiences. 

However, poor data quality and lack of standardization might be limitations.  

The optimal research tier depends on the specific research question and available resources. A tiered 

approach might begin with surveillance based on secondary (see Section 2.3 Surveillance based on 

secondary data) or primary (see Section 2.4.1 Large-scale primary data surveillance) health data in a 

cross-sectional set-up to identify potential associations between airport-related stressors and health 

problems. These findings could then be complemented with objectively measured data from more in-

depth surveillance studies (see Section 2.4.2 In-depth monitoring). To establish causal links and ERFs, 

site-specific longitudinal studies would be necessary (see Section 2.6 Establishing site-specific 

exposure-response functions). In turn, citizen science projects can provide valuable complementary 
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data in a cost-effective manner while increasing public engagement (see Section 2.5 Citizen science 

projects).  

2.2 Spatial delineation of study area  
An important aspect to consider is the spatial delineation of the study area which is constrained by (i) 
the estimated impact and (ii) (in the case of using secondary health data) the availability of health data 
in the considered study area. As detailed below, based on these two factors, it is not possible to 
provide a general research domain that is fit for all stressors and all surveillance studies. Rather, the 
domain will be determined by the specific stressors and the health endpoint being surveilled. 

2.2.1 Estimated spatial extent of environmental stressors 

2.2.1.1 Spatial extent  

The estimated spatial impact of airport-related stressors varies across locations. Analysing the spatial 
patterns of the model results is the best way to obtain an accurate assessment. Modelling results 
indicate that the impact of each stressor requires a different research domain as the modelled impact 
varies significantly among them. 
 
The influence of airport operations on noise spans a vast area, from Ternat to Aarschot (west to east) 
and from Muizen to Hoeilaart (north to south). Because the noise contours are highly anisotropic, any 
spatial division of the study domain should consider actual noise levels, not just distance from the 
airport. These conclusions are based on modelling conducted for the 2019 Environmental Impact 
Assessment (EIA, in Dutch: MER), using the maximal area in which the WHO guidelines for Lnight (40 dB) 
are exceeded (see Figure 1). Note that the contour maps in the figure pertain to the yearly average 
Lnight. For investigating certain health outcomes, such as sleep disturbance, frequency contours or 
noise metrics for shorter time windows (seasonal or daily patterns) might be more relevant than 
yearly average Lden and Lnight. In current monitoring, nighttime is defined as the period between 23:00 
and 07:00 for both average and peak indicators. It is worth investigating whether modified  indicators  
of nighttime, e.g., earlier/longer time spans for children sleep at night, changes the observed patterns. 
However, these noise maps are currently unavailable and should be developed through new modelling 
exercises.  
Finally, it should be noted that these contours might change over time, for instance, if flight routes 
are modified. Therefore, an analysis of the spatial delineation should always begin with the latest noise 
impact maps. 

 

Figure 1: Research domain analysis for aircraft noise. The outer polygon indicates all locations where Lnight is 
above the respective WHO guidelines, according to the noise impact modelling from the MER.  
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For standard air pollutants, the influence of the airport is limited to an area with a radius of 7 km, with 
the northeastern edge of the runway 07L/25R as the reference point (see Figure 2). This domain is 
determined based on model results from the MER, focusing on locations where the contribution 
exceeds 0.6 µg/m³ (3% of the former health advisory value, in Dutch: gezondheidskundige 
advieswaarde (GAW)) for NO₂, the most significant standard air pollutant. While the pollution plume 
is predominantly directed towards Kampenhout (northeast of the airport), it is relatively spatially 
isotropic. A spatial division of the study domain could thus be based on the distance to the airport. 

 
Figure 2: Research domain analysis for standard air pollution (contribution from aircraft to air pollution). The 
spatial extent of all locations where the contribution of the airport emissions to the NO2 concentrations exceeds 
3% of the GAW (0.6 µg/m³) is shown in red. The black circle indicates an area with a 7 km radius centered at the 
northeastern edge of runway 07L/25R (black dot). Source: MER 

 
Estimating the research parameters for studying the impact of ultrafine particles (UFP) is challenging, 
as no limit values exist. However, in a domain with a radius of 5 km centered around the northeastern 
edge of the 07L/25R runway, annual mean particle numbers due to aircraft fall below 2  7,000 
particles/cm³ and in a domain with a radius of 7 km, annual mean particle numbers fall below 5,000 
particles/cm³. As for standard air pollutants, while the pollution plume is predominantly directed 
towards Kampenhout (northeast of the airport), it is relatively spatially isotropic. A spatial division of 
the study domain could thus be based on the distance to the airport. One should however also 
consider the number of inhabitants in all contours, especially if uncommon health effects are 
considered. For instance, if only locations with particle numbers above 10,000 particles/cm³ are 
considered, there are only 20,000 inhabitants, which might be too limited to obtain statistically 
significant results when investigating exposure–health outcome associations. 
 

 

2 The WHO considers particle number levels above 10,000 particles/cm³ as high (based on 24-hour mean 

concentrations). Urban background levels measured in Borgerhout ranged between 8,000 and 10,000 

particles/cm³ from 2015 to 2020 but rose to over 11,000 particles/cm³ in 2022 for reasons that remain unknown 

(see https://www.vmm.be/lucht/fijn-stof/concentratie-ultrafijn-stof). There are no long-term UFP 

measurements at rural sites in Flanders, making it impossible to estimate rural background values.  
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Figure 3: Research domain analysis for UFP. The maps show the UFP concentrations related to the emissions of 
the airport in (part / cm3). The black circle indicates an area with a 7 km radius centered at the northeastern edge 
of runway 07L/25R (black dot), the red circle an area with a 5 km radius. Source: MER.  

 

2.2.1.2 Spatial stratification  

In the context of health research around airports, focusing on spatial stratification (particularly in 

relation to SES) is important to understand how exposure to airport-related stressors might impact 

different communities. Lower-income communities are often situated closer to runways and flight 

paths due to factors like zoning regulations and land affordability. By analyzing spatial patterns of SES 

and airport operations, researchers can identify areas with the highest concentrations of airport-

related stressors. This allows them to target these communities for health studies and track potential 

health disparities. Within high-exposure zones, residents’ vulnerability can vary. Spatial stratification 

helps to identify social factors that might influence health outcomes. For instance, lower-income 

residents might have less access to quality housing with poor air filtration, potentially leading to 

increased UFP inhalation.  

Spatial stratification can be applied in airport health research by: 

- Geographical analysis: Maps of airport operations (e.g., runways, flight paths) can be overlayed with 

SES data (e.g., Belgian index of multiple deprivation or individual SES indicators such as income levels 

and housing density) to identify areas with potential for disproportionate exposure.  

- Community selection: Participants can be recruited from specific neighbourhoods with varying SES 

and proximity to the airport to understand how these factors interact with UFP and noise exposure.  

- Exposure assessment: Spatial data can be used alongside exposure data to create a more accurate 

picture of exposure variations across different communities.  
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By incorporating spatial stratification, researchers can gain a more complete understanding of (i) how 

airport operations impact health outcomes across different socioeconomic groups and (ii) whether 

low-income communities experience a greater burden of illness due to combined effects of UFP, noise 

and social determinants of health. This knowledge can be used to ensure environmental justice and 

protect the health of all residents living near airports, regardless of their socioeconomic background.  

2.2.2 Availability of health data 
When collecting new health data (i.e., primary data), spatial delineation based on environmental 
stressors is sufficient. However, when using secondary data, the availability of health data, both the 
spatial extent of the research perimeter and the spatial scale of the data are crucial. The spatial 
extent (i.e., the size of the domain) should be linked to the statistical significance required. Enough 
people should live in the research domain to obtain statistical significance. For example, if an endpoint 
with only a few cases per 10,000 inhabitants is being investigated, a population much larger than 
10,000 inhabitants is required. Moreover, if non-exhaustive health datasets are being used, the health 
dataset should include a large enough sample in that region (e.g., for Intego). 
 
