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I. ABSTRACT

This paper investigates a carry-save multiplier design and
its associated performance when implemented and simulated
using 45 nm CMOS technology in Cadence. Prior work such
as that in [1] achieve power draws of roughly 20 uW with
an overall time delay of approximately 1.5 ps, using a low
gigahertz frequency clock, so the proposed specifications are
within similar margins to this and other prior work.

II. INTRODUCTION

Multiplication of a 4 x 12 product A x B can be modelled
as the addition of four 12-digit numbers left-shifted to account
for their position in the multiplicand:

><123456789
1234
493827156
370370367
246913578
123456789
152345677626

The same method applies for multiplication in binary. The
most basic form of multiplier architecture is one that uses
a ripple-adder to compute the piece-wise products, however
whilst being hardware-efficient, this produces bad propagation
delay on the order O(n) where n is the number of bits in
the multiplicand. Beetter is the carry lookahead adder which
reduces the delay to O(logn) however it does so at the
cost of increased complexity. Furthermore, as the size of n
increases, the distance the signals have to travel on the chip
via interconnects increases proportionally to n and hence so
does the propagation delay.

As far as how carry-save works, the idea is to compute the
sum term S; and carry-term C; independently of one another.
When adding three numbers together, a, b, ¢ in binary, one can
either compute a + b and then the tertiary sum (a + b) + ¢,
however this relies on waiting for the final term to propagate
from lower bits. Instead, one computes S; as a; ® b; & ¢;
and C; as (a;b;) V (b;c;) V (a;c;) using the formulae proposed
originally by John von Neumann and subsequently in later
work.

III. PROPOSED TECHNIQUE

This paper presents a multiplier architecture using carry-
save adders. It implements logic gates in 45nm CMOS technol-
ogy and assumes throughout Vpp = 1.2V It exploits DCVSL
for:

e Minimum power draw, particularly static power draw
e Minimising hardware resources compared against com-
plimentary CMOS

The design consists of a (4 + 1) x 12 array of multiplying
adder blocks, similar to that of [2]:

ma,, ma,, ma,, ma,,

ma,, ma,, ma,, ma,,

Fig. 1. Visualising a 4 X 4 bit carry-save multiplier

Each ma block consists of a 1-bit Manchester adder using a
delete/propagate/generate schema for the sum S; and carry-out
Co,; bits. Assuming inputs a; and b;, we have

pi = a; D b; )]
gi = a; A\ b; 2
di =@ Nb;=a; Vb 3)
And then
Si =i ®Cin €]
Co,i = gi + piCini )

This adder can be easily converted for multiplication of two
numbers x and y at bit position ¢ of the product under the
mapping a; — Sin,; and b; = x; A ;.

A. Optimisations

Inspection of [T] and [4] shows that the gates mag; can be
replaced with simple AND gates since the carry-in and sum-in
for this round of multiplication is 0. Furthermore, the bottom
left-most cell can be dropped sincethe net carry-out is always
0 when S is 16 bits, and the final row of ripple adders can
be replaced with a faster carry-lookahead adder as proposed
in [3]]. Refer to Table [[] for comparison of designs.
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Fig. 2. The full 4 x 12 bit adder. The 4-bit value is fed horizontally across the
columns running from top to bottom (Yo — Y3) whilst the 12-bit multiplicand
runs across the rows (Xo — X711 from right to left)

B. Schematic Design

We now present the transistor-level implementation of the
4 x 12 adder, starting from the top-level and working down.
The full carry-save multiplier can be found in Figure [2] below.
From here on we refer to the computation of product X x Y
where X[11:0] Y[3:0].

We first consider each mulitplier block ma; ; representing
computing the product of X and Y; that has been left-shifted
1 positions.
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Fig. 3. The ma block

The block in the upper right above of Figure [3] designates
a 1-bit Manchester adder that looks as follows:

Fig. 4. The 1-bit adder for computing each sum and carry-out term

The blocks above labelled Dy and Cy compute the delete bit
and carry-out bit respectively and are produced thusly:
And

Fig. 5. The Delete block
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Fig. 6. The Carry-out block

Finally, we consider two different implementations of the
XOR and NAND gates underlying Figures [3] [ and [5] above,
one using standard complimentary CMOS logic and the other
ratioed DCVSL.
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Fig. 7. DCVSL XOR Gate
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Transistors for the DCVSL implementation have been sized
accordingly. The complimentary CMOS follows a standard
design, whilst the DCVSL is shown below.
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Fig. 8. DCVSL NAND Gate

IV. SIMULATION RESULTS

Using standard complimentary CMOS logic for the CSA
produces the following results. The design can be run at a
clock of 1.11 GHz (periodicity of 0.9 ns) before erroneous
outputs are produced.

The average propagation delay can be calculated from the
graph as 173 ps, and the average power dissipation for the
testbench is given below:
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g. 11. The optimised multiplier running at 1.25 GHz

@ average(IT{"/VO/PLUS™)*VT("/vdd!™))
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Fig. 12. The power draw of the optimised device at 1.25 GHz

Observation of the above figures shows that the DCVSL,
optimised implementation allows for faster throughput and
in general less instability in the transition region of Sum
generation, however it does come at the cost of increased
power draw, perhaps owing to static power consumption of
the DCVSL design.

In both cases, the worst-case propagation delay was caused
when the carry bits had to propagate across the entire mul-
tiplication, such as when switching from 02000 x 0z0 to
0zEFEE x 0zE.

TABLE I
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Fig. 9. Simulation results for 4x12 adder at 1.11 GHz
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Fig. 10. Power dissipation for unoptimised complimentary CMOS giving
incorrect results when running beyond 1.11 GHz

However, once we convert to using DCVSL logic and
implement the optimisations sugested in the section on [[TI}
then the device can be run at a marginally higher clock (~
1.25 GHz), though at a slightly higher power draw. Note that
the same test values of X and Y were provided as above:

[ Logic type [ Bit size | Delay (ns) [ Power (uW) |
Complimentary CMOS 4 x12 0.173 132.8
DCVSL optimised 4x12 0.142 229.6
Sub-threshold ([4]) 8% 8, Vpp = 0.862V 0.3 0.101
CSA of [3] 32 x 32 54.1 x 103 | 21.8 x 103
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