Moreover, the spatial scale of the data should match the spatial scale of the stressors. For instance, 
statistical sectors may not always be appropriate, especially for noise exposure, as they might include 
locations with both high and low exposure due to anisotropic maps. Ideally, data should be based on 
exact locations (patients' address level) to ensure accuracy and relevance to avoid exposure 
misclassification. 

2.3 Surveillance based on secondary data  

2.3.1 Relevance of surveillance  
To monitor trends in health threats around Brussels Airport, registry-based health data could be used 

as a basis for an ecological study. This information gathered through population health surveillance, 

reveals critical trends in health effects and the associated disease burden. With this evidence, 

policymakers can (i) target interventions by identifying the most at-risk groups and tailor solutions to 

their specific needs, (ii) set priorities and allocate resources effectively based on the most pressing 

health issues and (iii) track progress by monitoring the effectiveness of public health policies over 

time. 

2.3.1.1 Secondary data sources for health surveillance  

The data sources are routinely collected health, disease and mortality data with high spatial coverage. 

The basis for the selection of the health endpoints is reported from literature in relation to noise and 

UFP (see above Table 1). Additionally, the health data should be available at the finest aggregated 

level possible, preferably at the statistical sector level or smaller. Based on the inventory made in 

WP3, a selection of data sources and health endpoints is presented in Table 2. The mortality registry, 

Belgian cancer registry, database of the Intermutualistic Agency (IMA), hospital discharge data and 

perinatal registry are exhaustive registers, covering the (semi-)total population in Flanders (and 

Brussels). Also, these data are accessible for research and have routine procedures to get access to 

the (aggregated) data. Currently, the use of the Intego database for these purposes has some 

constraints. Since it is a sentinel database, it does not cover the entire population; it only includes 

patients from a network of voluntary general practitioner (GP) practices. Therefore, the 

exhaustiveness is regionally heterogeneous. At the moment, the coverage in the communities around 

the airport is low to moderate. However, the Intego researchers have experience with hotspot 

analyses (e.g., in the per- and polyfluoroalkyl substances (PFAS) region around 3M), and are able to 
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recruit extra GP’s in a region of interest and hence increase the coverage in this area in the future 

database. Therefore, Intego is a potentially interesting data source for the future on condition that 

the Intego management decides to augment the coverage rate in the region around the national 

airport. From a scientific perspective, this would be a great added value since Intego has the potential 

to deliver data for clinical endpoints (e.g., blood pressure) or diseases that are not well covered in 

other databases (e.g., obesity).  

Table 2: List of data sources and possible endpoints for an ecological study around Brussels Airport 

Data source Health endpoint* Indicator 

Mortality Registry 

All-cause mortality Standardized mortality ratio 

Cause-specific mortality, e.g., cancer 

mortality, cardiovascular mortality, stroke 

mortality  

Standardized mortality ratio 

Belgian Cancer Registry 
Total cancer incidence Standardized incidence ratio 

Specific cancer incidence, e.g., breast cancer Standardized incidence ratio 

IMA/Farmanet 

Hypertension  Frequency use of hypertensive medication 

Sleep disturbance  Frequency use of sleep medication  

Depression Frequency use of anti-depressants  

Asthma Asthma prevalence 

Hospital discharge data  

Total cardiovascular disease, stroke  Standardized morbidity ratio 

Asthma Standardized morbidity ratio 

Diabetes Standardized morbidity ratio 

Perinatal registry Low birth weight, preterm birth  Standardized incidence ratio 

Intego  
Blood pressure Average values 

Hypertension, diabetes, obesity,  Incidence 

* Selected health endpoints based on evidence from research around other airports (see WP 1)   

2.3.1.2 Methods for surveillance based on secondary data 

In addition to health data, it is also important to inventorize demographic data (i.e., age and gender 

distribution) and the socio-economic profile (i.e., education, income, nationality, origin, etc.) to 

describe the population characteristics per geographical area (e.g., statistical sector). These data can 

be obtained via Statbel or at the platform of Provincie in Cijfers 

(https://provincies.incijfers.be/databank). To classify statistical sectors by social deprivation level, the 

Belgian index of multiple deprivation can be readily applied (https://bimd.sciensano.be). Knowledge 

on socio-demographic population characteristics is important for a correct interpretation of the health 

data. Depending on the statistical methods that are used, these variables might be introduced in the 

statistical analysis as correction factors. Other important confounders such as smoking, body mass 

index, alcohol intake, physical activity or genetic factors (familial history) would ideally also be 

included in the model, preferably at an individual level. Apart from the Intego database (with personal 

information available in the medical records), none of the selected databases will contain these data. 

This is one of the reasons why it is advisable to invest in an expansion of Intego with recruitment of 

new GPs in the airport area. Using individual data (cfr. Intego) offers the opportunity to go beyond an 

ecological study. 
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Individual data pairing  

Individual data, obtained from databases like Intego, provides a granular view of health outcomes but 

is more complex to obtain and analyze then aggregated data. The achievable sample size varies 

depending on the database and inclusion criteria. The sample size may be smaller than aggregated 

data, but the level of detail allows for a deeper understanding of individual health in relation to 

environmental stressors. 

Clustering for targeted analysis  

Clustering techniques can identify areas with similar exposure levels to pollutants like noise or UFP. 

This geographical analysis approach, often used in ecological studies, groups individuals or locations 

based on exposure, enabling targeted assessment of health outcomes within these clusters. However, 

it is crucial to evaluate the level of heterogeneity within each statistical sector. If there is significant 

variation in exposure levels within statistical sectors before using them as clustering units. Exposure 

assessment with aggregated data typically relies on population-weighted estimates, considering 

residential addresses of individuals and excluding non-residential establishments. 

Analyzing health impacts 

Standardized ratios 

In order to follow up on the impact of environmental burden around the airport, calculating 

Standardized Incidence Ratios (SIRs) or Standardized Morbidity/Mortality Ratios (SMRs) at one point 

in time (i.e. cross-sectional study) for specific geographical areas will allow comparing the health 

impact of the environmental burden (mainly noise and UFP) in a population residing in proximity to 

the airport (i.e., exposed group in impact zone) to a reference population (i.e., the remainder of the 

population or a control group in rest of Flanders/Brussels). Here, it needs to be considered that the 

control population is similar to the exposed population in all characteristics other than the proximity 

to Brussels Airport, in particular with respect to SES, which is a strong confounder of health (see 

above).  

Time trends 

Additionally, by repeating the analysis over time, longitudinal data will allow to follow up possible 

impact of deterioration/reduction of the environmental burden and evaluate economic trends and/or 

policy measures that influence the local situation around the airport. The follow-up of timelines for 

health registries should be tailored to the specific health endpoints being examined and the frequency 

of changes in airport operations. For health effects with shorter lag times between exposure and 

effect and higher prevalence/incidence, (bi-)annual follow-ups may be sufficient. For rare effects with 

longer lag times, data may require pooling over several years to achieve adequate statistical power.  

Geographical gradients 

An additional type of geographical analysis involves analyzing SIRs/SMRs values within the impact zone 

using a geographical gradient to assess how health outcomes change as distance from the airport 

increases. The ideal way to define these zones varies between pollutants. For UFP, concentric circles 

or ellipses work well (e.g., 1 km, 3 km or 5 km) as UFP spreads outwards with a downwind bulge 

towards the northeast due to prevailing winds. Conversely, noise patterns are less uniform hence 

zones might be defined using specific geographical areas like groups of statistical sectors. Moreover, 

the zone definition will also depend on the availability of the health data in the registries (i.e., the 

smallest available geographical level) and the incidence/prevalence of the health endpoint. Therefore, 

power analyses should be performed prior to the actual analysis to select the relevant health 

outcomes. In this context, it is also important to define the relevant time window. For example, for 
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cancer endpoints which have a long lag time, historical data on environmental factors, is crucial and 

5- or 10-year periods are very commonly used. Lag times can vary depending on the specific health 

effect and the environmental stressor involved. Not all health effects have long lag times. Some 

respiratory problems, for instance, asthma exacerbation, might manifest more quickly after exposure 

to air pollution (e.g., PM2.5, ozone).   

Health data analysis and considerations  

Exposure-response functions 

Health data from registries can be used to construct ERFs by grouping areas with similar environmental 

burdens and calculating disease risk per exposure quintile. Again, an important issue is the problem 

of confounding; socio-demographic data can be used to adjust for the population characteristics at 

the aggregated level.  

Advanced modelling 

Additional approaches to explore include more complex models for disease mapping, e.g., Bayesian 

hierarchical models. Here, register-based health data are used to search for clusters or patterns of 

disease. In a second step, environmental data (e.g., noise and/or UFP) can be introduced into the 

model to test whether the environmental burden can explain the disease patterns, thus confirming 

the existence of an association.  

Data availability 

The availability of historical datasets on environmental data (mainly modelling) is crucial when 

studying health outcomes with long lag times (e.g., cancer) or short lag times (e.g., asthma 

exacerbation). In both cases, it’s important to match environmental data with health data from the 

same period. While recent environmental data is readily available, historical data availability varies 

(partially for 2015 and 2018; complete for 2019 and 2022 for UFP). Historical noise maps are readily 

available for a longer period than UFP data, but calculations for historical years might need 

recalculation to ensure consistency with current methods due to changes in models and threshold 

values. 

Burden of disease monitoring 

Based on available health data, the disease burden of airport-related stressors might be quantified 

and monitored on a regular basis. As such, it will become possible to continuously (re)assess priorities, 

and to assess the impact of policy measures in a comparable and consistent way. 

2.3.2 Strengths of surveillance based on secondary data  
The use of routinely collected data (i.e., secondary data) from health registries is a cost-effective 

approach for epidemiological studies, requiring minimal effort and cost for data collection. By 

combining health data with demographic and environmental data, researchers can gain a 

comprehensive understanding of the health impacts and disease burden associated with living near 

Brussels Airport. Standardized health databases, such as the mortality register, perinatal register or 

cancer register, offer high-quality and quasi-exhaustive data that adhere to international standards. 

The high quality and consistency of these data allow for repeated analyses over time, enabling the 

monitoring of  time trends and the evaluation of policy actions or interventions on health outcomes 

and disease burden. 
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2.3.3 Limitations of surveillance based on secondary data  
Secondary health data are considered to be sensitive personal data, and their reuse and are subject 

to stringent privacy regulations. In Belgium, requesting approval for reuse of health data can be 

cumbersome, leading researchers to sometimes use aggregated secondary health data, which are less 

prone to privacy concerns. However, this approach introduces the potential for ecological fallacy, 

where conclusions about individuals are drawn based solely on associations observed at the 

population level. Ecological study designs, which rely on aggregated data, can only identify 

associations between environmental factors and health outcomes in a population. They cannot 

establish causal relationships at the individual level or estimate ERFs.  

Secondly, existing health registries might not cover the full spectrum of health concerns relevant to 

Brussels Airport or ensure enough spatial coverage in the region. For instance, data on sleep 

disturbance and annoyance, well-established consequences of aircraft noise exposure, are largely 

absent in the region around the airport.  

Lastly, existing registries predominantly capture diagnosed health conditions, potentially 

underestimating the true public health burden. Individuals may experience health effects from noise 

or UFP exposure without seeking medical attention, leading to an underestimation of the issue’s 

severity.  

2.4 Surveillance based on primary individual data 
While existing databases offer a readily available source of secondary data for health surveillance 

around Brussels Airport, their inherent limitations necessitate the collection of primary data for robust 

and actionable insights. Collecting paired primary data (on exposure and effect) offers a more 

comprehensive approach to health surveillance around Brussels Airport. This data would encompass 

(i) individual-level exposure data collected via precise measurements or modelling of airport-related 

stressors such as noise and UFP, (ii) granular health data on aspects such as sleep quality, annoyance 

levels and both diagnosed and self-reported other relevant health conditions and (iii) data on possible 

exposure or effect modifiers such as socioeconomic status (SES), demographics, lifestyle factors (e.g., 

smoking, physical activity, etc.) and living conditions (e.g., housing quality, access to green space, etc.). 

Ideally, the same information is also available for a control group not exposed to airport noise. 

By employing detailed individual data collection, researchers can move beyond mere associations 

and provide valuable insights into cause-and-effect relationships between exposure to airport-

related stressors and specific health outcomes. This approach facilitates the calculation of accurate 

health burdens and the development of targeted interventions to safeguard the health of 

communities surrounding Brussels Airport.  

When conducting a large-scale surveillance or in-depth monitoring study, one should take advantage 

of using primary data to connect exposure to environmental factors with the resulting health 

outcomes. Accordingly, it is crucial to gather paired data on exposure and health outcomes to link 

specific exposures with specific health effects in the same individual. By prioritizing exposure-outcome 

pairs with a strong evidence base in existing research (also see Section 1.2 Prioritizing research efforts), 

large-scale surveillance studies can efficiently utilize resources, maximize statistical power and 

generate valuable information to guide further research and potentially inform public health 

interventions aimed at improving the well-being of communities. In this regard, long-term exposure 

to aircraft noise is acknowledged as a growing public health concern and the evidence linking it to 

several non-auditory health outcomes such as cardiovascular diseases, cognitive dysfunction and 
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sleep disorders (see report WP1), is strong. These adverse effects may arise from the body’s 

unconscious response to noise, a reaction captured by the concept of noise annoyance. Noise 

annoyance serves as an early warning signal for health risks, playing a key role in setting noise 

exposure limits and creating action plans for noise exposure mitigation. However, only one-third of 

the variance of noise annoyance is explained by physical noise exposure, the majority is attributable 

to other, often non-acoustical, aspects such as expectations regarding aircraft noise, noise sensitivity, 

age and living conditions (Guski et al., 2017). As highlighted in WP3, there are currently no registries 

available that include this type of data.  

Given the robust evidence base linking chronic aircraft noise exposure to sleep disruption and its 

cascading negative health effects (elaborated on in WP1), this WP mainly delves deeper into this 

association. However, we acknowledge the importance of considering other potential stressors (e.g., 

UFP, HAPs) and health outcomes (e.g., cognition, well-being, cardiovascular effects, etc.). The 

framework established here could be adapted to explore these additional research areas as well. 

As visualized in Figure 4 and discussed below, different approaches could be proposed to collect 

individual paired data for surveillance purposes ranging from large-scale surveillance to in-depth 

monitoring studies using a combination of self-reported data and standardized measurements to gain 

a holistic understanding of the issue. 

Figure 4: Paired data collection methods for health surveillance. Various methods can be used to collect 

paired data on both health outcomes and environmental exposures for surveillance purposes. These 

methods differ in complexity and achievable study sample sizes also depending on resources and 

feasibility.  

When setting up studies collecting primary health data and surveys, one should follow all required 

procedures regarding collecting, storing, sharing and treatment of individual personal data 

(compliance to the General Data Protection Regulation (GDPR), informed consent, study approval by 

the ethical commission, etc.).  

2.4.1 Large-scale primary data surveillance  
As discussed above, assessing the health consequences of airport operations on nearby communities 

can be done by the collection of paired data on health and exposure in individual residents.  

2.4.1.1 Self-reported measures via questionnaires  

To assess the impact of noise on sleep disturbance and annoyance around the national airport (i.e., to 

get better estimates than the theoretically calculated impact), validated questionnaires (online, 
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postal or interviewer-led) (also see Section 2.4.2.1 Intensive data collection by interviewer/field 

worker) can be used for large-scale data collection, potentially in a longitudinal design. These 

questionnaires could collect data on (i) noise annoyance from various sources (incl. aircraft noise), (ii) 

aspects of quality of life and health (such as those related to sleep and stress) and (iii) background 

information such as sociodemographic data, effect modifiers (e.g., noise sensitivity) and exposure 

modifiers (e.g., sound insulation). An example of such an extensive survey is the “Large Sound Survey” 

(Grote Geluidsbevraging) in the Flemish citizen science project “De Oorzaak” (Universiteit Antwerpen, 

2024). It is based on established questionnaires like the ‘Schriftelijk Leefomgevingsonderzoek’ (SLO) 

to assess general quality of life (Department Omgeving, n.d.), the Epworth Sleepiness Scale for 

daytime sleepiness (Johns, 1991), the Fatigue Assessment Scale for tiredness (Michielsen et al., 2003), 

the Perceived Stress Scale to capture stress levels (Cohen et al., 1983) and the Weinstein Noise 

Sensitivity Scale for individual noise tolerance (Weinstein, 1978). Additionally, from other 

international airport-related studies, well-established questionnaires are available (for example, see 

(Dekoninck et al., 2023; Rocha et al., 2019) and WP1). Ideally, the general elements of the survey are 

aligned with the questions of the Belgian health interview survey, so that study-specific results can 

easily be compared with the readily available population norms.  

A cross-sectional large-scale population survey using these questionnaires can provide valuable 

insights into:  

- The prevalence and severity of annoyance, sleep disturbance and/or stress: the survey 

would estimate the number of residents experiencing noise annoyance and sleep disturbance 

within the airport community. Additionally, it can assess the severity of these issues through 

appropriate questions in the survey instrument. Ideally, a control group is also surveyed to 

allow meaningful interpretations. 

- Noise exposure and reported outcomes: by correlating reported noise levels (using various 

noise metrics) with annoyance and sleep disturbance (i.e., establish exposure-response 

functions), and controlling for relevant confounders, the survey could identify which noise 

metrics are most strongly associated with these health outcomes. This information is crucial 

for policymakers to develop targeted interventions.  

To gain a more comprehensive understanding, longitudinal or repeated cross-sectional studies can be 

employed. A longitudinal design entails following the same cohort of residents near Brussels Airport 

over an extended period (typically several years). An alternative approach to capture changes over 

time is a repeated cross-sectional design which involves administering the same survey to a different 

(yet comparable) group of individuals. While it does not track the same individuals, it allows to 

compare different cohorts and identify population-level shifts in a generally less time-consuming and 

resource-intensive manner compared to a longitudinal study. The choice between following up on the 

same group of individuals in time or repeating the same study in a different cohort depends on the 

specific research question and available resources. If the primary focus is on understanding individual 

changes and long-term health effects, a longitudinal design is ideal. However, if the goal is to identify 

trends across a broader group of individuals or conduct more frequent assessments, a repeated cross-

sectional design might be more suitable.  
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2.4.1.2 Non-invasive objective measures with participant involvement  

In addition to self-reported data, a large-scale surveillance approach could incorporate non-invasive 

self-sampling or data collection. Clear and detailed instructions are paramount to ensure consistent 

and reliable sample or data collection by participants at home.  

As an example, participants could collect non-invasive samples such as saliva, urine or hair at home 

following clear instructions for sampling, storing and shipment provided by the research team. After 

collection, these samples could be analyzed for biomarkers of effect (e.g., cortisol levels for chronic 

stress, club cell secretory protein-16 (CC16) levels for airway inflammation, epigenetic markers on 

methylation, etc.) or exposure (e.g., urinary trans,trans-muconic acid (tt-MA) levels for benzene 

exposure). Important to note, currently, the specific contribution of airport operations to benzene 

(and HAPs in general) in communities surrounding Brussels Airport is unknown. Accordingly, before 

implementing tt-MA as a biomarker of benzene exposure in a large-scale surveillance study, 

conducting a pilot study within a high-exposure group around Brussels Airport and comparing it to a 

national reference group (Flemish Environment and Health Studies, FLEHS (Schoeters et al., 2017, 

2022)) is paramount. Such a pilot study would assess the feasibility and effectiveness of using urinary 

tt-MA as a biomarker of benzene exposure around the airport and possibly warrant large-scale 

surveillance. While exposure to benzene arises as primary volatile organic compound (VOC) of concern 

due to aircraft emissions, additional exposure markers for kerosine-related VOCs could be worth to 

investigate as well in a pilot study.  

There is also a possibility to distribute validated blood pressure devices or wearables (e.g., 

smartwatches or activity trackers) among participants to monitor self-assessed blood pressure 

readings or sleep patterns and heart rate variability, respectively. Participants could be guided to take 

self-assessed blood pressure readings at home using validated devices. These readings, along with 

self-reported stress levels could offer additional insights into potential stress responses associated 

with aircraft noise exposure. Here, one may explore the possibility of participants taking assisted self-

assessed blood pressure readings at a central reference point, such as a nearby pharmacy, which could 

address concerns about user technique at home. The potential of wearables in citizen science projects 

also holds in this context of surveillance and is discussed below (see Section 2.5 Citizen science 

projects). Training and clear instructions should be provided to ensure accurate data collection for 

both self-assessed blood pressure and wearables. The final study design should also consider the 

potential burden on participants and strive for a balance between data quality and participant 

feasibility. Also, considering the complexity and the supplementary costs for sampling and 

measurements, it may be more realistic to perform this sampling in a subgroup of the survey 

population. This might be a randomized sample (selected at random) or a stratified sample (e.g., based 

on the geographical distribution or on the outcome of the questionnaire data).  

2.4.1.3 Exposure data  

In a next step, the above health data could be paired with the participant’s noise exposure. The setup 
of a smart sound sensor network to conduct standardized acoustical measurements at the 
participant’s home location is quite complicated and resource-intensive and hereby limits the 
achievable sample size. Therefore, it would be more practical to combine the extensive survey data 
with modelled residential noise exposure data as it allows analysis of a larger sample size compared 
to individual sensor deployment. While not a direct measurement, modelled data provide a valuable 
tool to assess noise exposure (e.g., at the home address of participants) and this avoids the complexity 
and resource limitations of deploying a large-scale smart sensor network. To gain a deeper 
understanding of the impact of noise on sleep, one can delve into the specific characteristics of noise 
exposure. As highlighted above (see Section 2.2 Spatial delineation of study area), it might be useful 
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to extend the classical noise metrics (Lden and Lnight) with frequency contours for nighttime noise as this 
approach better represents high peaks of noise. Additionally, the current definition of nighttime 
(23:00 – 07:00) might be worth revising. Sleep patterns vary, and some individuals might be more 
sensitive to noise during early evening or late morning. Exploring noise metrics for these refined 
periods could provide valuable insights (such maps can be readily generated). Traditional metrics 
provide average noise levels, but what about sudden loud events interrupting an otherwise quiet 
night? The intermittency ratio (IR) quantifies the “eventfulness” of noise by measuring how much a 
loud event stands out from the background noise. A high IR indicates loud events interrupting an 
otherwise quiet background, while a low IR suggests higher background noise levels. This metric 
provides a more nuanced understanding of how disruptive individual flights might be, even if they do 
not reach a specific threshold. In addition, models could be employed to estimate relevant co-
exposure to other stressors such as road or railway traffic noise or classic air pollutants (e.g., NO2, 
PM2.5) for aircraft noise and UFP, respectively.  
 
An alternative, straightforward and cost-effective method to collect noise exposure data might be 
the use of smartphone microphones which are pre-installed on most participants’ devices (also see 
Section 2.5 Citizen science projects). Collection of noise data via personal devices (e.g., smartphone) 
overcomes the problem that modelled noise levels reflect outdoor noise levels, while acoustic 
isolation/opening of windows and orientation of rooms can have an impact on the personal noise 
exposure level. Participants can be instructed to download a dedicated noise monitoring app such as 
the De Oorzaak application developed in collaboration with Sorama3  or the AnimApp developed 
within the ANIMA project (Aviation Noise Impact Management through novel Approaches)4. The 
accuracy of the measurements, the conditions for the use of such apps and data flow of generated 
data to the researcher team should be investigated.  

2.4.1.4 Study population 

For large-scale primary data surveillance, ensuring representativeness and validity involves several key 

strategies. The study population should ideally be limited to adults living in communities near Brussels 

Airport to maximize the relevance of the findings (see Section 2.1 for the selection of the research 

domain). However, careful consideration of sampling strategies is required to ensure a representative 

and unbiased sample of the target population.  

While convenience sampling, which involves recruiting participants who are easily accessible, may 

seem appealing due to its ease and low cost, it is prone to potential bias due to self-selection. 

Individuals who volunteer to participate may have stronger opinions or experiences related to airport 

operations, leading to a possible overrepresentation of certain viewpoints. To mitigate this and ensure 

a more representative sample, random sampling is recommended. Simple random sampling involves 

randomly selecting participants from the entire population, while stratified random sampling divides 

the population into subgroups (i.e., strata) based on relevant factors (e.g., distance from the airport, 

age, gender, SES, etc.). Participants are then randomly selected from each stratum in proportion to 

their representation in the overall population. This approach ensures that the sample reflects the 

diversity of the communities and exposure levels around the airport. An important aspect of sampling 

is the collection of sufficient data across various exposure levels. By intentionally recruiting more 

participants from under-represented exposure groups (high or low), researchers can achieve 

statistically relevant results faster. This can be done through stratified sampling, where a minimum 

 

3 De Oorzaak | De Oorzaak | Universiteit Antwerpen (uantwerpen.be) 

4 AnimApp (anima-project.eu) 

https://www.uantwerpen.be/nl/projecten/de-oorzaak/
https://anima-project.eu/noise-platform/animapp
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number of participants are strategically selected from each stressor exposure category. Challenges in 

random sampling include participant recruitment and non-response bias, which occurs when 

individuals who do not participate in the study differ systematically from those who do. Strategies 

such as offering incentives, follow-up calls and partnering with community organizations can improve 

participation rates.   

A sample size in the thousands is often ideal for large-scale population survey studies. A one-time 

cross-sectional survey offers a snapshot of the participant’s health at a specific point in time and has 

a lower participant burden compared to a longitudinal study with repeated surveys at multiple time 

points in time (e.g., every 1 or 2 years). However, longitudinal studies are better able to capture 

changes over time in noise exposure and effects, but they increase participant burden and can suffer 

from higher dropout rates.  

By conducting a large-scale population survey, either cross-sectional or longitudinal, one can gain 

valuable insights into the impact of noise exposure on the airport community. A multifaceted 

approach can encompass (i) self-reported measures of noise annoyance, sleep disturbance and stress 

levels and (ii) large-scale objective measurements (e.g., blood pressure readings or cortisol levels) that 

supplement the self-reported data. The obtained results should be communicated to the community 

and relevant stakeholders to raise awareness and used to inform policy and action plans to improve 

public health and quality of life for residents. 

2.4.2 In-depth monitoring  
Assessment of the health consequences of airport operations on surrounding communities hinges on 

robust data collection strategies. While large-scale surveillance studies (as described in Section 2.4.1 

Large-scale primary data surveillance) even when complemented with self-collected biological 

measurements, may lack the granularity required to provide insight into cause-and-effect 

relationships and underlying mechanisms, in-depth monitoring studies, while providing detailed 

biological insights, are often limited in scope.  

Certain biological measurements, such as self-assessed blood pressure readings or cortisol levels in 

self-sampled hair or saliva samples, offer distinct advantages for large-scale studies due to their 

convenience and moderate time commitment, facilitating the inclusion of a larger participant pool 

and possible integration into a survey. However, while valuable for assessing population-level health 

concerns, they offer limited insights into the specific mechanisms by which airport-related stressors 

influence health. In-depth monitoring studies could offer a deeper dive into the biological processes 

at play. Below we list research approaches to explore how aircraft noise or UFP exposure might be 

linked to specific health outcomes.  

2.4.2.1 Intensive data collection by interviewer/field worker 

Large-scale surveillance studies often rely on self-administered questionnaires and self-

sampling/assessment methods due to their cost-effectiveness and ability to reach a broad participant 

pool. However, these approaches have limitations when it comes to in-depth exploration of specific 

topics and ensuring robust data quality. The inclusion of trained interviewers or field workers would 

allow to (i) asking follow-up questions for clarification and elaboration, (ii) facilitating informed 

consent procedures and answering participant questions, (iii) collecting the above samples or 

measurements using strict protocols to ensure sample integrity or measurement accuracy and (iv) 

collecting invasive biological samples (e.g., blood) or performing specific clinical measurements (e.g., 

fractional exhaled nitric oxide measurements, FeNO).  
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2.4.2.2 Dedicated in-depth studies for mechanistic insights 

An in-depth monitoring study allows for leveraging high-precision technologies in a smaller 

participant group to explore specific health outcomes and gain mechanistic insights. Building upon the 

established link between chronic aircraft noise exposure and sleep disruption (as discussed in WP1), 

this dedicated in-depth monitoring study proposal aims to delve deeper and explore the underlying 

mechanisms by which noise disrupts sleep. 

2.4.2.2.1 In-depth sleep study 

Polysomnography in a sleep lab setting (i.e., laboratory polysomnography) or at the participant’s home 

(i.e., ambulatory polysomnography) is considered the most accurate methodology for obtaining 

standardized physiological data that can identify changes in sleep stages and awakenings. This sleep 

monitoring technique records brain waves, the oxygen level in blood, heart rate, breathing and eye 

and leg movements during sleep. However, it is expensive and time-consuming, and it is an invasive 

method that requires the attachment of multiple sensors which might be considered uncomfortable 

and potentially influence sleep patterns hence the observation. Accordingly, this technique is not ideal 

for a surveillance study.  

Alternatively, the use of actimetry has been used as a proxy for sleep-wake activity. Within the 

‘Programma Innovatieve Overheidsopdrachten (PIO)’ of the Flemish Government, a validated protocol 

using actimetry and heart rate monitoring (Bittium Faros) has been developed, offering a user-friendly 

and non-invasive method to assess sleep quality and arousal (Dekoninck et al., 2023). This validated 

method was shown to be sensitive enough to detect biological responses in young and healthy 

subjects exposed to rather low noise levels. Accordingly, in studies with a higher noise burden (i.e., 

impact zone of Brussels Airport) it is expected that the technical setup, proposed post-processing and 

analysis will enable advanced detection of biological responses to aircraft noise with high accuracy. 

The sleep- and/or stress-related health data could be coupled with nighttime noise exposure data 

collected for each participant using advanced sound sensors placed inside and outside the 

participant’s bedroom. This simultaneous in- and outdoor noise monitoring allows for relating and 

isolating outdoor noise events to indoor disturbances and evaluating noise source type.  

2.4.2.2.2 Other exposure-outcome pairs to consider for in-depth studies around Brussels Airport 

Aircraft noise – cognition in children 

Another critical outcome to consider related to chronic aircraft noise exposure could be potential 

cognitive effects in children residing near Brussels Airport. Children are particularly vulnerable to the 

negative effects of chronic noise exposure due to their developing brains and nervous systems. 

Cognitive impairment, including difficulties with memory, attention and learning has been associated 

with noise exposure in children (Clark & Paunovic, 2018) .  

A possible study approach could leverage the school environment as a central location for data 

collection on both noise exposure and cognitive function in children. Here, collaboration with school 

administrators and teachers would be crucial to ensure ethical considerations and smooth 

implementation. Researchers could administer standardized, age-appropriate neuropsychological 

tests administered in a controlled environment to assess various cognitive domains, such as memory 

(e.g., digit span test), attention (e.g., continuous performance test, d2 test of sustained attention) and 

processing speed (e.g., symbol coding). Additional health data on self-reported sleep quality 

(questionnaires completed by parents) and socioeconomic factors could provide valuable additional 

information. Similar to the aircraft noise monitoring in the above sleep study, strategically placed 
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sensors within the school environment could be employed to capture detailed noise data throughout 

the school day. 

By focusing on cognitive function within the school environment, the study can provide valuable 

insights to inform interventions aimed at protecting children’s health and learning abilities. 

UFP – inflammatory responses 

Regarding the ability of UFPs to penetrate deep into the lungs and their link to various health concerns 

(e.g., respiratory issues and inflammation), another possibility would be to delve deeper into the 

relationship between exposure to UFP and inflammatory markers or lung function measurements in 

residents living near Brussels Airport. 

A possible study approach could include the collection of blood samples from participants at 

designated intervals. These samples could be analysed for various inflammatory markers, such as C-

reactive protein (CRP) and interleukin-6 (IL-6), which can indicate the body’s response to potential 

inflammation caused by UFP exposure. In addition, spirometry, a standardized lung function test, 

could be performed to assess lung capacity (i.e., forced vital capacity) and airflow limitations (i.e., 

forced expiratory volume in one second) and provide insights into potential UFP-related respiratory 

impairments. Measuring FeNO can be used to monitor inflammatory changes in the airway.  

Modelling approaches discussed in WP2 could be employed to estimate UFP concentrations across 

the study area. In general, these models consider various factors influencing UFP distribution, such as 

airport operations (flight patterns, take-off and landing activities), local meteorological conditions 

(wind speed, direction, temperature) and geographical features (topography, buildings). However, 

these model chains still come with a large uncertainty (much greater than for standard air pollutants). 

Therefore, data assimilation with measurements might be used to reduce the uncertainties in the 

absolute concentrations. Participants could wear portable UFP monitors throughout the day to assess 

individual UFP exposure. Yet the accuracy of these devices is currently rather limited, and the cost is 

very high (around EUR 10 000 for one device). Overall, by combining UFP dispersion modelling with 

personal UFP monitoring, this study design could offer a robust and multifaceted approach to assess 

UFP exposure for participants. This comprehensive strategy strengthens the investigation into 

potential health effects associated with chronic UFP exposure near Brussels Airport (e.g., 

inflammatory responses and lung function). 

2.4.2.3 Study population 

In-depth monitoring studies, which typically involve smaller, targeted groups of participants, also 

require careful consideration of representativeness and validity. Partnering with local healthcare 

providers or community organizations can help identify and recruit eligible participants who meet the 

study's specific criteria. Additionally, offering compensation for participation and minimizing the 

burden on participants, such as by providing transportation or scheduling flexibility, can improve 

recruitment and retention rates. 

A pilot study with around 20 participants within the impact zone of Brussels Airport could validate the 

sleep study protocol and identify potential challenges without extensive resource investment. The 

effect sizes observed in the pilot study could inform the sample size for the main study, which should 

aim for a larger sample size (hundreds to potentially thousands dependent on measurements) to 

achieve generalizable results and represent the diversity of the target population. A longitudinal 

design with repeated measurements is recommended. As discussed above, various recruitment 

methods, including online platforms, flyers and posters, collaborations with local authorities and 
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community organizations or media outreach, can be used to ensure a diverse and representative 

sample.  

2.5 Citizen science projects  
Citizen science projects offer a valuable approach to engaging the public in scientific research, 

particularly in areas where large-scale data collection is needed. In the context of aircraft noise 

exposure and its impact on aspects of health (e.g., sleep quality, annoyance), citizen science can play 

a valuable role in gathering comprehensive data and generating insights.  

For the surveillance of primary data on sleep parameters (discussed above in Section 2.4 Surveillance 

based on primary individual data), actimetry, often integrated into smartwatches, fitness trackers and 

dedicated actigraphs, can be used as a low-cost alternative to measure human rest-activity cycles. 

While not as accurate as the approaches above, this method allows for larger sample sizes data 

collection.  

As visualized in Figure 5, a combination of straightforward data collection tools could be used, such 

as (i) wearable devices (e.g., smartphones, smartwatches) to collect data on heart rate, sleep patterns 

and physical activity (see e.g., (Buekers et al., 2023) for a comparable combination of wearables), (ii) 

noise monitoring apps to record indoor and outdoor noise levels, allowing participants to self-report 

noise annoyance and (iii) questionnaires to gather detailed information on sleep quality, stress levels, 

lifestyle factors and demographics.  

It is important to use a single type of device (e.g., Apple Watch or Fitbit) for maintaining consistency 

in data collection. While using a single device type is important in terms of standardization, 

comparability and data integrity, diversity in the study population is equally critical. A diverse 

participant pool ensures that study findings apply to a broader population. If the study only includes 

a specific demographic (e.g., young adults, wealthy people), the results may not generalize well. 

Moreover, excluding certain groups (e.g., older adults, lower incomes) can perpetuate health 

disparities.  

Citizen science enables large-scale real-world data collection from a diverse range of participants and 

can be more cost-effective and time-efficient compared to traditional research methods. Moreover, 

citizen science fosters public engagement in scientific research, raising awareness and empowering 

individuals to contribute to knowledge generation which has been shown to be important in research-

related environmental health impacts (Heyes et al., 2022).  

However, there are limitations to consider, such as challenges in data quality and consistency due to 

variations in data collection methods, participant compliance and device limitations. It is important to 

find a balance between capturing temporal trends (frequency of measurements) and minimizing 

participant burden. Additionally, citizen science projects might be susceptible to selection bias, as 

participants may be more motivated or aware of the issue being studied, and access to wearable 

devices might not be evenly distributed across socioeconomic groups. The project design needs to 

address this by employing alternative data collection methods such as sleep diaries and surveys, to 

ensure inclusivity and a more representative sample. Targeted outreach efforts should also aim to 

reach diverse populations and minimize the risk of excluding certain demographics.  
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2.6 Establishing site-specific exposure-response functions  
Although ERFs are available from literature for noise, these are often based on populations that can 

be different from the population living in the proximity of Brussels Airport. Populations can differ in 

underlying health status, stress levels and co-exposures to other environmental stressors. Therefore, 

it is recommended to derive situation-specific ERFs (WHO Regional Office for Europe, 2018).  

The results that would originate from site-specific research as described in Sections 2.3 - 2.5 could be 

used to derive site-specific ERFs as discussed in the below paragraphs for secondary and primary data 

studies. 

2.6.1 ERF based on secondary health data, using health and environmental data paired at 

the level of individuals   
For some health effects, ERFs can be derived based on secondary health data (see Section 2.3 

Surveillance based on secondary data). Data on mortality and morbidity on an individual basis is 

collected by different institutions in Belgium. Registries contain information on the complete 

population, such as the mortality registry data (managed by the Belgian statistical office (Statbel)) or 

the cancer registry (managed by the Stichting Kanker Register) (See WP3 on relevant data sources). 

When available, these are the preferred data sources for establishing ERFs. When registry data is not 

available for the specific outcome of interest, data from other health databases (e.g., Intego, hospital 

discharge data, etc.) and questionnaires can be used. Health databases such as Intego, hospital 

discharge data, intermutualistic agencies hold valuable information for disease or indicators (e.g., 

medicine use) linked to noise and UFP. Surveys collect data on health at a given time point, such as 

the Belgian Health Interview Survey (BHIS), which has taken place every 5 years since 1997. However, 

since these only cover a subset of the population, survey weights need to be considered to obtain 

results that are representative for the Belgian population. Survey weights are typically computed using 

information on sex, age and household data on e.g., education level.  

Access to personal data, such as health data, is overseen by the Information Security Committee (In 

Dutch: informatieveiligheidscomité, IVC), which issues authorizations for the electronic exchange of 

personal data. As a rule, authorizations are only given for the exchange of pseudonymized data, where 

data on an individual is available, but all data that can lead to the identification of the individual has 

been removed. This includes names, national registry number, residence address, ....  

Figure 5: Potential set-up of a citizen-science system for surveillance of the health impacts of aircraft noise. 
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To link one case (e.g., mortality or cancer diagnosis) to (models estimating) environmental exposure, 

access to residence information is required. Data coupling of historical or current data on individual 

health cases and environmental exposure needs to be done by a trusted third party, and the data 

coupling procedure needs to be approved by the IVC, which is a lengthy process. Once the process has 

been approved, the authorization can cover data coupling of historical, contemporary datasets and 

can be extended when new datasets become available.  

Disposing of individual health data coupled with address-based environmental data allows for testing 

the effect of a large variety of metrics for environmental stressors, such as UFP maps (when they 

become available), noise data on peak noise level exceedances or noise levels for specific time slots 

(for instance 02:00-05:00), in complement to the available Lnight and Lden maps. It would also allow for 

testing this relationship over a variable period. Depending on the health outcome under 

consideration, a different exposure window might be relevant. For example, quality of sleep will most 

probably be influenced by noise levels between 23:00 and 7:00; in the case of asthma exacerbation, 

the exposure to UFP over hours to days before the exacerbation is most relevant; the outcomes of 

questionnaires on wellbeing are most often associated with exposures during the weeks prior to the 

survey; finally, for chronic conditions, an exposure window over years to decades is most appropriate. 

Residence history, combined with modelled exposures, allow to compute exposure over the most 

appropriate time interval.  

When investigating a rare health effect (e.g., child leukaemia), the incidence recorded over one year 

can be too small to detect significant results. This can be mitigated by pooling data over several years 

or decades to obtain sufficient statistical power.  

2.6.2 ERF based on primary individual paired health data  
Although pre-existing administrative databases and surveys are a valuable source of information, they 

are not a panacea (see reasons described in Section 2.4 Surveillance based on primary individual data). 

Designated surveys can provide info in exposure responses of the targeted population. Similar 

statistical methods to derive ERF as for use of secondary individual paired health data can be applied. 

2.6.3 Application of ERF functions from the population living in the proximity of Brussels 

Airport 
The ERFs derived from populations living near Brussels Airport (as to be derived see Sections 2.6.1 and 

2.6.2) can be applied to the entire population in the vicinity of the airport, taking into account 

differences in environmental pressure (e.g., noise levels) and demographics within the region.  

For the ERFs to be accurate and applicable, it is essential that the study population used to derive the 

ERFs is sufficiently representative of the broader population living near the airport. This means that 

the study participants should reflect the diversity of the population in terms of age, sex, SES and other 

relevant factors. 

One practical application of these new ERFs is to incorporate them into the E-HIS tool “aircraft noise 

– health". This tool currently uses literature-based ERFs, which may not accurately reflect the specific 

situation around Brussels Airport. By upgrading the tool with region-specific ERFs, the estimated 

number of people affected by sleep disturbance and annoyance due to aircraft noise will be more 

reliable and tailored to the local context.  
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2.7 Considerations regarding complexity, sample size, time and cost for 

different types of health surveillance and research  
Understanding the potential health impacts of airport operations on surrounding communities 

requires a multifaceted approach utilizing various data sources. This section outlines the commonly 

used data sources in airport health research, considering their complexity, achievable sample size, 

accuracy, cost and time to collect, along with other interesting factors as also visualized in Figure 6. 

 

Figure 6: Primary and secondary data sources that could be employed in airport-related health studies.  

2.7.1 Secondary data 

2.7.1.1 Aggregated data  

Complexity: This data is readily available and relatively straightforward to analyze using ecological 

studies. This type of study analyses existing data at the group level to identify potential relationships 

between exposures (e.g., aircraft noise) and health outcomes (e.g., cardiovascular disease mortality). 

Although simple in design, interpreting findings can be challenging due to confounding factors (e.g., 

SES) that can influence exposure and effect. Most importantly, ecological studies suffer from 

ecological fallacy, i.e., what happens at an aggregated scale does not necessarily happen at the level 

of every individual. 

Achievable sample size: Ecological studies typically deal with large sample sizes, often encompassing 

entire populations within defined geographic areas, not individual participants. While a large number 

of groups might seem like a strength, the analysis is limited to group-level averages. It does not 

consider individual variations within each group.  

Strength of evidence: Can establish ecological associations between exposure and health outcomes 

at the population level. Not able to explore individual-level factors or causal relationships due to the 

aggregated nature of data. 

Cost and time: A significant advantage of ecological studies is the fact that they are cost-effective and 

time efficient. These studies rely on readily available data eliminating the need for expensive 

recruitment, data collection procedures and interventions, making it suitable for initial surveillance or 

hypothesis generation.   

Additional considerations: Data quality and consistency across datasets needs careful evaluation. 

Limited control over data collection methods and potential biases from the original studies. Can be 

linked with environmental data using Bayesian models. May include data on demographics (e.g., age, 

gender), but might lack detailed information on SES or lifestyle.  
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Exemplar study: Evrard et al. (2015) exemplifies the strengths and weaknesses of ecological studies 

with secondary data. While it provides valuable insights into a potential link between aircraft noise 

and cardiovascular disease mortality, its ecological nature limits its ability to establish causality.  

2.7.1.2 Individual data  

Complexity: Obtaining and analyzing individual-level data is more complex than aggregated data 

analysis due to potential inconsistencies in data collection methods and variable formats across 

datasets. Moreover, it requires access to existing databases with individual health information (e.g., 

Intego) which is often a tedious process.  

Achievable sample size: The sample size can vary depending on the database and inclusion criteria. It 

may be smaller than aggregated data but offers a more granular view of health outcomes for included 

individuals.   

Strength of evidence: Can provide stronger evidence for associations compared to aggregated data 

analysis due to the ability to control for some individual-level confounding factors. However, causal 

relationships are still challenging to establish without additional data. 

Cost and time: Generally, less expensive than primary data collection studies, but data acquisition 

costs may apply depending on the source. The costs and time to access and analyze individual data 

vary depending on access agreements and data security protocols. Data coupling procedures need to 

be approved by the Information Security Committee which is a lengthy process and limits the 

feasibility of this data source for rapid assessment.    

Additional considerations: Individual data can be linked with detailed demographics, SES, lifestyle 

(smoking, diet) and even genetic factors. This allows for more robust analyses exploring potential 

associations between these factors and health outcomes which could be used to establish ERFs. Again, 

potential biases from the original data collection methods need to be considered.  

Exemplar study: The long-term RIVM study around Schiphol airport on UFP exposure exemplifies the 

strengths of secondary data analysis on an individual level (Janssen et al., 2022) .  

2.7.2 Primary data  

2.7.2.1 Large-scale surveillance 

Complexity: Relatively straightforward to design and implement due to standardized questionnaires 

and the possibility to complement with self-sampling procedures.   

Achievable sample size: In general, the sample size is large and varies depending on the budget, 

available resources and targeted population. This increases the generalizability of findings to the 

broader population. 

Strength of evidence: Can establish robust associations between exposure and health outcomes due 

to the large sample size and statistical power. However, these studies often lack detailed information 

on exposure patterns and mechanisms underlying observed associations.   

Cost and time: Surveys are moderately costly and time-consuming. They involve survey design, 

participant recruitment, data collection and analysis.  

Additional considerations: Data quality may be compromised by participant recall bias or errors in 

self-reported information or self-sampling. 
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Exemplar study: Hypertension and Exposure to Noise near Airport (HYENA) (Selander et al., 2009) and 

Discussion on health effects of aircraft noise (DEBATS) (Lefèvre et al., 2017) study are two examples 

of large-scale European surveillance studies integrating two complementary primary data collection 

methods. Namely survey research and molecular measurements (i.e., cortisol levels in saliva). The 

latter was for both studies performed on a subsample of individuals with a high exposure to aircraft 

noise based on their survey responses and residential noise level estimates.  

2.7.2.2 In-depth monitoring  

Complexity: Most complex and resource intensive. Requires specialized equipment, trained personnel 

(e.g., interviewers, field workers) and protocols for sample collection and analysis.  

Achievable sample size: Often involves smaller, targeted groups due to intensive data collection 

procedures, higher costs and potentially higher participant burden. Findings may be more relevant to 

the specific population but require careful consideration for generalizability.  

Strength of evidence: Can provide stronger evidence for causal relationships due to the ability to 

collect more precise exposure data, control for confounding factors and potentially explore biological 

mechanisms in depth through objective measurements. However, findings might be less generalizable 

to the broader population due to the smaller sample sizes.  

Cost and time: More expensive due to specialized equipment, trained personnel and potentially 

longer data collection periods. Data analysis could be more time-consuming due to the complexity of 

integrating diverse data sources. 

Additional considerations: Participant recruitment and retention can be challenging due to the 

intensive nature of the study design. 

Exemplar study: The PIO study presents a strong example of an in-depth noise monitoring study that 

could be adapted to focus on aircraft noise (Dekoninck et al., 2023). By analyzing personal exposure, 

health effects, sleep disturbance and noise perception, researchers could gain valuable insights into 

the overall burden of aircraft noise on resident’s health and wellbeing and possible underlying 

biological mechanisms.  

2.8 Recommendations 
This report provides an overview of relevant study approaches and considerations to set up a health 

surveillance or research study to assess the health impact and disease burden of Brussels Airport on 

nearby residents. Each study fits a specific research question and will contribute to a piece of the 

puzzle to understand the impact of aircraft activities on the health of people living in the 

neighbourhood. Several considerations (see Section 1.2, i.e., impact, strength and quality of evidence, 

new research areas, understanding mechanism, focus on vulnerability, cost and feasibility, etc.;), can 

be taken into account when selecting or prioritizing which study to set forward and launch.  

These considerations are aimed to provide a framework to help select a study approach in view of the 

identified research questions and are key to allow flexibility and inform choices for setting up a 

dedicated health study around Brussels Airport. In addition, beyond selecting the appropriate 

research design, sequencing those studies in a logical order would improve overall research efficiency 

and allow to build a strong foundation of knowledge (partly based on suggested prioritizations). 

Hereto, we propose a tiered methodological approach providing a structured framework for 

investigating the health impacts of Brussels Airport on nearby residents. The optimal tier for a study 

depends on the specific research question and available resources. For instance, surveillance based 



35 

 

on ecological studies with secondary (see Section 2.3 Surveillance based on secondary data) or primary 

(see Section 2.4.1 Large-scale primary data surveillance) health data gathered in a cross-sectional set-

up could be a good starting point to identify potential associations between airport-related stressors 

and health problems with existing evidence of a link and/or public health significance. These findings 

could be complemented with objectively measured data collected in more in-depth surveillance 

studies (see Section 2.4.2 In-depth monitoring). However, site-specific longitudinal studies provide 

valuable insight into cause-and-effect relationships (see Section 2.6 Establishing site-specific exposure-

response functions). In turn, citizen science projects can provide valuable complementary, large-scale 

data in a cost-effective manner and increase public engagement (see Section 2.5 Citizen science 

projects).  

As a starting point, we recommend enrolling a surveillance study based on primary data collection to 

investigate the potential association between aircraft noise exposure and sleep disturbances among 

residents near Brussels Airport. Standardized questionnaires (readily available from international 

research around other airports and national studies such as De Oorzaak, PIO, SLO, FLEHS and the 

Belgian health interview survey) could be employed to collect self-reported data on sleep disturbance, 

annoyance and quality of life (including stress). An option would be to incorporate self-sampling for 

cortisol measurements to provide additional insights into potential stress responses associated with 

aircraft noise exposure. Such a surveillance study offers a valuable starting point for investigation of 

the potential impact of aircraft noise on sleep and well-being of residents near Brussels Airport. The 

findings could in turn inform more in-depth research proposals.  

In parallel, ecological studies using existing (i.e., secondary) data can be conducted to explore a 

broader range of associations between aircraft noise and various noise-related health outcomes at 

the population level. Here it is recommended to focus on established noise-related health outcomes, 

such as cardiovascular diseases, mental health issues (e.g., anxiety, depression) or metabolic disorders 

(e.g., diabetes, obesity).  

Representative surveillance data, both from primary and secondary health data, in connection with 

paired environmental data, could furthermore be used to derive site-specific ERFs which in turn would 

allow to quantify and monitor the burden of disease linked to airport-related stressors, e.g., in terms 

of various environmental burden of disease indicators (i.e., number of affected people, population 

attributable fraction, Disability-Adjusted Life Years, etc.). 

In a possible next step, an in-depth monitoring study delving deeper into the aircraft noise-sleep 

relationship employs more rigorous data collection methods to strengthen the evidence base. These 

studies can involve standardized measurements (e.g., noise monitoring network) alongside 

questionnaires and biological effect measurements to gain a more comprehensive understanding of 

exposure patterns and health effects. Within the ‘Programma Innovatieve Overheidsopdrachten (PIO)’ 

of the Flemish Government, a methodology was developed to measure nightly indoor and outdoor 

noise, simultaneously with cardiovascular parameters and accelerometer data, hence assessing the 

impact of nightly noise exposure on sleep disturbance. This user-friendly and non-invasive yet 

accurate and validated tool is utmost suited to assess the impact of noise in the population living 

around the airport.  

Lastly, citizen science projects can complement the above studies by providing large-scale, cost-

effective data collection while engaging the public.  

This report gave the most attention to the investigation of sleep disturbance caused by aircraft noise 

in communities surrounding Brussels Airport grounded by two considerations. First, a robust body of 
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existing research from various studies demonstrates a clear link between aircraft noise exposure and 

sleep disturbance. Second, while the detrimental effects of aircraft noise on sleep are well-

documented elsewhere, data on this specific aspect in the region of Brussels Airport is currently 

missing. However, the impact of aircraft noise on other health outcomes (e.g., cognition in 

schoolchildren, cardiovascular effects, etc.) is also recommended to investigate.   

We strongly recommend to also set up research regarding the impact of UFP on health in the vicinity 

of Brussels Airport. While there are not yet established health advisory values (in Dutch: GAWs) for 

UFP exposure, there are several reasons to be concerned about UFP exposure in neighbourhoods of 

Brussels airport: (i) UFP exposure levels reach up to very high levels in some residential areas around 

Brussels airport, (ii)) UFP originating from other sources (e.g., road traffic) is associated with adverse 

outcomes (e.g., suggestive evidence for several long-term effects, i.e. cardiovascular, respiratory, 

cognitive effects, effects on birth outcomes and mortality; suggestive evidence for short-term effects: 

cardiovascular effects, respiratory and cognitive health) and (iii) epidemiological evidence of health 

effects from UFP arising mainly from airports is growing (e.g., suggestive evidence between aircraft 

UFP exposure and cognitive health and birth outcomes). To expedite progress in this critical area, it is 

advised to establish collaborative research initiatives with established research groups operating 

around other (international) airports. This collaborative approach would foster knowledge exchange 

and contribute to aircraft UFP – health research programs and a comprehensive understanding of the 

relationship between aircraft UFP exposure and human health.    
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